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ON BOUNDED DATABASE SCHEMES AND BOUNDED HORN-CLAUSE
PROGRAMS*

YEHOSHUA SAGIV’

Abstract. A lossless database scheme with full implicational dependencies is considered. The following
condition is necessary in order that restricted projections of the representative instance could be expressed
in relational algebra (i.e., in first-order logic): The dependencies of the database scheme are equivalent to
a single join dependency and some equality-generating dependencies. An important special case is when
the database scheme has only full tuple-generating dependencies. In this case, restricted projections of the
representative instance can be expressed in relational algebra if and only if the following condition is true:
The dependencies of the database scheme are equivalent to a single join dependency. Testing this condition
is decidable. This result also applies to the class of Horn-clause programs consisting only of typed rules
with one predicate symbol R (and without function symbols). A program consisting of rules of this form
is equivalent to a nonrecursive program if and only if it is equivalent to a project-join mapping. Finally, it
is also shown that a tableau mapping is idempotent if and only if it is a project-join mapping.

Key words, database, dependency, Horn-clause rule, losslessness, query, relational algebra, representa-
tive instance, tableau
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1. Introduction. The decomposition of a relation produces several new relations
in some normal form and, consequently, certain update and storage anomalies are
removed (cf. [Ma], [U1 ]). The original relation, however, remains a correct representa-
tion of the various relationships among its attributes, and frequently it is easier to
formulate a query with respect to the original relation rather than the new relations.
More specifically, many queries that can be formulated over the original relation as a
projection and a selection, also require joins and possibly unions when formulated
over the new relations, because all the correct access paths among the new relations
have to be included in the answer. Surprisingly, in some simple cases it is (not just
more difficult but actually) impossible to express projections of the original relation
in relational algebra (i.e., first-order logic) if we insist that the new relations be the
only operands [MUV]. When making statements like the previous one, we have, of
course, to describe the connection between the new relations that are actually stored
in the database and the original relation that does not exist in the database. We adopt
the representative instance model [Ho], [Me], [Sal], [Sa3], [Ya] that has been widely
accepted as the correct way of producing the original relation from the new ones. The
representative instance contains all the data that is obtained by losslessly joining (cf.
lUll) some of the new relations; and it has null values in order to account for partial
information, i.e., tuples that cannot be extended, using lossless joins, to complete tuples
over all the attributes, because of missing information.

If we choose to allow users to formulate queries over the representative instance,
we are faced with the problem of optimizing these queries. Queries usually involve
only a few attributes of the original relation and, therefore, it is desirable to have
algebraic (i.e., relational algebra) expressions, with the new relations as their operands,
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that compute restricted projections of the representative instance. Hopefully, these
expressions could be optimized by known techniques, and evaluated in considerably
less time than required to compute the whole representative instance.

Maier et al. [MUV] showed (using the Compactness Theorem) that if there is .a
first-order formula that expresses the restricted projection onto some X, then there is
also a union of tableaux that expresses it. Since the result of [MUV] uses the Compact-
ness Theorem, it is valid in the unrestricted case, i.e., when databases are either finite
or infinite. In this paper we consider lossless database schemes with full implicational
dependencies [BV2], [Fa], [YP]. We give a necessary condition for the existence of a
union of tableaux expressing the restricted projection onto the set of all the attributes.
The condition states that the dependencies of the database scheme must be equivalent
to a single join dependency and some equality-generating dependencies, and testing
whether it is satisfied is decidable. Moreover, if the dependencies of the database
scheme are only full tuple-generating dependencies (and no equality-generating depen-
dencies), then equivalence to a single join dependency is both necessary and sufficient
for the existence of unions of tableaux that compute restricted projections of the
representative onto any set of attributes. Our results hold for finite databases. For
unrestricted databases, "a union of tableaux" can be replaced with "an algebraic
expression" (i.e., "a first-order formula") in the above results, by combining them with
those of [MUV].

Our results also apply to the following fragment of Horn-clause programs. The
only rules allowed are typed rules with only one predicate symbol R and neither
function symbols nor equality ("typed" means that no variable appears in more than
one column of R, but of course a variable may appear in several occurrences of R as
long as it is always in the same column). A program consisting of a set of rules of this
form is equivalent to a nonrecursive program if and only if it is equivalent to a
project-join mapping. Testing this condition is decidable. Cosmadakis and Kanellakis
[CK] have recently investigated this class of Horn-clause programs.

2. Preliminaries.
2.1. Schemes, states and instances. Relations are tables of information in which

the rows are records or tuples of data, and the columns are labeled by attributes. A
relation scheme is a set of attributes, and it describes the fixed structure of a table. A
relation r over a relation scheme R is a finite set of tuples, where each tuple is
conveniently regarded as a mapping from the attributes of R to their domains. The
value of a tuple/z for an attribute A is denoted/x(A). We assume that each attribute
has an infinite domain of constants (e.g., integers).

A database scheme consists of relation schemes and dependencies, and is denoted
by ([R1, , R,], D), where each Ri is a relation scheme, and D is a set ofdependencies
that will be defined later. The set of all the attributes, i.e., t_J i% Ri, is denoted by U.
A state of the database scheme ([R, , R,], D) is a collection of relations r,. , r,
over R,. ., Rn, respectively.

The projection of a relation r onto a set of attributes X, written 7rx(r), is obtained
by removing columns not in X and eliminating duplicate tuples. A (universal) instance
I is a relation over U. An instance I generates the state rrR,(I), , 7rR.(I), which is
denoted by state(I).

A restricted projection is a projection followed by elimination of all tuples that have nulls in some
columns. Essentially, restricted projections correspond to the most basic queries that can be posed over the
representative instance.
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2.2. Tableaux and tableau mappings. Tableaux are formulas that express queries
over a given database scheme (JR1, , Rn], D). A tableau [ASU1], [ASU2] is a table,
similar to a relation, with columns that correspond to the attributes of U and rows
that are filled with variables. We denote a tableau either by a single letter (e.g., T) or
by explicitly specifying its rows, i.e., (Wl," ", wn)/s, where w,. ., wn are the rows
of the tableau and s is a special row called the summary. The summary s may have
blanks in some columns; the rows wi have variables in all the columns. Each variable
appearing in the summary must also appear in some wi, and no variable appears in
more than one column. The variables appearing in the summary are called distinguished
variables, and other variables are called nondistinguished variables. Each row has a tag,
which is one of the relation schemes Ri. A row with a tag Ri has a unique nondistin-
guished variable (i.e., a variable that appears nowhere else) in each column whose
attribute is not in Ri. The phrase "the rows of the tableau (w,..., wn)/s" refers only
to the wi, i.e., the summary is excluded.

Example 2.1. In examples we usually represent a tableau as a table in which the
summary appears at the top and is underlined. Distinguished variables are represented
by a’s with subscripts, and nondistinguished variables are represented by b’s with
subscripts (and sometimes also by other letters). In this example we explicitly show
the attribute of each column, but we will not do so in future examples. Suppose that
the set2 of all the attributes is ABCD. The following is a tableau whose rows are tagged
with the relation schemes AB, ABC, ABD.

A B C D

AB
ABC
ABD

al a2 a3 a4

a a b b

b5 a2 a b
b a2 b a

We say that h is a symbol mapping of a tableau T if h maps each variable of T
to a constant. The result of applying h to u, where u is either a row or the summary
of T, is a tuple defined naturally as follows. The tuple h(u) maps attribute A to h(u(A)),
where u(A) is the variable appearing in column A of u. If u has a tag Ri, only the
projection of h(u) onto Ri is of interest, and by a slight abuse of notation, we will
denote that projection by h(u). The symbol mapping h is a valuation of T into a
database rl," ", r, if h maps every row of T with tag Ri to a tuple of ri.

A tableau T defines a mapping from states (of the given datab/se scheme) to
relations. Tableau T maps a state rl,’’’, r to the following relation, denoted
T(rl,. r),

{ h (s)ls is the summary of T and h is a valuation of T into rl,. , r,}.

Note that T(r,..., r,) is a relation over the set of attributes in which the summary
of T has nonblank symbols.

We also consider tableaux that map instances to relations. A tableau defines a
mapping of instances if all its rows have the tag U, and traditionally, we refer to a

We use the common notation in which the letters A, B, C,. represent single attributes, the let-
ters , X, Y, Z represent sets of attributes, and a set or union of sets is written as a string of attributes.
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tableau of this kind as an untagged tableau (and in examples we write it without tags).
Unless explicitly said otherwise, tagged and untagged tableaux considered in this paper
are full in the sense that their summaries have variables in all the columns, i.e., the.
value of a tableau is always an instance. It is easy to see that a full untagged tableau
mapping T is monotonic, i.e., for all instances I, I T(I).

A union of tableaux [SY] is an expression of the form U i1 T/, where T1," , Tm
are tableaux. If the T are tagged, the value of k3 7’--1 T, given a state rl,’" ", rn, is
(3 i%1 T(rl, ", rn). If the T are untagged, the value for an instance I is U i1 T(I).
The mappings defined by tableaux and union of tableaux can always be expressed in
relational algebra [Co].

2.3. Dependencies. Untagged tableaux also define full implicational dependencies
[BV2], [Fa], [YP]. These dependencies are either tuple-generating dependencies (tgds)
or equality-generating dependencies (egds). A tgd d is written as an untagged tableau
(w,..., w,)/s, and it is satisfied by an instance I if for all valuations h of
(wl,"’, w,)/s into I, the tuple h(s) is in /. An egd is also written as an untagged
tableau, but its summary is of the form a b, where a and b are variables (both a
and b must appear in the same column of the tableau). An egd (Wl," , w,)/a b is

satisfied by an instance I if for all valuations h of (w,..., wn)/a b into I, the
equality h(a)= h(b) holds. As a technicality, we consider one of a and b, say a, as
the only distinguished variable of the egd.

A tgd in which no nondistinguished variable occurs more than once is called a
join dependency. A database scheme ([R, ., R,], D) has an associated join depen-
dency, denoted by Ri, such that for each Ri, the join dependency Ri has a row with
distinguished variables in the columns of Ri and distinct nondistinguished variables
in the rest of the columns. When a tableau for a join dependency is viewed as an
untagged tableau mapping, it is usually called a project-join mapping (because this
tableau mapping is the same as joining some projections of an instance).

2.4. Tableaux as mappings, dependencies and instances. Given an untagged tableau
T, we call it either a mapping or a tgd, depending on how we view it. We use the term
"tableau" as a generic name for either mappings or tgds (but not egds). In some proofs
in this paper we alternate between viewing a given tableau T as a mapping and as a
tgd..Similarly, a tagged tableau may also be considered as an untagged mapping or a
tgd simply by ignoring the tags.

A tableau (or more precisely, the rows of a tableau) may be converted into an
instance by mapping each variable to a distinct constant. Since the one-to-one mapping
that converts a tableau to an instance is only a formality, we shall refer to the tableau
itself as an instance instead of using a mapping. When viewing a tableau as an instance,
we always consider only the rows without the summary.

2.5. The chase. We permit the use of nulls in instances. A null represents an
unknown value and is denoted by . Two nulls are equal only if they have the same
subscript, and a null is never equal to a constant. If we assume that an instance I
should satisfy a set of dependencies D, then we may infer that some nulls can be
replaced with constants or with other nulls, and tuples currently not in I must belong
to it. The process of making these inferences is called the chase [ABU], [MMS], and
it is defined in terms of rules that are associated with the dependencies of D.

We do not consider embedded dependencies in this paper.
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The rule for a tgd (wl," ", w,)/s states that if there is a valuation h of the wi
into/, such that h(s) is not a tuple of/, then h(s) is added to L The rule for an egd
(wl,..., w,)/a=b states that if there is a valuation h of the wi into I, such that
h (a) h (b) and at least one of h(a) and h (b) is a null, then h a and h(b) are equated
as follows. We arbitrarily choose a null among h(a) and h(b), say h(b), and replace
all occurrences of h(b) in I with h(a). The chase of I with respect to D, written
CHASEo(I), is obtained by repeatedly applying the rules for the dependencies in D
to the instance I until no rule can be applied anymore. The chase process terminates
(since all dependencies are full), and CHASEo(I) is uniquely defined up to renaming
of nulls, provided that it satisfies (the dependencies of) D [MMS]. Clearly, CHASEo(I)
satisfies all the tgds of D, but not necessarily all the egds of D.

Let ([R1, ", R,], D) be a database scheme. Given a state r,. ., rn, we create
a special instance, called the representative instance [Ho], [Me], [Sal], [Sa3], [Ya], in
the following way. First, we augment each r with columns for the attributes in R- R,
and fill each entry of these columns with a unique null (i.e., it appears nowhere else).
The union of all the augmented relations is an instance denoted by A(r,..., rn).
The representative instance of r, r,, denoted RI(r, , r,), is
CHASED(A(rl, rn)).

A consistent state of the database scheme (JR1, ., R,], D) is a state r,. ., r,
such that RI(ra,. , r,) satisfies D. A consistent instance of D is an instance I without
nulls, such that CHASED(l) satisfies D. The set of all consistent instances of D is
denoted CON(D). Clearly, an instance that satisfies D is also a consistent instance,
but the converse is not necessarily true. Another important observation is the fact that
if I is a consistent instance, then state(I) is a consistent state.

The chase can also be applied to the rows of a tableau T. When equating variables,
distinguished variables are treated as constants and nondistinguished variables as nulls.
Since each column of T has at most one distinguished variable, the set of rows of
CHASED(T) always satisfies D. Note that CHASED(T) is a tableau with the same
summary as T and with the rows that were generated from those of T by the chase
(CHASED(T) includes the original rows of T but possibly with some nondistinguished
variables replaced by other variables).

2.6. Implications of dependencies and lossless database schemes. A set of dependen-
cies D implies a dependency d, written Dd, if whenever an instance I satisfies D,
then I also satisfies d. We can use the chase to test implications of dependencies [BV2],
[MMS]. The set D implies d if and only if (the set of rows of) CHASEo(d) satisfies
d, or equivalently,

(1) CHASEo(d) contains a row which is equal to s, when d is a tgd with a
summary s, and

(2) a and b are equated during the chase of d, when d is an egd with a summary
a=b.

A set of dependencies D implies another set D2, written DD2, if D1 implies
every dependency of D2. D1 and D2 are equivalent, written DID2, if DieD2 and
O2Ol.

The following is an important observation. Two sets of dependencies D1 and D
are equivalent if and only if for all instances/, CHASEo,(I)= CHASEo2(I). We will
further discuss this observation in 2.8.

A database scheme ([R1,..., R,], D) is lossless if DNR. A database scheme
has to be lossless in order to reconstruct tuples over U whose projections are stored
in the database. Recall that the representative instance of a database state represents
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all the data that either exist in the database state or can be inferred by correctly
connecting tuples from various relations. If the database scheme is not lossless, then
the representative instance can never have tuples with constants in all the columns of
U, i.e., tuples without nulls [MUV]. In this paper we consider only lossless database
schemes.

2.7. Containment of tableau expressions. We define tableau containment only for
untagged tableau mappings. It is similarly defined for tagged tableaux [ASU1], but
we do not use it in this paper. A tableau T contains a tableau T2 over a set of instances
C, written T2 c T, if for all instances I C, T2(I)

___
TI(I). Tableaux T1 and T2 are

equivalent over C, written T1 =c T2, if for all instances ! C, T2(I)= T(I). If C is
omitted, then C is assumed to be the set of all instances. Containment and equivalence
are similarly defined for unions of tableaux.

A homomorphism h of T into T2 is a mapping of the variables of T into the
variables of T that preserves summary and rows, that is

(1) if w is a row of T, then h(w) is a row of T2, and
(2) for each column A, the distinguished variable of T in A is mapped to the

distinguished variable of T in A.
If the rows of T2 are viewed as an instance, then a homomorphism is a valuation of
T into the rows of T2 with the additional restriction that distinguished variables are
mapped to distinguished variables. The existence of a homomorphism from T into
T2 is a sufficient condition for T c T, and it is also a necessary condition if the
rows of T form an instance of C [ASU1]. The mapping of the rows of T into the
rows of T2 induced by a homomorphism h is called a containment mapping. Essentially,
a containment mapping @:T T satisfies the following two conditions:

(1) If rows w and w2 are equal in some column A, then so are q(w) and (w2),
and

(2) If row w has a distinguished variable in some column A, then so does q(w).
If there is a containment mapping from a tableau T into itself whose image does

not include all the rows of T, then rows not in the image of the mapping can be
eliminated and the result is a tableau equivalent to T (over all instances) [ASU2],
[CM]. A tableau T is minimal if no row can be eliminated by some containment
mapping. Efficient algorithms for minimizing tableaux are given in [ASU2], [Sa2].

A union of tableaux t_J i=n T is contained in another union of tableaux U im=l V/
if and only if each tableau T/is contained in some V [SY].

2.8. Bounded tgds and Horn-clause rules. ’The chase can be viewed as an iterative
process. For some sets of dependencies this iterative process is bounded, i.e., a fixed
number of iterations is sufficient regardless of the input. To simplify the formal
definitions, we assume that D has only tgds; the definition of boundedness when there
are both tgds and egds can be found in [MUV]. So, suppose that D is a set of tgds
and I is an instance, and consider the computation of CHASEo(I). The first iteration
of the chase consists of repeatedly applying the dependencies of D to the original
tuples of I, but not to the newly added tuples. Generally, in each iteration the
dependencies are applied repeatedly to the rows generated in all previous iterations.
Note that the following is true for any set of untagged tableaux { T,. ., T,} and any
instance ! (recall that t_J 7’-- T/(I) is the result of applying the mapping (_J 7’-- T to I):
The instance (_J i= T(I) is equal to the result of the first iteration of chasing I with
the tgds T,. .,

The chase process with respect to a set of dependencies D is bounded if there is
a fixed integer k, such that for all instances/, the computation of CHASEo(I) requires
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k or fewer iterations. We will say that D is a bounded set of dependencies if the chase
with respect to D is bounded.

The problem of determining boundedness is an important one, since the chase
can be executed more efficiently when it is bounded. In fact, the chase can be expressed
in relational algebra when it is bounded, but not in general [MUV]. We will elaborate
on this point in 4.

The boundedness problem also occurs in deductive databases (cf. [GM]).
Deductive databases use Horn-clause rules in order to express queries, and tgds are
essentially Horn-clause rules. A tgd (Wl," , wn)/s is just the following Horn-clause
formula.

V(R(Wl) ^’’’^ R(w,)- R(s)).

Here R is relation scheme4 consisting of all the attributes, i.e., R U, and is a list
of all the variables in the tgd. In the notation of deductive databases (or logic
programming), the above formula is written as the following rule.

R(s):-R(Wl)," ,R(w,).

In general, Horn-clause rules may have many different predicates and need not be
typed (they may also have function symbols). We will consider, however, only rules
that correspond to tgds.

Example 2.2. Consider the following untagged tableau:

al a2 a3 a4

a a b b
e a a b
e a b a4

The tgd expressed by this tableau can also be written as the following Horn-clause rule.

R(al, a:z, a3, a4):-R(al, a2, bl, b2), R(e, a:z, a3, b3), R(e, a2, b4, a4).

A set P of Horn-clause rules is viewed as a recursive program whose value for
an instance I is just CHASEp(I), where the rules of P are considered as tgds when
the chase is applied. Thus, viewing tableaux as tgds is essentially the same as viewing
them as Horn-clause rules, whereas viewing tableaux as tgds is different from viewing
them as mappings.

In this paper we will characterize when a set of tgds (and hence the corresponding
set of Horn-clause rules), is bounded. This result is important not only for relational
databases, but also in the context of developing efficient methods for evaluating
Horn-clause rules. When a set of Horn-clause rules is bounded, it can be replaced
with a relational expression and, thus, the task of optimizing the evaluation of the
rules becomes considerably easier. Characterizations of boundedness for other frag-
ments of Horn-clause rules have recently been described in [Io], [Na].

Technically a relation scheme is a set of attributes, but we use it also as a relation name, or in iogic
terminology, as a predicate name.
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In summary, a set S of untagged tableaux can be viewed either as
(1) a set of Horn-clause rules,
(2) a set of tgds, or
(3) a mapping defined by the union of its tableaux.

Let S1 and $2 be two sets of untagged tableaux. The following are two important
observations regarding the equivalence of $1 and $2. First, the two sets are equivalent
as sets of Horn-clause rules (i.e., they produce the same result for all instances) if and
only if they are equivalent as sets of tgds. Second, if the two sets are equivalent as
unions of tableaux, then they are also equivalent as sets of tgds (or Horn-clause rules),
but the converse is not necessarily true. Equivalences among Horn-clause rules in more
general cases are discussed in [Sa5].

2.9. Composition of untagged tableaux. Let T and V be untagged tableaux corre-
sponding to either mappings or tgds. We will shortly describe how to construct a
tableau V T, called the composition of T and V, that has the following properties. If
T and V are considered as mappings, then for all instances I, V T(1)= V(T(I)). If
T and V are considered as dependencies, then Vo T is equivalent to {T, V}, i.e.,
V TT, V.

First, we define the result of substituting a row w for the summary s of a tableau
T, written T/w, as the tableau obtained in the following way. For each column A, we
replace all occurrences of the distinguished variable s(A) with w(A). Note that w
becomes the summary of T/w. Next, we will describe how to construct V T. Let
w,..-, w. be the rows of V. We create n copies of T, denoted T,. ., T., and in
each copy we use variables that do not appear in any other copy. The tableau V T
has the summary of V and all the rows of the tableaux T/w,..., T,,/w,. It is easy
to prove that V T has the above properties [BV1], [FMUY].

We will now consider the composition of a tableau T with itself, denoted T. At
first, note that this composition can be viewed as taking a Horn-clause rule and replacing
each predicate in the right-hand side with its definition. Next, we will show explicitly
how T is constructed and develop a notation for its rows that will be used in later
proofs. Let T, , T be the copies of T as described above, and suppose that in all
of them the rows w,. ., w. of T appear in the same order. We denote the rows of

T2T//wi as w, , wn. Tableau consists of all the rows w)(1 -< i, j =< n) and it has the
has in column A eithersame summary as T. Note that row w

(1) the same variable as row wi (of T) if row wj has a distinguished variable in
column A, or

(2) a nondistinguished variable that appears only in w,. ., wn if row w has a
nondistinguished variable in column A.
Thus, the variables of T2 are those of T and T.

Example 2.3. Let T be the following tableau, which was also considered in
Example 2.2.

al 2 a3 a4

a a2 b b
e a a b
e a b a4

The rows of T are denoted, from top to bottom, w, w2 and W3o Note that e is the
only repeated (i.e., appearing in more than one row) nondistinguished variable of T.
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In order to construct T2, we first create three copies of T with disjoint sets of variables.

a a a a4

a a b b
e’ a a b
e a b4 al

at a b b
e a a3 b3

e a2 b a4

a3 a a33 a34

a3 a b31 b3
e a a3 b
e a3a b34 a4

In each T we substitute wi for the summary to obtain T/wi. The resulting tableaux
are as follows.

al a2 bl b2

al a2 bl b
e a b b
e a b b

e a a b

e l! b21 b
e a a3 b32
e a b4 b

e a b a4

e aa b3 b
e a b4 b33
e a b] a

T2 has the nine rows of T/wl, T2/w2 and T3/W3; the summary is (a, a2, a3, a4).
However, T2 can be minimized [ASU2], [CM], and the result is

al a2 a3 a4

al a2 b b
e a a3 b32
e a b] a

Note that T- does not have repeated nondistinguished variables, namely, it is a
project-join mapping (i.e., a join dependency). It is easy to show that if we compose
T2 with itself, the result (after it is minimized) is the same as T2 (up to renaming of
variables).



10 YEHOSHUA SAGIV

As another example, let V be the tableau

al (/2

a b
b b
b2 a2

The following three tableaux are obtained after substituting each row of V for the
summary of some copy of V:

a b

a b[

b’ b
b b

b b

b b
b b2
b2 b

b2 a2

b2 b3
b b
b a

V- has the nine rows of the above three tableaux, and its summary is (a, a2). No row
of V2 can be removed by minimization. Essentially, if we continue to compose V with
itself, we get a growing chain of the form

((a,, b,), (b, b,), (b_, b3),’’’, (b, b_l), (b, a))/(al, a).

Note that each nondistinguished variable appears exactly twice. No two tableaux in
the sequence V, V2, V3, are equivalent as mappings, but they are all equivalent as
tgds. As noted earlier, the composition of a tableau with itself always produces an
equivalent tgd.

Recall that a tableau mapping is monotonic and, therefore, T_ T (as the above
example shows, T and T are not necessarily equivalent). Next, we will define two
specific containment mappings from T2 to T that will be used later. The first, denoted
0- is defined for i, j by ff(w) wi. The second, denoted _0, is defined by O_(wj)= wj.

PROPOSITION 2.1. Both 0 and O_ are containment mappings.
Proof The proof follows from observations (1) and (2) that were stated prior to

has a distinguished variable in column A, then so doExample 2.3. Suppose that wj

wi and w. Therefore, both 0 and _0 map distinguished variables to distinguished
and w" have the same variable b in column A. Wevariables. Now suppose that w k

claim that 0 and _0 map w and Wk to rows that have the same variable in column A.
CASE 1. b appears in T. In this case, both w and w,, must have b in column A,

and both w and Wk must have a distinguished variable in column A. Thus, the claim
is true.

CASE 2. b does not appear in T. In this case, by observation (2), i= m, and wj
and to the sameand Wk have the same variable in column A. Thus, 0 maps wj Wk

row, and _0 maps them to rows that have the same variable in column A. Hence, the
claim is true. [3

3. Idempotent tableaux.
3.1. Idempotency over all instances. Let T be an untagged tableau mapping. T is

idempotent if T T. In this section we will characterize idempotent tableaux, i.e., we
will show that a tableau is idempotent if and only if it is a project-join mapping (i.e.,
a join dependency). Later we will use this result to show that a set D of tgds is bounded
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if and only if it is equivalent to a join dependency. Note that a join dependency is
not only bounded, but is also idempotent (i.e., its bound is 1).

THEOREM 3.1. Let T be a minimal tableau. There is a homomorphism from T into
T2 if and only if T is a project-join mapping (i. e., a join dependency).

Proof Let T be a minimal tableau which is not a project-join mapping. We will
show that there is no homomorphism from T into T2. Suppose that the claim is false
and, so, let be a containment mapping from the rows of T to the rows of Tz. Since
T is not a project-join mapping, it has (by definition) a repeated nondistinguished
variable b, i.e., b appears in more than one row. Since is a containment mapping
from T into T2, we can compose either or _0 with q in order to get a containment
mapping from T to itself. The composed mappings are denoted 0 and _0 . We
will consider three cases depending upon the type of the variable to which $ maps b,
and contradict the minimality of T in each case.

CASE 1. maps b to a distinguished variable. Thus, 0 also maps b to a
distinguished variable. If we compose 0 with itself n times (where n is the number
of rows of T), we will get a containment mapping from T to itself whose image does
not include any row having b (since a distinguished variable cannot be mapped to b),
and that contradicts the minimality of T.

CASE 2. maps b to a nondistinguished variable that does not appear in T. In
this case, the containment mapping 0 q, maps all the rows that have b to a single
row of T, in contradiction to the minimality of T.

CASE 3. q maps b to a nondistinguished variable of T. Suppose that b appears
Since ihas a variable of Tinin column A of some row Wk of T, and q(Wk)= Wj. Wj

column A, it follows that w has a distinguished variable in column A. Therefore, _0
maps b to a distinguished variable and, consequently, the minimality of T is contra-
dicted as in Case 1.

Since the minimality of T is contradicted in all these cases, it follows that there
is no containment mapping from T to T2 if T has a repeated nondistinguished variable.
Conversely, if T has no repeated nondistinguished variables (i.e., it is a project-join
mapping), then T--- T2 [BMSU], and therefore there is a homomorphism from T into.
T2 [ASU1], [CM]. F]

It follows immediately from Theorem 3.1 that a minimal tableau T is idempotent
if and only if it is a project-join mapping. In fact, it is easy to extend this result to
idempotency over any set of instances C provided that the rows of T2 form an instance
of C. This is shown in the next corollary.

COROLLARY 3.1. Let T be a minimal untagged tableau.
(1) T T2 if and only if T is a project-join mapping (i.e., a join dependency).
(2) Let C be a set of instances, and suppose that the rows of T form an instance

=_ T2of C. Then T c if and only if T is a project-join mapping.
Proof At first, note that (1) is a special case of (2) (simply choose C to be the

set of all instances). Thus, it remains to prove (2). If T is a project-join mapping, then
_-- T (forthere is a homomorphism from T into T2 (by Theorem 3.1) and hence T c

any C). If T c T2 and the rows of T2 form an instance of C, then we can show as
in [ASU1] that there is a homomorphism from T into T2, and hence by Theorem 3.1,
T is a project-join mapping.

3.2. Idempotency over consistent instances. When a database scheme has egds as
well as tgds, the only instances of interest are the consistent ones. Consequently, we
would like to characterize the tableaux that are idempotent over CON(D), where D
is a set oftgds and egds. It may seem at first that Corollary 3.1 characterizes idempotency
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over any set of instances C. However, the characterization of Corollary 3.1 applies to
a tableau V only when the rows of V2 form an instance of C. This does not present
a problem when D has only tgds, since CON(D) includes all instances when there
are no egds. However, when there are egds, the rows of V2 do not necessarily form a
consistent instance of D. In order to overcome this difficulty, we will introduce a
tableau V (to be defined shortly), such that

(1) V -=- CON(D) V, and
(2) the rows of 9 form a consistent instance of D.

In fact, we need an additional assumption that states that V is a lossless tableau, i.e.,
D V. This assumption is a reasonable one, since only lossless tableaux correspond
to semantically correct queries (we will further discuss this point in 4). The above
properties of V and V imply the following. By (2), the characterization of Corollary
3.1 applies to V. Moreover, as we shall prove shortly, V is idempotent over CON(D)
if and only if it is equivalent over CON(D) to V, which must also be idempotent.
Therefore, V is idempotent over CON(D) if and only if V is equivalent over CON(D)
to a project-join mapping. Before we formally prove all these facts in the next theorem,
we will define V.

Tableau V is the equality chase of V with respect to D, written ECHASED(V).
Tableau ECHASED(V) is obtained from V by equating variables of V whenever they
are equated in CHASED(V). In other words, ECHASED(V) is the result of computing
CHASED(V) and then deleting the rows that were added during the chase. At first,
we will show that V and ECHASED(V) are equivalent over CON(D).

PROPOSITION 3.1. The set of rows of ECHASED( V) is a consistent instance of D,
and ECHASED( V) =-- CON(D) V.

Proof. The set of rows of ECHASED(V) is a consistent instance of D, since (by
definition) no variables are equated when it is chased with D.

We will now prove the equivalence of V and ECHASEo(V) over CON(D). At
first, we will show that if I is a consistent instance of D, then every tuple of V(I) is
also in ECHASEo( V)( I). So, suppose that h is a valuation of V into I, and let w and
u be rows of V. If the variables in column A of these rows become equal in
ECHASEo(V), then h(w)and h(u) must be equal on A, because I is a consistent
instance of D (see [ASU1], [MMS] for a more detailed proof of this fact). Therefore,
h is also a valuation of ECHASEo(V) into I and, so, every tuple in V(I) is also in
ECHASEo(V)(I). Thus, we have shown that for all ICON(D), V(I)_
ECHASEo(V)(I). Containment in the other direction follows from the fact that there
is a homomorphism of V into ECHASEo(V), since equalities among rows of V are
preserved in ECHASED(V). Thus, ECHASED( V)---CON(D) V. [-]

The next theorem shows that a lossless tableau V is idempotent over CON(D)
if and only if ECHASED(V) is idempotent over CON(D). It is also shown that the
characterization of Corollary 3.1 applies to ECHASED(V). Therefore, by the
equivalence of V and ECHASED(V) over CON(D), tableau V is idempotent over
CON(D) if and only if it is equivalent to a project-join mapping over CON(D).

THEOREM 3.2. Let D be a set of egds and tgds, and V be an untagged tableau such
that D V. We denote ECHASED( V) by V. The following are equivalent"

(1) V CON(D)

(2) V CON(D)

(3) When V is minimized, the result is a project-join mapping.

Note that the rows of a tableau T form a consistent instance of D if no variables are equated during
CHASED(T).
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V2Proof Suppose that V is minimal. At first, we will show that V coN(o) if
and only if V CON(O) Let I CON(D). By Proposition 3.1,

(A) v(I) v(I).

SinceD V, it follows (by [MMS]) that CHASED(V(I)) CHASED(I) and, therefore,
V(I) is also a consistent instance of D (since no constants are equated during the
chase of I). Thus, Proposition 3.1 implies

() ’(X) V().

By (A) and (B) V CON(D if and only if Q
Next, we will show that 2 CON(D) (i.e., the rows of 2 form a consistent

instance of D). By Corollary 3.1, that will prove that (2) and (3) are equivalent. Let
(w,..., w) be the rows of V, and (w) be the rows6 of Q2. Clearly, CON(D).
Suppose that 2 CON(D), that is, when we compute CHASED(2), two variables
of 2, say a and b, are equated. Thus, D(w)/a b. We will show that (the rows of)
CHASED() violates (w)/a=b, which contradicts the fact that D(wj)/a=b
(because CHASED(V) satisfies D) and, hence, completes the proof.

Chsz 1. Both a and b are variables of 2 that appear also in Consider ff as a
valuation of 2 into Since ECHASED(V), no variables are equated during the
chase of , and so ff is also a valuation of 2 into CHASED(V) that maps a and b
to distinct variables of CHASED(V) (since in this case each one of a and b is mapped
to itself). Therefore, 0 is a valuation showing that CHASED(V) violates (w)/a b.

CAsz 2. At most one of a and b appears also in K If there is an i, such that a
and w respectively, then 0 maps a and b to distinct variables.and b appear in rows w ,

If there is no satisfying the above condition, then there are two subcases to be
considered.

Schs 1. Exactly one of a and b, say a, appears also in K In this case, maps
a to a distinguished variable and b to a nondistinguished variable.

Schs 2. Neither a nor b is in K By the assumption leading to the two subcases,
and that contain a and b, respectively, and m. We define a valuationthere are w wg

h by mapping all the rows w (p i and 1 q n) using , and mapping the rows
w,..., w to the row of CHASED(V) consisting of all the distinguished variables
(since D V, this row exists). Since h maps a and b to a distinguished variable and
a nondistinguished variable, respectively, the desired violation is shown. It remains to
be proved that h is indeed a valuation. Suppose that rows w (p i) and w have the
same variable v in some column A. Since v appears in both w and w and p i, it
follows that wo has a distinguished variable in column A. Thus, both w (p i) and
w are mapped to rows having the same variable in column A. Clearly, h preserves
equalities among any pair of rows w and w whenever both p and m are either equal
or not equal to i, since is a containment mapping and rows w,. ., w are mapped
to a single row. Hence, we have shown that h is indeed a valuation.

4. Computing restricted projections of representative instances.
4.1. Bounded database schemes. There are two modes of retrieving information

from a database. Either the information is found in a single relation, or it has to be
obtained by joining tuples of various relations. The first mode is conceptually easy,
whereas the second requires either the user or the system to determine which joins are
correct. Correctness of joins is based on the semantics of the database scheme, which

We write (wj) instead of (w,..., w).
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is described by the dependencies. Since dependencies are formal statements in first-
order logic, they can be used to infer formally all the tuples that are obtained by correct
joins. In fact, this is exactly what happens during the chase that generates the representa-
tive instance RI(rl," ", r,). The chase starts with A(rl,. ., r,), which consists of all
the tuples of rl,’" ", rn (after they have been augmented with nulls), and generates
new tuples from existing ones (either by adding tuples or equating symbols). The
generation of new tuples amounts to correctly (or losslessly) joining existing tuples
according to the dependencies of the database scheme. Therefore, the representative
instance RI(r,..., rn) contains all the data that is either in the relations r,..., rn
or can be inferred by correct joins. Clearly, the conclusion that the representative
instance gives the complete picture of the data is based only on the premise that the
dependencies fully describe the semantics of the database scheme.

Of course, the dependencies are stated for a universal relation scheme consisting
of all the attributes. This is appropriate when the relation schemes are the result of
decomposing one universal relation scheme R (which consists of all the attributes). If
this is not the case, then our results apply to each group of relation schemes obtained
by decomposing a bigger relation scheme. Since decomposition is a common tool in
designing database schemes, our results are relevant in practice. To simplify the
discussion, we will continue to consider a database scheme ([R, , R,], D) in which
all the relation schemes R, , R, have been obtained by decomposing one universal
relation scheme R.

So far, we have concluded that the representative instance contains all the data
that can be inferred from the database. Consequently, queries should be evaluated
according to the representative instance and, so, they may as well be formulated in
terms of the universal relation scheme R rather than R1,..., R,. Before going on
with the discussion of query evaluation, we will further explain why formulation in
terms of R is natural and easy. It is well known that decomposition is intended to
remove certain operational (i.e., update and storage) anomalies, and it does so while
preserving the semantics of the database scheme (cf. [U1]). Thus, R,..., R, and R
have the same semantics and so, in principle, any query can be formulated either in
terms of R1,’’’, R, or in terms of R. There are, however, substantial differences
between the two formulations. First, formulating a query in terms of R,..., R, is
generally more cumbersome, since the query should specify how to join the Ri (unless
it refers to only one of the Ri). In comparison, many queries that refer to attributes
of several Ri can be formulated in terms of R using only projection and selection.
Second, sometimes it is just impossible to formulate a query in terms of R,..., Rn
in relational algebra (i.e., in first-order logic), whereas the same query can be formulated
in terms of R using projection alone. The reason for that is the fact that the chase
process is recursive, and recursion cannot be expressed in relational algebra. In this
paper we essentially investigate when a project query on R can also be expressed in
terms of R,..., R, in relational algebra.

We will now explain how to evaluate a query according to the representative
instance. If a query refers to a set of attributes X, then it should be evaluated, in
principle, according to the projection of RI(rl,..., r,) onto X. However, since
rx(RI(r," ., r,)) may still have nulls that were introduced during the computation

A common misconception is the belief that a fixed number of joins describes all the lossless joins
among relation schemes R1, , Rn. This is not true even if there are only functional dependencies [MUV].
In general, the chase is the only method for joining tuples losslessly in all possible ways, and that requires
a number of iterations that depend on the actual relations rl, , rn.
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of the representative instance, it is probably not the most suitable choice. A more
natural choice is the restricted projection of RI(rl,’’’ ,rn) onto X, denoted
7r ,x RI rl , rn which is defined to be the projection of RI rl ", r, onto
X followed by the elimination of all the tuples with nulls in some columns.

Since a query that refers to X is evaluated according to 7r Sx (RI(rl,’’’, r,)), a
desirable property of a database scheme is the ability to compute efficiently restricted
projections of the representative instance. Of course, we can always perform the chase
on A(rl,’’’, r,), which is the initial instance created by augmenting the database
relations with nulls, but that involves all the data in the database and, consequently,
is time consuming. An alternative approach is to look for an expression Ex in relational
algebra, such that for all consistent states rl," ", r,,

Ex(rl, rn)= 7r,x (RI(r,, r)).
Note that the operands of Ex are only the relations rl, , r, and not the representative
instance itself; the operators of Ex are the ordinary operators of relational algebra. If
Ex satisfies the above condition, then we say that Ex computes 7r ,x (RI(rl, , r)).
Hopefully, if Ex exists and can be constructed, then it might be optimized by known
techniques and evaluated in considerably less time than required to perform the chase
on A(rl, r).

Maier et al. [MUV] have shown that for unrestricted databases if there is a
relational algebra expression that computes 7r Sx (RI(rl,"’, rn)), then there is also
a (finite) union of (tagged) tableaux t_J 7’-1 Ti that computes 7r x (RI(rl,’’’, r)).
Not surprisingly, the tableaux in this union (when considered as tgds) are all lossless,
i.e., D T1," ", T,,. Maier et al. [MUV] have also shown that for finite databases the
following two conditions are equivalent:

(1) For all X, there is a union of tableaux that computes 7r Sx (RI(rl," ", r,)).
(2) The database scheme (JR1,’’ ", R,], D) is bounded.

Boundedness of the database scheme is similar, but not identical, to boundedness of
D, which was defined in 2.8 (boundedness of the database scheme depends on both
D and R1,’’ ", R,, and is formally defined in [MUV]). However, when D has only
full tgds, our results imply that the two are the same, i.e., (1) is equivalent to the
following"

(2’) The set of dependencies D is bounded.
In the next section, we will show that a set of tgds D is bounded if and only if

it is equivalent to a join dependency. We will also show that this condition is decidable.
In 6, we will consider database schemes with both tgds and egds, and give a necessary
condition for the existence of a union of tableaux that computes 7r t: (RI(rl, , rn )).
This condition states that the set of dependencies is equivalent to a single join
dependency and some egds; and the condition is decidable. Thus, a database scheme
cannot be bounded unless the effect of its tgds is equivalent to that of a single join
dependency (i.e., the tgds are equivalent to a join dependency over all consistent
instances). In obtaining these results, we assume that the database scheme is lossless,
i.e., DRi. This assumption is reasonable, since a database scheme has to be lossless
in order to reconstruct tuples over all the attributes whose projections are stored in
the database (in other words, unless the database scheme is lossless,
7r St (RI(rl," ", rn)) is always empty [MUV]).

4.2. Idempotency of tableaux computing restricted projections. In this section, we
consider a lossless database scheme (JR1,’’ ", R,], D) with a set D of full tgds and
egds. We will show that if 7r S t (RI(rl,’’’, rn)) is computed by a union of tagged
tableaux U 7’--1 T, then t_J 7’=1 T/ is idempotent over CON(D), which is the set of all
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consistent instances of D. In fact, im=l T/is equivalent to a single idempotent tableau
over CON(D).

In the following proofs, we will use T to denote the composition of the T, i.e.,
we start by composing T1 and T2, then composing the result with T3, and so on, until
we get T. Note that when we compose the T, we ignore the tags and T is an untagged
tableau. The following lemma of [MUV] states that any union oftableaux that computes
a restricted projection consists of lossless tableaux.

LEMMA 4.1. [MUV]. Let (JR1,"" ", Rn], D) be a database scheme with tgds and
egds. Suppose that U im--_ T computes r ,x RI rl r. ). When the Ti are considered
as dependencies, D T1," , T,,.

The next lemma describes fundamental properties ofany union oftableaux U % T
and the composition T of its tableaux.

LEMMA 4.2. [BV1], [FMUY]. Let U m=l T be any union oftableaux, and T be the
result of composing T1," ", Tm.

(1) TT1,’’’, T,,, and
(2) U 7_- T

_
T.

Note that in (1), all tableaux are considered as dependencies, and in (2), as
untagged tableau mappings.

We will now prove the main lemma of this section.
LEMMA 4.3. Let ([R1,""" R,], D) be a database scheme with full tgds and egds.

If U i"= T computes 7r $ u (RI(rl,. ", r,)), then T =- cos<o T, where T is the composi-
tion of the T.

Proof Let p (rl,. rn) be any consistent state of D. By our assumption

(1) 7r St; (RI(p))= U T(p).

By the definition of the application of tableaux to instances and states

(2) U T(p)___ ’rrSu U T(A(p))
i=1 i=1

where the T are considered with tags on the left-hand side, and without tags on the
right-hand side. Since U m__ T T and T (as a dependency) is implied by D (by
Lemmas 4.1 and 4.2), we get

(3) 7r St; LJ T(A(p))
_
r St; (T(A(p)))_ 7r ,l,u (RI(p)).

i=1

It follows from equations (1)-(3)

(4) r Su (RI(p))= 7r Su (T(A(p))).

For each row w of T there is an R, such that w has distinguished or repeated
nondistinguished variables only in the columns of R (since T is the composition of
tagged tableaux). Consequently, for all universal instances I e CON(D),

(5) T(I)= r St; (T(A(.n’R,(I),..., ’R.(I)))).
It follows from (4) and (5) that for all instances I CON(D),

(6) T(I) - ,I,u (RI(rrR,(I)," rR.(I))).

Note that when X # U, the Ti are not full tableaux. Although we do not consider embedded
dependencies in this paper, the meaning of the lemma should be clear. We are going to use the lemma only
when X U.
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By Lemmas 4.1 and 4.2, DT and, so, for all instances of I CON(D), we have
T(I) T(T(I)) (otherwise, (6) cannot hold), l

COROLLARY 4.1. Let U il T and T be as in Lemma 4.3.
(1) IJ im__ -CON(D) T,

(2) If CON(D) is the set of all instances, then there exists a T such that Ti =- T.
Proof. Similarly to (6), we can also show that i%1 Ti(I)= 7r Su (RI(state(I)))

for all instances I CON(D) and, thus, (1) is true. Condition (2) follows from (1) by
the results of [SY]. [3

5. Database schemes with full tuple-generating dependencies. In this section, we
consider a lossless database scheme ([R1, ", R,], D) where D consists of only full
tgds. We will show that there is a union of tableaux U m:l T/ that computes
7r $ t (RI(rl, , rn)) if and only if D is equivalent to a join dependency. There are
two interesting corollaries of this result. First, if there is a union of tableaux that
computes r $ u (RI(rl,. ", rn)), then for all X

_
U, there is a union of tableaux that

computes zr Sx (RI(rl," ", r)). Second, D is bounded if and only if it is equivalent
to a join dependency.

Note that since D has only tgds, CON(D) is the set of all instances without
nulls). In the following proofs, we will replace D with a single equivalent tgd d by
composing the tableaux of the tgds of D (by Lemma 4.2, this composition results in
a tgd equivalent to D). The first theorem in this section shows that when D has only
tgds, and there is a union of tableaux U 7=1 T/ that computes 7r S u (RI(rl,"’, r,)),
then T1," ", T,, are not only implied by D (as shown in Lemma 4.1), but actually
are equivalent to D.

THEOREM 5.1. Suppose that (JR1, , R,], D) is a lossless database scheme, where
D consists of only full tgds. If O r=l Ti is a union of tableaux that computes
7r Sty (RI(rl," ", r,)), then T1,. TmD.

Proof. Since the database scheme is lossless, 7r St (RI(state(I)))= CHASEd(I)
for all instances I (without nulls). In particular, we can view the rows of d as an
instance, and since CHASEd(d) contains a row with only distinguished variables, so
does [.J :1 T(state(d)) (state(d) is the state generated by the set of rows of d). Thus,
TI," ", T,,d. The other direction follows from Lemma 4.1.

We will now prove the main theorem of this section.
THEOREM 5.2. Let ([R1,.. ", Rn], D) be a lossless database scheme, where D is a

set offull tgds. The following are equivalent:
(1) For allX

_
U, there is a union oftableaux that computes r x RI rl ", r, )).

(2) There is a union of tableaux that computes zr ,[ u (RI(rl, r,)).
(3) D is equivalent to a single join dependency.

Moreover, the above conditions are decidable; and when they hold there is an algorithm
that constructs the join dependency to which D is equivalent, and an algorithm that
constructs for all X

_
U, a union of tableaux that computes 7r ,x (RI(rl, , r)).

Proof. Clearly, (1) implies (2).
Now suppose that (2) is true, and we will show that (3) is true as well. So, let

[-J ’--1 T/ be a union of tableaux that computes 7r Sv (RI(rl,." ", r)), and let T be
obtained by taking the composition of the T and then minimizing it. By Lemma 4.3
and Corollary 3.1, T is a join dependency, and by Theorem 5.1 and Lemma 4.2, T is
equivalent to D. Thus, (2) implies (3).

The proof that (3) implies (1) follows from [Sa4]. In particular, when D consists
of a single join dependency, then for every X

_
U, we can construct in exponential

time (in the size of the database scheme alone) a union of tableaux that computes
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7r x (RI(rl,’’’, r,)) [Sa4]. If D consists of the join dependency NRi, then we can
construct in polynomial time an expression that computes 7r $x (RI(r, , r, )) Sa1 ],
[Sa4]. The only operators in this expression are project, join, and union and, so, it
can be converted into a union of tableaux in exponential time [SY], but there is really
no need to do that in order to evaluate it efficiently.

We have shown that the three conditions are equivalent, and expressions can be
constructed when D consists of a single join dependency. Now we will show how to
test whether D is equivalent to a join dependency, and how to find this join dependency
when it exists. Recall that d is obtained from D by composing the tgds of D in some
arbitrary order. Let J(d) be the join dependency obtained from d by replacing all
occurrences of repeated nondistinguished variables with new distinct nondistinguished
variables. We claim that if j is a join dependency such that dj, then dJ(d).
First, we show thatj J(d). Since j is a join dependency, a single application of the
chase rule forj shows thatjd (becausej is idempotent). Therefore, there is a valuation
h ofj into d that maps each distinguished variable ofj to a distinguished variable of
d, since CHASEo(d) contains the row consisting of all the distinguished variables
(because jd). Clearly, h is also a valuation of j into J(d) that maps distinguished
variables to distinguished variables and, hence, shows that jJ(d).

By mapping each row of J(d) to its corresponding row in d, we get a valuation
that maps distinguished variables to distinguished variables and, thus, J(d)d. By our
assumption, dj. Thus, we have shown that jJ(d)dj and, so, d and J(d) are
equivalent, as claimed. Consequently, in order to test whether D is equivalent to a
join dependency, we construct d and then J(d), and test whether dJ(d) (note that
J(d)d is always true).

The following example shows that even if a tgd is equivalent to a join dependency,
it is not necessarily a join dependency.

Example 5.1. Let d be the following tgd (which is the same as tableau T of
Example 2.3). Note that the tableau of d is minimal.

al a2 a3 a4

a a b b
e a a b
e a b a4

The tgd d is equivalent to J(d), which is the following join dependency:

al a2 a3 a4

a a b b
e a a3 b3
e a b4 a4

Recall that in Example 2.3, tableau J(d) was obtained after minimizing the composition
of d with itself. Thus, d and J(d) are indeed equivalent.

We can also show that dJ(d) by considering the computation of
CHASEa)(J(d)). The computation starts with the rows of J(d). At first, we can map
the first row of d to the first row of J(d), and the last two rows of d to the second
row of J(d), and that application generates the row

(A) (a,a2, a3, b3).
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Next, we can map the first row of d to the first row of J(d), and the last two rows of
d to the third row of J(d), and obtain the row

(B) (al, a2, b4, a4).
Now the first row of d can be mapped to the first row of J(d), the second row to (A),
and the third to (B), and the result is

(al, a2, a3, a4)
which shows that dJ(d). Obviously, J(d)d and, thus, the two are equivalent.

As discussed in 2.8, the following corollary is important in deductive databases,
where tgds are viewed as Horn-clause rules:

COROLLARY 5.1. Suppose that D is a set offull tgds. The following are equivalent
and decidable.

(1) D is bounded, i.e., there is a k, such that for all instances I, the computation of
CHASEo(I) takes k or fewer iterations.

(2) There is a union oftableaux E such thatfor all instances I, E(I) CHASEo(I).
(3) D is equivalent to a single join dependency.
Proof. In order to prove the theorem, we consider the special database scheme

([ U], D), i.e, this database scheme has a single relation scheme consisting of all the
attributes. A database state for this database scheme is any instance I. The representative
instance of I is just CHASEo(I), and that is also the restricted projection of the
representative instance onto U.

Boundedness of D coincides with boundedness of the database scheme ([ U], D),
as defined in [MUV]. Thus, by the results of [MUV], condition (1) of Theorem 5.2 is
equivalent to (1) of this corollary. Therefore, by Theorem 5.2, (1), (2) and (3) are
equivalent and decidable. [3

6. Database schemes with full tgds and egds. In this section we consider a lossless
database scheme ([R,..., R], D), where D consists of full tgds and egds. We will
show that if there is a union of tagged tableaux U m=l T that computes
7r ,

t (RI(r," , r)), then D is equivalent to a join dependency and some egds (i.e.,
D is equivalent to a join dependency over all consistent instances). We will also show
that this necessary condition is decidable.

Let E be the set of all the egds in D. All the tgds in D can be replaced with a
single equivalent tgd d, as done in the previous section. Thus, D is equivalent to
{d} U E. The next theorem shows that {d} U E can be replaced with an equivalent set
in which the only tgd is ECHASEo(d).

THEOREM 6.1. Let B be a set ofdependencies consisting of a tgd and a set of egds
F. There is a set of egds G (that can be constructed effectively) such that

ECHASEn(t), F, GNt, F.

Proof. Let (Wl, , w,) be the rows of t. G consists of all egds (Wl, , w)/a b,
where a and b are equated in CHASEn(t). V1

Since the rows of ECHASEo(d) form a consistent instance of D, we can show
that D is equivalent to some egds and the tgds T1," ", T,.

THEOREM 6.2. Suppose that ([R1,"" ", R], D) is a lossless database scheme, and
there is a union of tagged tableaux (.J ’= T that computes 7r $ t (RI(rl," , rn)). Let
E be the set of all egds in D, and d be the composition of all the tgds in D. The following
are equivalent:

(1) There is a set of egds GI, such that ECHASEo(d), E, GlMd, E.
(2) T1,’’’, T,ECHASED(d).
(3) TI,..., T,,, E, GMD.



20 YEHOSHUA SAGIV

Proof Part (1) follows from Theorem 6.1. Part (2) follows from the fact that the
rows of ECHASEo(d) form a consistent instance, using the same argument as in the
proof of Theorem 5.1. Part (3) follows from parts (1) and (2), and Lemma 4.1. [3

We will now prove the main theorem of this section.
THZORZM 6.3. Consider a lossless database scheme (JR1,"" ", Rn], D) with egds

and full tgds. Suppose that U i’= T is a union of tableaux that computes
(RI(r, , r)). enD is equivalent to a set consisting ofa singlejoin dependency

and some equality-generating dependencies. Moreover, this condition is decidable.
Proof Let T be the pairwise composition of the , and recall that CON(D) is

T2the set of all consistent instances of D. By Lemma 4.3 T cou(o) and, so, by
Theorem 3.2, ECHASEo(T) (after it is minimized) is a join dependency. By pa (1)
of Lemma 4.2 and part (3) of Theorem 6.2, there is a set of egds G, such that T, E,
GD. Therefore, by Theorem 6.1, there is a set of egds G2, such that ECHASEo(T),
E, G, GD.

We have shown that D is equivalent to a single join dependency and some egds
when (RI(r,. ., r,)) is computed by a union of tableaux. Next, we will show
how to test whether D satisfies this necessary condition, i.e., whether D is equivalent
to a single join dependency and some egds. Consider D d U E and j U K, where j
is a join dependency, d is a tgd, and E and K are sets of egds. By Theorem 6.1, d U E
is equivalent to ECHASEo(d)U H, where H is a set of some egds. We claim that if
ECHASEo(d), HMj, K, then ECHASEo(d), HJ(ECHASEo(d)), H, where
J(ECHASEo(d)) is obtained from ECHASEo(d) by replacing all occurrences of
repeated nondistinguished variables with new distinct nondistinguished variables.

First, we show that j, KJ(ECHASEo(d)), H. Since no variables are equated
when ECHASEo(d) is chased with D and we have assumed thatj, KECHASEo(d),
H, it follows that jECHASEo(d). Since j is a join dependency, a single application
of the rule for j shows that jECHASEo(d) (because of the idempotency of j).
Therefore, there is a valuation h ofj into ECHASEo(d) that maps each distinguished
variable ofj to a distinguished variable of ECHASEo(d). Clearly, h is also a valuation
ofj into J(ECHASEo(d)) that maps distinguished variables to distinguished variables
and, hence, shows that j J(ECHASEo(d)). By our assumption, j, KH and, there-
fore, j, K J(ECHASEo(d)), H.

By mapping each row of J(ECHASEo(d)) to its corresponding row in
ECHASEo(d), we get a valuation that maps distinguished variables to distinguished
variables and, therefore

J ECHASED d )ECHASED d

and consequently

J(ECHASED(d)), HECHASED(d), H.

By our assumption,

ECHASED(d), Hj, K.

Thus, we have shown that

j, K J(ECHASED(d)), HECHASED(d), Hj, K

and, so, ECHASEo(d)U H and J(ECHASEo(d))U H are equivalent, as claimed.
Thus, in order to check whether D is equivalent to a join dependency and some egds,
we construct J(ECHASEo(d)) and test whether it is implied by D.
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7. Conclusion. We have considered lossless database schemes with full implica-
tional dependencies. If there is a union of tableaux for the restricted projection of the
representative instance onto the set of all the attributes, then the dependencies of the
database scheme are equivalent, over the set of all consistent instances, to a single join
dependency. If there are no equality-generating dependencies, then the condition is
also sufficient, and a restricted projection onto any set of attributes can be expressed
by a union of tableaux.

The only known case in which there are equality-generating dependencies and
expressions for restricted projections is in that of independent database schemes [GY],
[Sa3] with functional dependencies and a single join dependency. In this case, a union
of tableaux for any restricted projection (and even for tableau queries) can be construc-
ted in the worst case in exponential time (only in the size of the database scheme),
and in some cases (e.g., when there are only functional dependencies) in polynomial
time [Sa4]. This result is a generalization of [AC], [IIK] who have considered indepen-
dent database schemes with only functional dependencies.

Our results also characterize when a set of tgds (which can also be viewed as
Horn-clause rules) is bounded. A set of tgds is bounded if and only if it is equivalent
to a single join dependency. As shown in 5, this condition is decidable.
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ANALYSIS OF A HYBRID ALGORITHM FOR PACKING
UNEQUAL BINS*

D. K. FRIESEN- AND F. S. KUHL"

Abstract. We consider a bin-packing problem where the sizes of the bins are allowed to vary and where
the goal is to maximize the number of pieces packed. This problem is NP-hard. We examine a new efficient
approximation algorithm which is a hybrid of two algorithms reported earlier, First-Fit Decreasing (FFD)
and Best-Two Fit (B2F). The hybrid is iterative: it attempts to pack smaller and smaller suffixes of its list
of pieces until it succeeds in packing an entire suffix. During each attempt, the hybrid operates by partitioning
the current list of pieces and packing one part by B2F and afterward packing the other part of its list by
FFD. We prove that no instance of the problem exists where an optimal algorithm can pack more than
the number of pieces the hybrid can pack.

We also give a sequence of examples for which the ratio of the number of pieces packed optimally and
by our algorithm increases asymptotically to .

Key words, heuristic, approximation algorithm, bin packing, worst-case performance

1. Introduction. A one-dimensional bin-packing problem is, in general, a com-
binatorial optimization problem involving the partition of a set of objects into subsets.
Specifically we are given: a set of bins B={B1, B2,’’’, BM} and a list of pieces
L {Pl, P2,""", PN}. For each bin Bi and piece pj we are also given a finite, positive
size, denoted s(Bi) or s(pj). Two problems of interest are:

(BP) Given B and L as above. Question: Does there exist an assignment of each
p L to a bin of B such that for each bin B’ the set of pieces assigned to B’ is P’
EpP’ s(p) <-- s(B’)?

(BPN) Given B and L as above, and positive integer J. Question: Does there exist
a subset L* of L such that IL*I--> J, each p L* is assigned to some bin of B, and, if
the set of pieces assigned to bin B’ is P’, then pp,S(p)<=s(B’)?

In problem BP we seek to pack the entire list L of pieces into the given bins. In
BPN, we seek to pack a subset of L of specified size. As an optimization problem,
BPN asks: What is the largest subset of L that can be packed into B? If all the bins
of B have the same size, BP may be stated as an optimization problem: What is the
smallest number of bins needed to pack all of L?

Bin-packing problems arise in a variety of storage-allocation and scheduling
problems. Given a set of varying-length strings to be stored in fixed-length blocks, if
the goal is to minimize the number of blocks needed to store all the strings, we have
BP [7]. If the goal is to store a subset of the strings of greatest cardinality in a fixed
number of blocks, we have BPN. The nonpreemptive scheduling of a system of
independent tasks can also be viewed as a bin-packing problem, where the tasks are
viewed as pieces and the bins as processors. If the processors are identical and the
goal is to minimize the number needed to achieve a given makespan, we have BP. If
the goal is to schedule the largest subset of tasks on a given number of processors, we
have BPN. The goal of minimizing the makespan has been considered as a variant of
BP [53.

* Received by the editors September 15, 1986; accepted for publication (in revised form) March 10, 1987.
The MITRE Corporation, Civil Systems Division, McLean, Virginia 22102-3481.
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Bin packing is known to be NP-hard [6], so it is unlikely that any efficient algorithm
exists for the solution of the general problem. Various approximation algorithms have
been reported. Some of the first efforts at establishing guarantees of performance for
approximation algorithms involved bin packing [6], and the present work follows a
similar course.

For a given instance of BPN and approximation algorithm A, we let no be the
number of pieces an optimal algorithm packs, and na be the number of pieces A packs.
Define RA "-no/hA. Evidently RA >----1 for all instances. As a measure of performance
of A, we choose the "worst-case performance," i.e., the supremum of RA over all
instances of BPN.

The algorithm analyzed here is a hybrid of First-Fit Decreasing (FFD) and
Best-Two Fit (B2F). The latter was defined and its worst-case performance on BP was
analyzed in [3]. We call our new algorithm a hybrid because a given input is partitioned
and different parts are given to the FFD and B2F algorithms. This is in contrast to a
compound algorithm, where both B2F and FFD are run on a given input and the
better packing selected [4]. For the hybrid algorithm H to be presented here, we prove
an asymptotically tight bound of on its worst-case performance. This bound is lower
than the lowest published bound for an approximation algorithm applied to BPN with
bins of varying size.

In [2], BPN is considered with bins of equal size. The authors give bounds for
two algorithms. The Smallest-Piece-First (SPF) approximation algorithm has
/’/OPT/nSPF 2-1/m, where m is the number of bins, and/lOpT and nspF are the numbers
of pieces packed optimally and by SPF, respectively. And this bound is tight, in the
sense that [2] exhibits examples which achieve this bound. They also give a tight bound

4for First-Fit Increasing (FFI) of 3.
The Iterated FFD (FFD*) is analyzed in [1]. The authors outline a proof that

/OPT<
7
g/’/FFD* -- 3. (The original proof in [9] takes over 100 pages.) They give examples

for even numbers of bins that achieve rtOPT---rtFFD*. If the limit exists of the
ratio /’/OPT//IFFD. as the number of pieces packed increases, it therefore lies in

Langston [8] repeats the analysis of [1] and [2] with varying bin sizes. SPF has
a tight bound of 2, regardless of the order the bins are sorted in. FFI also has a tight
bound of 2. The iterated FFD, FFD*, from [8], does best with the bins sorted in
increasing size. It is shown that, if nF is the number of pieces packed by FFD* with
bins sorted by increasing size, /’/OPT /’/F + 1, and gives an example where nOPT---nF.
Thus the limit of noav/nF lies in [, ].

2. Main result.
2.1. The hybrid algorithm. Our algorithm is defined by procedures HSTAR, H,

B2F and FFD, given below. The input to HSTAR is a set of bins {B1," ", B4}, each
bin Bi having its positive size s(Bi). We assume the bins are sorted so that s(B)<=
s(B2) -<. _-< s(B4). We also give HSTAR a set of pieces {Pl, ",PN} and, for each
piece p, its positive size s(pi). We assume the pieces are sorted so that s(pl)>-s(p2)>=

>- s(pN). Procedures H, B2F and FFD each return a Boolean value which indicates
whether or not they succeeded in packing all the pieces passed to them. The only
purpose of H is to partition its input into two lists. The larger pieces, defined as those
pi such that s(p)> s(ps)/2 (f is defined in the algorithm), are packed by B2F; the
remainder (whose relative size may vary greatly) are packed by FFD. HSTAR is an
iterative algorithm which will take successively smaller suffixes of {p,..., pu} until
it succeeds in packing an entire suffix.



HYBRID ALGORITHM FOR BIN PACKING 25

proc HSTAR;
f:=l;
while (H(py,. ., PN) false) f:=f+ 1;

end HSTAR;

proc H(py, , PN);
mark all bins as empty;
let k be the largest such that s(pi)> s(pf)/2;
if (k >f)

then b2fok :- B2F(pf, , Pk);
else b2fok := true;

end if;
if(k< N)

then ffdok := FFD(pk+, , pN);
else ffdok := true;

end if;
return (b2fok and ffdok);

end H;

proc B2F(ps, .,
mark Ps,’", Pk as available (unpacked);
for j := 1 .to M do

/* pack bin Bj*/
for i:=f to k do

if (Pi is available and fits in unused space) then
/* pack pi */
mark Pi unavailable;
decrease space in Bj by s(p);

end if;
end for;
/* can we replace top piece with two? *!
if (some piece has been packed in B, and the
two smallest available pieces will fit in B
after removing the top piece) then
let Pt be the top piece currently packed in B;
let Pa be the smallest available piece;
let empty be the space in B left after removing p,;
let Pb be the largest available piece such that

empty >= s(p,)+ S(pb);
let p be the largest available piece such that

empty >- S(pc) + S(pb);
/* then Pb and p replace p */
mark p, available and Pb and p unavailable;
adjust total size of pieces packed in B./;

end if;
end for;
if (no p in py,..., Pk is available)

then return (true);
else return (false);

end if;
end B2F;



26 D. K. FRIESEN AND F. S. KUHL

proc FFD(pk+1, PN)
for i:=k+lto Ndo

/* pack piece pi */
j:=l;
while (j <_-M and pi will not fit in Bj) j := j + 1;
if (j < M or p fits in B4)

then assign p to Bj;
else return (false);

end if;
end for;
return (true);

end FFD;

The chief reason for considering this hybrid algorithm, instead of simply an
iterative version of B2F, is that the analysis of the hybrid appears to be much easier
than analysis of B2F operating on pieces of unrestricted size. The worst-case example
for our hybrid, presented below, involves only the operation of B2F, so the worst-case
bound for B2F* on varying bins cannot be better than .

Expected performance is another matter. We performed computational experi-
ments on HSTAR, B2F* and FFD* to estimate their expected behavior. For each
instance, bin sizes were made to increase linearly and piece sizes were generated
pseudorandomly from a uniform distribution and then sorted. For each instance we
computed RA no/na, estimating no by assuming that the optimal algorithm could
pack perfectly. RA for each algorithm and all instances averaged within a few percent
of 1, supporting the notion that worst-case behavior is rare. In general, B2F* and
HSTAR performed significantly better than FFD*. For some instances, B2F* out-
performed HSTAR; for others, the reverse was true.

Several remarks on the design of H are worthwhile. Firstly, because every piece
p that B2F considers has s(p) > s(py)/2, the total size of any two pieces B2F considers
is strictly larger than that of any one piece. This affects the structure of B2F packings
in ways discussed below. Secondly, we note that the method of replacement in B2F
is used in the analysis. Finally, we note that the consecutive search employed by
HSTAR on its list avoids the possibility of anomalies. But our main theorem as given
would still apply if HSTAR used a nonconsecutive, e.g., binary, search.

Let us consider the time complexity of HSTAR. FFD runs in time O(MN), and
B2F in O(5MN)= O(MN). H adds nothing to the order of the time complexity, so
HSTAR as given is O(MN2). One must add time for the sorting of bins and pieces
that we assume when HSTAR is invoked.

We denote the number of pieces HSTAR succeeds in packing from L into B by
nH.(L, B). We denote the optimal algorithm by OPT and the number of pieces it packs
of L into B by no(L, B). From the definition of the algorithm, HSTAR does not succeed
until it packs all the pieces from some Pi to PN. In view of the ordering of L, it is
evident that when HSTAR succeeds it packs a suffix {pi, Pi+I, ", PN} of L, for some
i. The measure of worst-case performance we use is

RH. sup no(L, B)/nH,(L, B).
all(L,B)

We shall show that R,. =< .
Before that, we present a family of instances of L and B such that

no(L, B)! nH.(L, B)- . For a positive integer k, an instance of the family is as follows.
B contains 1 bin of size 2-2e, 2 bins of size 2-e, 4 bins of size 2-e/2, , and 2k-1
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bins of size 2-el2k-2, for a total of 2k- 1 bins. L contains 2k- 1 pieces of size 1, 2
pieces of size l-e, 4 pieces of size 1-e/2,. ., and 2k-] pieces of size l--e/2k-E,
for a total of 2(2k 1) 1 pieces. The packing by OPT and HSTAR of such an instance
is given in Fig. 1.

Define nil(L, B) to be the number of pieces H (not HSTAR) will pack out of L
into B, if the entire list L is presented to H. Suppose an L and B such that OPT can
pack all of L into B. If H always succeeds in packing suffixes of L that have <_- the
pieces of L, then HSTAR will always halt having packed a suffix containing _-< the
pieces of L, and R/4* _-< . Our main result may be stated as follows.

THEOREM 2.1.1. Given any L and B for which no(L, B)- N (i.e., OPT packs all
pieces of L), H will succeed in packing into B every suffix of L {Pi, Pi/l,’’’, PN} for
which no(L,B)<-nH(L,B), i.e.,for which N-i+ I <=3N/4.

The proof of this theorem will occupy 2.2 and 2.3, and is organized as follows.
In 2.2 we assume the existence of an L and B that constitute a counterexample which
is minimal in a sense to be defined below, and which fails in the FFD portion of H.
We derive a contradiction showing that in a minimal counterexample only the B2F
portion of H is actually used. In 2.3, we examine the behavior of B2F on pieces
meeting the restriction we arrive at in 2.2, and we show that under that restriction
the packing of B2F never violates the ] bound of Theorem 2.1.1. We conclude that no
minimal counterexample, and hence no counterexample whatever, exists to Theorem
2.1.1.

B2F:

1-e

1-e

-e/2

-e/2

-e/4

-e/4

-e/2k-2

-e/2k2

OPT"

1-e -e/2 -e/2k3 -e/2k2

bin 2 bins 4 bins 2
k2

bins 2
kl

bins

FIG.

2.2. The minimal counterexample. A counterexample to Theorem 2.1.1 is some
L {p, P2," ", PN}, suffix Ly {py, pf/l,. ", Pv} and B {B], BE," ", BM} such
that no(L, B) N, N-f+ 1 _-< 3N/4, and H will fail to pack into B one or more pieces
out of Lf..If such a counterexample exists, we construct from it a counterexample that
is minimal in the number of pieces retained from L. Before doing so, we must discuss
properties common to all H packings.

We extend the definition of the size of a piece or bin to sets. If P is a set of pieces,
then s(P)--pp s(p), and similarly for sets of bins.

Let us classify the pieces packed by B2F. Suppose that when B2F packs bin Bi it
has available the ordered list of pieces L’= {ql, q2, q3," "}, a subset of Ly. If B2F is
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able to pack the first k pieces of L’, say q, q2,’’’, qk, in Bi, then we say pieces
ql, q2,"" ", qk have type X or, are X-pieces, more specifically, Xk-pieces. Any piece
qk+j, j>--2, packed after omitting an available piece, has type Y (or type Yk). If B2F
replaces the top piece in Bi with two smaller pieces, the replacements have type F (or
type Fk). We can also similarly classify small pieces as types X or Y with respect to
the way FFD packs them. (Type F and Y pieces are sometimes called fallback pieces.)

We say that a bin (rather than a piece) B has type Xk (or, is an Xk bin) if B2F
packs k X pieces in Bi and no other pieces, and B2F does not replace the top X piece
with two F pieces. Bin B has type Fk if B2F packs k X pieces and then replaces the
top piece with two F pieces. Bin B has type Yk if B2F packs k X pieces and a Y piece.

LEMMA 2.2.1. Given a list of pieces L and set of bins B and the H packing of L
into B. Let B[ be the set ofpieces H packs into bin B. Suppose we form L’ and set B’
of bins by either of the following methods.

(A) Form L’ by deleting from L all pieces in B[. Form B’ by deleting Bi from B.
(B) Let p L be a piece not packed into any bin of B. Form L’ by deleting p from

L. Let B’= B.
Then in either case, any bin in the new packing (of L’ into B’) will be packed with the
same set ofpieces it was packed with in the old (of L into B).

Proof We begin with the first construction.
Consider first bin Bj, j < i. If all (large) pieces originally packed by B2F in Bj had

type X, then no p B’ was examined in packing B and the new B2F packing of B
will be the same. If B2F packed B with one or more Y-pieces and some p B’ was
examined during the packing of B, p evidently would not fit in Bj and its absence
from L’ affects nothing. These remarks apply also to small pieces packed in B.

Now suppose that in the original packing of B some p B’ had been the top
piece and was replaced by B2F with two F pieces. We consider the moment in the
packing of L’ (the new packing) when B2F would pack p in B if it were available.
Let the two F pieces in the original packing be fl and f2, and assume s(fl)--> s(f2). If
in L’ there is a piece p’, s(p) >- s(p’)> s(fl) and no other piece of L’ will fit in the
space with p’, then p’ will be packed by B2F as type X (or Y) and will then be replaced
by f and f. Now suppose that p’ is packed in the space and that L’ contains piece
y, s(p’) >= s(y) > s(f), which fits with p’. Then p’ would have fit with the smallest piece
in L and would have been used in the original replacement instead of f. Thus no
such y exists, and fl and f2 will always replace the top piece. Therefore the set of
pieces packed from L’ into B will be the same as the set packed from L.

We note that with the foregoing, the set of pieces available from L’ to pack B+
for both B2F and FFD will be the same as was available from L. Thus the packing
from L’ of any Bj, j > i, will not differ from the original.

Now let us consider the second construction. Suppose p L is not packed by H
at all. If we form L’ by deleting p from L then H will pack into each B of B the same
set of pieces it packed from L. To see this, we consider the packing of L into B. If p
was never packed into B, its absence affects nothing. If p was packed into B as the
top piece and then replaced, the absence of p does not affect the replacement, as we
showed above. I3

Given a counterexample, we now form a minimal counterexample. We form list
L’ by deleting from L all but the largest of the pieces H failed to pack out of Ly. We
form B’ by deleting from B any bin Bi in which neither OPT nor H packs any piece
of L. Now OPT can pack L’ into B’ and, by Lemma 2.2.1, H cannot pack L’f’l Ly into
B’, since one unpacked piece remains. The one piece in L’ which H fails to pack when
it starts at pf we shall call p. If s(p) < s(py)/2, the construction of the FFD part of
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H ensures that p is the last piece H examines. If p is the last piece that H examines,
define L1-L’{pl,pE,’’’,pl} and L2-L’f{pr,p,+l,’",pl}, and we have
no(L1,B’)>-][nt_i(LE, B’)+ 1]. (Note that we had no(L,B)>=[nH(Ls, B)+ 1] and that
in forming La and L2 we have deleted an equal number of pieces from each.) If p is
not the last piece H examines (which could happen if s(p)> s(ps)/2 and B2F fails
to pack p), we then define L L’f’) {p,. , PN} and L2- L’ {P:r," ",PN}. NOW
B’, L and L2 provide us with our minimal counterexample.

We wish to compare the H packing of L2 to any optimal packing of L1. The goal
of this section is to show that if Pl is the last piece H examines, then S(pl) s(pf)/2
and thus that FFD will never operate on a minimal counterexample. For the rest of
this section no shall mean no(L, B’) and nn shall mean nil(L2, B’), unless otherwise
qualified.

We normalize the sizes of pieces and bins so that s(py)= 1, and we assume that
s(pl) s(p2) s(pr-1) 1. (If there is an optimal packing of L including Pl,

P2,’",Py-1 and they are larger than 1, the same packing is valid if the sizes of
Pl, Pf- are reduced to 1.) The pieces p, P2, Pf are the largest in L. H packs
at least one piece (ps) of size 1, and the pieces, aside from p, packed by OPT but not
by H, (p,..., Pr-1), have size 1. The bins are ordered in increasing size, and there
is at least one bin as large as 1, since H can pack additional pieces of size 1. The B2F
part of H will attempt to pack all the pieces of L2 with size >1/2, while the FFD part
will attempt to pack all the pieces with size _-<1/2. We say pi is large when s(pi)>1/2; if
Pi is small we mean $(Pi) 1/2.

We now give as lemmas several elementary properties of a minimal counter-
example. Note that Lemmas 2.2.2-2.2.5 do not depend on Pl being the last piece in L2.

LEMMA 2.2.2. The H packing of a minimal counterexample has no empty bins.
Proof If H packs no pieces in Bi, then s(Bi)< 1, since every piece p available to

pack B has s(p) -< 1 and none would fit. Suppose OPT packs B with pieces ql, q2,

Each q must be packed in some Bk, k < i, or else the q would have been available to
be packed in Bi. No q can be packed by B2F as an F-piece because there can be no
F bins of size <1. Since each q is either a small piece or is packed by B2F as type
X or Y, we can delete qi from L and L2 and form a smaller counterexample,
contradicting minimality.

LEMMA 2.2.3. The optimal packing ofa minimal counterexample has no empty bins.
Proof If B is empty in the optimal packing, form B* by deleting B from B’ and

form L and L by deleting the pieces H packs into B from L and L2, respectively.
By Lemma 2.2.1, L, L and B* are a smaller counterexample, thus contradicting
minimality.

LEMMA 2.2.4. If in the optimal packing of a minimal counterexample, Bi contains
only one piece pj, then pj is packed by H (if H packs pj at all) in Bk, k > i, and, for every
piece p packed by H in B, s(p) < s(p).

Proof Suppose p is packed in Bk, k <- i. We then contradict minimality by forming
a new counterexample as follows. Delete the pieces H packed in Bk from L and L2.

In the optimal packing, move whatever remains of the former contents of Bk to the
now empty B (note that S(Bk)<-s(B)). Delete Bk from 1’.

Now we show that the H packing of B contains no pieces as large as p. If pj is
packed by H in Bk, k > i, and H packs a piece p,, in B with s(p,,) >= s(p), we contradict
minimality as follows. Delete any pieces H packs in Bi (notably p,,) from L and L2.
In the optimal packing, move p (if it remains) to the position formerly occupied by
p,. Delete B from 1’. Thus if OPT packs p by itself, H cannot pack p in B, nor can
H pack any p,, in B with s(p,,) s(p).
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To establish s(p)> 1/2, we need another fact which we give as a lemma.
LEMMA 2.2.5. If OPT packs but one piece pj of a minimal counterexample in bin

Bi, then pj is a large piece, and B2F packs Bi as an F1 bin.
Proof. Suppose pj is a small piece. If H packed p, then, by Lemma 2.2.4, H packed

p in Bk, k > i, and H packed .no large pieces in B. But pj was available to FFD to
pack B and p would have fit. If FFD packed p later, it packed some Pm in B with
s(p,) >= s(p), in violation of Lemma 2.2.4. If H did not pack p, then it packed some
p, with s(p,)>-s(p) in B, violating Lemma 2.2.4. Therefore p is not a small piece.

Now suppose pj is a large piece. By Lemma 2.2.4, H must pack pj (or py if j <f;
recall that then s(pc) s(p)= 1) in Bk, k > i. Now B2F had room in Bi to pack p (Pc)
and p (Pc) was available to it. If B2F did not pack B as an F1 bin, it packed some
piece p, of type X or Y, S(pm) >- s(pj), in Bi in violation of Lemma 2.2.4. Thus B2F
packed Bi as an F1. [-]

Recall that M is the number of bins in a minimal counterexample. Let F be the
set of bins packed by OPT with only one piece. (By Lemma 2.2.5, B2F packs every
bin of F as type F1.) Let f= IFI. Recall that L and L2 are the sets of pieces packed
by OPT and H, respectively. Let LOF and L/-/F be the sets of pieces packed by OPT
and H, respectively, in bins of F. Let Lon and L/-/n be the sets of pieces packed by
OPT and H in bins not in F.

LEMMA 2.2.6. Ifp is the last piece in L2, s(pt) >1/2.
Proof. Because we consider a counterexample, no> or no-nil > no/4. But

no >= 2M-f because, by Lemma 2.2.5, OPT packs every bin outside F with at least 2
pieces, and every bin in F with 1 piece. Therefore no n/_/> 1/4(2M-f). But OPT packs
at most 1 piece that H does not which has size <1; all other additional pieces have
size 1 by assumption. Thus

(1) s(L1)- s(L2) > (2M-f).
Now s(L) s(LoF)+ S(LoR) and s(L2) s(LHF)+ S(LHR) and

(2) s(LoF) s(LnF) + s(Lon) S(LHn) >=-(2M -f).

But S(LoF)--S(LHF < 0. TO see this, let B be any bin of F. Recall that B2F packs B
as a type F1 (with two large pieces), so that the total size of pieces packed in Bi by
H is > 1. By definition of F, OPT packs but one piece in B, with size <_-1. Summing
over all bins Bi, S(LoF)--S(LHF) O. Substituting in (2) yields

(3) s(Lo) s(Lnn) > 1/4(2M -f).

There are M-f bins outside F, so among those bins the average empty space in the
H packing must be

4 l M-f - M-f =-"
There must be some bin Bi outside F whose H packing has empty space >1/2. Since p
would not fit in B, s(pl) > 1/2.

2.3. B2F operating on large pieces. We consider in this section the behavior only
of the B2F part of H on a minimal counterexample.

We assume we are given a minimal counterexample consisting of bins B=
{B1," ", BM}, sorted so that s(B1) -<_ s(B2) <=" <= S(BM), and pieces L= {Pl," ", PN}
sorted so that s(pl)--> s(p2)>=... >= s(ps). Further, OPT packs all of L into B, so that
no(L, B)= N, and there is a suffix of L, L1 {Pc, Pc+l,’’’, PN} such that B2F packs
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all but one piece of L1 into B. Therefore nil(L1, B)= N-f, and because we consider
a counterexample, 3 N/4 >- N-f+ 1. In the previous section we assumed that the one
piece H failed to pack was the last piece of its list; here we make no such assumption,
as it is possible for B2F to fail to pack a piece from the middle.

As before, we normalize the size ofpieces and bins so that s(py) 1. By assumption,
S(pN) >1/2. We also assume that s(B1)> 1" each bin Bi with s(Bi)<= 1 must be packed
by OPT with 2 pieces. Since all pieces have size >1/2, there can be no B with s(Bi)<= 1.

Throughout this section we shall for notational convenience let no no(L, B) and
nH nil(L1, B) (it being understood that B2F is the only part of H actually executed).

We retain the previous definitions of bin and piece types. Note that B2F cannot,
with the size pieces we consider here, omit a piece and then pack two more pieces
further down the list: the two pieces would be larger than the omitted piece. Similarly
it is not possible that B2F would pack the first k pieces of L1, pack a noncontiguous
(Y) piece p and then replace p with two smaller pieces. Because we assume that
s(B) > 1, B is packed as type Xi, F, or Y, i_-> 1. Because B1 is the smallest bin and
py will necessarily fit in B, B2F is always able to pack at least the first piece available
to it when it begins to pack each bin.

After the first appearance of a bin of type Xk, Fk or Yk, there can be no bins of
type Xk_l, Fk_l, or Yk-1. To see this, suppose bin B has type Xk, Fk or Yk. There
was room to pack the first k pieces available to B2F at the time. When B2F packs B,
j> i, s(B)>-_s(B), and the first k pieces available to pack B are no larger than those
that were available to pack B. So B will have type Xr, Fr or Yr with r >_-k.

Let B be a bin of a B2F packing and let P be the set of pieces B2F packs in B.
If s(P)<s(Bi), we say Bi is bad.

In the following definitions, P and Q are regions and is a positive number. Define:
XpQ to be the number of type X pieces packed by B2F in region P but packed

by OPT in Q in a bin with pieces;
f,Q the number of type Y or F pieces packed by B2F in P but by OPT in Q in

a bin with pieces;
fpo the same as f,o but without regard to how many pieces are in the optimal

packing" fpo if,o;
qpQ the number of pieces of any type packed by B2F in P but by OPT in Q in a

bin with pieces;
Mp the number of bins of region P;
flop the number of pieces packed by OPT in region P;
nup the number of pieces packed by B2F in region P.

The symbol x<oo denotes the number of X-pieces packed by B2F in any region
before D (in this case X, F or Y), but packed by OPT in D. Similar symbols are
defined analogously. When we consider the number of pieces packed in a particular
bin B, nHB will be the number of pieces H packs in B; nob the number of pieces OPT
packs in B; and for a region P, XpB, fPB, XpB, and fBP are defined analogously.

LEMMA 2.3.1. Let X be the region through the last XI bin. Then

nox nHX <nH 2---f(x, r>X).

Proof Let Bx be the last bin of region X. Since no second piece would fit in Bx,
s(Bx) < 2. Thus, because each piece has size >1/2, OPT can pack no more than three
pieces in Bx. Further, if OPT packs three pieces in any bin Bi of region X, all must
be F pieces packed by H in a bin before Bx. To see this, suppose OPT packed 3
pieces a, b and c in bin Bi. Let Px be the piece B2F packed in Bx. Then s(px)+ s(c) <
s(a)+s(b)+s(c)<=s(B)<-s(Bx), so c would have fit with Px in Bx. But Px was
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packed alone, so c must not have been available when B2F packed Bx. If c were type
X1 it would be larger than Px and any other remaining pieces, so another piece would
have fit with Px. Thus c was packed as type F before Bx. This argument applies to a
and b as well. Thus

(1.1) no 2Mx <= -fxx
and

1.2) 2Mx -nH <- XX

because any piece packed by H in a bin by itself must be a single X piece. Adding
(1.1) and (1.2) yields

31.3) no flH f:x + Xx.

Suppose OPT packs two pieces in a bin of region X. If both were available when
H packed Bx, or if one were available and the other were at least as large as the last
X1 piece packed, then Bx would have been type Y1 or F1. Hence at least one of those
pieces must be a type F piece packed by H before Bx. Thus

2(1.4) no Mx <-- -fx+fx.
Also, because any bin packed by H with a fallback piece is a type Y or F1 bin and
thus has two pieces,

(1.5) n, Mx >- 1/2fx.
Subtracting (1.5) from (1.4) yields

2 3(1.6) no nH <--fx +fx --1/2fx.
Multiplying (1.3) by 1/2 and (1.6) by and adding yields

4 3 2 2no n. <= (+-)fx +-gf)x +1/2Xx -lfx
<-- fx,, + lXx lfx.

Now fx fxx +fx,,.>x), so

no nn<-fxx+IXx --f(x,r>X)"
Moreover, nH fx + Xx SO

2no n,., <-_ n,_,
as the lemma requires.

LEMMA 2.3.2. Let region F be the region beyond X through the last F bin.

noF nHF nHF 2-gfv,,.#e)+fxv.

Proof. Let BF be the last bin in region F. Since no piece available when H packed
BF would fit with the last piece H packed in BF and then replaced (or BF would have
been type Y1), the same arguments used in the proof of Lemma 2.3.1 imply that if
OPT packs three pieces in a bin of F, none were available when H packed BF. Those
pieces must be fx or fF pieces. Hence

(2.1) nov nnv nov 2Me <-[fvv +fv]-
Also, if OPT packs two pieces in a bin of F, at least one is a fallback piece from F or
X. Hence

(2.2) 2
hoe Me <= -(fvv +f3xv) +f2v
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And

(2.3) nHF MF >= 1/2f.
Combining (2.2) and (2.3) yields

2 2(2.4) noF nHF<--SfFF+f)F+fF+fF--1/2fF.
Multiplying (2.1) by 1/2, (2.4) by , and adding gives

2 2
rlOF tlHF <fFF "4-+fx +

2 2<= "fFF -[-f(F,r+-fxF [f )]
< 1/2fu +-fx

as desired.
LEMMA 2.3.3. If there are no bad X2 bins, then no <--nn.
Proof. Let A be the union of regions X and F. Lemmas 2.3.1 and 2.3.2 imply that

(3.1) rlOA rlHA < nHA 2--f(A,r>A)"

Let R be the union of the remaining regions; let q be the piece not packed by H; let
R* be the set of pieces packed by OPT in R; and let R’ be the set of pieces packed
by H in R. Let S be the set of" pieces of R* packed by H as type Y or F pieces in A
(thus ]S]=fA). If pR*\(SLJR’LJ{q}), p is packed by OPT in R but by B2F in
neither R nor A, since p # q, p is an X or s(p)= 1, and s(p) > s(p’) for all p’ R’.
Since each bin of" R is at least full,

(3.2) s(R*)<-_s(R’).

Let Q= R* f-1 {q} (thus Q= if q was not packed by OPT in R). Then

s(R*) s(R*O R’)+ s(Q)+ s(S)+ s(R*\(R’U SU Q))

and s(g’) s(g’ f’l g*)+ s(R’\g*).
Substituting into (3.2) and combining terms yields

(3.3) s(Q)+s(S)+s(R*\(R’USUQ))<=s(R’CIR*)+s(R’\R*).

If we let m=maxpR,s(p), then m<=l; and for pSOQ, s(p)>m/2. Further, for
p R*\(R’U SU Q), s(p)>-m. Substituting these into (3.3) yields

s( Q) + () IS’ + m(IR*I IS, IR* f"I R’I) s( Q)

(3.4)

Combining like terms and dividing by rn yields

s(Q)rn IQI--ISI+IR
or

1 4 s(Q)
IR*I ISl IR’I / I01----d-
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If Q=,

nOR < 1/2fAR +nnR < 1/2faR +-nnR +
If Q#, s(q)> m/2 and m 1, so

(3.5) nOR

Combining (3.5) and (3.1),

(3.6) no <nn --AR +.
Since no is an integer, iffAR 1, we would have no nn. Thus fAR 0, and all pieces
packed by OPT in R are also packed by H in R, if H packs them at all. Pieces packed
by H in R, but not packed by OPT in R must be replaced by larger pieces by OPT,
so region R is a counterexample; by minimality there is no region A. From the argument
used to show (3.6) we see that if we consider R, R*, and R’ as a counterexample,

4

Therefore

1
,) 4[ 3 s(B)]+lR’l+l-s(q)IR*[_<-s(R - s(R’)--BB

(3.7)

4[ R’
3 s(B)] + l-s(q)._4 1 y [1-s(p)]- s( )-B.3 IR’I- p’

If all terms on the right of (3.7) except IR’I sum to less than , then since IR*I is an
integer, [R*I NIR’[ as desired. Therefore we shall show that for any bin B,

2 [-s(p]-? 2 s(p-s( +-s(q<-.
3 3

If this were not so,

4[ 3 ] 1
2 [-(p]+? s(p-( -+(q-?3 pB p

and

1 2
[B[+ s(p)+s(q)-s(B)<= -.

pB 3

But IBI->_2 (since region R is beyond F) and pnS(p)+s(q)> s(B) and we have a
contradiction. [3

There must therefore be a bad X bin if we have a counterexample.
LEMMA 2.3.4. IfB is the last X bin and ql and q are any two pieces available but

not used when H packed B, then

X2

5
Z s(p).s(q,)+ s(q2) >g
pZ

Proof Let xl and x2 be two X pieces packed in B. Since ql and q2 did not replace

S(X1) + S(ql) + s(q2)> s(B)> ][s(xl) + s(x2)]
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and

s(q) + s(q2) > [S(Xl)+ s(x2)]- S(Xl)

> [S(Xl) + s(x2)]-1/2[S(Xl)"- s(x2)]

and the lemma follows, l-]

Recall that region A contains all the F1 and X1 bins. We define region S to include
all Y bins where the fallback piece is smaller than the last piece qs packed beyond
the last X2 bin. All other Y bins not in A constitute region Y, except those bins where
the fallback piece is as large as the last X2 piece. These bins, and all bins through the
last X2 bin, constitute region D. All remaining bins constitute region Q. Note that all
bins of S precede all bins of Y. Either region may be empty. Note further that pieces
smaller than qs are fallback pieces if they are packed in Q.

LEMMA 2.3.5.
2x 2

rlOS rHS <-- -nHs +-fas +-fos +fos "’9 QS ---f(S,r#S)"

Proof. Any bin B of S has nHn 2. If a bin of S contains more than 2 pieces in
the OPT packing, it must contain 3, and each piece must be already packed by H (fA
or fs) or no larger than the piece used by H (fo or fa). Hence

nos nns <= fas + 1/2fss + 1/2fDS + fas
iX< fas +-fos +-fas +1/2nHS nns s --fs.rs)

and, since Xs >-fs.r#s), the lemma follows.
LEMMA 2.3.6.

Proof. As in Lemma 2.3.5, we need consider only bins packed by OPT with 3
pieces, and again those pieces were already packed by H (fa, fs, fY) or are no larger
than the fallback piece. But we must include Xa pieces. Thus

noy nny <= fAv +1/2fsv +1/2fYY +1/2foY +1/2faY +1/2Xay
<-- 1/2fyy +1/2f(,# Y, Y)+xag -t-lnny --}fg.

Now fy My >1Xag, so fg >- Xag and

and the lemma follows.
LEMMA 2.3.7.

noo- nno <= Inno +-fAo +fso +-XQo +-fQo +-fYo ---fo,e o).

Proof. If B is a bin of D in which OPT packed 3 pieces, either one of the pieces
was not available, when H packed B and is smaller than any piece that was available
(fA, fs, fo), or OPT packed at least 3 pieces smaller than any X: piece (fQ, Xa, fy).
(Otherwise the two smaller pieces would be able to replace the smallest X: piece in
the last X2 bin.) Thus, abusing the notation by making it refer to numbers of pieces
in bin B,

(7.1) no 2 <--fA. +fs. +foe +1/2fQ. +fY.
If OPT packs B with more than 3 pieces, we claim that

no - 2 +1/4fo +
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To see this, let f=fAB +fDB +fSB and x =fob + XOB +fYB, and let m be the average size
of the X pieces in the last X2 bin. Then, since s(B)< 3m,

1/2mf+-mx + re(noB x -f) < 2m + s(q),

where q is the piece not packed by H. Then

1 1 1
(7.3) nob-2 <f+g x +--rn s(q).

If the claim is false, f+x < 1/2f+x +(1/m)s(q), and, since q is smaller than any X2,
f+lX <(1/m)s(q) <- 1. Thus f_-<3.

If f=3, then x_-<2 and noB-2<1/2" 3+. 2+(1/m)s(q)<3. But then noB-2 <-

f+1/4x.
If f=2, then x=<5 and from (7.3), noB-2<=1/2.1+.5+(1/rn)s(q)<3 and

noB-Z<-f+1/4x unless x <- 1. If x<_-1, noB-2<-1/2 2+. l+(1/m)s(q)<2.
If/= 1, then 1/2. l+-S6x<3, so x-<2 and noB-Z<-_1/2 1+. 2+(1/rn)s(q)<2.
Iff=0, then x=<3 and noB-2<- 3+(1/m)s(q)<2. Thus the claim is true.
Combining (7.1) and (7.2), using fl to refer to bins where nob -2 1, and f2, x2

to refer to bins where nob 2 >- 2,
2 2 2 2 2 2

nOD 2MD noB 2 =-fD-b-fDD +-fSD-b-gfQD’bXQD-k-gfVD
BaD

(7.4)
+fJ4D +fo+f +]f + 1/2xloD +fvD.

Also nitD 2Mo ----> 1/2fD, so
2(7.5) not nitD <---- _If2 +_xoD +/1

We now obtain another inequality by computing nod 3MD. For any bin B packed
by OPT with more than 3 pieces, noB-3<=-[noB-2] (since nob <= 5), so nOD--3MD<=

2 2fD+gxD. Also 3Mo nHo -< 1/2[xo -1/2fD]. Combining these yields
2 2 2 2(7.6) noD nHD < 5fDD+fAD +fSD + +1/2XD fD-XDD

Multiplying (7.5) by and (7.6) by and adding yields:

nOD

as desired in the lemma. [3

LEMMA 2.3.8 (Summary Lemma). Let I be the region consisting of all bins through
the last X2 bin, and let Q be all remaining bins.

no, nit, <= )nit, +-xoi -flo +-fol -1/2fYo,
where flo does not contain the fro contribution.

Proof The lemma follows from adding the inequalities for the subregions A, S,
Y, and D. The fo, term contains only contributions from the Y region. The term fro
is nonzero only if a piece larger than qs is packed by H in a Y1 bin but is packed by
OPT in Q. By Lemma 2.3.6, such pieces can be subtracted with a coefficient no larger
than . V1

We examine the remaining bins in the following lemmas. Because of a slight
problem with small fallback pieces in the F2 region, we give separate proofs for the
F and X3 regions. All other F, and X, bins are treated together.

LEMMA 2.3.9. In region R- F2 U Y,

nOR nHR <= 1/2nR +fR +-fOR +XQR +fYR ---}fRos---XRQ---fRO!
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where region Q contains all bins after region R; fROs andfRoI refer, respectively, tofallback
F2 pieces which are smaller than qs and at least as large as q.

Proof. We prove the lemma by examining bins individually and summing over all
bins in the region. If we can show, for each bin B in region R, that

(9.1) non nHn <-

then the lemma will follow from summing this formula over all bins in R.
Suppose that B is a bin of R for which (9.1) fails. Throughout R we know that

nHn is 3, that xn is 1 or 2, and that fn +fnl is 1 or 2. Since any piece that OPT packs
in B is at least half the size of any piece of type X that H packs in B, and all other
pieces (besides fx) are at least the size, we have easily that

1/2fn + (fon +fRn +fYn + Xon + XRB "q- nOB (fxn +fon +fRn +fYn + XQn + XRB < 3.

This gives us the following, letting f stand for fn, and q for all the other types of
pieces listed above:

(9.2) non 3 < 1/2f+q.
If (9.1) fails, it is easy to see that non must be at least 3 and that no bin in R can
contain more than 5 pieces. We have 3 cases to consider.

Case 1. non 5. In this case, we have from (9.2) that fn->4, and (9.1) follows,
since 2-<-. 4-. 2+-. 1.

Case 2. non =4. In this case, (9.2) implies f->_ 2. Iff_> 3, (9.1) follows as in Case
1. Iff=2, then (9.2) implies q->l. Then 1-< 2+. 1-1/2 2+= 1, and (9.1) follows.

Case 3. non 3. In this case, we know from (9.2) that f or q must be at least 1.

Iffn _-> 1 or fon--> 1, then (9.1) follows. If B is type Y2 and fn =fon =0, then (9.1) still
follows if fin =fon 0. If B is type F2, then B cannot contain 2 pieces as large as the
X piece H packs in B and also a piece as large as any available when H packed B.
Thus fYn + xon 2. In that case, at least one of the fallback pieces packed by H must
be at least as large as q because of the way H replaces pieces, and fn >-- 1. Substituting
into (9.1) yields the lemma.

LEMMA 2.3.10. If region R is the region X3,

noR nnR <- nnR +-}fro +-fm +-foR +-XoR ---XRo--fRO,
where fiR is the number ofpieces at least as large as qs packed by H and OPT in R.

Proof. As for the previous lemma, this proof is carried out by showing that, for
each bin B in region R,

(10.1) non nun <-- fn +fn +fln -i-XQB -I"XB -fn.
This inequality certainly holds if non <-3, since nHn +xn --fn > 3. Suppose 4 -< non -< 7.
We know that

(10.2) non -4 < 1/2f+ gq

where f=fin and q fn +fin + xon +fen.
Case 1. non 7. In this case, (10.2) implies f/n -> 6, and (10.1) follows easily.
Case 2. non 6. In this case, f _-> 4, and (10.1) follows.
Case 3. non=5: Now fn-> 1. If fn->3, (10.1) follows easily. Suppose fin 2.

Then q_-> 1, so if B is a fallback bin, 5-4_-<++- and (10.1) holds again. If B is
not a fallback bin, then a similar computation shows that (10.1) holds if q-> 3, or if
Jn or fn is nonzero. If there are two Xo pieces packed by OPT in B, they would
replace the last X piece H packed, and if there is only one Xo piece, it would fit with
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the 3 pieces H packed in B. (If the pieces are larger than qs but already packed, then
other pieces could be used.)

Suppose fiB 1. If B is a fallback bin, then nob nHB 1 _--<" 1+" 4+" 2 2.
If B is not a fallback bin, then (10.1) holds iffB +fsB +fOB -->-- 1, since 2 --<_ +-59 + 3" + 3" -and q-4. If XQB--4, however, any XQB piece would fit in B as a fallback piece,
contradicting the fact that B has type X3. This follows since any fB piece and any
three XOB pieces are at least as large as the three pieces H packed in B.

Case 4. nob- 4. In this case, all we know from (10.2) is that f+ q->_ 1. If B is a
fallback bin then (10.1) holds. So suppose that B is an X3 bin. Iff/B orfB are at least
1, then again (10.1) holds. If JB, XOB or fOB are 1, then q would have fit, making B
type Y3. Similarly, if fB /XoB--2, B would be type F3. But if f/B--XQB-->3, then
1--< 3+. 3 and (10.1) holds. ]

LEMMA 2.3.11. If R F, or Y,, n >-_ 3, or X,, n >- 4, then

where region Q contains all bins after I, and Q’ contains all bins after R.
Proof We begin by proving a general inequality that applies in each of the cases.

Let B be any bin of R. Then any pieces from region I must have size at least half that
of the X pieces that H packs in B. Any other pieces that are smaller than the X pieces
must be at least - their size. Consequently,

nob fxB -fob xo’B < n + 1

and we can simplify this to

no. n < 1/2fro + (fQ. + xo’B) + 1.

Since noB-n is an integer,

(11.1) .o. n <= 1/2f,. + + xo,.)+
Now we assume that B is a bin of R in which OPT packs at least n /2 pieces.

We claim that if R is a region F or X,, then

.o.- ,, <- + +  xo,.
while, if R is Y,, then

.o. -. +1/4xo,. +1/4.
Note that the only difference between the claim for Y, and the others is the 1/4 on the
end. We shall proceed with the proof for the case when R is X or F and point out
where the 1/4 is needed in three places to fill in the details for the Y, case.

If the claim fails for R- X, or F then from (11.1) we have by simplifying

and consequently fm -<- 3 and ftB +fob + xo’B <= 9.
If fro 3, then fob and XQ,B must be 0. But then nob-n must be at most 1/2.3 +

if the claim fails. Since it must be an integer, it can only be 2; and then 2-_< 3,
contradicting the supposition that the claim failed.

If fib 2, then fob 0, and xo,B =< 3. Again we have nob n =< 2 from (11.1) and
the claim holds unless xo,B-< 1. In this case, however, the xo,B piece would fit with
the n pieces packed by H in the last bin of region R, contradicting the fact that R is
X, or F,. If R is region Y,, then the additional - added to the claim is sufficient if
XQ,B 1. Note that xo,B cannot be 0 by (11.1).
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If fin 1, then fon + xo’n-<6, if the claim is false. From (11.1) we again obtain
non n 2 and the claim holds unless fon <- 2 and fon + xo’n -< 4. But also from (11.1),

implies that fon + xo,n 4 and, if fon -> 1, the claim holds. Thus if the claim is false,
fon 0 and xo,n 4. As above we now find that any of the xo,n pieces would fit in the
last bin of R, contradicting the fact that the bin is of F or X type. And again the - in
the claim when R Y. is sufficient for this case as well.

Finally, if fm= 0, then we can again show that non-n 2, and that fon 0 and
xo,n--< 7. If xo,n < 7 the claim holds, so it must be exactly 7. Again we find that any
of the smaller pieces would fit in the last bin of R. And again in the Y. case, the
additional 1/4 is sufficient to cause the claim to hold.

Suppose now that non n + 1, and that R is of type X. or F. If OPT packs B
with no pieces smaller than those available to pack the last bin BR of R, then there
must be at least two pieces smaller than the pieces of type X in BR, if R is an F.,
and 3 such pieces if R is an X. Thus if R F., (using f and x to denote pieces
packed by OPT in a bin with n + 1 pieces)

(11.2)

and if R is X,,

non n -<fln +fn -at- -X Q,B

(11.3)

For R F, we have from (11.2) and the claim (usingf2 and x2 to denote pieces packed
by OPT in a bin of n + 2 pieces)"

2 2 2non n

and summing over all bins of R, using nuR >--nlRl+f,
2 2 X2(11.4) no. nHR Nafm +f1 +f.+fo. + 4 Q’R +sXo’"--f"

Thus, for R F.,
2 2 2(11.5) no,- n, afm +fro +sfo+f+gxo +SXoR--fR

For R Y, we can obtain the same result since nHR nlR] +fR. Also, from (11.1),
2 2 2no (n + 1)

and, summing over all bins of R,
2 2 2(11.6) nOR nHR NSflR +gfOR +gXoR"

Multiplying (11.5) by and (11.6) by

= + fo. + xo. -lxo.- fo.
and the lemma holds when R F, or Y,.

Similarly when R is an X, region, we get from (11.3) and the claim, and from
summing over all bins of R,

2 2 2(11.7) nOR nHR Nfm +fR+fR +SfOR +Xo’R +gXo’R--fR.
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For any bin B of R, nHB>--(1/n)xn-(n-1)fB/2n. Thus

1 2 1 1 n-1
non rlHB <= -f,R -I-- (fB + xaon) +--n xn 2n fB

and

1 2 1 1 n-1
(11.8) rlOR rIHR <=-flR -I-- (fR nu X2QR) "4;-- XRn 2n

Multiplying (11.7) by and (11.8) by yields

nor n,R <=fR +foR +XQR +XR.
Since n >--4, the lemma follows in this case as well. lq

Adding Lemmas 2.3.8 through 2.3.11 yields the final result.
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AN OPTIMAL ALGORITHM FOR FINDING A MAXIMUM INDEPENDENT
SET OF A CIRCULAR-ARC GRAPH*
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Abstract. A new algorithm is presented for finding a maximum independent set of a circular-arc graph.
When the .graph is given in the form of a family of n arcs, our algorithm requires only O(n. log n) time
and O(n) space. Furthermore, if the endpoints of the arcs are already sorted, it runs in O(n) time. This

algorithm is time- and space-optimal to within a constant factor.

Key words, optimal algorithm, circular-arc graph, maximum independent set
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1. Introduction. Let G (V, E) be a graph. Two distinct vertices u and v in V
are said to be independent from each other if (u, v) E; otherwise they are said to be
adjacent to each other. A subset X of V is called an independent set of G if any two
vertices in X are independent. A maximum independent set of G is an independent
set whose cardinality is the largest among all independent sets of G.

Consider a finite family S of nonempty sets. A graph G (V, E) is called an
intersection graph for S if there is a one-to-one correspondence between S and V such
that two sets in S have a nonempty intersection if and only if the corresponding vertices
in V are adjacent to each other. If S is a family of intervals on the real line, then G
is called an interval graph. When S is a family of arcs on a circle, G is called a
circular-arc graph for S.

Interval graphs have been used in many practical applications [6], 12], 14], 15],
and, as such, a wide variety of algorithms have been developed [2], [5], [7], [9]-[11].
Furthermore, as a generalization of interval graphs, circular-arc graphs have received
considerable attention in recent years. Tucker [13] gave an O(n3) time algorithm for
recognizing circular-arc graphs, where n is the number of the vertices in a given graph.
Garey, Johnson, Miller and Papadimitriou [3] showed that the vertex coloring problem
is NP-complete for circular-arc graphs. Gavril [4] developed polynomial time
algorithms for finding a maximum clique, a maximum independent set, and a minimum
covering by disjoint cliques of a circular-arc graph. When the graph is given in the
form of a family of n arcs, the algorithms produce solutions in O(n35), O(n4), and
O( n5) time, respectively. Later, Gupta, Lee and Leung [7] gave O(n2) time implementa-
tions of the last two algorithms of Gavril’s. Leung 10] developed an efficient algorithm
for generating all maximal independent sets of a circular-arc graph. Recently, Hsu [8]
presented an algorithm for finding a maximum weight clique for the case when each
vertex is assigned a real number as its weight. Its time complexity is O(n. m), where
m is the number of edges of the graph.
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00108, and in part by a grant from AT&T Information Systems.
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Center, University of Maryland, College Park, Maryland 20742.
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In this paper, we present a new algorithm for finding a maximum independent
set of a circular-arc graph. We show an O(n. log n) time and O(n) space implementa-
tion of the algorithm when the graph is given in the form of a family of n arcs on a
circle. If the endpoints of the arcs are already sorted, the algorithm is shown to run
in O(n) time.

It should be noted that Gupta et al. [7] have proven that it requires f(n. log n)
time in the worst case to find a maximum independent set of an interval graph with
n vertices. Since every interval graph is a circular-arc graph, our algorithm is both
time- and space-optimal to within a constant factor.

2. Definitions and notation. Let S {al, a2, , a,} be a family of arcs on a circle
C. Each endpoint of the arcs is assigned a positive integer, called a coordinate. The
endpoints are located on the circumference of C in ascending order of the values of
the coordinates in the clockwise direction. Without loss of generality, we can assume
that (i) all endpoints of the arcs in S are distinct, and (ii) no single arc in S covers
the entire circle C by itself.

For simplicity, we call the endpoint with coordinate j as point j. Suppose that an
arc begins at point j and ends at point k in the clockwise direction. Then, we denote
such an arc by (j, k), and call points j and k as the head and the tail, respectively, of
the arc (j, k). For 1, 2, , n, let hi and ti denote the coordinates of the head and
tail, respectively, of arc ai, that is, ai (hi, ti). We show an example of a family of
arcs in Fig. 1, where a1=(1,7), a2=(3, 5), a3= (6,9), a4=(8, 12), as=(10, 13), a6
(11, 15), aT= (14,4) and a8= (16,2).

ct 7

6 a2

FIG. 1. A family of arcs on a circle C.

For an arc ai 6 S and an endpoint j of another arc in S, we say that ai contains
point j if one of the following three conditions holds (see Fig. 2):

(i) 1 -< hi <j < ti -< 2n.
(ii) 1 -<_ ti < hi <j -<- 2n.
(iii) 1 <_-j < ti < hi --< 2 n.

For two distinct arcs ai and aj in S, we say that they intersect with each other if one
of them contains at least one of the endpoints of the other arc; otherwise ai and aj
are said to be independent from each other. If ai contains both endpoints of a, we
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(a) (b) (c)

FIO. 2. Cases in which arc ai contains pointj. (a) _-< h <j < ti <-2n. (b) -< < h <j <-2n. (c) <-j < <
h <-_2n.

say that ai contains aj. The circular-arc graph for S, denoted by Gs, is defined as follows:

Gs & Vs, Es), where

Vs& {Vi, V_,. ., v,} and

Es {(v, v)[ a and aj intersect with each other}.

For example, Fig. 3 depicts the circular-arc graph for the family of arcs given in Fig. 1.
A subfamily S’ of S is called an independent arc family (abbreviated to an IAF)

if any two arcs in S’ are independent from each other. A maximum independent arc
family (abbreviated to an MIAF) of $ is an IAF whose cardinality is the largest among
all IAF’s of S. For example, the family of arcs shown in Fig. 1 has two MIAF’s,
{a2, a3, as, as} and {a2, a3, 06, as}. Clearly, the MIAF’s ofS and the maximum indepen-
dent sets of Gs are in one-to-one correspondence. In the following section, we will
present an algorithm for finding an MIAF of a family of arcs.

v1

v3
v6

v5

FIG 3. The circular-arc graph for the family of arcs in Fig. 1.

3. Outline of the algorithm. Let S {al, a2,"" ", an} be a family of n arcs on a
circle C. S is said to be canonical if (i) hi’s and ti’s for i= 1, 2,..., n are all distinct
integers between 1 and 2n, and (ii) point 1 is the head of arc al. For instance, the
family of arcs shown in Fig. 1 is canonical, but the one given in Fig. 4 is not. It should
be noted, however, that these two families of arcs correspond to the same circular-arc
graph, which is shown in Fig. 3. When S is not canonical, by using a regular sorting
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61

7

2

FIG. 4. A noncanonical family of arcs.

algorithm [1], one can construct, in O(n. log n) time, a family of arcs S’ such that
Gs- Gs,. Throughout this paper, we assume that the family S is canonical.

For a subfamily S’ of S, let a (S’) denote the cardinality of a maximum independent
set of Gs,, or equivalently that of an MIAF of S’. We start with the following theorem.

THEOREM 1. Suppose that an arc ai S contains another arc aj S. Then, any MIAF
of S {a,} is an MIAF of S.

Proof. It is clear that a(S)>-a(S-{ai}). Let X be an MIAF of S. If ai X, then
X is an IAF of S-{ai}. On the other hand, if ai X, then (X-{ai})U {aj} is an IAF
of S-{ai}. These imply that a(S)<-a(S-{ai}). Thus, a(S)= a(S-{ai}), and hence
any MIAF of S-{ai} is an MIAF of S.

An arc ai (hi, ti) S is called a forward arc if hi < ti; otherwise ai is called a
backward arc. For example, there are two backward arcs, a7 and as, in the family of
arcs of Fig. 1. In our algorithm, we first remove all forward arcs which contain other
forward arcs. Let SF denote the resultant family of the forward arcs, and let Sa denote
the family of all backward arcs in S. Then, we have the following lemma and theorem.

LEMMA 1. SF .
Proof. Since S is canonical, it has at least one forward arc, that is, al. If a is the

only forward arc in S, SF al . On the other hand, if S has more than one forward
arc, there exists at least one forward arc which does not contain any other forward
arc. Thus, SF in either case.

THEOREM 2. I <-a(Sv)<-a(S)<-a(SF)+ 1.

Proofi Since SF f from Lemma 1 and SF
_

S, 1 <- a (SF) <- a (S). From Theorem
1, a (S) a (SF U S), and hence ct (S) <- a (SF) + a (Sz). Furthermore, it is clear that
a(S)- 1 if S , and that a(S)= 0 if S . Therefore, the theorem holds.

Our algorithm tests whether there exist an MIAF, X of SF and an arc ag SB such
that X U {ag} is an IAF. From Theorem 2, if such an MIAF, X and an arc ag exist,
then X U {ag} is an MIAF of S; otherwise any MIAF of SF is an MIAF of S. In general,
the number of MIAF’s of SF may be an exponential function of ISF[. However, our
algorithm efficiently performs this test by exploiting a property of an MIAF of S which
will be described later in Theorem 3.

Let X {ail, ai2, , aik } with hil til hi2 ti: hik ti be an IAF of SF.
Then we call hi1 (resp., ti) the starting coordinate (resp., the ending coordinate) of X
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and denote it by sc(X) (resp., ec(X)). Let X1 and X2 be two IAF’s of SF. We say that
X1 dominates X2 if one of the following conditions holds:

(i) sc(X2) < sc(X1) and ec(Xl) <= ec(X2).
(ii) sc(X2) <= sc(X) and ec(X1) < ec(X2).

An MIAF, X of SF is called a dominant maximum independent arcfamily (abbreviated
to a DMIAF) of SF if no other MIAF of SF dominates X.

LEMMA 2. Let X be an MIAF ofSF J SB. If there exists an MIAF, X ofSF which
dominates X 71 Sv, then X I..J X 71 SB) is an MIAF of S.

Proof Suppose that X f-) SB . Then a (SF) a (SF t_J SB) a (S). Since Ixl
a (SF), X (X 71Sn) XI is an MIAF of S. On the other hand, suppose that X fq Sn. Since a(Sn)-< 1, [X [q SnI 1. Let ai be the unique element in .X fq Sn. Then, it is
clear that ti < sc(X-{ai}) and ec(X-{ai})< hi. Since X1 dominates X 71SF X-{ai},
sc(X f’l SF) <---- sc(X1) and ec(X) <- ec(X f-) SF). Therefore, we have ti < sc(X) and
ec(X1) < hi (see Fig. 5). This implies that X U {ai} is an IAF of S. Since IX U {ai}l
a(SF)+I, XaU(Xf’ISn)=Xt_J{ai} is an MIAF of S from Theorem 2. [3

arc in X----- arc in X

FIG. 5. An illustration for the proof of Lemma 2.

LEMMA 3. Let X be an MIAF of SF Sn. Then, there exists a DMIAF, X of SF
such that X1 X fq Sn) is an MIAF of S.

Proof If X f’) SF is a DMIAF of SF, then the theorem trivially holds. Otherwise,
there exists a DMIAF of SF, say X2, which dominates X f)SF. From Lemma 2,
X2 t_J (X fq Sn) is an MIAF of S. [3

Lemma 3 implies that it suffices to consider DMIAF’s of SF in order to test whether
there exist an MIAF, X of SF and an arc a SB such that X U {a} is an IAF of S.
In the following, we will show that the space which must be searched to find a desired
MIAF of SF can be reduced further.

The next lemma is obvious from the definition of a DMIAF.
LEMMA 4. Let XI and X2 be two DMIAF’s of SF. Then, sc(X)- sc(X2) if and

only ifec(X) ec(X2). Furthermore, sc(X) < sc(X2) ifand only ifec(X) < ec(Xz). [3

Let D be the set of all DMIAF’s of SF. A subset of D, R-{X1, X,..., Xk} is
called an essential DMIAF set for SF if it satisfies the following two conditions:

(i) sc(Xi) # sc(X) for any 1 _<- #j -<_ k.
(ii) For any DMIAF, X of SF, there exists an integer j such that 1-<j =< k and

sc(X)= sc(X).
Let us consider the family S of arcs shown in Fig. 6. In this particular case, SF consists
of eight arcs a, a,. ., a8, and has ten MIAF’s: {a, a4, aT}, {al, a4, a8}, {al, as, a8},
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FIG. 6. A canonicalfamily ofarcs S. {{a2, a4, a7} {a3, as, as} and {{a2, a4, a7} {a3, a6, a8} are essential
DMIAF sets for SF.

{al, a6, a8}, {a2, a4, a7}, {a2, a4, a8}, {a2, as, a8}, {a2, a6, a8}, {a3, as, a8} and
{a3, a6, as}. Among them, {a2, a4, a7}, {a3, as, a8} and {a3, a6, a8} are DMIAF’s. Since
the last two have the same starting coordinate, each ofthe sets {{a2, a4, a7}, {a3, as, as}}
and {{a2, a4, a7}, {a3, a6, a8}} is an essential DMIAF set for SF.

From Lemma 3 and the first half of Lemma 4, we have the following theorem.
THEOREM 3. Let X be an MIAF of SF [_J Sn, and let RF be an essential DMIAF

set for SF. Then, there exists a DMIAF, X1 RF such that X [.J (X Sn) is an MIAF
ofS.

We now show the framework of our algorithm. Its correctness follows directly
from Theorems 2 and 3.

ALGORITHM FIND-MIAF.
Input: A canonical family of arcs S {a, a2,’’- a,}.
Output: An MIAF of S.
Method:
1. Determine SF and Sa.
2. Find an essential DMIAF set for SF, RF-" {X1, X2,"" ", Xk}.
3. If there exist a DMIAF Xi Rp and an arc a Sa such that b <sc(Xi) and

ec(X) < h, then generate Xi U {aj}; otherwise generate an arbitrary MIAF
of SF. ]

In the next section, we give a linear time implementation of this algorithm.

4. Efficient implementation of the algorithm.
4.1. Determination of SF and Sa. Suppose that a canonical family of arcs S

{a, a,..-, a,} is given as an input to Algorithm FIND-MIAF. Let S denote the
family of all forward arcs in S. Recall that SF is the family of all forward arcs in S
which do not contain any other forward arc in S. Note that S S t_J S. and S S .
We can partition S into S and S in O(n) time. In order to extract SF from S, we
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first create an empty queue Q and initialize SF to be empty. Then we visit the endpoints
of the arcs in S one by one in ascending order of their coordinates. If we find the
head of some arc ai, we insert integer into Q. If we find the tail of some arc ai, we
check whether integer exists in Q or not. If it does not, we do nothing; otherwise
we delete from Q the integer and all integers which are placed before i, and then
we add arc ai to SF.

Suppose that an integer j is deleted when the tail of ai(i j) is visited. Since the
tail of aj has not been visited, ti < b. Furthermore, h < hi since the integers are inserted
into Q in ascending order of the coordinates of the heads of the corresponding arcs.
These imply that a contains ai. Thus, a : SF. On the other hand, arc ai does not
contain any other forward arc; otherwise the tail of some arc ak such that hk ?> hi would
have been visited earlier than that of ai and integer would have already been deleted.
Therefore, ai SF.

Since S is canonical, the coordinates of the endpoints of the arcs in S are distinct
integers between 1 and 2n. Therefore, this procedure determines SF in O(n) time and
with O(n) space. Thus, the next theorem follows.

THEOREM 4. Determination OfSF and SB can be done in O(n) time and with O( n
space. [3

4.2. Finding an essential DMIAF set for St. Suppose that SF has been obtained.
Without loss of generality, we assume that Sp {a, a_, , alsl} with

hisFlO (The renumbering of the subscripts of the arcs can be performed in O(n) time
by a bucket sort 1 ], if necessary.) The following lemma provides an important property
of an essential DMIAF set for SF.

LEMMA 5. Let RI: {X, X2,’’’, Xk} be an essential DMIAF set for SF. Then,
XiffIX= for l<-_ij<-_k.

Proof Let and j be integers such that 1-< j-< k. By definition, Xi and X are
DMIAF’s of SF. Without any loss of generality, we can assume that sc(Xi)< sc(X)
and ec(Xi < ec(X).

Assume that X [3 X , and let ak be an element in Xi [3 X. Let X- and X
denote {aq Xiltq < hk} and {aq Xi[hq > tk}, respectively. Similarly, let X- and X
denote {aq Xltq < hk} and {aq Xlhq > tk}, respectively. Then, clearly X- I {ak} Xf
is an IAF of SF. This implies that [X[-> IxTI since X. X U {ak} 1.3 X. is an MIAF
of SF. Similarly, since X: {ak} X. is an IAF of SF and Xi is an MIAF of SF, we
have Ix l-< IxTI. Therefore, IXl IX l. This implies that X {ak} kJ Xf is an MIAF
of SF since it is an IAF of SF and [X-U{ak}U Xfl =IXI. It is clear that sc(Xi)<
sc(X)= sc(XU{ak}U Xf) and ec(Xi)= ec(X-U{ak}kJ X-)< ec(X). Therefore,
X-kJ {ak}U Xf dominates both Xi and X. This contradicts the facts that Xi and X
are DMIAF’s of SF. Consequently, Xi

COROLLARY 1. Let RF {XI X2, , Xk} be an essential DMIAFsetfor SF. Then
Ix, Is l.

Proof. It is clear from Lemma 5.
Let Z be defined as {ai SFlhl < hi < tl}. Then, the following lemma is obtained.
LEMMA 6. For any MIAF, X of SF, IX f Z[- 1.

Proof. Any two arcs in Z intersect with each other, and hence [X t Z[ =< 1. Further-
more, ]X tZ[#0; otherwise, X U{al} would be an IAF of SF. Therefore,
]XI"IZ 1. [3

For an IAF of SF, X {a,, ai2,’’’, aij} with hi,< hi2 <’" < hij, ai, is called the
starting arc of X. For each arc ai SF, an IAF containing a as its starting arc is called
a largest IAF for ai if it contains the maximum number of arcs. Then we define YSi



48 S. MASUDA AND K. NAKAJIMA

as the set of all largest IAF’s for ai. For example, consider the family of arcs of
Fig. 6 again. Then, YS1- {{al, a4, a7}, {al, a4, as}, {a, as, as}, {a, a6, as}} and YS3-
{{a3, as, a8}, {a3, d6, a8}}.

For i= 1, 2,..., ISvl, let Y be an IAF in YSi whose ending coordinate is the
minimum among all IAF’s in YSi. Suppose that Z {al, a2," ", am}. By assumption,
h < ha <" < h,. We show below several theorems and lemmas which play important
roles in finding an essential DMIAF set for

LEMMA 7. Let X be a DMIAF of Sv and let Cl be its starting arc. Then, 1 <-i <-_ tn
and Yi is a DMIAF of SF.

Proof. From Lemma 6, di E Z, that is, 1 _-< <-m. It is clear that X is a largest IAF
for ai. Therefore, v,I- Ixl, and hence Y is an MIAF of Sv. Furthermore, since
has the minimum ending coordinate among all IAF’s in YSi and X is not dominated
by Y/, ec(Yi) ec(X). These imply that Y is a DMIAF of Sv.

THEOREM 5. Let R be the set of all DMIAF’s in { Y, Y2," Ym}. Then, R is an
essential DMIAF set for SF.

Proof Let X be any DMIAF of SF. Then, from Lemma 7, a DMIAF of SF, Y
exists in R such that 1 _-< <_- m and sc(X) sc(Yi). Therefore, there exists a subset of
R which is an essential DMIAF set for SF. Since h < h2 <" < h,, sc(YI)

< sc(Y,). This implies that no two DMIAF’s in R have the same starting coordinate.
Thus, R itself is an essential DMIAF set for SF.

LEMMA 8. Suppose that Y is not an MIAF of SF for some integer such that
1 <-_ < m. Then, Y is not an MIAF of SFfor j + 1, + 2,. , m.

Proof. Assume that Yk is an MIAF of SF for some k such that + 1 -<_ k <_- m. Then

YkI> Yl -> 1, and hence Ykl_-->2. Since hi < hk and ai does not contain ak, ti < tk.
Furthermore, it is clear that tk < SC( Yk {ak}). Therefore, {ai} LJ Yk {ak}) is an MIAF
of SF. Since its starting arc is ai, every IAF in YSi is an MIAF of Sv. This contradicts
the hypothesis that Y is not an MIAF of SF. Therefore, there does not exist such an
integer k that i/ 1-< k-<_ m and that Yk is an MIAF of SF.

COROLLARY 2. Y1 is an MIAF of SF.
Proof It is clear from Lemmas 7 and 8.
LEMMA 9. Suppose that Y is an MIAF ofSFfor some integer such that 1 <- <-_ m.

Then, if Y is not a DMIAF of Sv, there exists an integer j such that <j <-_ m and that

Y is a DMIAF of SF which dominates Y.
Proof. If Y is not a DMIAF of SF, then there exists a DMIAF of SF, say X,

which dominates Y. By definition, Y has the smallest ending coordinate among all
largest IAF’s for ai, and hence aiX. This implies that hi sc(Y)<sc(X) and
ec(X) <-_ ec(Y). Let aj be the starting arc of X. Then, from Lemma 7, j _-< m and Y is
a DMIAF of SF. Since sc(X)-hj, hi < h, and hence i<j<= m. Furthermore, since
sc(Y) sc(X), ec( Y)- ec(X) from Lemma 4. Therefore, Y dominates Y/.

COROLLARY 3. If Ym is an MIAF of SF, then it is a DMIAF of SF.
Proof. It is clear from Lemma 9.
COROLLARY 4. Suppose that Y is an MIAF of SF for some integer such that

1 <- m. Then, if Y/ is not an MIAF of SF, Y is a DMIAF of SF.
Proof It is clear from Lemmas 8 and 9.
LEMMA 10. Suppose that both Y and Y/ are MIAF’s of SF for some integer

such that 1 <- < m. Then, Yi is a DMIAF of Sv if and only if ec( Y) ec( Yi+).
Proof. Clearly hi sc( Yi) sc( Y//I) hi/. So, if ec( Yi) >- ec( Y//I), then Y//I

dominates Y. Thus, if Y is a DMIAF of SF, then ec(Yi) < ec( Y/I)-
Suppose that Y is not a DMIAF of SF. From Lemma 9, there exists an integer j

such that i+ 1 _-<j <_-m and that Y is a DMIAF of SF which dominates Y. Since
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does not contain a and Y dominates Y, [Y[ _>- 2, and hence [Y[ _-> 2. Furthermore, if
j + 1, ti+l < t, and hence ti+l < so( Y {a}). This inequality also holds whenj + 1.
Therefore, ec(Yi+) <- ec( Y.i ({a}); otherwise {ai+} U Y {a}) would be selected as
Y/+. Since ec( Y- {a}) ec( Y) <- ec( Y/), we have ec( Yi+l) <= ec( Yi). Thus, if ec( Yi) <
ec(Y+), then Y is a DMIAF of Sp.

THEOREM 6. Suppose that Y is an MIAF of Sp for some integer such that
1 <-i <-m. Then, Y is a DMIAF ofSF if and only if one of the following three conditions
holds:

(i) < m and Y+ is not an MIAF of SF.
(ii) < m and ec( Y) < ec(
(iii) i- m.

Proof. It is clear from Lemma 10 and Corollaries 3 and 4.
We now present a procedure to find an essential DMIAF set for SF. Its correctness

can be easily proven by using Theorems 5 and 6, Lemma 8 and Corollary 2.

PROCEDURE FIND-EDS.
1. Z {ai E SF[h <- hi < t}. Suppose that Z {a, a2," am}.
2. For i- 1, 2,..., m, find ec(Y) and [Y[, where Y is defined as before.
3. R<--. il.
4. While Y[ YI and i< m, execute the following instructions 1 and 2.

(1) If[ Y/+ll <lY, or ec(Y) < ec(Y+,), then determine Y and R - R U { Y}.
(2) i-i+ 1.

5. If m and YI Y[, then determine Y and R - RID { Y}.
6. Generate R.

As an example, consider the family of arcs of Fig. 6. Since tl 6, Z is determined
as {al, a2, a3 at Step 1. Then, Step 2 finds ec(Y) 17, lye] 3; ec(Y2) 17, ]Y2] 3;
and ec(Y3)= 19, ]Y3] 3. At Step 4, Y is not added to R since ]Y[ ]Y] 3 and
ec(YI) ec(Y2). On the other hand, Y2 is added to R since ec(Y2) ec( Y3)- Similarly,
Y3 is added to R at Step 5. While Y2 is uniquely determined as {a2, a4, a7), Y3 may
be chosen from two candidates, {a3, as, a) and {aa, a6, a8). Therefore, the resultant
essential DMIAF set is either {{a2, a4, a7}, {a3, as, as) or fiat, a, a), {a, a6, as).

In what follows, we describe an efficient implementation of Procedure FIND-EDS.
For each arc aiESu, let NEXT(ai) be defined as an arc ak such that hk=

Min {hJa SF and h ) ti} if {a2 Slh ti , and otherwise defined as "null." For
example, for the family of arcs of Fig. 6, NEXT(al)=a4, NEXT(a2)=a4,
NEXT (a3) as, NEXT (a4) a7, NEXT (as) a8, NEXT (a6) a8, NEXT (a7)
"null," and NEXT (as) "null."

For each arc aiSF, let Ni be defined as {ai=ai, ai2,... aik} such that
NEXT (aij) aij/l for j 1, 2, , k- 1 and NEXT (aik) "null." Then we have the
following lemma.

LEMMA 11. For each arc ai Z, N is an IAF of SF. Furthermore, r, and
ec( Yi) ec( Ni).

Proof. It is clear from the definitions that Ni is an IAF of Sv. Suppose that
Ni {ai, ai, ai2," ", ai} with hi < h <. < h and Y {a ai, a,. , a} with
h i < h i <"" < h i.. By definition, Y is a largest IAF for a, and hence j-> k. Since no
arc in S contains any other arc in Sp, we can show that h, <- hi and t,-< t; for
p 1, 2,. , k by an easy induction proof on the value of p. Thus, t -< ti, and hence
ec(Ni)<= ec(Y). Since NEXT (a) ="null," NEXT (ai,) ="null." This implies that
k= that is, IN,I-IV, I, This further implies from the definition of Y that ec(N)>=
ec( Y). Therefore, ec(Ni) ec( Yi). l!



50 S. MASUDA AND K. NAKAJIMA

For each arc ai SF, NEXT (ai) can be determined as follows. We first create an
empty set P, and then start visiting the endpoints of the arcs of SF in ascending order
of their coordinates. Suppose we find the head of some arc aj. If P is empty, we do
nothing. On the other hand, if P is not empty, we set NEXT (ak) to aj for each element
ak in P and then delete all such elements from P. If we find the tail of some arc a
which is not the last endpoint, we add a to P. If the tail is the last endpoint, we set
NEXT(ak) to "null" for each element ak in PU{a). Since the coordinates of the
endpoints of the arcs in S are distinct integers between 1 and 2n, this procedure
requires O(n) time and space.

We now define a digraph H as follows:

HF W, A), where

WF {wila SF} and

AF {(W, w:)]NEXT (a,) aj}.

As an example, Fig. 7 illustrates the graph HE which corresponds to the family of arcs
of Fig. 6.

W. W2 w3

w7 w8

FIG. 7. The graph HFfor the family of arcs of Fig. 6.

Since the outdegree of each vertex in HF is at most one, IA! <ISFi. Thus, we
have the following lemma.

LEMMA 12. The construction of H with the aforementioned computation of
NEXT (.) requires O(n) time and space.

The next lemma is obvious from the definition of HF.
LEMMA 13. H has the following properties.
(i) For each vertex wi with outdegree O, IN, 1 and ec(N)= ti.
(ii) For each edge (w, ws) in A, IN,I-INI/I and ec(Ni)=ec(Nj).
(iii) For each arc ai Z, the maximal directed path in H starting from wi

corresponds to N.
According to Lemma 13 (i) and (ii), one can easily determine IN, and ec(N) for

all arcs ai SF in o(Isl) time. From Lemma 11, for each arc a, Z, IY -IN,! and
ec(Y) ec(N). Therefore, the following lemma is obtained from Lemma 12.

LEMMA 14. Step 2 of Procedure FIND-EDS requires O(n) time and space.
Steps 4 and 5 of Procedure FIND-EDS can be performed based on Lemma 11

and Lemma 13 (iii). Each time we find an integer for which the conditions of Step
4 (i) or Step 5 are satisfied, we can determine Y by finding a maximal directed path
in HF starting from w. Therefore, Steps 4 and 5 can be executed in o(Izl /Y, Y,i)
time, where R is the essential DMIAF set which is obtained at the termination of the
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procedure. Since V,l YI <- [Svl from Corollary 1, the following theorem is obtained
from Lemma 14.

THEOREM 7. An essential DMIAF set for Sv can be formed in O(n time and with
0(n) space.

4.3. Determination of an MIAF of S. Suppose that an essential DMIAF set for
Sv, Rv {X, X2,"’", Xk} has been obtained. For each arc a SB, let NEXT (a) be
defined as Xi such that sc(Xi)=Min{sc(Xp)[XpRv and sc(Xp)>tj} if {Xp
Rvlsc(Xp) > t} # , and otherwise defined as "null." Then, the following theorem
holds.

THEOREM 8. Suppose that there exist an arc a SB and a DMIAF, Xi Rv such
that tj < sc(X) and ec(Xi) < hj. Then, t < sc(NEXT (a)) and ec(NEXT (a)) < h.

Proof Assume that Xi # NEXT(aj). From the definition of NEXT (a), t <
sc(NEXT (a)) < sc(Xi). Therefore, ec(NEXT (a)) < ec(Xi) from Lemma 4, and hence
ec(NEXT (aj)) < hj. [3

By a procedure similar to the one for computing NEXT (.) for the arcs in SF, one
can determine NEXT (a) for all arcs aj Sn in O(n) time. In this case, after the
creation of an empty set P, we visit the tails of the arcs in Sn and the heads of
the starting arcs of the DMIAF’s in Rv in ascending order of their coordinates
until the last head is visited. The other part of the procedure is almost the same as
that of the previous one.

After finding NEXT (.) for all arcs in Sn, according to Theorem 8, we can easily
find, in o(Is l) time, an arc aj Sn and a DMIAF, X RF such that tj <sc(Xi) and
ec(Xi) < h if they exist. If such an arc and a DMIAF do not exist, any DMIAF in RF
is an MIAF of S. Thus, we have the following theorem.

THEOREM 9. Suppose that an essential DMIAF set for Sv has been obtained. Then,
an MIAF of S can be obtained in O(n) time and with O(n) space.

4.4. Time and space complexities of the algorithm. We now show the following
two theorems.

THEOREM 10. The time and space complexities ofAlgorithm FIND-MIAF each are
O(n).

Proof It is clear from Theorems 4, 7 and 9.
THOZM 11. Given a family S of n arcs on a circle, a maximum independent set

of its corresponding circular-arc graph Gs can be found in O(n. log n) time and with
O( n) space. These complexities are optimal to within a constant factor.

Proof As mentioned before, one can construct a canonical family of arcs S’ such
that Gs G, in O(n. log n) time and with O(n) space. The application of Algorithm
FIND-MIAF to the resultant family of arcs S’ requires O(n) time and space due to
Theorem 10. Therefore, we can find a maximum independent set of Gs in O(n. log n)
time and with O(n) space.

Every interval graph is a circular-arc graph. Furthermore, it is known that it
requires f(n. log n) time in the worst case to find a maximum independent set of an
interval graph when the graph is given in the form of a family of n intervals [7].
Therefore, our algorithm is time- and space-optimal to within a constant factor.

5. Conclusion. In this paper, we have presented an optimal algorithm for finding
a maximum independent set of a circular-arc graph. When the graph is given in the
form of a family of n arcs on a circle, our algorithm runs in O(n. log n) time and
with O(n) space. Moreover, it requires only O(n) time if the endpoints of the arcs
are already sorted, in other words, if the order of their appearances on the circle is
known.
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It does not seem that our algorithm can be extended to the problem of finding a
maximum weight independent set when each vertex is assigned a weight. It is interesting
to develop an optimal algorithm for such a problem.
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ON THE COMPLEXITY OF COVERING VERTICES BY FACES IN A PLANAR
GRAPH*
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Abstract. The pair (G, D) consisting of a planar graph G V, E) with n vertices together with a subset
of d special vertices D V is called k-planar if there is an embedding of G in the plane so that at most k
faces of G are required to cover all of the vertices in D. Checking 1-planarity can be done in linear-time
since it reduces to a problem of checking planarity of a related graph. We present an algorithm which given
a graph G and a value k either determines that G is not k-planar or generates an appropriate embedding
and associated minimum cover in O(ckn) time, where c is a constant. Hence, the algorithm runs in linear
time for any fixed k. The fact that the time required by the algorithm grows exponentially in k is to be
expected since we also show that for arbitrary k, the associated decision problem is strongly NP-complete,
even when the planar graph has essentially a unique planar embedding, d 0(n), and all facial cycles have
bounded length. These results provide a polynomial-time recognition algorithm for special cases of Steiner
tree problems in graphs which are solvable in polynomial time.

Key words, complexity, planar graphs, Steiner trees
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1. Introduction. Recently, there has been a great deal of interest in solving the
Steiner tree problem in graphs. This problem is NP-complete even for planar grid
graphs [GJ1]. (See [GJ2] for an excellent introduction to the area of computational
complexity.) So recent work has centered on efficiently-solvable special cases and
heuristic methods; see [Wi] for a survey of work on this problem.

Throughout this paper we deal with undirected graphs of the form G (V, E),
where V is a set of n vertices and E is a set of edges connecting pairs of vertices. A
graph is called planar if it can be embedded in the plane. A graph G V, E) together
with d special vertices D V is called k-planar if there is a 131anar embedding of G
so that at most k faces of G are required to cover all of the vertices in D. Clearly, a
planar graph is the same as an n-planar graph. The planarity number of G is the
minimum k such that G is k-planar.

A recent paper by [EMV] presents an algorithm which solves the Steiner problem
in an arbitrary graph; their algorithm runs in polynomial time for k-planar graphs,
for any fixed k, with D being the vertices required to be in the Steiner tree. It is easy
to see that checking 1-planarity of G V, E) with special vertices D V is equivalent
to testing the planarity of the associated graph G*= (V*, E*), where V*= Vt.J {r}
and E* E [_J {(r, v)" v D}, and so can be done in linear time [HT2]. They leave as
an open question the complexity of testing k-planarity for fixed k->-2.

In 2, we present an algorithm which checks to see if a given (G, D) pair is
k-planar given a fixed embedding of G and if so, determines the planarity number of
G in O(ckn) time, when c is a constant. This is used in 3 to generate an appropriate
embedding of G and a cover of D by k or fewer faces, if possible, in O(ckn) time.
Hence, the algorithm runs in linear time for any fixed k. The fact that the time required
grows exponentially in k is to be expected as we show in 4 that for arbitrary k, the
associated decision problem is strongly NP-complete, even when the planar graph has
essentially a unique planar embedding, d O(n), and all facial cycles have bounded
length.
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In 5, we present an optimization algorithm which finds the minimum number
of faces required to cover all special vertices of a planar graph with a fixed embedding
in 2’/7) time. This exact algorithm is used to obtain a polynomial-time approximation
algorithm which is asymptotically optimal (i.e., the relative error converges to zero),
for the class of graphs we showed to be NP-complete in 4.

2. Testing k-planarity for a fixed embedding. Consider a fixed embedding of the
graph G (V, E). In this section we describe an algorithm that tests whether k faces
are sufficient to cover all special vertices of D in this particular embedding and, if so,
whether it determines the planarity number. This algorithm requires O(ckn) time for
some constant c, and is used as a subroutine in our k-planarity testing algorithm for
a variable embedding in the next section. We note that if G is three-vertex connected,
then G has essentially a unique embedding and so the results of this section apply.

Throughout this section, we assume that the embedding of G is fixed. We transform
the problem of covering D with faces into one of covering certain special faces as
follows. We transform each vertex of D into a polygon, that is, if v D has edges
el, e2," , em incident on it, we replace v by a polygon with vertices vl," ", vm and
edges (vl, v2),. ., (Vn, V); such that for 1-<_i -< m, ei becomes incident to vi (if the
degree of v is 2, the polygon is a face of length two). We will refer to the new graph
by G, and the set of faces enclosed by the new po)ygons will be called D.

Let G’= (V’, E’) denote the dual graph of G. The vertices of G’ will be called
points. The set of points of G’ corresponding to D will be called D’. Now our problem
becomes that of testing whether G’ contains a set X of points such that

(i) XD’=,
(ii) X dominates D’,
(iii) IXI-_< k.

If such a set X exists, the corresponding set of faces will be called a face cover.
Let S denote the subgraph of G’ induced by all points in D’ and all points adjacent

to some point in D’. Now if S has more than k connected components, then certainly
no set X satisfying (i)-(iii) exists. Hence assume otherwise. We have the following
result.

LEMMA 1. If a set X satisfying (i)-(iii) exists, the diameter of every connected
component of S is at most O(k).

Proofi Aiming for a contradiction, let C be a connected component of S with
diameter larger than 8k + 6, and let p f, f2, ",f be such a diameter. There are two
cases.

(i) IP ( D’] >- 3(k+ 1). By construction, no point of D’ is adjacent to another
point of D’. Let p D’-- {So, s, , s,} with labeling to reflect the ordering of these
points in p, and set Z--{So, s3, s6,’’ ", s3i, s3+,’’ "}. Then at least IZ] points are
needed to dominate Z. But this is a contradiction since IZ] >_-3(k + 1)/3--k + 1.

(ii) I f D’I <3(k+ 1). By construction, every point of S-D’ is adjacent to at
least one point of D’. Let p- D’= {go, , g} with labeling to reflect the ordering of
these points in p, and set Y {go, gs, glo, , gs, gs+, "}. For each i, set d to be
an arbitrary point of D’ adjacent to gs. Clearly, if # j, then d # d. Further, a different
point of S-D’ is required to dominate each point di. But the number of such points
is at least (Sk + 7- 3k- 2)= k + 1, again a contradiction. D

Our algorithms will exploit this bounded dual diameter structure. The computa-
tions take place in the primal graph. Now, if a graph has dual diameter t, then every
face is within distance of an arbitrary face. Algorithm XTND given below will, when
input an embedded planar graph H with n vertices, distinguished subset of faces E,
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and a constant L, test in linear time whether every face of H is within distance L of
the outer face. If so, XTND will compute a minimum face cover of E in time bounded
by 2L)n. In order to motivate XTND, we will describe it in three steps. First we
consider a special type of planar graph called a Halin graph. Next, we analyze the
structure ofbounded diameter planar graphs. Finally, we describe XTND in the general
case.

2.1. Halin graphs. An embedded planar graph H is called a Halin graph if its
dual has a dominating set of cardinality one. Assume that the corresponding face of
H is the outer face. Without loss of generality, the outer facial cycle C of H is simple.
For if v is a multiple vertex of C, let el (Ul, v) and e2 (v, u2) be two consecutive
edges of C. Then we subdivide el and e2 by adding vertices Wl and w2, and add the
edge (Wl, w) embedded in the outer face. Clearly the new graph is still Halin. This
type of operation is called a patching. Patchings can also be used to ensure that all
vertices in C have degree two or three. Similarly, if an interior vertex of H has degree
one, we can shrink the corresponding edge. The final graph H’ we obtain will be the
union of a cycle C and forest T embedded inside C with all leaves in C. Moreover,
from a face cover problem in H we obtain an equivalent problem in H’. Now we need
some definitions adapted from [CNP].

(1) A level 1 fan of H’ is a maximal set of paths pl, p2,..., Pn with a common
endpoint u C, which are otherwise disjoint, with opposite endpoint in C, and all
interior vertices of degree 2 in H’. The vertex u will be called the center of the fan.

(2) To define level fans, for > 1, we proceed as follows. As above, let Pl, , P,
be a maximal set of paths with common endpoint u C, otherwise disjoint, and with
degree two interior vertices. Suppose that for 1-<_ <= m, the endpoint of Pi different
from u is the center of a level ji fan, with ji =< t- 1, and that for some i, j t- 1. Then
the collection of paths and fans is called a level fan, and u its center. The fan whose
center is the endpoint of p is called the descendant fan of pi.

(3) If H’ is the union of a level 1 fan and C, we say H’ is a wheel.
THEOREM 2 (Adapted from [CNP]). The Halin graph H’ has at least one level 1

fan, and this fan can be constructed in linear time.

This theorem was used in [CNP] to construct a polynomial-time dynamic program-
ming algorithm for the traveling salesman problem in Halin graphs. We will make a
similar use here towards the face cover problem.

The intuition behind the approach is the following: we can describe the properties
of a fan using a bounded size list. This works because a level 1 fan has only two faces
that share edges with other fans. When constructing the list for a level fan, we only
need to look separately at the lists for the descendant fans. Thus if F is a level fan
with m descendant fans, the list for F can be constructed in O(m) time. Altogether
this translates into a linear time algorithm for solving the minimum face cover in H’.
Details are provided next.

If the forest T located inside C is not a tree, we reduce this to the single tree case
as follows. Let el, e2 be consecutive edges incident on vertices of C, that belong to
different trees. Then subdivide e by introducing a new vertex w, for i= 1, 2 and add
the edge (wl, w2). This new edge, together with the position of e between w and C,

1, 2, and a segment of C, bounds a "new" face of H’. We make this face forbidden
(that is, we cannot use it towards a cover).

Clearly this procedure does not change the problem and repeatedly applying it
will merge the forest into a single tree. Now if the outer face of H’ is in E, then any
internal face of H’ will cover it. On the other hand, if the outer face of H’ is not in
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E, then it will cover every other face of H’, and this is obviously optimal. Hence we
may assume, without loss of generality, that the outer face is forbidden.

Suppose f is a fan of H’ with center u and paths Pl," ", Pm in clockwise order.
For 1 < < m let/i be the continuation of Pi’, that is, a path of the form Pi, P’i ending
in C, such that p is obtained by following the most counterclockwise path out of p,
and for i> 1, p is obtained by following the most clockwise path out of Pi. The
endpoints of/$1 and/, in C are called the extremes of f. For 2 <-i <- m, denote by f
the region bounded by/1,/i and the corresponding section of C; and set Ei to be the
subset of faces of E contained in f. For i= 1, f consists of p and its descendant fan
f, while E1 is the subset of E contained in f. Finally, define l(f, i, a, ai) to be the
minimum number of internal faces needed to cover Ei, with the constraints that:

(1) If a 0, at least one face of E that has an edge on/ has not been covered.
(2) If a 1, (1) does not apply and at least one face with an edge of/ is used

in the cover.
(3) If al 2, neither (1) nor (2) apply.
(4) Similar considerations apply for ai 0, 1 or 2.
Algorithm XTND takes as input a graph H’ and keeps track of an auxiliary graph

A. At the start, A H’. In general, the vertices of A in its outer facial cycle will
correspond to fans of H’; these vertices will be labeled by the corresponding fans. The
output of Algorithm XTND is M, the minimum number of faces of H’ needed to cover
E. It is well known that repeatedly shrinking fans in a Halin graph eventually leads
to a wheel.

ALGORITHM XTND (HALIN CASE).
(1) Find a level 1 fan g in A. Let f be the corresponding fan in H’, with center

u, defining paths pl, , Pm and continuations/, , p. For 1 _-< i-< m, let
hi be the descendant fan ofPi, with si defining paths (if hi is a vertex, set s 0).
(a) Set l(f, 1, x, y) l(hi, Sl, x, y) for all x, y.
(b) For i> 1, suppose first that the face between Pi-1 and p is not in E, and

it is not forbidden. Then, for example,

l(f, i, 2,2)=min{min{l(f, i- 1, 2, x)+ 1
x,y

+l(hi, s,,y, 2)}, min {/(f, i-l,2, x)+l(hi, s,,y, 2)}}.
x>0,y>0

Similar formulas are used to compute all other parameters l(f, i,. ,. ), and
also when the face between Pi- and Pi is forbidden, or if it is in E.

(2) If g is a wheel in A, then let x be the face of H’ between/, and/.

(a) If xC=D, then M=minlmin{l(f,m,x,y)+l}, min {l(f,m,x,y)}}.
I. x,y x>O,y>O

(b) If x E, then M =min Imin {l(f, m, 1, y)}, min {l(f, m, x, 1)}.
(c) Stop and output the value of M.

(3) Otherwise, shrink g into a single vertex in the outer face of A, and go to (1).

Algorithm XTND clearly works correctly, and since the workload in finding and
shrinking fans in A is linear in the size of each fan, the total complexity is linear.

Notice that there is a last center r of a fan found in graph A. In fact, it is not
difficult to see that this vertex may be prescribed before running XTND, by choosing
fans with center u r whenever possible.
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There are two observations concerning the Halin case that will be very useful
later. First, let f be a fan of H’ with center u, and consider a set of contiguous faces
of f; that is, a set $ of faces off incident to u that appear consecutively as we travel
around f. Then if we want to force all faces in S to take the same value (that is, all
chosen or rejected), Algorithm XTND given above can still be used, almost verbatim,
to compute a minimum face cover of E. Similar considerations apply if all faces of S
are in E and covering any of them is interpreted as covering all of them. In both cases
we will refer to the set S as a split face.

Second, suppose el and e2 are edges incident to C that appear consecutively as
we travel around it. Then either at some point of the algorithm el and e2 will be part
of consecutive paths in a fan, or they will be part of the first and last paths in the very
last fan (a wheel) considered by the algorithm. In any case, let u be the center of the
fan, and let x be the face of H’ bounded by C and the paths containing el and e2.
Then we can split x by adding arbitrary edges incident to u. By making the set of
additional faces a split face, we obtain an equivalent problem. This new problem is
easily solved by using the same sequence of fans as before. The vertex u will be called
the ancestor of el and e2. This concludes the analysis of the Halin case.

2.2. Structure of bounded dual diameter graphs. We next investigate the structure
of planar graphs of dual diameter bounded by a certain constant, as it pertains to our
problem. Intuitively, our approach is as follows (this description is slightly incorrect
as we describe later). Given a plane graph of dual diameter at most L, by consecutively
"peeling" away layers of faces at a given distance from the outer face we will reach
a "central" graph after at most L layers. This central graph must be Halin; we use a
version of the algorithm in 2.1 where we now consider fans that are extended with
gridlike graphs with at most L rows, to solve the minimum face cover.

This description is incorrect in that there may be more than one "central" graph;
as we peel layers the graph may decompose arbitrarily. We deal with this difficulty by
using a special partial order on the components that we encounter recursively, and
proceed essentially as outlined in the previous paragraph. [Ba] introduces a class of
planar graphs called k-outerplanar. If a graph is k-outerplanar its dual diameter is at
least k; both concepts are somewhat related (in turn, the radius r of the graph [RS]
satisfies k- 1-< r -< k and these two parameters are closely related). [Ba] describes an
algorithm for decomposing k-outerplanar graphs. Our procedure UNWRAP for peeling
a bounded dual diameter graph is reminiscent of the one in [Ba], with some important
differences which are necessary to make our face cover algorithm work.

Let H be an n-vertex plane graph of dual diameter L, with outer facial cycle C.
Procedure UNWRAP proceeds as follows. First, any vertex of degree two and its two
incident edges can be replaced by a single edge. Also, the patch operation allows us
to assume that C contains no cutvertices. Further, if e is an edge incident to a vertex
of C, we can assume that both endpoints have degree three (using patchings or
expanding the endpoints into polygons, which will later be used as forbidden faces).
Next, we delete C, together with all edges incident to it. Then H will be split into
several connected components, each of which is a union of trees and maximal two-
connected graphs, joined in a treelike manner. If two of the two-connected graphs
share one vertex (a cutvertex) we can use the patch operation to obtain a larger graph.
Assume we carry this out as many times as necessary. The final two-connected graphs

In polynomial time, one can minimize over all embeddings the radius, the maximum dual distance
to the outer face, and the outerplanarity. However, minimizing the dual diameter is NP-hard IBM].
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will be called the height-1 islands (see Fig. 1). Clearly, if X is such an island, the
distance from an internal face of X to the outer face of X is at most L-1. Finally, it
is not difficult to see that a vertex in the outer face of X may be assumed to be adjacent
to at most one vertex not in X. Now we can recursively use UNWRAP with each
height-1 island to obtain height-2 islands. The procedure will terminate with at most
L-1 recursive calls. The top islands found (all of height at most L-1) will be Halin
graphs. The set of islands constitutes a partial order, which is constructed by UNWRAP
in time O(n). Having peeled away all of the layers we put them back together while
preserving the modifications that were introduced (i.e., all of the subdivisions and new
edges). It is in this graph H*; rather than H, that we apply XTND, after a few more
modifications described in the next section.

2.3. General case of XTND. We need one more piece of notation. The edges
joining the outer face of a height-/island I to the outer face of the height-(i 1) island
enclosing I are called the links of L Notice that if u is an endpoint of a link, then u
has degree at most four, by the construction used. The edges of H* that are not links
are called layer edges. Let R be the maximum dual distance to the outerface.

We first consider the simplest possible case, which we call the concentric case.
This arises when in every call to UNWRAP we discover precisely one island (and no
trees). That is, there is exactly one height-/island for each 1 =< =< R- 1 (see Fig. 2(a)).
Let K denote the height-(R- 1) island.

We modify H* as follows, if necessary. Let C* be the outer facial cycle of H*.
Then by subdividing layer edges and introducing some new link edges and edges inside
K, we can assume that every link edge is contained in a (unique) path from C* to the
interior of K, of length R, and similarly, every vertex in the outer facial cycle of K is
contained in such a path. Notice that the new edges will split faces, but all members
of a split face are "consecutive". For convenience, we still refer to the graph by H*.
H* has O(Rn) vertices. See Fig. 2(b), 2(c).

The final problem we obtain will have split faces, but an extremely simple structure.
This structure allows us to essentially use the same Algorithm XTND given before,
with the fan structure of K driving the computation. The main difference lies in that,
for every fan f of K, we simultaneously consider the entire "grid" of faces stretching

H

FIG.
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(
(o) (b)

(c) (d)

FIG. 2

from f to C (see Fig. 2(d)). Such a grid g will have arbitrarily many faces; however,
the "left" and "right" paths of it are incident to at most O(L) faces. The dynamic
programming recursion will consider all possibilities for each such face (whether chosen
or rejected for the cover, and in or not in the set E) in addition to the usual recursion
for the fan f Clearly there will be at most 2(L) possible states. Further, if a face f,
adjacent to the left path in g, and a face f2, incident to the right path in g, actually
correspond to the same split face, then we need only consider states of the dynamic
program where fl and f2 take the same value. It is easy to see that the overall procedure
takes time at most 2(L)n. This ends the description of the concentric case.

The general case is only slightly more complex, but we need to develop a bit more
machinery. We essentially construct a partial order on the various islands, and solve
a sequence of problems moving upwards in the partial order. The last (i.e., topmost)
problem to be solved will be of the concentric type described above.

As before, let H denote the overall graph, with outer facial cycle C. Choose an
arbitrary height-(L- 1) island K, with outer facial cycle C’. Let el, e2 be two consecutive
links joining C’ to the height-(L-2) island enclosing K, then as in the concentric case,
by splitting faces we can assume that for 1, 2, ei is contained in a length R- 1
simple path from C’ to C (notice that the length restriction says that pi does not
unnecessarily cut through islands). Then the wedge of el, e is the subgraph of H
bounded by p, P2 and the corresponding segments of C’, C. The wedges of K are
constructed for all consecutive links (see Fig. 3(a), 3(b)).

Proceeding recursively, let W be a wedge of some island; and J be a highest
island enclosed by W, say J of height i. The boundary of W will be made up of two
paths Pl, Pr, a segment of C and a segment x of at most two layer edges. Notice that
at most one link edge e joins J to x. By face splitting we can guarantee that e exists.
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(a) H

(C) WEDGES OF H2

(b) WEDGES OF H

FIG. 3

(d) WEDGES OF H:5

(e) WEDGE ORDER

Now we construct the wedges of J by including the link edges incident to vertices of
the outer face of J in paths of length to C, contained in W. The only exception is
the edge e which will define two special wedges called the boundary wedges. This
procedure is repeated recursively until we have computed wedges for all islands; trees
are handled in a similar way (see Figs. 3(c) and 3(d)). Notice that this procedure
constructs a partial order on a subset of islands and trees, with K at the top. We call
this order the wedge order of H (see Fig. 3(e)).

One fact is worth pointing out: through additional face splitting if necessary, for
every wedge W of a height-/island, the number of faces in the two boundary wedges
enclosed by W (if any) is altogether 2i.

Let H* denote the graph resulting from H after applying all the face splittings.
Then H* contains O(Ln) vertices, since each set of face splitting is caused by some
edge or island of H.

Our Algorithm XTND will operate on H* by moving up the wedge order. As
shown previously, E denotes the set of faces to be covered. Let I be an island at the
bottom of the order. I is contained inside some wedge W that belongs to the father
of I in the wedge order. Let I’ denote the union of I and all its wedges except for the
two boundary ones. I’ has the structure of a Halin graph with a grid glued to part of
its outer face. Then we compute the minimum number of internal faces of I’ needed
to cover all faces of E f’l I’; subject to each possible set of constraints corresponding
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BOUNDARY
WEDGES

(f) ANALYZE H 3

(h) REPLACE WEDGE OF H, CONTAINING H2
WITH GRID (SHADOWED)I ANALYZE

(g) REPLACE WEDGE OF H2 CONTAINING
H3 BY GRID (SHADOWED)I ANALYZE H2

FIG. 3. (Continued.)

to the patterns of the faces in the boundary wedges of I (i.e., whether chosen, left
uncovered or rejected; taking split faces into account, there are 2(L) such patterns).
Each of the computations is carried out much as in the case for Halin graphs.

Having carried out these computations, we replace W with a grid of width two,
remove I from the wedge order and proceed. For the general step, we again pick an
island from the bottom of the order and proceed as above. The only difference is that
we may encounter wedges of the island containing width two grids that correspond
to previously analyzed islands. But we have computed all relevant information for
such grids, and it is easy to work this into the dynamic programming recursion. Details
are left to the reader.

To analyze the complexity of the algorithm, notice that the total amount of work
done on each wedge W is at most 2(L)lwI. Hence, the complexity of the overall
algorithm is at most 20(L)n.

3. Testing k-planarity for a variable embedding. In this section, we return to the
original problem of testing whether an n-vertex planar graph G (V, E) containing a
distinguished subset of vertices D, admits an embedding in which D can be covered
with k or fewer faces.
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If G is three-connected, then we use Algorithm XTND of 2, after expanding D
into polygons. We show later how to reduce the one-connected case to that of
two-connectivity. In what follows, we will therefore assume G is two-connected.

The basic approach consists of decomposing G into (roughly) its triconnected
components [HT1]. These components are then inductively assembled into G, using
dynamic programming. Next we will give some definitions.

(1) A block of G is a connected subgraph H of G with two distinguished vertices
ul and U2 with the property that either G H, or all paths from H--{Ul, 112} to G-H
must pass through ul and u.. The vertices ul and uz willbe called the extremes of H.
Notice that since G is two-connected, then in any embedding of G, u and u2 will be
in a common face.

(2) Let H be a block of G with extremes u and u2. Let xyzw be a binary vector
of length four. Define F(H, xyzw) to be the minimum number of internal faces of H
needed to cover all vertices of D in H, taken over all embeddings of H with u and
u2 in the outer face, with the following constraints"

(i) If x =y 1 then there exist vertices /)1 and v in D fq H with /)1 /-)2 and
vi u for all i, j, that are not covered by the chosen internal faces of H, and
such that v is in one path from ul to u2 in the outer face of H, and v in
the other (in an optimal embedding that attains F(H, llzw)).

(ii) If x + y 1, exactly one of the paths from u to uz in the outer face of H
contains an uncovered vertex v D f) H, with v u, u2.

(iii) If x =y 0, then all vertices of D f)H, with the possible exception of u or
u2, are covered.

(iv) If z 0 (resp., 1), then ul e D is (resp., is not) covered.
(v) If w 0 (resp., 1), then u2 D is (resp., is not) covered.

(If, u D, then we always set z =0; similarly for u D. An embedding that attains
F(H, xyzw) will be denoted by E(H, xyzw).)

Notice that if in an optimal embedding of G, we use E(H, xyzw) to embed H,
where x +y >-1 and z + w >_-1, then any face of G-H used to cover the uncovered
vertices of H different from u and u will also cover u and u2. Hence, for x + y-> 1,
we reset F(H, xyOO)=minz.wF(H, xyzw). Therefore, the only 4-vectors we need to
keep track of are (0000), (1000), (1100), (0010), (0001) and (0011).

Every planar graph admits a recursive decomposition into blocks. This decomposi-
tion can be represented by a rooted tree, where each vertex corresponding to some
block of G, with the root representing G, and the leaves (essentially) correspond to

the triconnected components of G. For each block appearing in the tree, one of three
canonical ways of decomposing it occurs" a "Series" Case, a "Parallel" Case and a

"Messy" Case. Our Algorithm DYN for testing k-planarity proceeds upwards from
the leaves in the decomposition tree by computing the F parameters. Once a block B
has been analyzed, it is replaced in its parent by a small (bounded size) gadget (and
we keep track of the F parameters of B to compute those of its parent).

In order to simplify the description, we will present together Algorithm DYN and
the recursive decomposition structure. Further, the algorithm will be described recur-

sively (i.e., proceeding from the root down). The complexity is analyzed later.
Now suppose {Ul*, u*} is an arbitrary outset of G. Then in any embedding of G,

u* and u* will be in at least one common face, without loss of generality, the outer

face of G. Then testing k-planarity of G is achieved by regarding G as a block with

extremes u* and u*, and computing

min {F G, 0000), 1 + min {F G, xyzw x + y + z + w >- 1 }}.
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ALGORITHM DYN.
Input" a block H with extremes /1, //2
Output: all quantities F(H, xyzw)

There are three cases.
(1) Series Case. H has a cutvertex v. Then v# ui, i= 1, 2, and we write H-

H1LJ Ha, where ui E Hi, 1, 2, and H1 tq H2 v (see Fig. 4(a)). It is easy to compute
the F parameters for H in constant time from those of H1, H.. Refer to Appendix
A(1) for details.

(2) Parallel Case. Fix z and w. H is two-connected and {u, u2} is a cutset of H.
Write H UI H, where /-/ V1Hk--{U, U2} for each j k, and each is a block
with extremes {Ul, u2} (see Fig. 4(b)).

Intuitively, we proceed as follows. Suppose we select two blocks to act as "leftmost"
and "rightmost." In Appendix A(2) we show that it is possible to select either a "best"
embedding for each of the remaining "internal" blocks, or else a simple tie situation
may arise. In either case we are allowed to essentially ignore the detailed structure of
the internal blocks, and there is an efficient (linear time) procedure to pair them up
and obtain an optimal embedding (permutation and rotations of the internal blocks).
Further, we are always able to select a "best" leftmost and rightmost block. The overall
procedure runs in time linear in rn. Details are provided in Appendix A(2).

U

(a)

(b)

(C.2) THE ’1t M.M.B.’S CORRESPONDING
TO (C.I)

(C.t) SHADOWED GRAPHS ARE THREE CONNECTED

(C.5) GRAPH OBTAINED BY REPLACING
EACH M.M.B. WITH AN EDGE

FIG. 4
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(3) Messy Case. Cases (1) and (2) do not apply (see Fig. 4(c.1)). Then either (i)
there is a cutset {v, w}( (Ul, u}) of H, or (ii) H is three connected. In the latter case,
we can apply the results of 2 (by using forbidden faces, if necessary). So assume (i)
occurs.

Now for every outset {v, w} of H we can define the main block of {v, w} as the
union of all connected components of H-{v, w} not containing u or u, together
with {v, w}, if any such components exist. Now if for all cutsets { v, w} the main block
is empty, it is easy to see that H has a unique embedding with {u, u} restricted to
lie in the outer face, and therefore we are essentially in alternative (ii). Otherwise, the
main blocks can be ordered by inclusion; call those at the top the maximal main blocks
(see Fig. 4(c.2)), or m.m.b.’s for short. If we replace every m.m.b, by an edge, the
resulting graph H’ has a unique embedding with {u, u2} restricted to lie in the outer
face (Fig. 4(c.3)).

Our strategy is to analyze each m.m.b. W recursively first. Next we replace W by
an appropriate small gadget, attached to the rest of H by the extremes of W. We want
the gadget to "retain" all the relevant properties of W, while having essentially a
unique embedding (it will turn out that either we can find a "best" embedding for W,
or there are a few ties; the gadgets we use will take care of either case). In this manner,
we will reduce the problem on H to one where the embedding has been prescribed,
and we can use the results of 2. In summary, the approach is as follows:

(a) Analyze every m.m.b.
(b) For every m.m.b. W, compute its best embedding(s) and replace W with a

small gadget. We will keep track of a weight corresponding to W that describes
the cost of "internal" faces of W.

(c) Compute each parameter F for the resulting graph/, and to each, add the
sum of the weights of the m.m.b.’s to obtain the F parameters of H.

Details are provided in Appendix A(3). The overall complexity of this case will
be, at most, 2klI.

This concludes the description of Algorithm DYN. An efficient implementation
of DYN would first compute the block decomposition. This is accomplished by using
the algorithm in [HT1] to decompose a graph into its "split components". This
algorithm is easily modified to output the decomposition tree in linear time, with each
block labeled series, parallel or messy (in the messy case the decomposition is into
m.m.b.’s). If v is a vertex of the tree that represents a block W, at v we store the graph
W’ resulting from W by replacing each of its children with an edge. The overall space
required is linear. Finally, we "force" the original extremes u*, u2* chosen for G to
lie in the outer face by adding at the start the edge (u*, u*) if necessary.

Having computed the decomposition, we proceed upwards with DYN. If W’ is
the graph stored at some vertex of the tree, the work involved in analyzing W’ (when
we reach it)is o(lw’l) in the series and parallel cases, and at most 20kIw’ in the
messy case. Thus we conclude as follows.

LEMMA 3. The complexity of testing whether G is k-planar with DYN is at most

O(ckn), where c is independent of n.
Next we pass to the one-connected case.
A one-connected graph G is the union of bricks; that is, edges or 2-connected

subgraphs that intersect at cutvertices only. G will have a "treelike" structure; namely,
if a path leaves a brick B through a cutvertex v, the only way the path can return to
B is by crossing v again. Now suppose G- (V, E) has connectivity one; let v be an
arbitrary cutvertex, and write G t_J --o G, where G (q Gk v, for all j k, and each
G-v is nonempty and connected. Let D- D f)G.
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If V D, then v will be covered by some face f. Now we can always embed every
Gi simultaneously so that f is a face of it without requiring more than the minimum
number of faces to cover all of D. Thus, if

k planarity number of G

and

then

ki planarity number of G, for i= 0,..., m (where we cover D),

fc= ., k,-(m- 1),
i=0

and the problem decomposes with v in each D.
Now suppose v D. By not including v in D, we can compute/i and use Y=o

as the number of faces to cover D. If we use D {v} t_J D instead of Di for a given
graph G, we might increase the planarity number of G by 1. However, if we add v
to D and compute the planarity number of G as before, we might actually decrease
the number of faces required to cover D because the graphs G will be able to share
the additional face. Hence, if we try both possibilities (i.e., whether or not to add v
to D), and decompose into a problem for each G, we will certainly solve the original
problem. However, this may create too much work if a brick of G contains too many
cutvertices. Instead we will use an approach inspired by the next lemma.

LEMMA 4.

ki,1 planarity number of G to cover D.
k,2 planarity number of Gi to cover D.

Then
(a) If, for at least one i_> 1, /i,2 k,l, then it is optimal to add v to D.
(b) If, for all >- 1, k,2 k,l + 1, then it is optimal not to add v to D.
Proof. The proof is clear.
Notice that Go is not considered in the lemma.
Next we proceed as follows. Let G be a graph whose k-planarity we want to test;

exactly one brick B of G has been painted red. Let v B be a cutvertex of G. If v D,
then proceed as outlined above. If v D, then (as previously) we form the graphs G,
so that B is contained in Go, and we paint red the brick of G for i-> 1, that contains
v. Next, we solve, in each Gi for i-> 1, the two problems to cover D, and to cover
we then use Lemma 4 to decide whether or not to add v to D. Notice that each graph
Gi contains exactly one red brick. Clearly, repeating this procedure will eventually
reduce the problem in G to at most two separate problems in each brick. Thus the
complexity is again linear.

4. NP-completeness for arbitrary k. In this section we show that the problem of
determining whether a (G, D) pair is k-planar or not is strongly NP-complete when
k is variable. Hence, it is unlikely that a polynomial-time algorithm exists for recognizing
a k-planar graph for arbitrary k.

In order to do this, we define the following decision problem which we call FACE
COVER: "Given a planar graph G (V, E) together with a subset of vertices D_ V
and an integer K, can G be embedded in the plane so that at most K faces are required
to cover all of the vertices in D?" We will show that FACE COVER is strongly
NP-complete even when G is three-connected and so has essentially a unique planar
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embedding, when d 0(n), and when all of the faces of G have bounded length. A
graph G is 3-connected if the removal of any two vertices of G leaves the rest of G
connected. It is well known [Wh] that a 3-connected planar graph has an embedding
which is essentially unique; i.e., all embedding have the same facial structure and differ
only in which face is the outer face.

The reduction will be from VERTEX COVER: "Given a graph G (V, E) and
integer L, is there a subset of vertices W_ V with IWI <= L, such that for every edge
(u, v)E at least one of u or v belongs to W?" VERTEX COVER is strongly
NP-complete for cubic planar graphs [GJS].

THEOREM 5. FACE COVER is strongly NP-complete even when G is 3-connected,
d O(n), and all faces of G have bounded length.

Proof. Consider an instance of VERTEX COVER given by a cubic planar graph
G (V, E) and integer K, where G has no loops or parallel edges and every edge is
contained in exactly two faces. This problem is known to be strongly NP-complete
[GJS].

We obtain an instance of FACE COVER by setting K L and G (V, E) being
the planar dual of G, i.e., place a vertex v V in every face fv of G, and an edge
(u, v) E if faces fu and fv of G share an edge. Subdivide each edge (u, v) E by
adding a vertex x(u, v) and denote the new graph by t (,/). Let D be the set of
vertices x(u, v) for (u, v) E. Given the particular embeddings of G and G, there is
clearly a one-to-one correspondence between vertices in D and edges of G, and
similarly, between faces of G and vertices of G. Thus, there is a one-to-one corre-
spondence between a face cover of (, D) and a vertex cover of G of the same

cardinality.
In general, might have other planar embeddings where a face cover in this new

embedding of 0 does not correspon to any vertex cover in G. To remedy this, we
form the graph G* (V*, E*) from G by adding, inside each face of t, edges to form
a cycle containing all vertices of D in that face, and embed the cycle inside the face.
It is easy to see that the face cover problem on G* is equivalent to the face cover
problem in t. We will show that G* is 3-connected and so this embedding is essentially
unique [Wh] which will complete the proof. To see that G* is three-connected, notice
that in t, all facial cycles consist of precisely three edges. However, these cycles may
not be simple (i.e., triangles) if G has bridges. Nevertheless, in G* all facial cycles
have length three and are simple, in other words G* is triangulated and, thus,
three-connected, since G* is a simple graph.

Finally, note that IDI equals the number of edges of t, which is 0(n). U
(Note: An alternative proof of NP-completeness for the case D V appears in

[FHS].)

5. An exact and an approximate algorithm for fixed embeddings. Consider the
variation of FACE COVER in which we are forced to use a given embedding. That
is, FIXED EMBEDDING FACE COVER (FEFC): "Given an embedded planar graph
G (V, E), an integer k, and a subset D

_
V, can D be covered with at most k faces ?"

Clearly FEFC is NP-complete.
In this section we will present:
(a) A set of transformations for FEFC that allow us to assume that d O(n),

while not increasing the maximum facial length.
(b) An exact algorithm for FEFC that runs in time 2’/-g).
(c) A polynomial-time approximation algorithm for FEFC that is asymptotically

optimal if G has bounded length facial cycles, as is the case in our NP-
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completeness proof. (Our basic approach is similar to that of [LT] in that we
use the planar separator theorem.)

The following set of transformations can be visualized as simplifying the problem.
Their main objective is to allow us to assume that d O(n) without increasing the
facial cycle length and preserving the value of the optimal solution. These transforma-
tions are crucial for the proof of Theorem 6 presented later.

(1) Every vertex of V-D of degree one is shrunk into its neighbor.
(2) Every facial cycle of length two (resp. one) is shrunk into a single edge (resp.

vertex).
(3) In every face g with at most one vertex in D, all vertices in V-D are shrunk

into a single vertex.
(4) Every vertex v in V- D of degree two, adjacent to vertices u and w, is deleted,

and edges (u, v) and (v, w) are replaced by the edge (u, w).
(5) Any two vertices of V-D that are adjacent are shrunk into a single vertex.
(6) For every loop e (v, v) such that (say) the subgraph contained in the interior

of e has an outer facial cycle consisting of v and vertices of V-D only, e is deleted.
(7) If a vertex v D is contained in a unique face off, then f must appear in any

cover; hence, we delete v, and remove from D all members in f.
This concludes the list of transformations. Clearly, Transformations (1)-(7) can be
applied until no longer possible, in polynomial time, to obtain an equivalent problem.

Theorem 6 given below places a lower bound on the size of D in a loop-free
graph where none of Transformations (1)-(7) can be applied. However, if we apply
(1)-(7) to a graph G, the resulting graph G’ may contain loops. In order to count
vertices of D in G’, we modify it as follows"

(a) Every loop (v, v) with v D or v adjacent to at least three vertices of D is
deleted.

(b) Otherwise, let e (v, v) be a loop, and let x be the only neighbor of v in the
interior of e, with x D. Now, (7) or (2) cannot be applied; hence, the interior
of e contains vertices other than x. But there must be at least one such vertex
w D such that (w, v) can be added while preserving planarity; this is true
because of (a), and the fact that neither (3) nor (6) can be applied. In that
case, (w, v) is added. Now v has three neighbors in D.

It is easy to verify that after applying (a) and (b) to G’, the resulting graph G"
is such that none ofthe transformations (1)-(7) can be applied, and that G" is loop-free.

THEOREM 6. Let G (V, E) be a loop-free planar graph with a fixed embedding,
where vl n and ID[ d, and suppose that none of the Transformations (1)-(7) can be
applied. Then d >= n + 4)/3.

Proof. Notice that every vertex of V-D has degree at least three and is only
adjacent to vertices of D. Suppose that G contains a pair of parallel edges e (u, v) e’,
with say, v V- D. Then the interior region bounded by e and e’ must contain a vertex
w D with w u such that either v and w are adjacent, or the edge (v, w) can be
added to the embedding (in which case we do so). Similar considerations apply to the
exterior of e’.

Now, delete all edges with both endpoints in D, let C be an arbitrary connected
component with t$ vertices and a elements of D. Clearly, C has no facial cycles of
length one or two. The latter follows because if e (u, v)= e’ are a pair of parallel
edges with u D, v V-D, then there exist vertices wl, w2 D adjacent to v, and,,,.located in the interior and exterior of e, this is guaranteed by the previous paragraph.

Consequently, the number of of edges of C satisfies ’ =< 3-6. On the other
hand, if f denotes the number of faces of C, f= k>-3 fk, where fk is the number of
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faces of length k. Since C is bipartite, f3 0. Thus, . 1/2 k kfk >- 2 .k>_4k 2f.
Moreover, -> 3(t-), since for each vertex of C not in D, we count at least three
edges. Hence,

e=3n-x where 6<- x_-<3

By Euler’s formula,

3t$-x
f=2-x+2<2

OF

n+4<x<3d,=

4>__-+-
3 3’

which concludes the proof. [3

We note that the bound in Theorem 6 is best possible.
We now present an exact algorithm for finding the minimum number of faces

required to cover all special vertices of a planar graph given a fixed embedding in
2’/g") time. As in Theorem 7, we may take d 0(n) by the application of appropriate
transformations in the embedded graph. Let G= (V, E), D V, d IDI, and n IV[
be the input. The algorithm proceeds as follows:

(1) Let S be an O(x/-)-separator of G. Write G G1 t.J G2, where G1CI G2 G(S),
the subgraph of (3 induced by S. Let Di be the subset of S contained in Gi.
Write G (V, E), and embed Gi as it appears in (3.

(2) A face f of G that contains vertices of G- S and of (32-S will be called a
boundary face. Ideally, we would like to proceed independently with G and
(32. However, these two graphs interact on the boundary faces. Thus, we
modify G1 (and similarly, G2) so that the boundary face structure is "pre-
served" in a "legal" way. This is attained in two steps.
(i) For every boundary face f, we replace each path off that intersects V1 at

its endpoints with an edge. The resulting graph contains a face f that
corresponds to f; we call f an inherited face. Select an arbitrary added
edge (u, v) off and subdivide it by introducing a grey vertex w(f). Carry
out this transformation for all boundary faces of G; call the resulting
graph G.
Now we are essentially ready to proceed independently with graph G.

The idea is to use the grey vertices to force boundary faces to be used in a
cover: iff is such a face and we change the color of w(f) from grey to black,
this should force us to use f. However, there is a problem. (32 may have several
connected components and the removal of each component could introduce
in G a (possibly large) new face that does not correspond to any face of (3.

We call such a face a gap face. Each gap face is made up of edges added in

(i). We handle this problem as follows.
(ii) In each gap face subdivide every edge by introducing a new white vertex.

Connect all such vertices consecutively as we travel around^ the face with
red edges. Call the resulting graph Ga. Similarly, define (32.
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(3) Write S fq D. Next, for every partition 1 (-J S2 with 1 f’) 2 , and
every subset X of grey vertices, we color X black, the remaining grey vertices
white, and solve the following two face cover problems.
(a) in G1, cover (D1- S) (.J $1 t_J X, with minimum value k(S, X).
(b) In G2, cover (D2,,-S)t.JS2UX, with minimum value k2(S:,X); set

f(,,/2, X)= kl(Sl, X)+ k2(2, x)- El, where Y is the set of inherited
faces used in both covers. Then the minimum cover of D has value
ming,.g:.x f(gl, :, X).

The proof of correctness of the algorithm proceeds as follows.
(1) Consider any face cover of D in G. Then an arbitrary subset of the boundary

faces will be used, and if any vertex of S f’l D is not covered by a boundary
face, then it is either covered by a face of G1 that contains no vertices of
G2-S (an internal face of G), or it is covered by a face of G2 that has no
vertices of G- S (an internal face of G:).

(2) Consider any of the problems on graph G1, with S and X as above. Then,
without loss of generality, none of the faces containing red edges is ever used
in an optimal solution, since the black vertices that any such face may cover
are also covered by an inherited or an internal face. Thus, all vertices of X
are covered by inherited faces; and all vertices of S are either covered by
inherited faces, or by faces of t that are co,pies of internal faces of G
(similarly for G:). Consequently, for each $1, S: and X, we can take the two
optimal solutions on G and G2, respectively, and obtain a face cover of D
in G of cardinality precisely f(S, S., X).

(3) Finally, consider an arbitrary face cover F of D in G. Let Fi be the set of
internal faces of G used in F for 1, 2. Let Z be the set of oundary faces
used in F. Notice that IFI-IF, zI / zl-Izl. A s o, set S, is the set of
vertices of S fq D covered by internal faces of G1, and $2 (S f)D)- gl. Let
X(Z)be the set of grey vertices of tl contained in those inherited faces
corresponding to Z. Then k(,,X(Z))<=[FI.3Z[ for i=1,2, and thus,
k,(S,, X(Z))+ k2(S"2, X(Z))<= [FI+ Izl which implies that f(l, 2, X(Z))
IFI.

This concludes the proof of the correctness of the algorithm.
To derive the complexity of the algorithm, the number of edges and vertices added

to each graph G to obtain is o(Isl). Consequtl G has at most n + O(v/-ff)
vertices. Furthermore, the total number of triples (S, $2, X) is at most 2 (Isl). As a
result, if T(n) is the worst-case complexity of the algorithm, we have T(n)<=
2’/-;)T(n + O(x/-)); from which T(n) _-<2’/-;) is straightforward.

The approximation algorithm is somewhat similar to the exact algorithm, with
the exception that we will use planar separators that produce "equal" size subgraphs.
Let G (V, E) be the input with D_ V. Let S be a "50/50" separator of G. Write
G G1 I,.J G2, where each G V, Ei) is defined as in the exact algorithm. Next, add
edges to each G to obtain the inherited faces, and call the resulting graph G. Notice
that the faces of G1 correspond to the internal faces of G1, boundary faces, and also
(possibly) to a third type of face that corresponds to connected components of G.
(The vertices on these faces are all contained in S.) Proceed similarly with G. Set
D- (Dfq V)-S. Now, suppose we solve the following problems with i- 1, 2:

(,) In G, cover D; let the optimum cover have size k.
Now, by taking the union of the optimum covers we can obtain a cover of D in

G by adding at most ISI faces. Hence, if we denote by k the size of an optimum cover
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of D in G, we have k =< k- + k-2 + Isl. On the other hand, given a cover F for G we can
obtain a cover for 1 and one for : by restricting F appropriately. Hence, [FI>=
k + k-- O(ISI), or Ik-/, + o(Isl)= o().

Our algorithm will not solve the problems on Gi exactly. Rather, we keep
subdividing each graph and modifying the resulting subgraphs until we obtain (on
each branch of the recursion) graphs of size O(log2 n). We solve these problems using
the exact algorithm, and by piecing together their solutions, we will obtain a face cover
of D in G. It is not difficult to verify that the problems produced at the ith recursive
step have at most O(n2-i) vertices. Hence, the total number of recursive levels is at
most T log n- 2 log log n + O(1). Consequently, the total error is, up to a constant,
at most . 2 0 2r/2) 0

i=0

Hence, if G has bounded length facial cycles, and since d 0(n), the relative error
of our approximation algorithm is O(1/log n).

To estimate the complexity of this procedure, notice that the number of problems
to be solved exactly is O(2r) O(n/log n), and each such problem takes time at most
2daT-z) n Ol). The total number of vertices in the recursion tree is also O(2r), and
we conclude that the algorithm runs in polynomial time.

6. Concluding remarks. We have shown that checking k-planarity of graph G with
n vertices D V can be done in linear time for any fixed k. This provides an efficient
recognition algorithm for this class of graphs for which the Steiner tree problem can
be solved in polynomial time [EMV]. We have also shown that if k is not fixed, the
associated decision problem is NP-Complete even if G has essentially a unique
embedding, d 0(n), and all facial cycles have bounded length. We obtain a poly-
nomial-time algorithm for this latter case which is asymptotically optimal.

We note that the work of Robertson and Seymour on Wagner’s conjecture could
be used to check k-planarity for any fixed k in O(n4) time [Se]. However, their
algorithm would not provide an embedding and covering as our algorithm does. It
might be possible to specialize their result to our problem. We leave this as an open
problem.

Appendix A--The three cases of DYN.
(1) Series Case. The formulas for this case are: Fix z and w. Then

F(H, 00zw) min {F(H,, 00z0)+mint {F(H2, 00tw)}, min, {F(H,, 00zt)}

+ F(H2,000w)}.
Similarly,

F(H, 10zw)= min {m,n {F(H,, x’y’zw’)" x’+ y’= 1}

+min {F(H2, x"y"z"w)" x"+ y"<= 1},
z"
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min {F(H, x’y’zw’): x’ + y’ <= 1}

+ min {F(H, x"y"z"w): x"+ y" 1},

min {F(H, x’y’zl): x’+ y’=< 1}

+min {F(Hz, x"y"lw)" x"+y"N 1}}.
All other parameters are computed analogously.

(2) Parallel Case. Fix z and w. Suppose we choose two candidates Hi and Hr as
the "left" and "right" blocks in E(H, xyzw), where, for example, we would use
embeddings E(H, XblZW) and E(Hr, bryzw) for some b, br {0, 1}. Subject to this
specific choice (i.e., l, r, b and br) we show how tO compute the best embedding of
H. Now suppose k l, r. Which embedding should be used for Hk ? Now, if z + w _--> 1,
we must always use E(Hk, X’y’O0) for some x’, y’ (and also, bl=b,.=O). Assume
z W--O.

(a) If F(Hk, OIOO)<--F(Hk, O000)-I, then E(Hk, OIO0) is preferred over
E(Hk, 0000); if the reverse inequality holds, then the opposite choice is
preferred.

(b) E(Hk, 0100) and E(Hk, 1100) are compared in a similar way.
(c) If F(Hk, llO0)<=F(Hk, 0000)-2 then E(Hk, 1100) is preferred; if

F(Hk, 0000) =< F(Hk, 1100) then E(Hk, 0000) is preferred. The only possible
tie occurs precisely when F(Hk, 0000) F(Hk, 1100) + 1. We will represent
the better embedding, in this case, by E(Hk, **00).

Running through all cases (a)-(c) yields the best embedding for Hk, with a possible
tie between (0000) and (1100). We still have to decide how to permute the Hk’s, and
how to rotate each individual Hk. This is done as follows. Assume first that no ties
occurred, and for each Hk with k l, r, we create a binary vector of two entries
corresponding to the best embedding, together with an additional vector (bt, br), where
b and br specify the status of the inside face of H and H, respectively. Now we have
to order these vectors cyclically and rotate them so that the total number of consecutive
vectors (a,/3) followed by (y,)t) with /3 + y_-> 1 is minimum. For example, if the
vectors are (0, 0)(0, 1)(0, 1)(0, 0)(0, 1)(0, 1)(1, 1)(1, 1), the best ordering is
(0, 1)(1, 0)(0, 0)(0, 0)(0, 1)(1, 1)(1, 1)(1, 0) of value 4. In general, is it easy to see that
an optimal arrangement is obtained by putting all (1,1)’s in a string; if there is at least
one (0, 1) put it at one end of the string; if there is another, put it at the other end;
next pair up all remaining (0, 1)’s (at most one will not be paired up), and pair up all
(0, 0)’s. Let nij equal the number of (i,j)’s; the value will be

/Ill --I- 1 if nol O, noo > O,

if no > O,

nll ifno=noo=O.

Now, if a tie occurred in at least one Hk, i.e., n** > O, using a (1, 1) embedding
increases the n count by one but saves one internal face. Therefore, we either make
all (*,*)’s into (1, 1)’s, or we make all of them into (0, O)’s. That is, if n**>O and
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no1 >0 or noo>0, then make all (*,*)’s into (0, 0)’s, and if no1 noo=0, then make
them all into (1, 1)’s.

In this way, we compute the value m(bl, br) of an optimal arrangement to account
for faces between the Hi’s. Let fk(b, br) be the number of internal faces used by each
Hk in the optimal embedding. Thus,

l,r I, bl,br k l,r

The above procedure can be implemented easily in a quadratic amount of work.
We next sketch how to improve on it so that the F(" parameters are obtained in
linear time. Assume that we want to compute F(H, xyO0) (the general case is simpler),
and fix bt and br (there are four cases), without yet fixing H or Hr. We first consider
the case where there are no ties in any of the blocks. Then the quantity m(bl, br) is
well defined. We can also select a "best" block to act as a left end, namely, select k
such that

F(Hk, xblO0) fk(b,, br)

is minimized, where we use the notation given above. Similarly, we can choose a "best"
right block. It is not difficult to show that these blocks should indeed occupy the ends.

We now pass to the case of ties. If either
(i) b+ br_-< 1, or
(ii) no + noo is 0 or at least 3,

Then the ties will always be resolved, and we proceed as in the previous paragraph.
Otherwise, we also try all possible ways of using, as end blocks, the (at most two)
blocks whose best embedding is of type 01 or 00. This only adds a constant number
of additional cases. Hence, this case can indeed be computed in linear time.

(3) Messy Case. Assume we have computed the m.m.b.’s. Let W be an m.m.b.,
with extremes v, w; we want to describe the behavior of W with a small gadget.

Suppose W is an interior m.m.b.; that is, the extremes of W are contained in the
interior of H’. We can compare the possible embeddings of W as follows:

(a) For fixed z and w, we compare each pair (xyzw) and (x’y’zw) precisely as in
case (2). of DYN. For example, if F( W, 1000)-< F(W, 1100), then E( W, 1000)
is preferred over E( W, 1100) (and if the inequalities are reversed, otherwise).
Recall that we have a tie between E( W, 0000) and E( W, 1100) if F( W, 0000)
1 + F( W, 1100).

(b) If F( W, 1000) >- F( W, OOzw) with z + w >_- 1, then E( W, OOzw) is preferred over
E( W, 1000). The reason for this is that if in an optimal embedding of H we
use E(W, 1000), we can instead use E(W, OOzw) and keep everything else
fixed to obtain a feasible embedding that must also be optimal.

(c) If F( W, 0000) =< F( W, 0011) then E( W, 0000) is preferred; if F( W, 0011) + 1 -<

F( W, 0000) then E( W, 0011) is preferred.
(d) IfF(W, ll00)+2=<F(W, 0011) then E(W, 1100) is preferred; ifF(W, 0011)-<

F(W, 1100) then E(W, 0011) is preferred, with a tie if F(W, 1100)+I=
F(W, 0011).

(e) In a similar way, we compare E(W, 1100) with E(W, OOzw) where z+ w= 1,
with a tie if F( W, 1100)+ 1 F( W, OOzw). We may even have a three way tie
between E( W, 1100), E( W, 0010) and E( W, 0001).

Now suppose we are able to select a best embedding E(W, x*y*z*w*); that is,
there are no ties for best. Then we replace W with the appropriate graph in Table 1
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TABLE
Replacement graphs with no ties.

oo oo

(tooo)

oo)

(0014) I v

00,1 0 v
000

o
i
v

W

(where black vertices represent vertices of D). Let be the new graph. It is easy to

prove that F(I?-I, xyzw)+ F(W, x*y*z*w*)= F(H, xyzw). Thus, we solve the problem
on H first and then add the weight F( W, x*y*z*w*).

By induction, we can replace any set of interior m.m.b.’s (with no ties for best
embedding) whenever they have no common extremes. If, on the other hand, say
Wl, Wk have a common extreme v D, then: (i) if the best embedding for each
Wk prescribes that v not be covered, then leave v uncovered in each replacement
graph, and (ii) if, in at least one W the best embedding covers v, then use the same
replacement for each W, except that v is removed from D.

A few complications arise if a particular interior m.m.b. W has ties for best
embeddings. The list of all po.ssible ties is given here:

(T1) F( W, 0000) F( W, 1100) + 1,

(T2) F( W, 0011) F( W, 1100) + 1,

(T3) F( W, 1100) + 1 F( W, 0010),

(T4) F(W, 1100)+ 1 F(W, 0001),

(TS) F(W, 1100) + 1 F(W, 0010) F(W, 0001),

(T6) F( W, 0010)= F( W, 0001).

Table 2 contains the replacement graph to be used for each tie, together with the
appropriate weight to be added after solving. It is not difficult to verify ,that these are
all correct; here we will do so for the most complicated case (T2). Let H be obtained
from H by replacing W with the corresponding graph in case (T2). Now in any optimal
embedding E(H, xyzw), at least one internal face of the replacement graph will be
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CASE

T’I

T2

T3

T4

T5

TABLE 2
Replacement graphs with ties.

GRAPH

V

V

V

V

V

T6 i v=w

WEIGHT

F W, 1lO0)

F (w, ’11OO)-I

F (W, 400)-I

F (W, I00)-I

F(W, 00)

F(W, 0010

NOTICE THAT ALL WEIGHTS ARE NONNEGATIVE

used. It is easy to see that, without loss of generality, it is either the face containing
v and w (but none of the other faces), or the two other faces (but not the one containing
v and w). Given our choice for the weight, F( W, 1100) 1, this gives the correct result.

Thus, we can replace interior m.m.b.’s with small graphs, with the small caveat
concerning extremes that are common to several m.m.b.’s as given before. Noninterior
m.m.b.’s are dealt with similarly:

(i) Suppose we want to compute F(H, 0000); then we replace every m.m.b, using
the above rules.

(ii) Suppose we are trying to compute F(H, OOzw) where z+w->l; say,
F(H, 0010) (i.e., ul is not covered). Then we proceed exactly as in (i), except that now
if an m.m.b. W contains ul as an extreme, we use the best embedding for W of the
form E( W, xyl w), and all faces of the resulting graph that are incident on ul are
rejected. (There is a small wrinkle if there is an m.m.b. W with extremes u and
v, v E D, and such that v is an extreme of only one other m.m.b., W2. In this case we
may have to force v to be covered by W or W2. Since there are at most two vertices
such as v, this yields only four or fewer problems.)

In cases (i) and (ii), we use Algorithm XTND in the resulting graph after the
replacement. If XTND finds a cover of cardinality k or less, then we add the sum of
the weights of the replacement graphs to the cardinality of a minimum cover of/Q. If,
on the other hand, XTND finds that has no covers of cardinality k or less, then
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the corresponding embedding E(H, 0000) or E(H, 0010) should not be considered.
(Similarly with F(H, 0001) and F(H, 0011).)

(iii) The final case occurs for F(H, xyzw) where x + z => 1; say, we want to com-
pute F(H, 10zw). We proceed in two stages. Let.. Pl and P2 be the two paths from ul
to u2 in the outer face of H’. Then we obtain H as for computing F(H, OOzw), and
we remove from D all vertices in the segment of the outer face of H corresponding
to Pl. We then apply XTND to this graph, add the weights of the replacement graphs
to the returned cardinality, and denote the obtained quantity by m(p). Similarly
compute m(p2). Then m(H, z, w)=min (m(p),m(p)) is the minimum number of
faces needed to cover D H (with the exception of ul and u2 as indicated by z and
w) where we do not require that we cover one of the segments of the outer face.

Now if m(H, z, w) < F(H, OOzw), then we are done; set m(H, z, w) F(H, 10zw).
If m(H, z, w) F(H, OOzw), then we proceed to the second stage. Let W be an arbitrary
m.m.b, whose corresponding edge in H’ is contained in p or p’. Let (W) be the
graph obtained from H by replacing W with the best embedding of the form
E( W, ly00), and all other m.m.b’s replaced with graphs as for cases (i) and (ii).

Notice that the replacement graph for W will contain a vertex of D in the outer
face of H(W) (see Table 1); call this vertex w’, and set f(W) to be the min cardinality
of face cover of D f’)H(W), with all faces incident to w’ rejected plus weight of
replacement graphs. Then minwf(W) finds the best embedding of H that does not
cover at least one vertex (which is not an extreme of an m.m.b.) in the outer face. In
a similar way, we compute all quantities g(v), where v D is extreme of an m.m.b.
in the outer face of H’ that we want not to cover. Then min {minwf(W), minv g(v)}
is the quantity F(H, 1000) we seek.

There is one shortcut that we can take to improve the algorithm above. Suppose
there are at least k possible graphs W for which F(W, ly00)-< k that can be used to
compute minwf(W). Now, the fact that we have reached Stage 2 implies that
F(H, 10zw)=> F(H, OOzw). However, any internal face of H can cover at most one of
the vertices of D counted above; otherwise, H’ would contain a cutset of two vertices
in one of the segments pl and p, which is impossible. Therefore, F(H, OOzw)> k, and
we can avoid Stage 2 altogether. Similar considerations apply towards computing
minv g(v). Consequently, we can assume that each of the minimums in Stage 2 at most
has O(k) arguments.
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FAST SIMULATION OF TURING MACHINES BY
RANDOM ACCESS MACHINES*

JYRKI KATAJAINEN’, JAN VAN LEEUWEN AND MARTTI PENTTONEN"

Abstract. We prove that a T(n) time-bounded, S(n) space-bounded and U(n) output-length-bounded
Turing machine can be simulated in O(T(n)+ (n + U(n))log log $(n)) time by a random access machine

(with no multiplication or division instructions) under the logarithmic cost criterion.

Key words. Turing machine, random access machine, simulation, computational complexity

1. Introduction. In the theory of computation one uses both the Turing Machine
(TM) and the Random Access Machine (RAM) as standard models of effective
computing (see e.g., [1]).Whereas the models are vastly different in detail, it is well
known that the machines are "equivalent" in computational strength. More precisely,
one can show that the machines are polynomially related in the sense of computational
complexity theory (see [1, 1.7] or [2]): a TM can simulate a RAM in O(T(n)2) time
and a RAM can simulate a TM in O(T(n)log T(n)) time, where T(n) is the time
complexity of the simUlated machine and RAMs are assumed to use the so-called
logarithmic cost criterion. In the result, RAMs are assumed without explicit "single"
multiplication or division instructions in their instruction set. Slot and van Emde Boas
15] have shown that TMs and RAMs can simulate one another within only a constant

factor of extra space.
When we speak of the simulation of one machine by another, we require that on

the same input the latter machine produce the same output as the former one. In
general, the simulating machine passes through an analogous computation, but it may
also contain some auxiliary computations intermixed. These auxiliary steps are, of
course, included in the complexity of the simulating machine.

Several studies have attempted to refine or lower the simulation costs between the
two models, especially for the case of simulating RAMs by TMs (see e.g., Wiedermann
16] for some recent results). In this paper we consider the efficient simulation of TMs
by RAMs. Let T(n) denote the time complexity, S(n) the space complexity and U(n)
an upperbound on the length of the longest output on inputs of length n. The following
results are known.

THEOREM A (Folklore, see e.g., [1, 1.7]). A TM can be simulated in

O(T(n) log S(n)) time by a RAM (with no multiplication or division instructions) under
the logarithmic cost criterion.

THEOREM B (Paul [11, 3.3]). A TM can be simulated in O(T(n)+n log n+
U(n) log T(n)) time by a RAM (with no multiplication or division instructions) under
the logarithmic cost criterion.

Theorem B shows that TMs can be simulated by RAMs with no essential time-loss
provided T(n)>= n. log n and U(n)<= T(n)/log T(n). Note, however, that [11, 3.3]
assumes stronger .RAMs with shift instructions, that is (multiplication and) division
by 2. Related results are also found in literature: Dymond and Tompa [4] proved that

* Received by the editors March 5, 1986; accepted for publication (in revised form) April 16, 1987.
t Department of Computer Science, University of Turku, 20500 Turku, Finland.
t Department of Computer Science, University of Utrecht, P.O. Box 80012, 3508 TA Utrecht, The
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a TM can be simulated in time x/T(n) by a parallel RAM. Hopcroft, Paul and Valiant
[7] simulate a TM in time T(n)/log T(n) by a unit-cost RAM. Robson [13] speeds
up a TM computation by a probabilistic RAM.

In this paper we improve Theorem A to Theorem C as follows.
THEOREM C. A TM can be simulated in O( T( n log log S( n time by a RAM

(with no multiplication or division instructions) under the logarithmic cost criterion.
We also can improve Theorem B to Theorem D as follows.
THEOREM O. A TM can be simulated in O(T(n)+(n+ U(n)) loglog S(n)) time

by a RAM (with no multiplication, division or shift instructions) under the logarithmic
cost criterion.

This is, indeed, an improvement of Theorem B because in the case log n <
log log S(n), T(n) is the dominating term. This theorem improves also Theorem C,
because T(n)>= n and T(n).>- U(n). None of the results assume that T(n), S(n) or
U(n) are constructible.

As an example of the use of Theorem C we mention the following corollary.
COROLLARY E. Any linear time TM can be simulated in O( n log log n) logarithmic

time by a RAM (with no multiplication or division instructions).
It follows that e.g. the reversal of a string of n inputs can be output by a RAM

in O(n log log n) units of logarithmic time. We can apply the above corollary also to
the string-matching problem, where the task is to find all occurrences of a given pattern
of length m from the text of length n, m _-< n. The string-matching can be done in O(n)
time on a TM as shown by Fischer and Paterson [5] (see also [6]), and therefore in
O(n log log n) units of logarithmic time on a RAM.

In language acceptance the size of the output is constant. Hence, by Theorem D
we also have

COROLLARY F. Any language accepted by a T(n) time-bounded, S(n) space-
bounded TM can be accepted in O(T(n)+ n loglog S(n)) time on a RAM.

The paper is organized as follows. In 2 we recapitulate some basic definitions.
In 3 we prove Theorem C and Theorem D. Finally, in 4 we discuss how these
improvements were achieved and how the results could probably be improved further.

2. Machine models. We define TMs and RAMs such that they appear as instances
of the same abstract model, following the guidelines of [14]. The machines have very
similar input, output and control structures, but differ in the structure and the use of
the memory. The definition of TMs and RAMs is included to fix the particular
instruction sets.

2.1. Turing machines. We describe the "parts" of a Turing machine without much
formal notation. We assume that the input, output and work-tape alphabet is {0, 1}
and refer to the individual symbols as bits. A (multitape) TM consists of the following
parts (compare [1, 1.6]):

(i) a one-way read-only input tape, containing a bit string followed by an
endmarker #.

(ii) a one-way write-only output tape, where a bit string will be written.
(iii) k two-way.read-write work-tapes ("memory"), containing bits in successive

memory cells. The tapes are two-way infinite. On each tape there is a separate read-write
head that can be activated for reading, writing or moving one tape-cell to the left or
to the right.

(iv) a TM program, which is a finite sequence of labelled or unlabelled instructions
from a fixed instruction set (see below). No two instructions should carry the same label.

The instruction set of a TM contains eight instruction types"
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(1) input ho, A1, A: causes a "next" input symbol ce to be read, and the input
head moves one cell to the right (except on #). Depending on whether a is 0, 1 or
#, control is transferred to the instruction with label ho, hi, h.

(2) output/3: causes a bit/3 to be output, and the output head moves one cell to
the right.

(3) jump A" transfers control to the instruction with label h.

(4) halt: halts the program.
(5) head i: activates the read-write head on the ith work-tape (1 =<i=< k). Only

one read-write head will be active at a time.
(6) write/3: causes a bit/3 to be written in the tape-cell designated by the active

read-write head.
(7) branch ho, hi: causes the bit/3 to be read from the tape-cell designated by

the active head. Depending on whether/3 is 0 or 1 control is transferred to the instruction
with label ho or hi.

(8) move (with 8 {L, R}): moves the active read-write head one cell to the left
or to the right depending on whether is L or R.

We assume that initially all work-tapes contain 0 in every cell, and that head 1 is
active. The computation starts from the first instruction and thereafter the instructions
of a program are executed in their successive order unless a jump instruction orders
otherwise.

The time complexity T(n) of a TM is the largest number of instructions executed
in halting computations on inputs of length n. The space complexity S(n) is the largest
number of cells occupied on any work-tape in halting computations on inputs of length
n. The output complexity U(n) is the length of the longest output produced in halting
computations on inputs of length n.

Because a TM with a two-way infinite tape can be simulated by a TM with a
one-way infinite tape in real time (see e.g.,[8, 7.5]),we shall assume that the work-tapes
of a TM are one-way infinite, say infinite to the right. Initially all read-write heads are
positioned on the leftmost cell of their work-tape. By the standard construction used
in the above simulation [8, 7.5], we can further assume that a read-write head is
never moved off the left end of the work-tape. (Thus the computation is stopped by
a halt instruction, not by the fall of a read-write head.) Although in the construction
the tape alphabet is enlarged, it is straightforward to return into the binary alphabet
(see also [8, 7.8]).

2.2. Random access machines. In describing the random access machine, we only
emphasize the parts that are different from those of a TM. Parts (i) and (ii) are very
similar for a RAM but instead of (iii) one has the following set-up (compare 1, 1.2]):

(iii’) a special register called the accumulator (AC) and a countable sequence of
ordinary registers ("memory") indexed by the nonnegative integers (used as addresses).
Each register can hold an arbitrary nonnegative integer in binary notation. Only data
stored in the AC can be operated upon.

A RAM program is defined as in (iv), but the instruction set of a RAM differs
from the instruction set of a TM. In instructions, the contents of register j are denoted
by (j). The instruction set of a RAM contains twelve instruction types:

(1’)-(4’): similar to the instructions (1)-(4) of a TM.
(5’) jzero A: transfers control to the instruction with label A if (AC)=0, and

continues to next instruction otherwise.
(6’) load =j: loads the integer j into AC.
(7’) load j: loads (j) into AC.
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(8’) load *j: loads ((j)) into AC ("indirect addressing").
(9’) store j: stores (AC) into register j.

(10’) store *j: stores (AC) into register (j).
(11’) add j: adds (j) to the current value in AC.
(12’) sub j: subtracts (j) from the current value in AC. In order to keep the

contents of the AC nonnegative, we assume that subtraction is proper, i.e.,
the result is 0 whenever (AC)_-< (j).

We assume that all registers, including the AC, initially contain 0. Memory need
not be used contiguously.

We do not simply count the number of instructions executed in a RAM program
but use the so-called logarithmic cost criterion: the "time" charged for an instruction
is equal to the sum of the sizes (in bits) of the integers (addresses and data) involved
in its execution. Note that the size of a positive integer m is [log (m + 1) log m, and
the size of zero is 1. The time complexity T(n) of a RAM is the largest amount of time,
measured according to the logarithmic cost criterion, used in halting computations on
inputs of length n. See Slot and van Emde Boas [15] for notions of space complexity
for RAMs.

It will be convenient to use various extensions to the basic RAM instruction set,
provided that the execution time is adequately measured by the logarithmic cost
criterion. By using subtractions and a trick introduced in 13, pp. 495-496], one can
easily show that this is the case for comparison instructions. It should be noted,
however, that the properness of the subtraction operation is not needed anywhere in
the subsequent proofs because we always know which of the two operands is greater.
Also in some algorithms it is convenient to have a RAM with k separate memories (or
arrays as called by Cook and Reckhow [2]), k > 1, each consisting of a countable
sequence of registers indexed 0, 1, 2,. .. We call this a "multimemory" RAM.

LEMMA 2.2.1. Every T(n) time-bounded multimemory RAM can be simulated in
O( T(n)) time by an ordinary RAM.

Proof. The technique was essentially given in [2]. The idea is simply to interleave
the RAM memories into one, using addresses + kj 1 for register j of the ith memory
(1 <_- -<_ k, j >_- 0). Those addresses can be computed in O(k log j) time, which multiplies
the time bound by a constant factor. D

It is important to state explicitly the basic instruction set of the RAM. However,
for the sake of the readability, we extend it with some Pascal-like control structures
that have obvious translations to the basic RAM instructions.

3. The simulation of a TM by a RAM. Consider a T(n) time-bounded, S(n)
space-bounded TM. The simple idea underlying Theorem A is to represent the cells
ofthe work-tapes in consecutive registers of a RAM, with additional registers containing
current read-write head positions. Every step of the TM is easily simulated in
O(log S(n)) time on a RAM, assuming the logarithmic cost criterion. In the simulation
underlying Theorem B, a saving in the cost per step is achieved by precomputing in
a table the action of the TM on all blocks of a suitable size. A subcomputation
corresponding to the size of the block reduces to a table look-up.

We will also use blocking to balance the costs of the address and the contents of
a memory location. At first we keep the idea of step-wise simulation. We use blocking
merely to localize the active region ofthe work-tape during a time-interval. For step-wise
simulation, the active block is swapped to a low-indexed region of the memory in
order to save in the access time under logarithmic cost criterion. (It is interesting to
compare this technique to the swapping of pages to and from disk in paged virtual
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memory operating systems, see e.g., Deitel [3].Another analogy is a hardware cache.
The cache idea was also used by Loui in [9].)

A serious problem is determining the optimal block size together with efficient
algorithms for unpacking and packing blocks. A further problem is that T(n) and
S(n) need not be constructible. For simplicity, we denote these values by T and S. In
3.1 we assume that n and S(n) are known at the beginning of the computation, and

determine the optimal block size in this case. In 3.2 we remove this assumption and
notice that the same time bound holds even though the block size is determined
dynamically during the computation. Ultimately, in 3.3 we improve the table look-up
method of [11]. Interestingly, the packing and unpacking techniques developed in

3.1 and 3.2 will now be useful in reading input blocks and writing output blocks.

3.1. The static step-wise simulation using blocked memory. We assume now that n
and S(n) are known in advance. We will begin the basic simulation algorithm together
with the necessary blocking and deblocking algorithms. By the time analysis of this
algorithm we determine the optimal block size. For simplicity, we speak of one TM
tape only; if there are many work-tapes, they are treated analogously, independently.

The basic idea of the simulation is to divide the tape into S/b blocks of b cells.
Hence, b successive cells of the TM are represented by a number (in the range
0, 2b 1) in a register of the RAM. By Lemma 2.2.1 we can assume that the RAM
keeps the "blocked" representation ofthe work-tape in a separate memory. The position
of the tape head of the TM is indicated by an address to the active block (a number
in the range 1,. ., Sb) together with an address within a block (0,. , b- 1), both
stored in fixed RAM registers. One simulation cycle, corresponding to b steps of the
TM, consists of accessing the active block with two neighbours, unpacking them to
low-indexed registers, directly simulating the next b steps of the TM, and packing the
updated bits back to the same registers. The neighbouring blocks are taken along in
order to guarantee that in all cases b simulation steps can be taken staying in the
unpacked zone. This unpacked 3b bit zone, kept in a separate memory, is called the
window.

The simulation of the single TM instructions is quite obvious; it is done as in the
proof of Theorem A. It is easy to construct a procedure simulating an instruction of
the TM, updating the contents of the window, the head address and the current
instruction label. Now we can represent the simulation in the form of a RAM program
as follows:

procedure simulate
{Suppose that the block size b is given.}
activeblock := 1
{the first block is active, with empty left neighbour}
head :--the first address of the middle block of the window
loop {until a halt instruction in the simulation}

loadwindow(activeblock, b)
for b times do simulate an instruction
storewindow(activeblock, b)
if head moved to neighbour then

update head and activeblock addresses

The procedure loadwindow fetches the contents of the active block and its neighbours
into low-indexed registers, and unpacks the b-bit integers. The procedure storewindow
packs the window blocks, and stores them by overwriting their older copies.
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We shall now attack the problem of packing and unpacking the blocks efficiently.
As our RAM model does not include division or shift instructions, we have to invent
another method for finding the bit representation of a number and vice versa. We will
see that unpacking and packing can be done efficiently with precomputed tables.

As a first attempt one could decode numbers to bit-strings by building a table that
gives the decoding directly. For example the table could contain the b bits of a number
n (<2b) in the registers nb, nb+ 1,..., nb+ b-1. A disadvantage of this method is
that, while bits are obtained directly, the access of them may cost O(log n). For this
reason loading a window takes O(b2) time. By a similar analysis as what follows, one
can see that this would give O(Tx/log S) simulation algorithm. However, we can do
unpacking and packing in O(b log b) time.

The efficient decoding of a number to its bit representation and vice versa is based
on a divide-and-conquer strategy with precomputed shift tables. We will first build the
necessary tables and then give the unpacking and packing algorithms.

We assume that each table is stored in its own memory. We will need tables lshift,
rshift, origin and power. By /shift(i), rshift(i),. ., we denote the contents of the
register reserved for/shift, rshift, .

The tables /shift and rshift in Fig. 1 contain as subtables shift tables for 1-bit
numbers, 2-bit numbers, 4-bit numbers etc. The divide-and-conquer strategy implies
that b-bit numbers are shifted b/2 bits to the right or b bits to the left. The entries of
the tables are numbers rather than bit strings. Thus, for example, the number 75--
010010112 has the right shift 4=01002 and 4=01002 has the left shift 64=010000002.
The origin table expresses where subtables begin: The shift tables for 2i-bit numbers
begin at origin(i).

origin:
register 0
contents 0 2

rshift:
register 0
block size bit
block value 0
contents 0 0

lshift:
register 0
block size bit
block value 0
contents 0 2

2 3 4
6 22 278 22 h- 22 +. q- 22i-1

2 3 4 5
2 bits
0 2 3
0 0

6 7 8
4 bits

0 2
0 0 0

21

15
3

2 3 4 5
2 bits
0 2 3
0 4 8 12

6 7 8
4 bits

0 2
0 16 32

FIG. 1. The origin, rshift and lshift tables.
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240

origin(i) +j
bits

J
div 22i-l
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2 bits

J
j. 22i

We have to first analyze how much the building of the tables costs.
LEMMA 3.1.1. The tables origin, rshift and lshift up to block size b (= 2k) can be

built in logarithmic time O(b2b).
Proof Assuming that the values origin(i-2) and origin(i-1) are already com-

puted, the following program will compute the ith origin value, i-> 2.

procedure buildorigin(i)
:= origin(i 1) origin(i 2) { := 22’-2}

origin(i) := origin(i 1)
for times do origin(i) := origin(i) +

Clearly, its time complexity is 0(22‘-2. 2i-1).
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When constructing the ith rshift and/shift subtables we can use the origin values
for i-1, and i+ 1.

procedure buildrshift(i)
j := origin( i) x:=0; t:=origin(i)-origin(i-1) {t:=22’-’}
for times do

for times do rshift(j):- x; j := j +
x:=x+l

procedure build/shift(i)
j:=origin(i); x:-0; t:=origin(i+l)-origin(i) {t:--22i}
for times do /shift(j):= x; j :=j + 1; x := x +

The execution of both procedures requires 0(22‘. 2 i) time. Thus the tables up to k can
k

22, 2 2 kbe constructed in time O(i__ )--O( 22k)- O(b2b).
We also need powers of 2 for unpacking numbers to bit strings, and for packing

bit strings to numbers. It is useful to precompute them, too, in the table power.
LEMMA 3.1.2. The tablepower(i) 2i up to kth power can be built in O(k2) logarith-

mic time.

Proof. A new power can be computed by doubling the previous one by addition.
This method gives the time bound O(k2).

Now we are ready to present the unpacking and packing algorithms.
LEMMA 3.1.3. Assuming that the tables lshift, rshift, origin and power up to the block

size b are available, it is possible to compute the b-bit representation of an integer n < 2b,
and the numeric value of a b-bit string, both in O( b. log b) time.

Proof. The procedure unpack(n, j, a) unpacks a number n < 22, to its 2J-bit rep-
resentation beginning at the ath register of the window. The procedure is as follows:

procedure unpack(n, j, a)
if j 0 then window(a) := n
else n := rshift(origin(j) + n); n2: n-/shift(origin(j- 1)+ n)

unpack(n,j- 1, a); unpack(n2,j- 1, a +power(j- 1))
For clarity, we have written the algorithm in recursive form. The recursion can be
eliminated by using one memory as a stack where the second recursive call is stored
while the first is executed. While unpacking a number n < 2 there are never more than
log j calls in the stack. In order to balance access cost it is economical to initiate the
stack at the address log b and let it grow downwards. Ifwe denote by t(x) the logarithmic
time of unpacking an x-bit number, by analyzing the program we get

t(1) k log b,

t(x) 2t(x/2) + k2x + k3 log b

which gives t(b) O(b. log b).
The procedure pack(a, j, n). computes the numeric value of the bit string win-

dow(a), window(a + 1),..., window(a + 2 -1). Also it is written recursively:

procedure pack(a, j, n)
if j 0 then n := window(a)
else pack(a,j- 1, n); pack(a + power(j- 1),j- 1,

n :=/shift(origin(j- 1)+ n)+ n2

The recursion is controlled as in unpacking. Also the time analysis is analogous.
We can now obtain a preliminary version of Theorem C:
THEOREM 3.1.4. Assuming that n and S(n) are known, a T(n) time-bounded, S(n)

space-bounded TM can be simulated in O( T( n log log S( n logarithmic time by a RAM.
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Proof The total time of the static simulation is bounded by

TRAM b2b+ T/b(log S+ b. log b+ b. log b+ b. log b+log S)

where b2b is needed for the construction of the tables, T/b is the number of cycles
in the simulation loop, log S is the cost of loading and storing the blocks, b-log b is
the cost of unpacking and packing the blocks of the window, and another b- log b is
needed for the elementary simulation steps. By choosing b c. log S, c < 1, we get
TRAM O( T" log log S).

3.2. The dynamization. Until now we have assumed that the space requirement S
of the TM on an input is known in advance, which is not the case. Now we shall
remove this assumption by using the well-known technique (see, e.g., [10]) which
consists of using one space bound while sufficient and increasing it when necessary.
As long as the space bound

So, $1," Si 22’+’,

is sufficient, the block size bo, bl,. -, bi 2i, is used respectively. Every time a
space bound is exceeded, the simulating memory must be reorganized by combining
the blocks pairwise. As the size of the blocks grows also the tables must be grown
accordingly. It is worth noting that, unlike in [11], input head need not be reset and
the computation be restarted from the beginning when the block’s size is increased.

The dynamic simulating algorithm gets the following form.

procedure simulate
activeblock :- 1
head :-the first address of the middle block of the window
b:= 1; S:=4
Initialize tables /shift, rshift, origin and power;
loop {until a halt instruction in the simulation}

while [log (S + 1) -< 4b do
loadwindow(activeblock, b
for b times do

Simulate an instruction
if head on a previously unvisited cell then S := S +

storewindow(activeblock, b)
if head moved to neighbour then

update head and activeblock addresses
b:=b+b
Combine successive blocks pairwise
Update head and activeblock corresponding to the reorganization
Update /shift, rshift, origin and power to the new block size

The analysis of the dynamic simulation is basically the same as in the previous section,
but now there is the extra work of reorganizing the memory. In spite of using wrong
block sizes at the beginning, the program still behaves asymptotically fast. Before going
to the time analysis of the program, we prove a small counting lemma, also used in
[2], [12].

LEMMA 3.2.1. A binary counter ofany event occurring times during the computation
can be maintained in O(t) time. As a by-product we get easily the length of the binary
representation of the count, which is [log (t + 1) ].
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Proof A memory is reserved for the binary representation of the count. For each
bit of the count (without leading zeros), two bits are used. The ith least significant bit
0 or is represented by 002 or 012 in the register i. If the actual value of the count is
t, 2J-<_-t-< 2j, then 112 in the register j marks the end of the representation.

Each counting step is simulated by a sweep over the representation in the memory,
beginning at the register 0. 01’s are replaced by 00’s, until 00 is met which becomes
01. However, if 11 is met instead of 00, it is replaced by 01 and 11 is stored in the
next register. At any moment, the address of 11 corresponds to the logarithm of the
count, and the registers below it correspond to the bit representation of the count.

The linear time bound is seen as follows. During a count up to 2, the length
of the sweep is t/2 times 1, t/4 times 2, t/8 times 3 and so forth. Hence the total
logarithmic time is proportional to

2-1 1 log +. .+2j-i. i. log i+. .+ 1 .j. logj O(t)

as can be seen by the quotient test applied to the infinite series 2-1. 1.log 1+
..2-i. /.logi+.... [3

The complexity analysis of the dynamic simulation is basically the same as in the
previous subsection, but we have to take into account the following differences. A
counter must be maintained in order to determine when block size must be increased.
Whenever the block size is increased, the simulating memory must be reorganized by
combining blocks pairwise. This is extra work, following from the fact that nonoptimal
block size was used. Fortunately, the amount of extra work caused by reblockings and
nonoptimal block size proves to be insignificant.

By Lemma 3.2.1, no more than O(S) time is used in the computation of S. The
time needed for the comparison [log (S + 1) _-< 4b is O(Iog b) which is covered by the
O(b. log b) used in the simulation. Whenever the test fails, b is doubled and tables
are updated. Note that by Lemmas 3.1.1 and 3.1.2 the total time needed in the
construction of the tables is O(b2b) O(S), because 2b-<log S<4b. Each doubling
of b is followed by reblocking. This is most easily done by the /shift table in
O((Si/bi)" bi) time. The superexponential growth of the series {Si} implies that all
reblockings can be done in time O(S).

For the final analysis of the simulation, assume that T steps of the TM are
simulated using block size ha. Hence the total time of the simulation is bounded by

log log S log log S

E (T,/b,)(log(S,)+b, logb,)= E T, logb,
=0 =0

loglogS

<-logb Y T=T. logb=T, loglogS.
i=0

Hence, the time bound O(T. log log S) holds also for the dynamic simulation. We
have proved

THEOREM 3.2.1. A T(n) time-bounded and S(n) space-bounded TM can be simu-

lated in O(T(n)log log S(n)) time on a RAM without multiplication and division
instructions.

3.3. Simulation with precomputed transition tables. A further improvement in the
simulation is achieved by combining the fast packing and unpacking algorithms of
3.1 with the use of precomputed transition tables as in [7], [11].

As in 3.1, we shall first assume that the optimal block size is known at the
beginning of the simulation. The computation is speeded up by precomputing in a
table all subcomputations of length b. For this purpose, the work-tape is divided into
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blocks of size b, as in previous constructions. Now, input and output must also be
handled blockwise, because a subcomputation of length b may read b bits and write
b bits.

In the new construction, the simulation itself is simply table look-up and takes,
as we will see, only O(T(n)) logarithmic time. Paul 11 organizes the table as a heap
(like in heapsort) and uses shift operations in the calculation of the pointers. We store
the table as a multidimensional array and calculate the addresses by precomputed shift
tables, avoiding the use of shift operations. For input and output blocking, the packing
and unpacking techniques of 3.1 are used. We shall see that, if U(n) is the maximum
output length for inputs of length n, O((n + U(n)) log log S(n)) is sufficient for input
and output, when it is done to and from low addresses, not higher than O(log S(n)).
Hence, the total time of the simulation is O(T(n)+(n+ U(n))log log S(n)).

In order to guarantee that large enough input blocks are always available, and
there is not too frequent need for filling the blocks, we will use an input buffer of
length 2b. It is filled every time when more than half of the bits have been consumed.
The same idea is useful for outputting.

We shall precompute the transition table

transit (i, x, l,p, /)--1, V0, v,,j,y)=(i’, l’,p’, l.)t__l, V;, Vtl, d,j’,y’)

where all entries are integers: i,j, p, p’ <b; i’,j’ <2b; x, y, y’ %22b; 1, 1’ are program line
numbers; Vk, V, < 2b’, and d =-1, 0, 1. The intuitive meaning of the table is the follow-
ing: If bits of the contents x of the input buffer have been consumed before, the TM
is at its instruction l, the work-tape head is at the position p of the block vo whose
neighbours are v_ and v, and there are already j bits of y in the output buffer, then
after b elementary steps of the TM, i’(<2b) bits of x have been consumed, TM is at
line l’, the work-tape blocks have changed to v, and the head is at the position p’ of
v}, and there are j’ bits of y’ in the output buffer. With this notation, we can write the
static simulating algorithm as follows:

procedure simulate
i:= 2b 1; j := 0 {input and output buffers are empty}
:= 1; activeblock := 1; p := O;

loop {until the simulation of a halt causes an exit}
if i_-> b then fill input buffer to a new x with O;
for k 1, O, 1 do vk := work-tape(activeblock + k)
(i, 1, p, v_, Vo, DI, d, j, y) := transit(i, x, 1, p, V_I, V0, Vl, j, y)
for k =-1, 0, 1 do work-tape(activeblock+ k):= Vk
activeblock := activeblock + d
if j _-> b then output the j bits of y and make j := 0;

Some points of the program need closer examination.
First, as b successive steps of the TM are composed, the main loop is iterated

T b times.
If i_>-b, the input buffer is filled as follows. First the 2b bits of x are unpacked

by Lemma 3.1.3 in time O(b. log b). Then the unused 2b- bits are moved to positions
0, 1,..., followed by new bits read from the input tape. This is easily done in
O(b. log b) time. Output is treated analogously.

Loading and storing work-tape blocks obviously takes O(log S) time. The transi-
tion table can easily be linearized to 2kb registers, where k is a constant. By the shift
tables similar to those in 3.1, additions and subtractions, the address of a table entry
can be computed, and the value can be decoded in O(b) time.
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We observe that input and output take O(log b) time for each bit, and hence
O((n+ U(n)) log b) time in total. The cost of the simulation is of order (T/b)(log S+
b). Hence, by choosing b=O(logS), we see that O((n+ U(n))loglogS(n)+ T(n))
time is sufficient for simulation.

Finally, we shall show that the table can be built in O(S) time. It .can be done in
the obvious way: For each table entry, simulate b steps of the TM and store the result
in a register. The generation of the entries is controlled by nine nested loops, one for
each argument of the table. To compute the value of each table entry, it is first unpacked
to low-indexed registers in time O(b.log b), then b steps of.the TM are simulated in
time O(b. log b),.and finally the result is packed in time O(b. log b) and stored in
time O(b). Hence, the construction of the table takes O(2kb. b. log b) time, which is
O(S), if b c. log S with a constant c < 1/k is chosen.

Thus, we have proved Theorem D in the static case. As in 3.2, the efficiency of
the static construction can be achieved even though the optimal block size is not known
in advance. We let the block size grow in the series bo, b,..., bi =2i, when the
space requirement reaches the bounds

So, S, Si 22’-
respectively. In Si, the constant a is chosen such that k < 2a. The dynamic simulating
program is as follows.

procedure simulate
i:=2b-1;j:--O

:--- 1; activeblock := 1; p := 0;
b := 1; S := 22 {a is a small constant}
Initialize /shift, rshift, origin., power and transit tables;
loop {until a halt in the simulation}

while [log (S + 1) =< 2a+ b do
if i-> b then fill input buffer;
for k -1, 0, do vk := work-tape(activeblock+ k)
(i, l, p, v_ , Vo, v, d, j, y) := transit(i, x, l, p, v_ 1, Vo, v, j, y)
Increase S when necessary;
for k -1, 0, do work-tape(activeblock+ k):-- vk
activeblock :-- activeblock + d
if j-> b then flush the output buffer;

b:=b+b;
Combine successive memory blocks pairwise;
Update p and activeblock corresponding to the reorganization;
Update /shift, rshift, origin and power;
Construct transit for the block size b;

There is very little new in the analysis of the program. During the whole simulation,
O(S) time is used in the construction of the tables /shift, rshift, origin and power.
Every time when a new transit table is constructed, O(Si) time is spent, hence
S O(S) in total.

As the block size never exceeds O(log S), input and output packing, as well as
unpacking, can be done in O(log log S) time per bit, O((n + U(n)) log log S(n)) time
in total. As the simulation for each block size is linear, the total simulation is linear, too.

Hence, we have proved
THEOREM 3.3.1. Any T(n) time-bounded, S(n) space-bounded and U(n) output

length-bounded TM can be simulated in O(T(n)+(n+ U(n)) log log S(n)) logarithmic
time by a RAM.
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4. Discussion. We have improved the simulations of TMs by RAMs that can be
found in 1] and 11]. We first improved the strategy of 1] by introducing blocking,
a well-known technique used for speed-ups. Essential in our constructions was how
to pack and unpack blocks efficiently. We did it with a precomputed table. The same
tabulation technique was also used to improve the method of [11]. First, it allowed a
natural look-up method, and second, with it input and output could be done more
efficiently.

It is interesting to observe that in the simulation of Theorem D, faster input and
output would improve the time bound. With a better input/output pattern the simulation
could perhaps be sped up further. Whether such an improvement is possible remains
as an open problem.

Acknowledgments. We are grateful to the referee for remarks and references that
have improved the representation.
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DESIGNING A UNIFORM RANDOM NUMBER GENERATOR WHOSE
SUBSEQUENCES ARE k-DISTRIBUTED*

MASANORI FUSHIMI

Abstract. A method for designing a uniform random number generator based on M-sequence is
described. It generates a k-distributed sequence {x,; t=0, 1,2,...} such that its decimated sequences
{x,,,; =0, 1, 2,...} are also k-distributed for several values of n. The sequence is obtained by permuting
the bits in Tausworthe sequence; a suitable permutation is found by solving a special 0-1 integer linear
programme, a set covering problem. The constraint matrix of the programme is obtained by applying a
modified Gaussian elimination to another 0-1 matrix. Two simple heuristic algorithms for the programme
are given and demonstrated to find good approximate solutions to an illustrative example.

Key words. Tausworthe sequence, decimated sequence, k-distribution, set covering problem, heuristic
algorithm

AMS (MOS) subject classification. 65C10, 12C10, 15A03, 90C50

1. Introduction. When one uses a sequence {x,; 0, 1, 2, .} of uniform random
numbers, it often happens that numbers are used in batches. For example, in a
simulation dealing with three random variables X, Y and Z, three numbers in the
sequence {x,} may be used at each step in the simulation. In such applications it is
important that not only the original sequence {x,} but also the subsequences consisting
of every third term of {xt} are random. In general, if the simulation requires n random
numbers at a time, the n subsequences {xn,+i; =0, 1, 2,...}, 0-< i=< n-1, must be
random. Since a random number generator may be used for various applications, it is
desirable that the above property hold for various values of n.

Knuth [9, p. 71] says "experience with linear congruential sequences has shown
that these derived sequences rarely if ever behave less randomly than the original
sequence, unless n has a large factor in. common with the period length," although
there is no theoretical proof that this is always the case. Then how about other uniform
number generators? What we shall be concerned with in this paper is the design of
uniform random number generators with the above property based on the maximal-
length linearly recurring sequence modulo 2 (M-sequence for short). In 2, we will
review some uniform random number generators based on M-sequences. Section 3
will show that our problem can be formulated as a special form of 0-1 integer linear
programme, in fact, a set covering problem, for which approximate solutions can be
obtained quite easily by simple algorithms. We will show in 4 two such algorithms
as well as the fact that the constraint matrix of the programme can be obtained by
using a modified Gaussian elimination method. The final section will illustrate our
procedure by an example which leads to a uniform random number generator useful
for practical applications.

2. Uniform random number generators based on M-sequence. An M-sequence is
a sequence of O’s and l’s generated by a linear recurrence relation

(2.1) a, clat_ + c2a,-2 + + Cpat_p (mod 2)
whose characteristic polynomial

f(D)=l+ClD+c2D2+ "l-pOp, p-- 1,
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is primitive over the Galois field GF(2), given any initial values (al, a2,"" ", ap)
(0, 0,..-, 0). {a,} is a periodic sequence with period 2p- 1.

Tausworthe [11] proposed to construct a sequence {x,} of/-bit binary numbers
using the M-sequence {a,} as follows:

(2.2) Xt O.art+lart+2 ao-t+l

where r is a constant which satisfies the following conditions.

(2.3) cr >- and gcd (O’, 2p 1) 1.

Properties of the sequence {x,} so constructed were investigated by Tausworthe himself
and some others [2], [12], [13].

Lewis and Payne 10] proposed to construct an apparently different sequence {y,},
called the GFSR sequence, using the M-sequence generated by the primitive trinomial
f(D) Dp + Dq -k- 1 as follows.

(2.4) Yt O.atat+-at+2- at+(l-l)-,

where " is a "judiciously selected" constant. The crucial point of their idea is that the
sequence {y,} can be generated very fast by using the recurrence relation y, y,_p y,_q,
where means the bitwise addition modulo 2.

Kashiwagi [8] and Fushimi [4] have shown the following equivalence relation
between the class of Tausworthe sequences without the first one of the conditions (2.3)
and that of GFSR sequences dropping the condition that f(D) is a trinomial. The key
point in the following is the notion of "proper decimation" [7] of the M-sequence,
in which "decimation" means selecting every nth term ofthe M-sequence, and "proper"
means that n is relatively prime to the period 2p- 1. If {a,} is an M-sequence whose
characteristic polynomial f is of degree p, then a properly decimated sequence
=0, 1, 2,...} is also an M-sequence whose characteristic polynomial, say f,, is of

degree p. Let n -1 denote the inverse of n with respect to the multiplication modulo
2p- 1, i.e., n. n-= (mod 2p- 1). In the following theorem, we use the notation
{x,(f; or)} and {y,(f; ’)} to specify the primitive polynomials and the parameters used
to construct {x,} and {y,}. Finally we write {x,} {y,} when the two sequences {x,} and
{y,} are equivalent in the sense they are the same sequence except possibly the location
of the starting point.

THEOREM 1. Iff is a primitive polynomial of order p, and r and 7- are relatively
prime to 2p- 1, then the following equivalence relations hold.

{x,(f; or)}= {y,(f; o’-)},
{y,(f; r)}--{x,(L; r-l)}.

It follows from the theorem that {x,(f; r)} can also be generated very fast if f
is a trinomial or a polynomial with few terms; if, for example, f Op + D + 1, then
{x,(f; o-)} can be generated by the recurrence relation x, X,_pX,_r.

Fushimi and Tezuka [5] investigated the k-distribution, i.e., multidimensional
equidistribution, property of a generalization of the GFSR sequence

.(2.5) v’=0-a a ,2a/+’r t+ /+’3 a t+l

and established a necessary and sufficient condition for the sequence {y’,} to be
k-distributed, which is reproduced below in a slightly different form.

The reader who is unfamiliar with the notion of k-distribution and its relation to randomness is
referred to Knuth [9, 3.5].
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THEOREM 2. {Y’t} is k-distributed ifand only if the kl terms of the basic M-sequence
contained in Y’t, 0 < < k- 1, are linearly independent.

It follows from the theorem that the maximum possible order of equidistribution
for {Y’t} is

(2.6) m =[p/l],

where [. is the greatest integer function, since the maximum number of linearly
independent terms of the M-sequence is p.

It is clear from Theorem 1 and the arguments in [5] that Theorem 2 also holds
for Tausworthe sequence as well as any properly decimated sequence {x,,t;
0, 1, 2, .}, in which case the words "linearly independent" mean the following. Each
of the kl bits of xnt, 0 <- =< k 1, can be expressed as a linear combination of the initial
p terms of the basic M-sequence, i.e., in the form ela + e:za: + + epap (mod 2), by
(repeated, if necessary,) application(s) of the recurrence relation (2.1), and thus the
unique weight vector (el, e2, ", ep) is associated with each bit of xnt, 0 <- t_-< k- 1.
The phrase "linearly independent" implies that these weight vectors are linearly
independent over GF(2).

At this point we introduce the following notation.

A,,.i={ao-,,t+ilO<=t<=m-1}, <=j<-_l,

j=l

Thus A,. is the set of the terms of the basic M-sequence which constitute the jth bits
of the first m terms of the decimated sequence {x,,t}. In addition we use the symbol
En to denote the lm x p matrix whose m(j-1)+ t+lst row is the weight vector
associated with a,,,t+.i.

Fushimi [3] considered a generalization {x’t} of Tausworthe sequence {x,}, which
is obtained by a rearrangement of the bits of {xt} as follows:

(2.7) x’t O.ao-t+j()ao-t+j(:z) ao.t+j(l),

where {j(1), j(2),... ,j(l)} is a permutation of {1,2,..., 1} independent of t. It is
clear that Theorem 2 is also applicable to the sequence {x’,} and any properly decimated
sequence of it. We remark that the sequence {x’t} can be generated exactly as fast as
the sequence {xt} once the initial values {x’,; 0<= t<=p-1} are given (see the remark
following Theorem 1).

In what follows we also use {xt} and {x’t}, and consider which permutation is
appropriate for our purpose. It must be noted that the maximum orders of equidistribu-
tion of {x,,} and {x’,,} are equivalent for any permutation of bits since the number of
linearly independent vectors in a given set of vectors is invariant under any permutation
of the vectors, in the set. Then one may naturally raise a question: in what sense can
we improve the sequence {x,,t} by considering the rearrangement of bits? The answer
is as follows. If we form the sequences of/’-bit (1’< 1) numbers by reading the first 1’
bits of the terms in the sequences {x,,} and {x’,,}, respectively, then the orders of
equidistribution for these/-bit sequences may be different. To be more specific, suppose
the sequence {xn} is m-distributed if the terms in the sequence are read to l-bit
accuracy, but not m-distributed if read to more than l-bit accuracy. Then the sequence

In such a case, we will say the sequence is m(/)-distributed.
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{x’t} is considered to be better than {x,,} if the former is m(l)-distributed for some
l> l. Thus it is worthwhile to ask for a permutation for which {x’,} is m(/’)-distributed
with l’ as large as possible.

3. A 0-1 integer programme. Now let N be a set of integers relatively prime to
2p- 1, and we require all the decimated sequences {x’t}, n N, be m(l’)-distributed.
There are an immense number of integers which are relatively prime to 2p -1 when p
is large, and there is no obvious way to solve the problem if N consists of all of them.
On the other hand, we usually use the decimated sequences {x’} with relatively small
n’s. Thus it is natural, from practical points of view, to take N as a set of small integers
relatively prime to 2p- 1.

Our problem can be stated as follows.
Design problem. Given f, r and l, to find a permutation {j(1), j(2),.-. ,j(/)} of

{ 1, 2, , 1} for which the 1’ in the following statement is maximum: all the decimated
sequences {x’,}, n N, are m(l’)-distributed, where m is defined by (2.6).

In order to solve this problem, we must first find minimal linear dependence
relations, for each n N, among the ml terms in An, or equivalently among the row
vectors of En, and this can be accomplished, as will be explained in detail in the next
section, by applying Gaussian elimination method to En. To each minimal linear
dependence relation thus found, we associate an /-dimensional row vector g=
(g,g2,"" ,gt) as follows. If the terms in, say, A,,,, A,,,... ,A,, are linearly
dependent, then gj gJ2 g 1 and all the other components of g are set equal
to 0. Then we form a matrix G whose rows consist of g’s corresponding to all the
minimal dependence relations found for all n N.

Using G as the coefficient matrix of the constraints, we formulate the following
0-1 integer linear programming problem.

(3.1) ILP: minimize Zo= z(j)
j=l

(3.2) subject to Gz-> 1, and

(3.3) z(j) 0 or 1, 1 --<j =< I.

Here, z is an/-dimensional column vector whose jth component is z(j), and 1 is the
column vector whose components are all equal to 1.

THEOREM 3. The 0-1 integer linear programming problem ILP is equivalent to the
design problem.

Proof. Let G* be a matrix obtained by applying permutation {j(1),j(2),... ,j(/)}
to the columns of G, i.e., the kth column of G* is the j(k)-th column of G, and Go*
and GI* be the submatrices of G* consisting of the first 1’ and the last (1-1’) columns
of G*, respectively.

We have shown in the previous section that a necessary and sufficient condition
for the sequence {x’,t} defined by (2.7) to be m(l’)-distributed is that there is no linear
dependence relation among the ml’ terms of the M-sequence contained in the leading

0 < < m- 1 This is equivalent to the condition that there is at least onel’bits ofxn,
1 in every row of G* since every row of G or G* represents a minimal linear dependence
relation. The inequality (3.2) is nothing but this condition. Since our objective is to
maximize l’, our objective function is (3.1). Q.E.D.

A linear dependence relation among a set of vectors is said to be minimal if no proper subset of the
vectors is linearly dependent.
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4. Methods for solving the design problem.
4.1. Algorithms for finding approximate solutions to ILP. The 0-1 integer linear

programming problem ILP we formulated in the previous section is a well-known
problem in combinatorics, i.e., a set covering problem. It is one of NP-hard problems,
i.e., there are no algorithms known at present to find an optimal solution to it with
time complexity of a polynomial order of l, although several algorithms have been
proposed using standard techniques for solving integer linear programmes, e.g., a
branch-and-bound method and a cutting plane method. Approximate solutions to it,
however, may be obtained in a very short time by simple heuristic algorithms. We will
list two of them below.

Let Jo be the set of indices j such that z(j)=0. Algorithm P starts with Jo ,
when all the inequalities in (3.2) are satisfied but the value of the objective function
Zo is maximum, and decreases Zo by iteratively including a j in Jo in the increasing
order of the column sum of G as long as the constraint (3.2) is satisfied. On the
contrary, Algorithm D starts with Jo {1, 2,..., l}, when all the inequalities in (3.2)
are violated, and decreases the number of violated inequalities by iteratively excluding
a j from Jo until all the inequalities are satisfied. At each iteration, such a j that
decreases the number of violated inequalities most is excluded from Jo. Details of
both algorithms are as follows.

ALGORITHM P.
1. Compute the column sum s(j) of (3 for j 1, 2,. ., I.
2. Sort s(j)’s in increasing order. Assume we have got s(j)<-_ s(j2)<= <-s).
B. Set 2(j) 1 for j 1, 2,. ., 1. Jo <-- .
4. for i:= 1 to do

begin
z(ji) := 0;
if GZ >= 1 is violated then z(ji) := 1 else Jo Jo {ji}

end

ALGORITHM D.
1. Jo<-{1,2, .,l}. Go<-G. k<-O.
2. k<-k+l.
3. Compute the column sum Sk(j) of Gk- for each j Jo.
4. Let j* be a maximizer of Sk(j) among j Jo.
5. Jo - Jo- {j*}.
6. Let G be the matrix consisting of all the row vectors of G_ whose j*th

component equals 0.
7. If G is not empty then go to step 2.

4.2. How to find the constraints. We shall be concerned in this subsection with a
method of obtaining the constraint matrix G in (3.2). As was explained in the previous
section, it is easily constructed once we know all the minimal linear dependence
relations among the row vectors in E for each n N, but this problem itself is
nonpolynomial in the number of the rows of E. We will present below an algorithm
for solving this problem. The algorithm consists of two stages" first, we find some
dependence relations by using a modification of Gaussian elimination method; second,
we generate enough dependence relations to solve the problem by combining the
relations obtained in the first stage. It is to be noted that we do not necessarily generate
all the dependence relations exploiting the special structure of the problem.

Gaussian elimination is basically a method for solving systems of linear equations
by performing a sequence of basic row operations, i.e., a multiplication of a row by
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a constant and an addition of a row to another row, and usually the "history" of row
operations is not recorded. In our case, however, where the objective is to find the
linear dependence relations among the rows, the history of row operations is the crucial
information. Here the word "history" means the record of the information which row
was added to which row at each step. (Note that we need not perform a multiplication
because the arithmetics are done on GF(2).) In order to record the history, we introduce
the variables h(i’, i) and set h(i’, i)= 1 if the i’th row is added to the ith row at some
step of elimination, and set h(i’, i)= 0 otherwise.

^(o)Now fix .an n e N, and let the ith row of E be denoted by e 1 <- <-_ lm. Linear
dependence relations among the row vectors of E, if any, are found by the following
procedure, in which e denotes an/-dimensional row vector whose jth component is e.

procedure GAUSS;
begin
for i:= 1 to lm do e := e>"

for i:= 1 to lm do
begin

if e 0 then DEPENDENCE(i)
else if < lm then

begin
jo := the minimum j for which eg 1;
for k := + l to lm do

if ego 1 then
begin
e := e +e (rood 2);
h(i,k):=l

end
else h( i, k) := 0

end
end

end

The procedure DEPENDENCE(i) is called when ei =0, which is the case if and
only if the vector el) is equivalent to some linear combination of the vectors e),
e>, , ei-l.>- A method for finding a linear dependence relation among these vectors
shall be illustrated by a simple example. Suppose 6 and the relevant part of the
history h(i’, i) is as shown in Table 1, which means the following.4

(4.1a) e6=el + e3 + e4+ e5 + e(6,
TABLE

An example of the history h( i’, i).

2 3 4 5 6

0
0 0 0

0 0

In (4.1) and the following three equations, equality sign is to be understood on GF(2).



UNIFORM RANDOM NUMBER GENERATOR 95

(4.1b) e5 =e2+e4+e)

(4.1c) e4 el+e4)

(4.1 d) e3 el + e3),
(4.1e) e2=e+e).
Substituting (4.1b) in (4.1a), we get

e6 el + e2 + e3 + e5 + e6>,
which, upon substitution of (4.1d), leads to

e6 e +e) +e)+ e6).
If we substitute (4.1e) in the above expression and use the fact that e =e), we finally
obtain the following linear dependence relation.

0 e6 e)+e)+ e3) + e)+ e6).
Thus, in general, a linear dependence relation can be obtained by the following
successive substitution.

procedure DEPENDENCE(i);
begin
d := d:: := di- := 0; di := 1;
for j := downto 2 do

if dj 0 then
for i’:=j- 1 downto 1 do di,:= di,+ h(i’,j) (mod 2)

end

If d, d d d 1 and the other d’s are 0 after the above procedure is
executed, we know that there is a linear dependence relation

o+^o+... +elO)+elO 0.(4.2) el, t:i2

It is clear, by the property of Gaussian elimination, that the set of vectors
(o) _(o) _(o)e,, e i2 ,..., e } is independent, and that (4.2) is a minimal linear dependence

relation.
There remains a question whether the minimal linear dependence relations found

by the above procedure are all that exist among the row vectors of E. The answer is
no in general, and the reason is as follows. Suppose there are two minimal linear
dependence relations, (4.2) and (4.3) below.

(o) ,(o) (o)(4.3) e, +k +’’’ +ek +e)=O.
If {i, i2,..., i, i}{kl, k2,..., kx, k} f, there is a possibility that the linear
dependence relation obtained by adding (4.2) and (4.3) modulo 2 happens to be
minimal, and the similar argument applies when there are more than two linear
dependence relations. Hence we must, in principle, check all the combinations of the
linear dependence relations found by procedure GAUSS in order to find all the linear
dependence relations among the rows of En, which would be extremely time consuming.
It must be remembered, however, that what we need finally is not the linear dependence
relations among the rows of En, i.e., among the elements in An, but the dependence
relations among the columns An., An,2,’’ ", An,. Hereafter we will use the words
"b-dependence" and "c-dependence" as abbreviations for "linear dependence among
the elements (bits) in An" and "linear dependence among the columns" respectively.
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It often happens, as will be illustrated in the next section, that several b-dependence
relations give rise to the same c-dependence relation, and this observation leads to a
rather efficient procedure for finding all the c-dependence relations, which will be best
illustrated by an example in the next section.

5. An illustrative example. As an example, we take a primitive trinomial f(D)=
D521 + D32"F 1, which was also used by many authors, see, e.g., [1]-[3], [5]. The period
of the M-sequence generated by this trinomial, 25:1-1, is a Mersenne prime, hence
all the decimated sequences are also M-sequences. We have chosen as the set N the
first sixteen natural numbers:

N={1,2,3,..., 16}.

The bit length and the parameter tr of the Tausworthe sequence (2.2) are chosen to
be 32. The maximum possible order of equidistribution, m, for the sequences {x,,} is
equal to [521/32] 16.

For each n N, we constructed the matrix E,, to which procedure GAUSS was
applied. It was found that there exists no linear dependence relation among the rows
of En for n 1, 2, 4, 8, 9 and 16. Table 2 shows the maximum l’, for each n N, such
that Tausworthe sequence (2.2) is rn(/’)-distributed.

TABLE 2
Maximum l’ such that the decimatedsequence ofthe Tausworthe sequence in the illustrative

example is 16( l’)-distributed.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

32 32 23 32 9 27 27 32 32 18 28 28 27 31 27 32

Now we will show the b-dependence relations found by GAUSS and interrelations
among them. For n 3, 45 b-dependence relations were found among the lm 512
rows of E3, or equivalently among the bits in {x3t; 0=< t=< 15}. The first5 one of them
is shown in Fig. 1, which indicates that the shaded bits are linearly dependent. It is
clear that any set of four bits whose configuration is equivalent to the one in Fig. 1 is
also linearly dependent. Let (At, Aj) denote the b-dependence relation among the
four bits obtained by translating the shaded bits in Fig. 1 by At downward and by Aj
rightward. For example, (4, 8) means the b-dependence relation among the four bits
at (t,j)= (9, 9), (14, 18), (15, 18) and (4, 32). We shall say that the two b-dependence
relations are essentially the same (different) if their configurations are equivalent
(different). There are 45 (=5x9) b-dependence relations which are essentially the
same as the one in Fig. 1, including itself, i.e., (At, Aj), 0--<At--<4 and 0<--Aj=<8,
and they are all that were found by GAUSS when n 3.

It is evident that, for any fixed Aj, five b-dependence relations, t (At, nj), 0_<_ At--<
4, or any other b-dependence relations obtained by adding these modulo 2, give rise
to the same c-dependence relation. It is also clear that any two relations (Atl, Ajl
and (At2, Aj2) have no bit incommon if Aj Aj2 hence a minimal b-dependence
relation cannot be obtained by combining these.

5The word "first" means "the was minimum when procedure DEPENDENCE(i) was called in
procedure GAUSS."
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FIG. 1. An example of the b-dependence relation.

Thus we have come to a conclusion that there is only one (in the sense of essential
difference) minimal b-dependence relation, which generates following nine rows of
G, the constraint matrix"

RaJg, 0_<- Aj <= 8,

where g (gl, g2, ", g32) with gl glo g24- 1 and the other gj’s being 0, and R
denotes the right logical shift operation. We have obtained essentially different b-
dependence relations and c-dependence relations generated by them for other n’s quite
easily in a similar way, and they are summarized in Table 3. In the table, "No." means

TABLE 3
C-dependence relations

n No 4 8 12 16 20. 24 28 32

9*
5 23*
6

2 4
7

2 4
10 14"
11 4

2 4

12 4
2
3
4

13
2 5*

4
14

2
15
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the sequence number of c-dependence relations for each n, and "r" means the number
of rows of the constraint matrix G to be generated by each c-dependence relation.
Thus 99 rows of G are generated in all.

We have applied the Algorithms P and D to our set covering problem with the
constraint matrix G obtained above. They have found solutions with Zo 14 (l’= 18)
and Zo 13 (l’= 19), respectively.

It is well known, see e.g. [6], and easy to see that if the two rows gi and gi, of G
satisfy the dominance relation gi >--g,, then g may be deleted from the constraint. In
our example, 48 rows can be deleted by this dominance relation. Asterisks in Table 3
show the c-dependence relations corresponding to the remaining 51 rows. We have
applied again the Algorithms P and D to the set covering problem with the reduced
constraint matrix, obtaining solutions with Zo 13 (/’= 19) and Zo 14 (/’= 18), respec-
tively.

One of the solutions thus found with Zo 13 (/’= 19) is such that Jo {j]z(j) =0}
{1, 2, 3, 4, 5, 6, 7, 8, 9, 19, 20, 21, 22, 23, 24, 29, 30, 31, 32}={j(1), j(2),-.. ,j(19)}
and Jl={j]z(j)=l}={lO, 11, 12, 13, 14, 15, 16, 17, 18, 25, 26, 27, 28}={j(20),
j(21),... ,j(32)}. Therefore, if we construct the sequence {x’t} by

X O,a3zt+j(1)a32t+j(2) a32t+j(32

using the permutation {j(1),j(2), ,j(32)} defined above, all the decimated sequences
{x’,t}, 1 =< n <= 16, are 16-distributed when they are read to 19-bit accuracy.

Finally we briefly describe a method of implementing the generator thus obtained,
using similar techniques as Tootill et al. [12], [13]. Let {X}= {23Xt} and {X’t}
be sequences of 32-bit integer random numbers. Since tr(=32) is a power of 2, we
have f(D)= D52+ D3+ 1 so that {X’,} can be generated by the recurrence

x’,= x’ 03 Xt-32t-521

To initialize {X’,}, we first set the initial values ofthe sequence {Xt}, i.e., {X,; 0 =< =< 520},
and then perform the permutation of the bits of these initial values. Since 521 (=32
16+9) initial values of the basic M-sequence {a,} can be given arbitrarily, we can set
X, (0 -< t-< 15) and the leading 9 bits of X6 arbitrarily. Practically, however, it would
be convenient for one to give all the bits of X, (0=<t=< 16) arbitrarily by using, for
example, a congruential generator, and then to modify X6 by the following formula
based on the "principle of complementary shifting" [13, p. 478]:

X,6-- M3:((L3X,_,7 + R9Xo)( Xl5),

Here L23 denotes the logical left shift 23 bits, and M3 means taking the least significant
32 bits by a masking operation. Then the remaining 504 initial values, {Xt; 17 =< -< 520},
are generated by use of the recurrence

Xt M32((L23Xt_17-t- R9Xt_16)(Xt_l).

Now that the initial values of the sequence {X,} are set, we have only to permute
the bits of X to obtain X’, for each t, 0-< =< 520. This can be conveniently done in
FORTRAN by using double length integer variables. A sample program for a computer
with the word length 32 bits is given below, in which LSHFR(K, J) is a generic function
for the logical right shift J bits operation.

Acknowledgment. The author is grateful to H. Imai of the University of Tokyo
for valuable discussions. He also appreciates the constructive comments given by an
anonymous referee.
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C

C

SUBROUTINE PERMUT(X)
INTEGER X(521), XJ0(2), XJI(2), XJOD,8, XJ1D,8
EQUIVALENCE (XJ0, XJOD), (XJ1, XJ1D)
DO 1 I=l, 521
XJO(1) X(I)
XJ0(2) =0
XJI(1) X(I)
CONSTRUCTS THE LEADING 19 BITS
XJOD LSHFR(XJOD, 4)
XJ0(1 LSHFR(XJ0(1), 4)
XJOD LSHFR(XJOD, 6)
XJ0(1) LSHFR(XJ0(1), 9)
XJOD LSHFR(XJOD, 9)
CONSTRUCTS THE REMAINING 13 BITS
XJI(1) LSHFR(XJI(1), 4)
XJ1D LSHFR(XJ1D, 4)
XJI(1) LSHFR(XJI(1), 6)
XJ1D LSHFR(XJ1D, 9)
XJI(2) LSHFR(XJI(2), 19)
CONCATENATES THE TWO PARTS
X(I) XJ0(2) + XJ1 (2)
CONTINUE
RETURN
END
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SORTING AND RECOGNITION PROBLEMS FOR ORDERED SETS*
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Abstract. How many questions are needed to decide whether an unknown ordered set is isomorphic
to a fixed ordered set Po? This recognition problem is considered, together with some related computational
problems concerning ordered sets.
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Introduction. The standard sorting problem is to identify an unknown order
knowing that it is a linear order. This formulation suggests the following generalization
to ordered sets, called the Po-sorting problem: determine an unknown order, knowing
that it is isomorphic to a fixed "pattern" order Po (thus Po is a chain in the classical case).

A related question is the Po-recognition problem: decide whether the unknown
order is isomorphic to Po. The identification problem asks for determining the unknown
order without any a priori information.

In this paper we discuss the complexity of these problems. The model of computa-
tion is the usual decision tree model with the only modification that now every node
has three sons since two elements can turn out to be incomparable as well. For the
sorting and recognition problems we use the worst-case measure of complexity. This
measure is of no use for the identification problem as clearly every identification
algorithm has to ask every pair in order to identify an antichain. Instead, we introduce
a refined measure of complexity which assigns a function Ca(P) to every algorithm
A giving the worst-case behavior of A on orders isomorphic to P for every order P.

In 2 we observe some connections between the complexities of the above
problems. We need the notion of an essential set (consisting of covering and critical
pairs), essentially defined in Rabinovitch and Rival [8] and Kelly [4], to describe these
connections.

An example is given of an adversary argument to bound the sorting complexity
in 3. In 4 the recognition complexity of Boolean algebras is determined to be
O(n log2 n). It is shown that the minimal recognition complexity of orders with height
1 on n elements is asymptotically n log2 n. (Also, an fl(n loga n) lower bound holds
for ordered sets with width less than n 1- for any e > 0, in particular for orders with
bounded width.)

Section 5 contains identification algorithms. The first uses Dilworth decomposition,
the second is based on a recent result of Linial and Saks [6] on the existence of central
elements; both generalize sorting by insertion. These algorithms are optimal for orders
of bounded width but they can perform badly in general. The third algorithm is optimal
for orders of height 1, the "other extreme." The merging of these algorithms is still
not optimal as is shown by their behavior on Boolean algebras.
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Some remarks and open problems are given in 6. In particular, it is pointed out
that the problems discussed are special cases of more general problems which are
ordered set versions of graph property recognition problems in the sense discussed in
Bollobis 1 ].

1. Definitions. Ordered sets P on n elements are assumed to have a fixed ground
set {al," , a,}; the order relation is <; incomparability is denoted by II, An element
x is isolated if x Ily for every y. The pair (ai, aj) is a covering pair if ai < aj and there
is no ak with a < ak < a (these pairs form the Hasse diagram of P). The width w(P)
(resp. the height h(P)) of P is the size of a maximum antichain in P (resp. the length
of a maximum chain in P).

An ideal I (resp. a filter F) is a subset of elements subject to x /, y < x, which
implies y I (resp. x F, y > x implies y F). Ip(X) {y: y < x} is the ideal generated
by x, Fp(X)= {y: y > x} denotes the filter generated by x. Np is the total number of
ideals in P and Np(x) is the number of ideals containing x.

The theorem of Dilworth [2] relates the width of P to a chain cover of the ground
set" a chain cover of P with k chains exists if and only if k >= w(P).

Let Po be an ordered set on n elements.
The Po-sorting problem is to determine an unknown order P knowing only that P

is isomorphic to Po.
An algorithm A to solve the Po-sorting problem is a ternary decision tree with

nonleaves labeled "a: a" for some 1 =< <j _-< n and outgoing edges labeled "a < a,"
"a, lla, ai > a." A leaf is either labeled by an order P Po or by a sign xx. If it is
labeled by P, then P is the only order isomorphic to Po consistent with the answers
obtained along the path leading to that leaf. If it is labeled by xx, then there is no
order isomorphic to Po satisfying the answer on the corresponding path. For P Po,
A(P) is the number of questions used to find P (the length of the unique path leading
to the leaf labeled P).

The complexity of A is

and

C := max {A(P): P Po}

CS(Po) := min {C: A is a Po-sorting algorithm}

is the sorting complexity of Po.
The Po-recognition problem is to decide if an unknown order P is isomorphic to Po.
An algorithm A to solve the recognition problem is again a ternary tree with

nonleaves and edges labeled as above. Leaves are labeled with "yes" or "no." If a
leaf is labeled "yes," then all orders satisfying the answers given along the path leading
to the leaf must be isomorphic to Po. If it is labeled "no," then there can be no order
isomorphic to Po consistent with these answers.

The complexity CA of A is the depth of the tree and

Cr(Po) := min {C: A is a Po-recognition algorithm}

is the recognition complexity of Po.
The identification problem is to determine an unknown order without any a priori

information.
An algorithm A to solve the identification problem is a sequence A (A1, A2, "),

where A, is an algorithm to solve the identification problem on n elements. Thus A,
is a ternary tree as above, with leaves labeled by orders on {al,. ., an} subject to a
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leaf labeled P if P is the only ordered set consistent with the answers on the correspond-
ing path.

A(P) is the number of questions used by A, to identify P and

CA(P) := max {A(P’): P’- P}

is the complexity of A to identify orders isomorphic to P. Note that here the complexity
of A is a function.

An identification algorithm is defined to be optimal if for every identification
algorithm B

CA(P)=O(CB(P)).

(Notation: f(P)= O(g(P)) means If( P)/ g( P)l <= a for some constant a >0, f(P)=
(g(P)) if g(P)=O(f(P)) and f(P)=O(g(P)) if f(P)=O(g(P)) and f(P)=
(g(P)),f(n)=o(g(n)) if f(n)/g(n)->O as n->c.)

If P is an ordered set on {a1,’’’, a,}, then E= E1 U E2___ {a1,... an} X
{a,..., a,} is an essential set for P if

(a) (ai, aj) E implies ai < aj and (ai, a) E2 implies a[la,
(b) P is the only order satisfying (a).
(Thus E is a set of comparabilities and incomparabilities which uniquely deter-

mines P.) The size of a minimum essential set is denoted by e(P).

2. Some observations. In this section we collect some useful facts about the
problems defined above.

LEMMA 1. For every order Po,

max C(Po), e(Po)) <-- cr(po) CS(po) d" e(Po).

Proof Consider a Po-recognition algorithm and apply it to an order P--- Po. Then
arriving at the leaf, P must be identified. Indeed, if the relation between a and a
were not determined then it is easy to see that alla and, say, ai > a would both be
consistent. It is impossible, however, that both relations yield orders isomorphic to Po
(i.e., the number of incomparable pairs is not the same). Thus every recognition
algorithm can be used for sorting and hence CS(po)<-Cr(Po). Furthermore, e(Po) <-

cr(po) because in the above case enough questions must be asked to determine P
uniquely.

A recognition algorithm for Po can be obtained as follows: assume that the
unknown order is isomorphic to Po and apply a sorting algorithm. Then check the
elements of a minimal size essential set to justify the assumption. Thus Cr(Po) <
C(Po) + e(Po). [3

LEMMA 2. If A is an identification algorithm then for every order Po,

CA(Po) > cr(po).

Proof Every identification algorithm can be used as a Po-recognition algorithm:
run A for CA(PO) steps. Then every P Po is already identified. If the order is not
identified yet it cannot be isomorphic to Po. [3

LEMMA 3. An identification algorithm A is optimal iff
CA(Po)= O(C(Po)).

Proof () Follows from Lemma 2 above.
() If CA(Po)/C(Po) is not bounded, choose, for every k, an order Pk on nk

elements with CA(Pk)> k" cr(pk) such that n < n2 <’". Let B be an identification
algorithm obtained from A by merging An with an optimal recognition algorithm for
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Pk (merging means asking questions of the two algorithms alternatingly). It follows
from the proof of Lemma 1 that B in fact is an identification algorithm and CB(Pk)<=
2cr(pk). Thus CA(Pk)>(k/2)CB(Pk) and A is not optimal. (Also note that B is a
"better" algorithm as Cn(P)<=2CA(P) holds for every P.) [3

The next lemma is a reformulation of observations made by Rabinovitch and
Rival [8] and Kelly [4].

A pair (ai, a) is critical if a a, x > a implies x > a, and y < a implies y < ai.

LEMMA 4. For every Po, the covering and critical pairs form the unique minimal
essential set.

Proof. These pairs are necessary as their status is not implied by the other relations.
Covering pairs imply all comparabilities. Incomparability of critical pairs implies all
incomparabilities. (See [8], [4].) [3

In the sequel this unique minimal essential set will be denoted by E(Po).

3. Sorting. There are simple examples with small sorting complexity. For example,
if P0 has a unique maximal element and all other elements are incomparable, then
C’*(Po)= [(n-1)/2].

If #(Po) denotes the number of orders isomorphic to Po on the ground set
{al, , a, } then clearly

C Po) >- loga # Po).

Partitioning the elements into antichains according to their height (i.e., the length of
the longest chain ending with them) and considering the sizes sl,’", s, of these
antichains we get

#(eo)->
n

Sl!

and with si <- w(Po) this implies

CS (Po) > n log3 n n log3 w(Po) 5 n.

Later we shall see (Corollary 18 in 5) that

C (Po) --< w(Po)" 2n log2 n + 3 nw(Po).

Thus, when w is fixed, the sorting complexity is determined within a constant factor.
Another obvious example where the information-theoretic bound is not sharp,

besides the example above, is given by the n-element order containing only one
comparable pair. Here #(Po) n(n-1) and C(Po) ().

A special case which may be of some interest is the order consisting of independent
comparable pairs (a "matching"), where the information-theoretic bound is
)(n log2 n).

The following theorem determines the sorting complexity of a matching. The
upper bound was observed by M. Aigner.

THEOREM 5. Let n be even and Po be the parallel composition of n/2 2-element
chains. Then for the sorting complexity of Po

n 2

C(Po) =--.
4

Proof For the lower bound we use the "greedy" adversary strategy: assume that
at every stage of the algorithm the answer to a question "ai:aj" is always "a, lla"
unless adding this incomparability to the information provided already leaves no order
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isomorphic to Po consistent with these data. In the latter case the answer is "ai > aj."
(It is easy to see that the direction of the inequality in the answer is arbitrary; it is
only fixed for being definite.)

Assume that the algorithm stops by determining the order P Po with comparable
pairs al > a2, a3 > a4, , a,-1 > a,. Then it is clear that each of these pairs must have
been asked by the algorithm as otherwise reversing one inequality would also be
consistent with every other answer. Letting E(>) denote the set of these comparable
pairs, we assume that they have been asked by the algorithm in the above order.
Further, let E(II) be the set of pairs (ai, aj) asked by the algorithm with answer "ai[[ a"
obtained and E be the set of unasked pairs.

Just before (al, a2) was asked, the set of pairs not asked yet contained E(>)U E
and as the adversary uses the greedy strategy, it must have been the case that every
perfect matching (corresponding to the comparable pairs) in this set of pairs contains
(al, a2). Hence every perfect matching in E(>)J E contains (al, a2).

The same argument shows that every perfect matching in E(>)U E contains
(an, a4), , (a,_, a,) as well, thus E(>)U E contains exactly one perfect matching.

Now we use the following result of Hetyei [3] (see also [7, Problem 7.24])"
LEMMA 6 [3]. If a graph on n vertices has exactly one perfect matching then it has

at most n2/4 edges.
This implies [E([I)]_-> n(n-2)/4. As all pairs in  (ll) and E(>) have been asked

by the algorithm, the lower bound follows.
A sorting algorithm can be given as follows: starting with an arbitrary element

a, the only element a comparable to it can be found with n- 1 questions. Elements
al and a2 can then be discarded. To find the next comparable pair, n- 3 questions are
needed, etc. Altogether (n 1) + (n 3) +. / 1 n2/4 questions are required.

4. Recognition. In this section we first determine the recognition complexity of
Boolean algebras (this example will be used in the next section). Then we show that
the minimal recognition complexity of orders with height 1 on n elements is asymptoti-
cally n log2 n. Finally we construct orders of height 4 with linear size essential set
(implying that the proof for height 1 does not extend to arbitrary bounded height).

In the next section it is shown (Corollary 18) that

Cr(Po) <- w(Po) 2n log2 n + 3nw(Po)

and, if h(Po)= 1, then

Cr Po) <= 2e(Po).

This means that the recognition complexity is determined for orders of bounded width
or of height 1 up to a constant factor. (Note that we do not have an analogous statement
for the sorting complexity of orders of height 1.)

THEOREM 7. Let n- 2 and B, be the Boolean algebra on m atoms. Then for the
recognition complexity of B,

C"(B,,)-O(n log2 n).

LEMMA 8. e(B,)= (n/2 + 1) log2 n (if m > 2).
Proof We use Lemma 4. Every element has degree rn in the Hasse diagram.

Critical pairs form a matching of atoms and co-atoms.
LEMMA 9. IfP is an arbitrary ordered set on n elements, then a maximal nonexten-

dible) chain can be found in n. [log2 (h (P) + 2) steps.
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Proof Assume we found a chain xl <"" < Xk. Take an unused element y and
start inserting y into the chain by binary search. If the search is successful, y is inserted
in at most [log2 (k+ 1)] steps. If y llx, for some 1-<i <- k then the chain cannot be
extended by y and hence y can be excluded from later comparisons.

LEMMA 10. CS(B,)<--_n(log2 n+2[log (log n+2)]+2).
Proof We describe a B,-sorting algorithm.
Find a maximal chain Xo <" < x,, in n [log (log n + 2) steps. Then xl is an atom.

Compare every element to xl" those incomparable to Xl form a Boolean algebra with
rn 1 atoms. Repeat the same process altogether m times. Finally the atoms Yl, ",Y,
are identified and we used at most 2n(1 + [log (log n + 2)]) steps.

Now compare every element with Yl, ",y,,. This determines the Boolean algebra
since

u >_- v iff v -> y implies u _>- y for every atom Yi.

The last phase needs at most n log2 n steps.
Proofof Theorem 7. The upper bound follows directly from Lemmas 1, 8 and 10.

By fixing atoms bl,. ., b,, all the other elements are already determined. Thus

f(n log2 n).

We now turn to orders of height 1.
LEMMA 11. For every e > 0 there exists an no such that if Po is an ordered set on n

elements with n >= no and h(Po)= 1 then

Cr(Po)>--(1-e)n log2 n.

For the proof of Lemma 11, we use the following lemma.
LEMMA 12. For every e > 0 there exists an no such that if Po is an ordered set on n

elements with n >= no and h(Po)= 1 then

e(Po) >- 1 e) n log2 n.

Proof. Let Po- A LJ B where the elements in A are maximal and the elements in
B are minimal (isolated elements are distributed arbitrarily). Assume [A] l, IB[ k,
k -< [n/2J. Then every pair (x,y) with xB, yA belongs to E(Po) (every such pair
is either critical or covering). Consider now x, y A. Then x[ly and (x, y) or (y, x) is
a critical pair iff IPo(X) and Ipo(y are comparable. If Ipo(X) IPo(y) then (x, y) is critical.

Let HI,’", H (t 2k) be the subsets of B and s (I_-<i -< t) be the number of
elements x in A with Ipo(X)- H. Then there are

pairs (x, y) with Ipo(X)= Ipo(y) (x, y eA, x y). As

___
s= l, the convexity of the

function f(x) x2 implies that the above sum is minimized if all the s are

[1/2k] or [ll2k].
Thus
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Hence

e( Po) >- k l+
2

>- k + ( [n/2k+’j
2k

(n 2k+’)(n --2k+2)
>=k’l+

8.2k

If

n _-> 4 2k+l

then

e( Po) >= k l-
1 n2

32 2k"

We distinguish two cases. If

then

k _>- log2 n log log2 n 5

e(Po)-> (log2 n-log2 log n-5)(n-log2 n)>=(1-e)n log n

when n is sufficiently large. If

k < log2 n log2 log2 n 5

then (,) holds and

2k--
32 log2 n"

Thus

2

e(Po) >=-"-> n log2 n.

ProofofLemma 11. Using Lemma 1, the lemma follows immediately from Lemma
12 above. I-]

LEMMA 13. For every e > O, there exists an no, such that if n >-no then there exists
an order Po on n elements with h(Po)= 1 and recognition complexity

Cr(Po)<(l+e)n log n.

The proof is given in the next section after Corollary 22.
THEOREM 14. Letf(n):=min {cr(po): IPol n, h(P0) 1}. Then

f(n)
n log2 n
1 asno.

Proof Follows directly from Lemmas 11 and 13.
Lemma 12 might suggest that e(Po)=f(n log2 n) for orders with h(P)<-k for

every fixed k. The next theorem shows that this is not true.
THEOREM 15. There exist orders of height 4 with e(P)=(4+o(1))lP[.
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Proof. Take two disjoint sets A, B with IAI- IBI- 2m and define

tt := {{X}: X e A U B};

Y(2 := {H: IHI m and H
_
A or H B};

Y(3 := {H: H H, U H2 with [H11-- H21-- m, H, A, H2 Bl;

4 := {H: [H 3m, (A U B)- H Y(2};

o := {A U B-{x}: x A U B};

Yt’:= U N;i=1

Pe := ordered by inclusion.

Then clearly Pe is of height 4 and has

8m + 4 (22) + (22)2 (22)
2

(1+o(1))

elements. Furthermore, the Hasse-diagram of Pe contains

(2tn-1 22)2 2

8m
k, m_l)+4 ( :4(7) (1+o(1))

edges. The first term counts edges incident to maximal and minimal elements. The
second term counts edges incident to 3: each H e Y(3 contains exactly two sets in f2
and is contained in exactly two sets from 4.

The critical pairs in Pe are the pairs (A U B-{x}, {x}) as in the case of the full
Boolean algebra.

Thus

e(P) =4 (1 + o(1)),

proving the theorem. [3

(Note that if we delete some elements of 3 so that each set in 2 and Y(4 has
still neighbors in 3, the necessary properties of Pe are preserved. Thus for every n
there exist height 4 orders with linear size essential set.)

To close this section we note that from the bound given at the beginning of 3
it follows that

cr(po) (n log2 n)

if w(Po)=< rt
1- for any e > 0, suggesting problem 2 in the last section.

5. Identification. We describe some identification algorithms and give bounds for
their performance.

The first two algorithms generalize sorting by insertion. Inserting an element x
into an ordered set P’ means to determine which elements are smaller, larger or
incomparable to x.
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Both algorithms A and B proceed in n stages on orders on {a1,... a,}. After
stage the suborder Pi on {al,’", ai} of P is determined. Stage i+ 1 consists of
inserting a+l into P. We only give the insertion methods.

Insertion in algorithm A. Choose a minimum chain cover CI,..., Ct, of Pi and
insert a+l into each chain. Insertion into a chain is done by a straightforward
modification of binary search.

To describe algorithm B we note that the elements of {a, , ai} that are smaller
than a+l in P form an ideal Ii in Pi (resp. the elements which are larger form a filter
F, of P,).

Insertion in algorithm B. Determine/ and F by algorithm C below.
Obviously, the two tasks are equivalent so we only formulate the algorithm to

determine I.
An element z of P’ is called a central element if for every z’ in P’

1 Np,(Z’) 1

Np, 2

Algorithm C below determines the ideal P’(x)= {y’y P’, y < x} for an already iden-
tified order P’ and a new element x recursively.

ALGORITHM C.
Given P’ and x choose a central element z of P’ and compare it with x.
If x> z then put P’(x) := Ip,(Z) [..J {z} [..J P"(x), where P"= P’-(Ip,(Z) l,.J{z}).
If x z then put P’(x):= P"(x), where P"= P’-(Fp,(Z) t.J {z}).

We need the following result of Linial and Saks [6].
LEMMA 16 [6]. If Z is a central element then

60 =< =< 1 6o,
N,

where

6o 1/4(3-1og2 5)-----0.17.

THEOREM 17. A and B are correct identification algorithms. For every ordered set
P it holds that

CA(P)<=2nw(P)(1/2+log2 (n+ w(P))-log2 w(P))

and

CB(P) =< 7.46n log2 Np.

Proof The correctness ofA is obvious. The correctness of B follows from observing
that if x > z then x > z’ for every z’ < z in P’ and if x ; z then x ; z’ for every z’> z
in P’.

The bound for A holds since insertion into a chain of length m is easily seen to
require at most 21og2(m+l)+l steps and at each stage l=<w(P) by Dilworth’s
theorem. (The computation uses the concavity of log2 (x).)

The bound for B is obtained as in [6] noting that the choice of a central element
always reduces the number of ideals by a factor of (1- 60) at least, using Lemma 16
above.
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COROLLARY 18. For every order Po

C (Po) --< Cr(Po) --< w(Po)2n log2 n + 3nw(Po).

Proof. Immediate from Lemmas 1 and 2. [q

Comparing A and B we note that A is simpler to compute. The bound of B is not
worse than that ofA but we do not know ofany examples where it performs much better.

Now we describe another identification algorithm, efficient for orders of height
1. We use the following variables"
P’ denotes the actual order obtained up to a certain stage of the algorithm

(including the comparabilities and incomparabilities deduced);
MAX (resp. MIN) is the set of elements that are maximal (resp. minimal) in P’;

(where now x is maximal (resp. minimal) if x z for every z and x > y for
some y (resp. x z and x < y for some y));

ISO is the set of elements that are known to be isolated in P (thus x ISO if[

it is already known to be incomparable to every element);
U is the set of "unprocessed" elements U P- (MAXt.J MINU ISO)).

A pair (x, y) is called undetermined in P’ if neither xlly, x> y nor x < y is in P’;
otherwise it is determined.

ALGORITHM D.
1. P’:= , MAX:= , MIN:= , ISO:= , U:={al, a,}.
2. If U compare every undetermined pair x, y MAX subject to Ie, (x)

_
Ip, (y) and every undetermined pair x, y MIN subject to Fp, (x) Fp, (y),
go to 6.

3. Choose a z U and compare it to every x subject to (z, x) is undetermined
in P’. Update P’, MAX, MIN, ISO, U. If h(P’)> 1, go to 5.

4. If ]MAXI--< IMINI compare every x MAX with every y s.t. (x, y) is undeter-
mined in P’. Update P’, MAX, MIN, ISO, U. If h(P’)> 1 go to 5.
If IMINI_-<IMAXI compare every x MIN with every y s.t. (x, y)is un-
determined in P’. Update P’, MAX, MIN, ISO, U. If h(P’)> 1 go to 5,
else go to 2.

5. Compare every undetermined pair.
6. Stop.

Informally, the algorithm proceeds as follows. Sets MAX, MIN and ISO contain
elements already known to be maximal, minimal or isolated. If there is an element z
not contained in any of them, it is compared to every element. To update necessary
information, elements in the smaller of the two new sets MIN and MAX (or elements
in both sets, if they are of equal size) are compared to every other element. If
MAX U MINU ISO contains every element, all remaining undetermined pairs are
compared. If at any point the order turns out to have height > 1, all pairs are compared.

PROPOSITION 19. Algorithm D is a correct identification algorithm.
Proof If h(P’)> 1 during an execution of steps 3 or 4 then every undetermined

pair is compared in step 5. So the order is obviously identified. Otherwise the algorithm
reaches the execution of step 2: after an execution of step 3 z belongs to MAX, MIN
or ISO. So IU decreases.

If step 2 is reached then the elements in ISO are already compared with every
other element. Furthermore, every pair (x, y) with x MAX, y MIN is determined
as can be seen from the previous execution of step 4. Thus the only undetermined
pairs (x, y) must satisfy either x, y MAX or x, y MIN (we have P MAX t_J MIN
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ISO at that point). If x, y MAX (resp. x, y MIN) and Ip,(X) and Ip,(y) are incompa-
rable sets then (x, y) is determined as it must be true that xlly. Therefore all undeter-
mined pairs are compared in step 2 and the order is identified indeed.

THEOREM 20. If h(P) 1 then Co(P) <- 2e(P).
Proof Let P be an order of height 1. Since every pair is compared at most once,

it is sufficient to show that the number of nonessential pairs ever compared by the
algorithm is at most e(P).

The definition of critical pairs implies that every pair compared in step 2 is
essential. (In fact, only pairs from the larger of the two sets MAX, MIN are compared
at that step.) If in step 3 the element z turns out to be isolated, then every pair containing
z is critical and in this case MAX and MIN are not modified.

Therefore, the algorithm can compare nonessential pairs (x, y) only during those
executions of steps 3 and 4 where the element z turns out to be maximal or minimal.
(Furthermore, for every such pair either both x, y are maximal or both are minimal.)
An execution of steps 3 and 4, where z turns out to be maximal or minimal, is called
a phase.

Let MAX,, MIN,, ISO, and U, denote the values of the sets MAX, MIN, ISO
and U after phase i. Let zi be the element selected in phase and V be the set of
elements comparable to z,.

LEMMA 21. For every i:

(a) if IMAXi[ _<-IMIN,I, then after phase every pair containing an element from
MAX/is determined;

(b) if IMIN,[ =< IMAX,], then after phase every pair containing an element from
MIN, is determined.

Furthermore, there are sets MAX,*, MIN/* with the following properties"
(c) MAX,* (3 MIN* covers all pairs (u, v) compared by the algorithm in phases

1, , subject to {u, v} (’11SOi ;
(d) [MAX/* U MIN/* _<- 2 min (]MAX,[,
(e) MAX,*

_
MAX/, MIN*_ MIN,;

(f) /f [MAXi <= [MIN,[ then MAX,* MAX/;
g) if IM N I-< IMAX,] then MIN/* MIN,.
Proof By induction on i. For 0 all sets are empty. We distinguish several cases.
Case 1. [MAX, < IMINil.
Case 1.1. z,+ is a maximal element.
Then in step 3 of phase i+ 1, z+ is added to MAX and V+ is added to MIN.

(It may be the case that V+
_
MIN,.)

Case 1.1.1. [MAX U {z,+,}[ < IMIN, U V+].
Then using (a) by induction, no further comparisons are performed in step 4 of

phase i+1. Putting MAX*+:=MAX*U{z,+}, MIN/*+:=MIN*, all conditions
remain satisfied.

Case 1.1.2. ]MAX, U {z,+}[ ]MINi I,.J V/+I[.
(This may occur only if V/+ MINi.) In this case, no further comparisons are

performed in the first "if" of step 4 of phase i+ 1, but there may be comparisons
involving elements from MIN in the second "if" of step 4 of phase + 1. However,
MINi+, MINi, MAX,+,_ MAX, U {z,+,} and thus IMINi+,I<-IMAXi+,], so

MAX*+ := MAX,* U {z,+}, MIN*+I := MIN, satisfies the requirements.
Case 1.2. z,+ is a minimal element.
By (a), V+I CI MAX Q}, otherwise z,+ would be contained in MIN,. So in step

3 of phase + 1, new maximal element(s) will be added to MAX.
Case 1.2.1. ]MAX, U V+,] < IMIN.i LI
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Then in step 4 of phase + 1, all undetermined pairs containing an element from
V+I are compared and no other pairs. We can choose MAX,*+1: MAX*U
MIN*+I := MIN* U

Case 1.2.2. IMAXi tJ V+ll IMINi U
In the first "if" of step 4 of phase + 1, all undetermined pairs involving an element

from V/+I are compared. Possibly all undetermined pairs involving an element from
MINi are compared in the second "if" of step 4. We can choose MAX,*+1:=
MAX,* U g/+l, MIN*+I := MINi U

Case 1.2.3. IMAXi U V+I[ > IMINi t_J
Then in step 4 of phase i+ 1, undetermined pairs containing an element from

MINi are compared and we can choose MAX,*+1 := MAX,*, MIN*+I := MINi U
Case 2. [MAXi[ IMINi[.
Case 2.1. zg+ is a maximal element.
By (b) of the induction hypothesis, V+I ["1MIN and we get two cases.
Case 2.1.1. ]V/+I[--1.
Let V+I {z+l}, then all undetermined pairs involving z i+1 are compared in the

second "if" of step 4 of phase i+ 1. We can choose MAX,*+1:= MAX,* U
MIN*+I := MIN* U {z’i+l}-

Case 2.1.2. IVy+l[ > 1.
In this case no further comparisons are performed in step 4 of phase + 1 and we

can put MAX,*+1 :- MAX,* U {zi+l}, MIN*+l := MIN*.
The remaining cases require analogous arguments, so we give the definitions of

the sets MAX,*+1, MIN*+I only.
Case 2.2. Zi+l is a minimal element.
Case 2.2.1. [V+ll 1.

MAX,*+1 := MAX,* U {Z+l}, MIN*+I := MIN* U {Zi+l}.

Case 2.2.2. V+I[ > 1.

MAX,*+1 := MAX,*, MIN*+, := MIN* U
Case 3. ]MAXi[>IMINi[.
(Note that step 4 is not symmetric in MAX and MIN.)
Case 3.1. zi+l is a maximal element.
Case 3.1.1. ]MAXi U {z+l}] > IMIN U

MAX,*+1 := MAX,* U {zi+l}, MIN*+I := SIN/* U V+I.
Case 3.1.2. IMAXi CI {Zi+I} IMINi U V/+ll,

MAX51 := MAXi U {zi+l}, MIN*+l := MIN* U V+l.

Case 3.1.3. IMAXi U {Zi+l}l < IMINi U

MAX51 := MAXi U {zi+,}, MINS1 := MIN*.
Case 3.2. zi+l is a minimal element.
Case 3.2.1. IMAX t3 V+ll> ]MIN U

MAX/*+1 := MAX/*, MIN*+I := MIN* U {Zi+l}.

Case 3.2.2. IMAXi U V+I[ IMINi U {z,+l}].

MAX,*+1 := MAXi, MIN/*+I := MIN* U {z+l}.
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Returning to the proof of Theorem 20, let be the last phase, MAX* := MAX,*
and MIN* := MIN*. The rest of the argument is symmetric in MAX and MIN, so
assume IMAXI-<IMINI. Then Lemma 21 implies MAX*= MAX and as IMAX*I+
IMIN*I-< 2IMAXI, also IMIN*I-< IMAX*I holds. All nonessential pairs compared by
the algorithm are either pairs ofmaximal elements or pairs of minimal elements covered
by MIN*. So their number is at most

(MX) + ((M2IN) (MINMIN*))
N +

2

< MAX. MIN -< e(P). [3

(We remark that the example of a matching shows that the factor 2 in the bound
is sharp for the algorithm.)

COROLLARY 22. Ifh(P)= 1 then CD(P)<=2 cr(p) and Cr(P)_-<2 e(P).
Proof. Immediate from Lemmas 1 and 2.
Now we prove Lemma 13 of previous section.
ProofofLemma 13. We construct the order Po as follows: Po has I(1 + e) log2 n]

maximal elements and n- [(1 / )log: n minimal elements. Each minimal element
has [(1 /)/2. log: n] upper covers so that the set of upper covers is different for
each minimal element. This condition is easy to satisfy as there are

(1 + e) log2 n ] 1+

choices. Furthermore, it can also be required that the set of lower covers be different
for each maximal element and each be of size between, e.g., n/4 and 3 n/4. Then

e(Po) [(1 + e)log hi(n- [(1 + e)log2 n]).

Thus a 2(1 + e)n log n recognition algorithm for Po is given by running D for C(Po)
steps. (If the order is not identified up to this point, it cannot be isomorphic to P0.)

A slight modification gives the smaller upper bound. A pair x > y can be found
in n- 1 steps; y can be compared to everything in at most (n- 2) steps. Then y must
have [(1 + e)/2 log n] upper covers (otherwise P Po). Comparing the upper covers
of y to everything we get every minimal element except at most one. Comparing the
remaining at most [(1 + e)/2 log n + 1 elements to everything, P is identified whenever
P Po.

Finally we point out that algorithms B and D are not sucient to produce an
optimal algorithm. Let algorithm be obtained by merging B and D (in the sense of
the proof of Lemma 3).

Then for the Boolean algebras B we have

C(B,,)=O(nlogn)

from Theorem 7 and

(.2)C,(B,,) 1"
log2 n
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Indeed, if the antichain of size

m m

is examined first then every pair is compared in order to perform the insertion in B,
and D is of no help in this case.

6. Some olden lrOlflems. (1) It would be interesting to find good bounds for the
sorting complexity in general.

(2) The special cases discussed in 4 suggest that perhaps the recognition com-
plexity is l(n log n) for every order Po.

(3) Is it true that there is no optimal identification algorithm in the strong sense
of optimality defined here (cf. Lemma 3)? Are there other measures of complexity for
identification algorithms ?

(4) The definition of sorting and recognition problems introduced here is actually
a special case of a more general one. One can consider sorting and recognition problems
for arbitrary classes of orders (in this paper we considered classes that consist of
isomorphic copies of a fixed order Po). It seems reasonable to assume that these classes
are closed under isomorphism, i.e., they are ordered see properties. In this framework
the identification problem is just the sorting problem with respect to the class of all
orders. The recognition problems arising this way are natural ordered set versions of
analogous problems concerning graphs (see Bollobis [1, Chap. 8] for an excellent
survey). The ordered set properties are substantially different as there are many "easy"
properties with complexity o(n2) like having a unique maximal element, being a linear
order, having bounded width or setup number. Nevertheless it is not difficult to give
(n2) lower bounds, e.g., for connectivity, bounded height, being a lattice, an interval
order, etc. What properties can be proved to be "elusive," i.e., to have complexity ()?

Acknowledgment. We are grateful to M. Aigner for his remarks (in particular for
pointing out the upper bound in Theorem 5) and to a referee for suggesting a
simplification of the proof of Theorem 20.

Noce added in proof. There are some further results concerning problems 2 and
3. It was shown that interval orders have recognition complexity ll(n log n) and there
is an optimal identification algorithm for semiorders (U. Faigle and Gy. Turin, The
complexity of interval orders and semiorders, Discrete Math., to appear). It was also
shown that almost all orders have recognition complexity l(n log n) (H. J. Pr6mel,
Counting unlabeled structures, J. Combin. Theory Ser. A, 44 (1987), pp. 83-93). Recently
M. Saks solved problem 2. In general, he showed that every n element order has
recognition complexity at least -n log3 n + o(n log n) (M. Saks, Recognition problems
for transitive relations, to be published).
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EXPECTED PERFORMANCE OF m-SOLUTION BACKTRACKING*

DAVID M. NICOL?

Abstract. This paper derives upper bounds on the expected number of search tree nodes visited during
an m-solution backtracking search, a search which terminates after some preselected number m problem
solutions are found. The search behavior is assumed to have a general probabilistic structure. Our results
are stated in terms of node expansion and contraction. A visited search tree node is said to be expanding
if the mean number of its children visited by the search exceeds 1, and is contracting otherwise. We show
that if every node expands, or if every node contracts, then the number of search tree nodes visited by a

search has an upper bound which is linear in the depth of the tree, in the mean number of children a node
has, and in the number of solutions sought. Bounds linear in the depth of the tree are derived for the case
where the upper portion of the tree contracts while the lower portion expands. We derive linear bounds for
some special cases of an expanding upper portion and contracting lower portion; however, in the general
case we have exponentially complex bounds. While previous analyses of 1-solution backtracking have
concluded that the expected performance is always linear in the tree depth, our model allows super-linear
expected performance. By generalizing previous work in the expected behavior of backtracking, we are

better able to identify classes of trees which can be searched in linear expected time.

Key words, random search, random trees, backtracking, depth-first search

AMS(MOS) subject classifications. 68C25, 68E05

1. Introduction. Backtracking (or depth-first search) is a powerful tool for quickly
finding solutions to certain types of problems whose potential solution space is huge.
Such a search may terminate upon finding one solution, or may attempt to discover
all solutions. We will study m-solution searches, which terminate once a preselected
number m solutions are discovered (or when it is determined that fewer than m
solutions exist). Backtracking is used to solve problems which seek an n-vector
(X1, ", X,) where each Xi is an element of a finite set Si, such that some condition
C((XI,..., Xn)) is satisfied. For example, backtracking is often used to solve the
n-Queen’s problem. In this case, each vector coordinate position represents a chess
board column, Xi =j means that a queen is placed in column and row j, and the
condition C is that no queen attacks any other. A backtracking search exploits necessary
subconditions for a solution. The necessary subconditions {Cj} are chosen so that if

C.((X, ., X)) is satisfied, then Ci((X," ", Xi) is satisfied for such that 1 -< <j.
Given a candidate partial solution (X,... ,Xk), the search checks condition
Ck((X,..., X)). If that condition is satisfied, the partial solution is extended to
(X1,..., X/) for some X+ S/, and the extended candidate partial solution is
tested against C+. If on the other hand Ck((X1,"., X)) is not satisfied, then an
alternate value X S which has not yet been appended to (X1,..., X_) (if one
exists) is chosen, and the partial solution (X1,..., Xk_, X) is checked against C.
If all elements of S have already been appended to (X1,’’ ", X_) and have failed
to satisfy Ck, the algorithm "backtracks" and attempts new extensions to

* Received by the editors August 6, 1986; accepted for publication April 22, 1987. This research was

supported by the National Aeronautics and Space Adminstration under NASA contract NASI-18107 while
the author was in residence at ICASE, NASA Langley Research Center, Hampton, Virginia 23665.

t Institute for Computer Applications in Science and Engineering, NASA Langley Research Center,
Hampton, Virginia 23665 and The College of William and Mary, Williamsburg, Virginia 23185.
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(X1,’" ", Xk-2). Most basic algorithm texts discuss the details of backtracking, for
example, see [5].

The search space of a backtracking search can be represented by a tree. A tree
node is uniquely identified by the path between it and the tree root; a path of length
j identifies a unique partial solution with j coordinate assignments; a node’s set of
children represent all possible extensions to the partial solution represented by the
node. Leaf nodes represent potential full solutions. Viewed in this way, backtracking
is a depth-first search of the tree with pruning. Pruning occurs if a tested partial solution
fails to satisfy the appropriate condition: the entire subtree rooted in the failing node
is pruned from the search space, and the search "backtracks." Backtracking’s success
lies in this (problem-dependent) ability to dynamically prune large portions of the
search tree. However, backtracking’s worst case performance is exponential in the size
ofthe problem; nevertheless, many problems do not exhibit this worst case performance.
A more meaningful measure is the expected performance. The usual method for
determining, the expected or average performance of an algorithm is to assume that
problem parameters are random, or that the outcome of a decision is random (for
examples, see [6]). One way of introducing randomness into backtracking is to suppose
that the success or failure of a visited node is random. This approach is adopted by
12], and is the one we will explore. While a probabilistic model may not describe any

particular backtracking search very accurately, it is useful for determining performance
as a function of general search space characteristics. As pointed out in [7], such a
model can also reveal the sensitivity of performance to the search space parameters.

A number of researchers have considered the expected performance of backtrack-
ing, or related problems. Extensive analysis of branch and bound methods on random
search trees is found in [11]. That work employs the theory of branching processes
[4], which provides a very uniform probability structure for the search tree. In [7], the
problem of finding a least cost path in a random binary tree is considered; this analysis
also employs the theory of branching processes. Backtracking searches which seek all
solutions to random CNF satisfiability problems are considered in [2]. The randomness
introduced to the search model there is intimately related to the problem type (CNF
satisfiability), allowing a tight analysis of that problem. Close approximations for the
mean and variance of the number of nodes visited in a depth-first search which
terminates with one solution are derived in [12]. Our search model closely resembles
theirs, but our approach is quite different. The analysis in 12] assumes that the search
tree is binary, and that the randomness in node evaluation outcomes is uniform across
the entire tree; every visited node has probability p ofbeing a successful partial solution.
The search tree has an extremely uniform structure under these assumptions, allowing
[12] to identify recurrence relations and closely approximate their solution. Renewal
theory is employed in 14] to derive approximate expected bounds on memory require-
ments for general branch-and-bound methods.

All of the research mentioned above introduces randomness in a very uniform
way. This is accepted practice and is usually required for analytic tractability. For the
purposes of general behavioral description, uniform randomness is adequate, unless
the model deviates strongly from known behavior. For backtracking, this is exactly
the case. Intuition suggests that in general, the larger the size of the partial solution,
the harder it will be to extend that solution. Yet under the assumption of uniform
randomness, the likelihood of pruning a node and its subtree is the same anywhere
in the search tree. Furthermore, the assumption of uniform randomness has led to
surprising results. Both 12] and 11 derive bounds on the expected number of search
nodes visited during a 1-solution search; these bounds are linear in the tree depth
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regardless of the probability parameter p. Under their modeling assumptions, we must
conclude that the average number of nodes visited by a 1-solution search is always
linear in the depth of the search tree.

Uniform randomness does not accurately model our expectations about pruning
behavior; furthermore, its assumption produces results whose strength is counter-
intuitive. These observations have led us to consider a more general probabilistic model
of backtracking’s behavior. In doing so, we reaffirm much of the strength of theresults
derived in [12] and [11]. However, unlike the models in [12] and [11], our model
allows super-linear complexity under the normally anticipated behavior of a backtrack-
ing search. By generalizing the probabilities which model searching behavior, we are
thus better able to classify searches which will have linear expected performance. We
will allow a general probability structure on a tree with depth D, whose nodes have
random numbers of children. Defining natural notions of node expansion and contrac-
tion, we will show that if all nodes expand, or if all nodes contract, then there exist
linear upper bounds on the number of nodes visited in a backtracking search for m
solutions. These bounds are derived in terms of the probability structure, the number
of solutions sought and the depth of the search tree. We then derive linear upper
bounds for any search tree whose upper portion has all contracting nodes, and whose
lower portion has all expanding nodes. We also derive linear upper bounds for trees
having an expanding upper portion and contracting lower portion, where the degree
of contraction is bounded in a depth independent way. If the degree of contraction
cannot be bounded, we show that super-linear complexity can be expected.

2. Model definition. A backtracking search is a depth-first search, with the pro-
vision that it does not traverse any subtree rooted in a failed node. We model the
decision to prune by supposing that every explored node has an extension probability
of representing a successful partial solution. The extension probability for a leaf node
is the probability that the leaf node represents a full solution. We also assume that a
given visited node’s success is independent of any other node’s at the same depth. It
is important to observe that this probability is conditioned on the event of the node
being visited by the search. Given that a node is successful, we suppose that it has a
random number of children, and that the mean number of children is n (this assumption
is similar to one in [11]). We allow each node’s distribution of children to be unique,
but assume that each distribution is "new better than used in expectation," or NBUE
[10]. A nonnegative random variable Y is NBUE if E[Y-alY a]-E[Y] for all
a <_-0. Common examples of continuous NBUE distributions are hypo-exponentials,
normals and certain classes of gamma and Weibull distributions. An appropriately
constructed discrete approximation to a continuous NBUE random variable will be
NBUE, and the degenerate constant random variable is NBUE. Treating Y as a
life-time of some object, Y is not NBUE if a used object’s expected remaining life-time
after living a 0 time units is larger than its unconditional expectation E[X]; mixtures
of exponential random variables fall into this class [10]. We say that a node with
extension probability p expands if p 1/n, because given that the node is visited, the
expected number of its children which are visited is

pn/(1-p) O 1.

We say that a search tree is expanding if each of its nodes expands. Likewise, ifp - 1/n,
we say that the node contracts; we say that the search tree contracts if every one of
its nodes contracts.

Figures 1, 2 and 3 illustrate some of these ideas. Figure 1 depicts a small search
tree, where each node is labeled with its extension probability. Figure 2 shows a
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FG. 1. Search tree with extension probabilities.

Failed Node

FIG. 2. Realization offull search, two solutions.

FIG. 3. Realization of 1-solution search.

possible realization of the nodes searched, where the entire left subtree is traversed,
but the right child of the root fails, so that none of its children are visited. Assuming
that n--2, we see that the root’s left child is expanding (0.6 > 1/2) while the root’s right
child is contracting (0.4 < 1/2). It is important to note that the definition of expanding
and contracting nodes are in terms of the mean value n, not the number of children
actually realized by a parent. Figure 3 depicts the nodes searched during a 1-solution
search which discovers that the second leaf node visited is a successful full solution.

We will alternately consider two types of backtracking searches. A full search is
one which terminates only after all solutions have been found. We let N denote the
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random number of nodes visited during a full search, we also let N denote the random
number of nodes visited at depth j. For many problems, we are satisfied with finding
only one solution, and may substantially reduce the number of nodes visited
by stopping with the first solution. We call a search which terminates with
the first solution (or exhausts the search tree) a 1-solution search. Let T denote
the random number of nodes visited during a 1-solution search, and let T denote the
random number of nodes visited at depth j during a 1-solution search. Our approach
also supports generalization of 1-solution searching, an m-solution search. An m-
solution search might be used in a situation where it is too costly to search for all
solutions, but a sizable sampling of solutions is desired. The random variables T(m)
and T(m) are the immediate m-solution analogues to T and T. We will use E[N]
and E[T(m)] as measures of backtracking’s average complexity. As noted in [11] and
[12], the average time complexity of searching may be larger, being dependent on the
complexity of the evaluation of the necessary subconditions.

Our results are stated in terms of bounds on the maximal and minimal extension
probabilities among all search tree nodes. We let pnax denote the maximum extension
probability among all nodes at depth j; we similarly define the depth-dependent

_minminimum pj For every depth J (recall that the tree has depth D) we define

min minp+ max { pj , p+ min {p
l<=j<=J

min minpj+ max "tP I, PJ+ min { Pj 1,
J <j<=D J.<jD

and finally, pmin _min pmaxP+D and P+D. Table 1 summarizes our model definitions.
Under our model assumptions, it is possible to find extension probabilities which

lead to exponentially complex 1-solution searches. Suppose that the extension prob-
abilities for all nodes at depths 1, 2,..., D-1 are equal to 1, and that the solution
probabilities at depth D are all equal to 0. The 1-solution search will never find a
solution, but will visit every node in the search tree. This degenerate case clearly has
complexity which grows exponentially in the depth of the tree. While this example is
not likely to represent any interesting problem particularly well, it does illustrate
that the complexity of a 1-solution search can be high. By identifying classes of trees
which yield good expected complexity, we are better able to identify classes of
trees which do not.

TABLE
Model parameters.

Notation Definition

D
N

T(m)

+J

+J

J+

J+

prnax
pmin

Depth of search tree
Number of nodes visited in full search
Number of solutions sought
Number of nodes visited in m-solution search
Mean number of children of successful node
Maximum extension probability at depths up to J
Minimum extension probability at depths up to J
Maximum extension probability at depths greater than J
Minimum extension probability at depths greater than J
Maximum extension probability among all nodes
Minimum extension probability among all nodes
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3. Summary of results. Our analysis will consider four classes of search trees. We
first treat the class of contracting trees (pmaX__< l/n), and show by Lemma 1 that
E[N]<= nD. We then examine the class of expanding trees (pmin> l/n), and give in
Lemma 2 an upper bound on E[T(m)]. This bound is linear in D, in m, and in n.
Together, Lemmas 1 and 2 address the model assumptions considered in [12]. While
our bounds are not as tight as the results in [12], they are considerably more general.
Lemmas 3, 4 and 5 treat trees with mixtures of expanding and contracting nodes. In
Lemma 3 we give a bound which is marginally linear in D, m and n for the situation
where an upper portion (near the root) of the tree has contracting nodes, and the lower
portion has expanding nodes. This indication of good performance is not surprising;
contracting nodes near the root tend to prune large portions of the tree. These results
serve as analytic vindication of the search rearrangement strategies studied in [1], [3]
and [13] (a formal analysis of average behavior under this strategy for the CNF
satisfiability problem is reported in [9]). Search rearrangement strives to reorder the
sequence of variable assignments so as to increase the likelihood of pruning at shallow
levels of the search tree. Finally, Lemmas 4 and 5 treat intuitively appealing situations
where it is relatively easier to extend small partial solutions than it is to extend larger
partial solutions. We can model this phenomenon with search trees having an expanding
upper portion and contracting lower portion. When the extent and degree of contraction
is bounded independently of the tree depth, the bound on E[T(m)] is marginally
linear in D, polynomial in n and exponential in the extent of contraction. Thus we
see that our general model allows linear performance in a situation we expect to
encounter in practice, but which is not well described by previous average performance
analysis. Furthermore, the constraints required to achieve this linearity are a guide
towards identifying trees which do not have linear expected performance. We discuss
that issue further in 7.

Our results are stated below. Derivations are given in following sections.
LEMMA 1 (Contracting Trees). IfpmaX<=l/n, then E[N]<nD. 1-1
LEMMA 2 (Expanding Trees). If there is an e > 1 such that pmin e/n, then

n(D+m-1)
E[T(m)]<

e--1

LEMMA 3 (Contracting/Expanding Trees). If there is an I >- 1 and e 1 such that
< 1/n and min

P+I p+ > e/n, then

n(D-I+m-1)
E[T(m)]<In+

e-1

LEMMA 4 (Expanding/Contracting Trees). If there is a > 1 and J >- 1 such that
p /n and+(D--J) P(o-J+ l/n, then

(t$D-J--1)+njtSD-J-1 [’]E[N]<--n
3-1

LEMMA 5 (Expanding/Contracting Trees). If there are e > 1, and J, C >- 1 such
_minthat P+o-J)-min => e n and 1/Cn <po-J)+ < 1/n, then

m(Cn)J/l+n(D-J-1)
E[T(m)]< + m(Cn)J+nJ.

e-1

4. Contracting trees (Lemma 1). We first derive an upper bound on E[N], the
expected number of nodes visited during a full search. Recalling that N is the random
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number of nodes visited at depth j during a full search, note that

D

E[N]= E E[N].
j=l

In order to calculate E[N], observe that if Nj_ S for a given full search, then

(1) E[NlN_, s] <-__ spmaxn.

This follows because every visited node has an extension probability less than pmax,
and a successful node has n children on the average. Taking the expectation with
respect to N_,

E[Nj] <= E[ Nj_,]pmaxn.

In a full search, every node at depth 1 is visited, so E[N1] n. From inequality (1),

and in general,

E N:z <_ n :Zpmax,

(2) E[Nj] nJ(pmax)j-.

The expected number of nodes visited during a full search is thus bounded from above
by

D

E[N] <- E nJ(pmax)j-"
j=l

Recalling the identity [8]

k 1 rk+l
Y r= forrl,
j=O 1- r

we see that

nD if/,/pmaX 1,
(3) E[N] <- 1 (/,/pmax)D

n
1 np

otherwise.

It is also clear from (2) that our bound is an increasing function of pmax.
A contracting search tree is characterized by pmax=< 1/n. Thus Lemma 1 follows

from (3) above.
LEMMA 1. Ifpmax<- 1/n, then

E[N] <= nD. I-!

When the extension probabilities are all small enough, the total number of nodes
visited in a full search (and hence any search) is bounded from above by nD. This
bound is marginally linear in n and in D. The key reason for this linearity is the high
probability of large subtrees being pruned as a result of extension failures at shallow
depths.

5. Expanding trees (Lemma 2). We next consider an expanding search tree.
Inequality (3) provides an exponentially large upper bound on E[N] when /,/pmaX > 1;
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furthermore, this bound is tight if all extension probabilities are identical. However,
the number of nodes visited in an m-solution search may be substantially smaller than
that of a full search. Under the assumption at pmin e/Y/ for some e > 1, we will next
show that the number of nodes visited by an m-solution search is bounded above by
a function which is marginally linear in D, in n and in m.

The tactic we adopt in deriving this bound is to embed the search tree into an
infinitely wide tree, and then analyze an m-solution search on the infinite tree from
the bottom up. An m-solution search on an infinite tree with expanding nodes will
always find m solutions; by analyzing a search there we avoid having to condition on
whether or not exactly m-solutions are discovered in the original search tree. The
bottom up analysis is supported by two basic observations. One is that we can bound
E[TD(m)] without worrying about the behavior of the search at depths other than D.
The second observation is that in an m-solution search ofthe infinite tree, the knowledge
of how many nodes have been visited at depth j+ 1 allows us to bound the number
of nodes which have been visited at depth j. The bound on E[TD(m)] allows us to
quantify the bound on E[ Tt_(m)]; repeating this back-substitution we can quantify
E[T(m)] for each j, and sum these bounds to bound E[T(m)].

We embed an expanding search tree into an infinite tree as follows. If the search
tree root has K children, we may view the tree as a collection of K major subtrees
B1, B2," ", BK, each being rooted in a child of the search tree root. Now consider a
tree with depth D consisting of a root and a countably infinite number of major
subtrees, each with depth D-1. We assume that for j 1, 2,..., K, the jth major
subtree in the infinite search tree is probabilistically identical to the jth major subtree
in the finite search" their corresponding nodes have identical extension probabilities.
Subtrees K + 1, K /2,..., in the infinite tree are taken to be arbitrary expanding
subtrees. The infinite tree so constructed does not correspond to an expansion of a
given problem; rather, we use its probabilistic properties as a convenient tool. We can
couple the behavior of a search on the original tree with a search on the infinite tree
by requiring the evaluation outcomes in the original tree to be identical to the infinite
tree’s outcomes in its first K subtrees. Thus the tree expansions in the original tree
and in the first K major subtrees of the infinite tree are taken to be identical. If exactly
m solutions are discovered in the original tree then exactly m "solutions" are discovered
in the first K subtrees of the infinite tree; if fewer than m solutions are discovered in
the original tree, its search will terminate while the search on the infinite tree continues
on major subtrees K / 1, K + 2, , until m "solutions" are found. From this definition
it is clear that for every search, at every depth j, the number of nodes visited in the
infinite tree at depth j is an upper bound on the number of nodes visited by the search
in the finite tree. We will therefore bound E[ T(m)] by bounding the expected number
of nodes visited in an m-solution search of the infinite tree. At the risk of abusing our
notation, we will now let T(m) denote the number of nodes visited at depth j in an
m-solution search of the infinite tree; T(m) is similarly redefined. Any upper bounds
we derive on the infinite tree apply equally well to the finite problem tree. Our notational
modification is understood to apply only to this section. For the remainder of this
section, we will refer only to searches of the infinite tree; consideration of this tree is
also limited to this section.

We initially consider the behavior of an m-solution search at the tree’s deepest
level D. Any time a leaf node is visited it is found to be a solution with probability
no less than pmin, it is otherwise found to fail. Because of the independence in leaf
node evaluation outcomes, we can view the search behavior at depth D as a sequence
of independent (but not necessarily identical) Bernoulli trials [10], each with success
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probability greater than or equal to pmin. If the success probabilities at each node visit
were identically pmin, the number of visits to depth D required to find a solution would
be a geometric random variable with mean 1/pmin. Because each visit to depth D has
probability of success at least as large as pmin, 1/pmin is an upper bound on the mean
number of visits required to find one solution; m/pmin bounds the mean number of
visits required to find m solutions. Recalling that pmin e/n by definition of an
expanding tree, we have

m mn
(4) E[To(m)]<= <-

pmln e

We next derive upper bounds on E[T(m)] for each j, bounding E[T(m)] in
terms of E[T+I(m)]. Following that, we will use (4) to quantify these upper bounds,
and sum the bounds over all depths to bound E[T(m)]. Our discussion is facilitated
by another definition. Let Sj(m) be the number of successful nodes visited in an
m-solution search. We will first bound E[T(m)] in terms of E[Sj(m)]. Note that the
last node visited by an m-solution search is always a successful leaf node, implying
that the last node visited at depth j by a search is successful (being an ancestor of the
last solution). Given that S(m)= k, it follows that E[T(m)] <_-kipmin, since the mean
number of nodes at depth j visited between successful visits at that depth is no greater
than 1/pmin. It follows immediately that

(5) E[T(m)]--<
E[Sj(m)]

We now bound E[S2(m)] from above in terms of E[ T+l(m)]. Call a node activated
if its parent has been explored and is successful. Note that nodes are activated in
groups, the group size being the number of children spawned by the parent. Further-
more, group sizes are independent random variables, each with mean n. If we focus
our attention during a search on the activity at depth j+ 1, we will see a succession
of groups activated, with group sizes being random variables { Yk}. From this viewpoint,
the search behavior at depth j + 1 is very much like a renewal process 10], except that
inter-renewal times need not have identical distributions. We call this stochastic process
a quasi-renewal process. "Time" in this process is the number of nodes visited by the
search at depth j+ 1, minus 1 (so that time begins at 0); a quasi-renewal occurs at
"time" if node (the + 1st node visited) is the first node in its group to be visited
(excluding node 0). Now define S2(m, t) to be the number of successful nodes visited
at depth j by "time" t. As the search progresses, at any given ’"time" the number of
quasi-renewals which have-occurred is exactly the number of parents of depth j+ 1
nodes already visited, minus 1: S2(m, t)-l. The renewal function R(t) studied by
renewal theory is the expected number of renewals which occur by time t. Thus for
the problem at hand, R(t) E[Sj(m, t)]- 1. In [10, p. 275] it is shown that the renewal
function for a quasi-renewal process with NBUE inter-quasi-renewal times each having
mean n is bounded from above by the renewal function R(t) t/n of a Poisson process
with mean inter-renewal time n. Since the { Yk}’S are NBUE by assumption, it follows
that

E[Sj(m, t)]<-_-+ l.

"Time" stops at value T+l(m), when the search terminates. The inequality above then
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implies that

E[T+I(m)]
E[Sj(m)]<= -1.

n

By substituting this bound into inequality (5) and noting that pmin E//1, we find that

E[ T+,(m)] n
(6) E[ T(m)]_-< --,
which establishes our goal of a bound on E[T(m)] in terms of E[T+I(m)].

Inequality (6) gives us a sequence of bounds as we vary j from D-1 to 1. We
quantify these inequalities by employing the bound on E[To(m)] given by (4), and
then repeatedly apply inequality (6) to obtain bounds on E[T(m)] for j=
D- 1, D- 2, , 1. We know that

nm
E[To(m)]<-_.

Substituting this bound for E[TD(m)] into inequality (6) we obtain

nm n
E[ TD-’ m <- --- +-eRepeating this process, we find that for 0 _-< k-< D- 1

(7)
E[ To_k(m)] <=--TZ-i+ ne j=l

nm n(1-1/e k)
k+ +e e-1

We can then bound E[T(m)] by summing the upper bounds of the different depths
given by (7):

E[r(m)]<= +
k=O e-1

nm 1- +n(D-1)-n 1-
e-1

A less strict, but less involved bound follows immediately from the fact that e > 1.
LEMMA 2. If there is an e > 1 such that pmin__> e//l, then

n(D+m-1)
(8) E[T(m)]< 71

This bound is marginally linear in n, D and m. Furthermore, its change with
respect to m is interesting. Doubling m increases the bound by less than a factor of
two. This supports our intuitive understanding that after one solution is found, the
additional cost of finding a second solution is (in expectation) less. The bound given
in (8) is very sensitive to e when e is close to 1. Yet for e >- 1.1, E[T(m)] is no greater
than I0n(D+ m-1), which seems quite reasonable.

6. Contracting/expanding trees (Lemma 3). Lemmas 1 and 2 give us means of
bounding the expected performance of an m-solution search on contracting and on
expanding trees. We next employ these bounds to derive bounds for trees which
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contract at shallow depths, and expand at deep depths. As expected, we obtain these
bounds by considering the expanding and contracting regions separately, and combine
the results for an overall bound. We derive a bound on E[T(m)] which is linear in
n, in D and in m.

< 1/n" and _minWe suppose there is a depth I such that p+ p+ >= e/n for some
e > 1. Consider the search tree truncated at depth I; Lemma 1 states that the expected
number of nodes visited by a full search of the truncated tree is no greater than nI,
and (2) shows that the expected number of depth I nodes visited by a full search is
bounded by n. It follows that the expected number of successful depth I nodes found
in a full search, and hence an m-solution search, is no greater than 1. We can bound
the expected number of nodes visited by an m-solution search at depths I + 1,. ., D
by considering the subtrees rooted in successful nodes at depth/. Each such subtree
has depth D-l, and extension probabilities (excluding the subtree root) which all
exceed 1/n. Now consider a total subtree search of depths I + 1, , D, which conducts
an m-solution search of every subtree rooted in a successful node at depth I. Clearly
the expected number of nodes visited by such a search is greater than the expected
number of visited nodes in a usual m-solution search" the usual m-solution search will
stop with the first m solutions, while the total subtree search will continue on to explore
all subtrees with successful roots at depth I. The expected number of successful nodes
at depth I is no greater than 1, so that the expected number of nodes at depths greater
than I visited by a total subtree search is bounded from above by

n(D-I+m-1)
e-1

This bound follows from the application of Lemma 2 to one subtree rooted in depth
I. We have already bounded the number of nodes visited at depths 1,..., I by hi.
The expected number of nodes visited in an m-solution search is therefore bounded
as described in Lemma 3.

LEMMA 3. If there is an I > 1 and e > 1 such that P+-max 1/n and P*+-min E/n, then

n(D-I+m-1)
(9) E[T(m)]<-In+

e-1 D

This bound has the same marginal properties in n, D and rn as does the bound
given by Lemma 2.

7. Expanding/contracting trees (Lemmas 4 and 5). We earlier gave an example of
a tree which expanded in all but the last depth, and then contracted completely at the
leaf nodes. This tree has the worst possible performance because it searches all nodes,
but finds no solutions. This tree falls in the class of trees we next consider, trees which
expand in upper levels and contract in lower levels. However, we are able to show
that if the degree and extent of contraction is bounded, then we achieve marginal
linear performance in the depth of the tree. Our bound is more sensitive to n" it
increases as a polynomial in n and in the degree of contraction. This bound is
exponential in the extent of the contracting region.

We suppose there is a depth D J such that -min ;> e/n for some e > 1 andP+(o-J)
1/n >=P(o-J)+ >= 1/Cn for some C_-> 1 The parameter J describes the extent of the
contracting region (J depth levels), and C describes the degree of the contraction. We
derive two bounds for this case. Our bound on E[N] is useful when the extension
probabilities are small or when the expanding portion of the tree is limited; the other
bound is useful if the contracting region is small.
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To bound E[N], we make the additional assumption that pmax__< t/n. By (3), the
expected number of nodes visited at depths 1,. , D-J by a full search is bounded
from above by

n
8-1

As a consequence of (2), the expected number of successful nodes at depth D-J is
bounded from above by o-J-. By Lemma 1, the expected number of nodes visited
in a subtree rooted in a successful depth D-J node is bounded from above by nJ.
Lemma 4 combines these observations.

LEMMA 4. If there is a t > 1 and J > 1 such that P+(o-J-max =< t/n and P(o-r+max ---< 1/n,-- 1) + nj6O__(10) E[N] <-- n
t I I-I

The key parameters in this inequality are and J. When is small, say < 2, the
exponential growth of (10) in D-J is slow. If D-J is small, then the troublesome
expanding portion of the tree is limited, and (10) may yield a reasonably small bound.
If neither of these cases is satisfied, we should consider another bound on E[ T(m)],
which we derive next.

The assumption that _min
PO-/= 1/Cn bounds the degree to which the search tree

contracts. We can use this restriction to bound E[T(m)]. The first step is to look at
a subtree rooted in a visited depth D J node and find a lower bound on the probability
Ps of finding a solution in that subtree. One potential path to discovering a solution
in this subtree occurs if the first J + 1 successive visits in a depth-first search of the
subtree (we include the root here) each discover successful nodes. The last successful
node is the full solution. The probability of this occurrence is at least

1
pl

Cn + Ps.

This bound holds for every subtree (and hence every probability of finding a solution
in a subtree). We will say that a depth D J node is ultimately successful, or u-successful,
if it is an ancestor of a successful complete solution, p is a lower bound on the
probability of a visited depth D-J node being u-successful. The behavior of a
1-solution search at depths 1, 2, , D J is probabilisitically identical to the behavior
of a 1-solution search on a modified tree having depth D-J and the same extension
probabilities as the original search tree, except that depth D-J nodes’ extension
probabilities are replaced by their u-success probabilities. Since a subtree rooted in
depth D- J may contain multiple solutions, an m-solution search of the original tree
will visit fewer nodes at depths 1,..., D-J than will an m-solution search of the
modified tree. The arguments presented in 5 establish that the mean number of nodes
visited at depth D-J by an m-solution search of the modified tree is bounded from
above by m/pa m(Cn)/. Then the same type of analysis which leads to equation
(8) shows that

o- m(Cn)TM + n(D-J- 1)
(11) Z E[ Tj(m)] <

j=l e-1

Reconsidering the original depth D tree, we use Lemma 1 to see that the expected
number of nodes visited by a total search of a subtree rooted in depth D J is bounded

then
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from above by nJ. m(Cn)J/lnJ is thus an upper bound on the expected number of
nodes visited at depths D-J+ 1,. ., D in an m-solution search of the original tree.
Summing this bound with the one given by (11), we have the following lemma.

LEMMA 5. If there are e > 1 and J, C > 1 such that >P+(o-J) el n and 1/Cn <-_

o-+ <- 1/n, then

E[T(m)]<
m(cn)++ n(D-J-1) + m(Cn)+nj.

e-1

This bound is reasonably small only if J is small. We can expect marginal linear
performance in the depth of the tree, provided there are depth independent bounds
on the number of tree levels which contract and the degree to which nodes in that
region contract. Lemma 5 also hints at the relative sensitivity of performance to changes
in the different model parameters. The bound grows as a polynomial in n and in C;
it grows exponentially in J.

Reconsider the example of the tree which visited all nodes and found no solutions.
If we slightly change the example so that a leaf node has some fixed probability p > 0
of being a solution, then Lemma 5 gives us marginal linear performance in the depth
of the tree (supporting empirical data presented in 12].) This is more of an indictment
of asymptotic results than it is an indication of good performance. If J is fixed and
quite large, Lemma 5 can still give us linear performance in D. That does not mean
that we can expect to find a solution quickly.

The example highlighting exponential complexity hinged on having extension
probabilities equal to zero. There exist trees with all nonzero extension probabilities
which have exponential performance asymptotically. It is not difficult to see (or prove)
that as the depth of a contracting tree increases, the probability of discovering a solution
in that tree approaches zero. Now consider a tree which expands in the upper half of
its levels and contracts in the lower half. In the limit of increasing tree depth, a full
search of the tree’s upper half occurs because the search is always pruned in the lower
half before reaching a solution. Since the upper half is expanding, the number of nodes
visited there increases exponentially in the tree depth. Clearly the dividing line between
expanding and contracting tree regions need not be at D/2 to cause this type of
asymptotic behavior; we can expect asymptotic exponential complexity in the general
case of such a tree. This example re-illustrates the need for extending past work in
average performance analysis of backtracking, particularly as empirical data suggests
that common problems exhibit expanding/contracting search trees 13]. Using uniform
probability structures, previous performance models conclude that all 1-solution
searches have expected linear complexity. The example above shows that under a
general model, there are 1-solution searches with super-linear complexity. Our general
model is more selective in its identification of trees leading to low complexity and
specifically excludes the example outlined above from the class of searches with linear
complexity.

$. Summary. Previous analysis of the average case performance of 1-solution
backtracking searches have assumed uniform probability structures and have sub-
sequently shown that 1-solution backtracking always has complexity linear in the depth
of the search tree. However, using a more general probability model, it is possible to
construct 1-solution backtracking searches which have expected super-linear com-
plexity. This paper investigates the implications of assuming a general probability
structure for the average case analysis. Using the notions of "expanding" and "contract-
ing" nodes, we have derived expected linear complexity bounds on m-solution searches
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of trees with all nodes contracting and trees with all nodes expanding. We present
linear bounds on trees which have an upper portion contracting with the lower portion
expanding. We also derive linear bounds on special cases of trees with an expanding
upper portion and a contracting lower portion and show that this latter class generally
yields super-linear complexity. By extending previous work in the average complexity
of backtracking, we have both provided further assurance of good expected per-
formance under appropriate conditions and indirectly shown where classes of searches
with high complexity lie.

Acknowledgments. Use of the terms "expanding" and "contracting" is due to a
discussion with Harold Stone. I also thank Shahid Bokhari and Bob Voigt for sugges-
tions regarding the presentation of this paper.
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Abstract. We define a novel scheduling problem; it is solved in parallel by repeated, rapid, approximate
reschedulings. This leads to the first optimal logarithmic time PRAM algorithm for list ranking. Companion
papers show how to apply these results to obtain improved PRAM upper bounds for a variety of problems
on graphs, including the following: connectivity, biconnectivity, Euler tour and st-numbering, and a number
of problems on trees.
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1. Introduction. The model of parallel computation used in this paper is a member
of the parallel random access machine (PRAM) family. A PRAM employs p syn-
chronous processors all having access to a common memory. In this paper we use an
exclusive-read exclusive-write (EREW) PRAM. The EREW PRAM does not allow
simultaneous access by more than one processor to the same memory location for read
or write purposes. See [Vi-83] for a survey of results concerning PRAMs.

Let Seq (n) be the fastest known worst-case running time of a sequential algorithm,
where n is the length of the input for the problem at hand. Obviously, the best upper
bound on the parallel time achievable using p processors, without improving the
sequential result, is of the form O(Seq (n)/p). A parallel algorithm that achieves this
running time is said to have optimal speed-up or more simply to be optimal. A primary
goal in parallel computation is to design optimal algorithms that also run as fast as
possible. Some authors use optimal to mean that as well as achieving an O(Seq (n))
processor time product, the parallel running time is as small as possible (typically
O(log n)).

Most of the problems we consider can be solved by parallel algorithms that obey
the following framework. Given an input of size n the parallel algorithm employs a
reducing procedure to produce a smaller instance of the same problem (of size <-n/2,
say). The smaller problem is solved recursively until this brings us below some threshold
for the size of the problem. An alternative procedure is then used to complete the
parallel algorithm. We refer the reader to [CV-86d] where this algorithmic technique,
which is called accelerating cascades, is discussed. Typically, we need to reschedule
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the processors in order to apply the reducing procedure efficiently to the smaller sized
problem. Suppose the input for a problem of size n is given in an array of size n. A
natural approach is to compress the smaller problem instance into a smaller array, of
size <-_n/2. This is often done using a prefix sum algorithm (it takes O(log n) time on
n/log n processors to compute the prefix sums for n inputs stored in an array). Thus
if we need to reschedule the processors repeatedly it is unclear how to achieve
logarithmic time. Sometimes the rescheduling need not be performed very often: In
[CV-86a], [C-86] the authors show that for some problems (list ranking and selection)
log*n reschedulings suffice. Alternatively, one can use a fast random algorithm to
perform the rescheduling, or at least an approximate rescheduling. (By approximate
rescheduling we mean that we may not be able to partition the work evenly among
the processors, but only approximately evenly.) Thus the need for rescheduling does
not preclude O(log n) time optimal random algorithms. One of the main contributions
of this paper is to provide an algorithm for performing approximate rescheduling
deterministically in O(1) time. This is used to solve a novel scheduling problem, called
the duration-unknown task scheduling problem. The solution to the scheduling problem
leads to a logarithmic time optimal deterministic parallel algorithm for list ranking. A
related rescheduling procedure is one of the tools that leads to a logarithmic time
connectivity algorithm which is optimal unless the graph is extremely sparse.

The duration-unknown task scheduling problem is defined as follows, n tasks are
given, each of length between 1 and e log n, e a constant; the total length of the tasks
is bounded by cn, c a constant. (A task can be thought of as a program.) However,
we do not know, in advance, the lengths of the individual tasks; in fact, they may
vary, depending on the order of execution of the tasks. The problem is to schedule
the n tasks on an EREW PRAM of n/log n processors so that the tasks are completed
in O(log n) time; it is solved in 3.

We now discuss how to design algorithms that take advantage of this task schedul-
ing algorithm. Given a problem, our job is to design a "protocol" for solving the
problem by using a set of short tasks (each of length between 1 and e log n). This
provides an important new opportunity for the designer of a protocol which is based
on using the scheduling algorithm: the designer of the protocol need not know anything
about the order of execution of the tasks. Such an opportunity for designing parallel
tasks, without knowing in advance their lengths, with the guarantee that they will be
scheduled efficiently, sounds very promising. However, this opportunity cannot be
separated from a considerable difficulty in designing such a protocol: we have no
control over the order of execution of the tasks, so we must ensure that the protocol
works correctly regardless of the order of execution. We note that this style of protocol
design may be useful for distributed systems that are not tightly synchronized; here
too, we have to be sure that the protocol works correctly regardless of the order of
execution. Section 4 demonstrates how to design such a protocol for the following
problem.

LIST RANKING.
Input. A linked list of length n. It is given in an array of length n, not necessarily

in the order of the linked list. Each of the n elements (except the last element in the
linked list) has the array index of its successor in the linked list.

The problem. For each element, compute the number of elements following it in
the linked list.

Result. On the EREW PRAM, O(log n) time using n/log n processors.
Previous results. On the EREW PRAM,
(i) O(n/p. log n/log n/p) time using p< n processors [KRS-85] (this was the

first optimal algorithm to achieve sublinear time).
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(ii) O(log n log* n) time using n/(log n log* n) processors [CV-86a].
(iii) for fixed k, O(k log n) time using n logk) n/log n processors [CV-86a].

Our new result is asymptotically better than (ii). However, as it involves considerably
larger constants, for all practical purposes the older result seems stronger.

The following randomized algorithms are also known.
(i) O(log n log* n) time using n/(log n log* n) processors [Vi-84]. The journal

version of this paper uses the new parallel prefix sums algorithm of [CV-86e] to achieve
O(log n) time using O(n/log n) processors.

(ii) O(log n) time using O(n/log n) processors is implicitly achieved by [MR-85].
Comment. The list ranking problem is often encountered as a subproblem in other

parallel algorithms. The Euler tour technique on trees [TV-85], [Vi-85] reduces a variety
of tree functions into list ranking. [TV-85] used list ranking to reduce graph biconnec-
tivity to graph connectivity. List ranking plays a central role in the "accelerated centroid
decomposition (ACD)" parallel method for evaluating tree expressions [CV-86b].
Recently, in [SV-86] Schieber and Vishkin have shown how to apply the new list
ranking algorithm for responding to queries regarding lowest common ancestors of
pairs of vertices on a tree.

Part 2 of this research (the paper [CV-86c]) shows how to apply the approximate
scheduling method together with the new list ranking algorithm in order to derive
improved PRAM upper bounds for a variety of problems on graphs, including the
following: connectivity, biconnectivity, Euler tour and st-numbering.

As can be seen, the results presented here improve on previous work in [CV-86a].
The main contributions of [CV-86a] were the deterministic coin tossing technique and
a methodology for scheduling that used as few reschedulings as possible. While the
details of their reschedulings were quite intricate, the rescheduling procedure itself
was standard. We make two main contributions here. First, we provide a new approach
to the rescheduling problem. Second, we show how to solve the list ranking problem
in the novel framework imposed by our solution to the rescheduling problem. In
addition, the companion papers show anew the central role played by the list ranking
problem.

We note that a preliminary version of this paper appeared in [CV-86e].
In 3 we present the duration-unknown task scheduling algorithm. In 4 we give

the new list ranking algorithm. In 5 we provide a summary of the results obtained
and pose an open problem.

2. Preliminaries. We give below a useful and simple scheme, due to Brent [B-74],
for designing parallel algorithms. Later, we discuss implications of this scheme for the
formulation of complexity results regarding the performance of parallel algorithms.

THEOREM (Brent). Any synchronous parallel algorithm of time that consists of a
total of x elementary operations can be implemented by p processors in time [x/p] + t.

Remark. Brent’s theorem is stated for parallel models of computation where not
all computational overheads are taken into account. Specifically, the proof of Brent’s
theorem ignores the problem of assigning processors to their jobs. Often, in the present
paper, it is straightforward to overcome this implementation problem without increasing
the running time or the number of processors in order of magnitude. Therefore, we
allow ourselves to switch freely from a result of the form "O(x) operations and O(t)
time" to "x/t processors and O(t) time" (and vice versa, which is always correct).
However, we avoided doing this where there are difficulties with the implementation
problem.
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3. Approximate scheduling. We solve the following dynamic scheduling problem:
the duration-unknown task scheduling problem (which is encountered in the list ranking
problem). Our solution requires repeated rapid rescheduling of the processors. The
mechanism that provides each rescheduling is a redistribution procedure (it solves the
object redistribution problem). We start by defining the two problems. Then we give
the redistribution procedure. Following this, we show how to solve the task scheduling
problem using repeated applications of the redistribution procedure. Finally, we prove
the correctness of the redistribution procedure.

We define the duration-unknown task scheduling problem (for short, the task
scheduling problem), as follows. We are given n tasks. A task is a program that is to
be run by one processor. The length of a task is its sequential running time (we will
measure this as a specific number of O(1) time steps, which we call real steps). The
lengths of individual tasks may be dependent on the scheduling; in fact, the length of
an individual task may not be known until its execution terminates; however, we are
guaranteed that no task has length greater than e log n, and that the total length of all
the tasks is bounded by cn, regardless of the scheduling, for some constants c and e.
The problem is to execute these tasks on n/log n processors in O(log n) time. We are
allowed to schedule and reschedule the tasks as we wish, so long as the scheduling
occupies only O(log n) time.

We define the object redistribution problem, as follows. We are given r objects,
partitioned among p collections of objects. We are also given one processor per
collection. Loosely speaking, the problem is to redistribute the objects among the
collections so that they are more evenly distributed. For a more precise description
we need some definitions, sizei, the size of collection i, 1 <-_i<=p, is the number of
objects in collection i; note that r= =1 sizei. The weight of collection is size, the
square of its size; let W=Y=I size2 be the total weight of all the collections. Let
WMINr denote the minimum possible weight over all possible distributions of r objects
among p collections; we note that p [r/pJ 2 <= WMINr <= p [r/p ]2 <= 4 WMIN. When the
value of r is clear from the context, we simply write WMIN. Let f and g be constants
(f>_- g 298, with f specified more precisely later in this section). If W is bounded by
either fp or gWMIN then the collections are said to be balanced (i.e. either there are
few objects present, or objects are roughly evenly distributed). We distinguish the
following classes of collections" class 0 comprises those collections of size 0 or 1; class
i, i> 0, comprises those collections whose size is in the range [2 i, 2i+).

The object redistribution problem is the following: Redistribute the objects (using
the redistribution procedure) so that the following properties hold:

(1) The total weight is not increased.
(2) The maximum number of objects in any one collection does not increase.
(3) If the collections are unbalanced, the total weight of the collections is reduced

by a multiplicative constant factor.
(4) The redistribution takes O(1) time.
We describe the redistribution procedure and then show how to implement it in

O(1) time. Later we show how to use this procedure to solve the task scheduling
problem.

The redistribution procedure will perform a cascade of redistributions of objects
from heavier collections to lighter collections. As we will see, this provides the desired
weight reduction. We note that we have little control over the distribution of objects
at the start of the redistribution procedure, and hence we have little control over the
distribution of collections among the classes. Nonetheless, for any class containing
many collections, we want to be able to perform redistributions of objects from most
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of these collections to other collections of considerably smaller size. This motivates
us to consider expander graphs.

DEFINITION. A graph G- (V, E) is a (d, e, y)-expander graph, e < 1, if for any
subset U

_
V, with IUI-< e VI, the set N(U) of neighbors of vertices in U has size

IN(U)I_-> ,lUI, and G has vertex degree d.
It is convenient to assume that d is a power of 2 (if not, we can add additional

edges to G; this will not affect the expander property). Given any e < 1, it is known
that there exist expander graphs with y--(1- e)/e, for sufficiently large d (where d
is a function of e only). Further, such an expander graph can be built in O(log IVI)
time using VI/log VI processors, for each fixed e, as we show in Appendix B. (See
[LPS-86], [JM-85], [GG-81] for results on expander graphs.)

Remark. Peleg and Upfal recently applied expander graphs to a similar but not
fully comparable problem [PU-86].

The redistribution procedure. For each collection we create a node; these nodes
are connected by a (d, e, (1-e)/e)-expander graph. We perform the following object
redistribution. Suppose there is an edge connecting collections C1 and C2. Let C1 and
C2 be in classes i and i2, respectively. If i> i2+ 1, then a number of objects are
removed from C1 and added to C2. More precisely, let fl- 2 i (then C contains at
least fl objects and fewer than 2fl objects); if fl->_ 8d then the number of objects
transferred is fl/gd; otherwise, no objects are moved. If such an object transfer from

C to C2 occurs, we call C1 a giving collection and C: a receiving collection. A collection
can be both giving and receiving.

We note that an attempted redistribution from a giving collection of size less than
8d has no effect. Thus we would like the collections to be balanced if W <- (gd):n/log n.
This is achieved by requiring f_-> (gd):.

Next, we describe the data structure we use to implement the redistribution in
O(1) time.

Implementation of the redistribution procedure. The objects are stored at the leaves
of complete binary trees. Formally, suppose a collection has a objects. If a 1 then
this single object forms a (complete binary) tree. Otherwise, suppose 2 _-< a < 2 /1, >_- 1.
Then, 2 of these objects form a complete binary tree and the remaining a -2 objects
recursively form complete binary trees. So, in each collection, the objects are stored
in a set of complete binary trees, no two of the same size. We maintain the following
pointers: for each internal node in such a tree, pointers to its leftmost and rightmost
leaves; in addition, we keep the leaves in each tree in a linked list, in left to right order
(these pointers are needed for the solution to the scheduling problem). Finally, for
each collection, we keep its trees in a doubly linked list, in increasing order by size.

The object transfer can be performed in O(1) time since it only involves manipulat-
ing the top O(log d) levels of the largest tree in C1 (followed by a constant amount
of tree reconstruction in C and C:). More precisely, for each collection with at least
8d objects, we divide the largest tree in the collection (of size fl >_-8d) into 8d equal
sized subtrees. Up to d of these trees are transferred in the object redistribution. The
remaining trees of size >-fl/gd in the collection are then repeatedly paired together
(only equal sized trees are paired), until there is at most one tree of each size. Since
this involves at most 8d+log 8d trees it takes O(1) time using one processor per
collection. The pairing process is then repeated with the trees that are transferred to
the collection. There are at most d / log 4d trees involved in the latter pairing; so it
also takes O(1) time using one processor per collection. We note that care must be
taken to maintain the pointers for the tree nodes as the trees are manipulated; however,
this is straightforward.
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The theorem below claims the correctness of the redistribution procedure.
The redistribution procedure (RP) Correctness Theorem. The redistribution pro-

cedure solves the object redistribution problem (i.e., it satisfies the four properties of
the problem).

So far we have only shown that the redistribution procedure needs O(1) time
(property (4)). The second half of this section is devoted to the proof of the other
three properties of the RP Correctness Theorem. However, in the description of the
algorithm for task scheduling and its proof, which follow, we will already assume the
RP Correctness Theorem.

The algorithmfor the duration-unknown task scheduling problem. We solve the task
scheduling problem as follows. When applying the redistribution procedure, we view
the tasks as the objects; also, we set p n/log n and define r to be the number of tasks
at hand. Initially, we distribute log n tasks to each collection. Each collection will
never contain more than log n tasks. We perform O(log2> n) of the following stages.

(i) For each processor, perform log n/log2 n real steps on the tasks in its collec-
tion in O(log n/log2 n) time.

(ii) Apply the redistribution procedure. This requires O(1) time.
The following lemma justifies going to the final stage at this point; the lemma will be
proved later.

LEMMA 3.1. After h log2 n stages there are at most fn/log n incomplete tasks, for
some constant h.

The final stage. Distribute the remaining (at most fn/log n) tasks evenly among
the processors (this is done using a standard prefix sum computation, as in [FL-80],
in a further O(log n) time using n/log n processors). Each processor will then complete
its allotted tasks by performing at most fe log n more real steps.

Thus the task scheduling problem can be solved in O(log n) time on n/log n
processors.

Remark. There are several implementation details of the scheduling algorithm
that should be mentioned. First, the links in the trees containing the tasks allow us to
access each successive task in O(1) time, starting at the leftmost task (leaf) in the
smallest tree. Thus we can perform log n/log:>n real steps, in part (i), in
O(log n/log> n) time. Second, it is convenient, in the list ranking application, to
ensure that having started one task, the processor completes it before beginning another.
All we have to do is ensure that we do not redistribute the tasks that processors are
currently executing. This is easily done by redistributing from the right end of trees
in the distribution procedure. We will then never redistribute the current task, which
is at the leftmost end of some tree. Third, we need to explain how to reformat the
trees, at the end of part (i) of a typical stage, so that they are of the form assumed by
the redistribution procedure. Let the task being processed at the end of part (i) be at
leaf , of tree T. To ensure all the trees are complete and distinct we need to partition
T into complete subtrees (recall that T is the smallest tree associated with the collection;
thus we are guaranteed that if we create distinct sized complete binary trees from T
then no two trees in the collection will have the same size and we get a proper set of
complete binary trees). To partition T, we follow a path from , to the root of T. Each
maximal right subtree that we encounter is made into a new tree. This traversal takes
O(log> n) time.

Complexity. Assuming the RP Correctness Theorem and Lemma 3.1 we can
conclude that the task scheduling problem can be solved in O(log n) time on n/log n
processors.

Next, we prove Lemma 3.1.



134 RICHARD COLE AND UZI VISHKIN

Proof of Lemma 3.1. Consider a single stage and consider the end of part (i) of
that stage. There are three possibilities.

Case 1. The collections are not balanced.
Case 2. The collections are balanced; so either

Case 2a. the total weight is bounded by gWMIN but not by fn/log n, or
Case 2b. the total weight is bounded by fn/log n.

In Case 1, part (ii) reduces the total weight by a constant factor by property (3)
of the RP Correctness Theorem. Since the initial weight is n log n, this can happen
only O(log2) n) times, say at most hi log2) n times, for some constant hi (for at that
point the weight will have been reduced to fn/log n; i.e., the collections are balanced).

We claim that in Case 2a at least 1/(16g). n/log n of the collections are not
empty. This is seen as follows. We first note that r, the number of objects present, is
at least p(=n/logn) for otherwise we would have WMIN<=p. This would imply
gWMIN <-fp (remember f>= g), and therefore contradicts the assumption of Case 2a.
Next, suppose x of the collections are nonempty. Then W, the total weight of all the
collections, is at least x. [r/x]2; also W<= gWMIN and WMIN<=p [r/p] 2. That is,
x[r/xJZ<-gp[r/p] 2, and since r>p>x,= we have rZ/4x<4grZ/p,= or x>p/(16g).=

For each nonempty collection, in part (i) of the stage, log n/logZ) n real steps
were performed on the tasks at hand. Thus, in Case 2(a), at least n/(16g log) n) real
steps were performed on the tasks in part (i) of this stage. We conclude that there are
at most 16go log (z) n instances of Case 2(a).

In Case 2(b), there are at most fn/log n tasks remaining.
Let h hl + 16go. We have shown that following h log) n iterations there can be

at most fn/log n tasks remaining incomplete. [3

It remains to prove that properties (1)-(3) of the RP Correctness Theorem hold.
Property (2) is clear. In the rest of this section we prove properties (1) and (3). We
start by providing an outline of their proofs. We then prove individual lemmas.

For purposes of the analysis, it is convenient to serialize the redistributions that
occur during the redistribution procedure (in fact, the redistributions are performed
simultaneously); we refer to a redistribution between two collections as a redistribution
step. We consider each redistribution step to be an ordered pair comprising the weight
ofthe receiving collection followed by the weight ofthe giving collection. The redistribu-
tion steps are ordered lexicographically, and are performed in this order. Thus the
redistribution steps into the lightest receiving collection are performed first; among
these redistribution steps, the one from the lightest giving collection is performed first.

Consider a single redistribution step involving giving collection Cg, of size Sg at
the start of the redistribution procedure, and receiving collection Cr, of size sr at the
start of the redistribution procedure.

LEMMA 3.2. The weight reduction produced by the redistribution step is at least
S2g/32d.

COROLLARY 3.1. Any sequence of redistribution steps reduces the total weight
(property (1) of the RP Correctness Theorem).

COROLLARY 3.2. Let Wg be the total weight of the giving collections, counting
multiplicities, at the start of the redistribution procedure. Then the weight reduction for
these collections, due to the redistribution procedure, is at least Wg/32d.

The remainder of the proof is concerned with proving property (3) of the RP
Correctness Theorem. So henceforth we assume that the collections are unbalanced.
We show that in this case Wg is a constant fraction of W.

We need additional notation and definitions. Let Si be the set of collections in
class i. Let L, (-Jk_->, S, Let Is, (resp. It, I) denote the number of collections in S,
(resp. Li), and let wt(S) (resp. wt(Li)) denote the sum of the weights of the collections
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in S, (resp. Li). On the average there are s/p objects in each one of the p collections.
Define the variable average to be [log2 s/pJ. We refer to class average as the average
class. Let a denote the smallest i> average+2 such that [Si[> Is,_l/32, if any. We
define a set S, > a, to be giving if there are at least [S,[ giving collections in S,
counting multiplicities. We implement the expander graph so that whenever ISI>=
1/321S,_,[ and Is, > It,+,l then S, is giving.

We now give a proof outline.
LEMMA 3.3. a exists.
LEMMA 3.4. The weight ofL is at least W/2.
LEMMA 3.5. The weight of the giving collections in L, counting multiplicities, is at

least 1/40 wt(L) > 1/26 wt(L).
COROLLARY 3.3. The weight of the giving collections in L, counting multiplicities,

is at least 1/27 W.
We conclude, from Corollaries 3.2 and 3.3 the following.
THEOREM 3.1. Ifthe collections are not balanced then, in 0(1) time, the redistribution

algorithm reduces the total weight by a multiplicativefactor ofat least 1 1 /32d 1/27) >_-

1 (1/21d).
Theorem 3.1 demonstrates property (3) of the RP Correctness Theorem, and thus

completes its proof.
We now elaborate on the proof of Lemma 3.5, which is a consequence of several

sublemmas. We need additional definitions. For Lemma 3.5, we only consider sets Si
with -> a. We need to classify these sets according to whether they must contain many
giving collections. Thus, we define a set Si to be large if ISi[ >-ISi_]/32. Likewise, it is
small if Is, < Is,_,1/32, We will show that the weight of the large sets is at least half
the weight of L. The neighbors, for giving collections, are provided by the edges of
an expander graph. Thus if IL,+] is large compared to Is, I, we may not be able to
guarantee that there are many giving collections in S,. So we define S, to be useful if
Is, -> It,/,l. We will show that the weight of the useful large sets is at least one-fifth
of the weight of the large sets. Finally, by choosing the right constant e for the expander
graph (e ), we will ensure that each useful large set is a giving set.

LEMMA 3.5.1. The weight of the large sets is at least 1/2 wt(L).
LEMMA 3.5.2. The weight of the useful large sets is at least 1/2 of the weight of the

large sets.
i--2LEMMA 3.5.3. A useful large set S, has at least Is, neighbors in t.J j=o Sj, i.e., it is

a giving set.

Proof ofLemma 3.5. In Lemma 3.5.1 we showed that the weight of the large sets
was at least 1/2 wt(L). In Lemma 3.5.2 we showed that the weight of the useful large
sets was at least one-fifth the weight of the large sets. In Lemma 3.5.3 we showed that
each useful large set S, has at least Is, giving collections, counting multiplicities.
Finally, since the size of the collections in each useful large set S, lie in the range
[2, 2i+), we conclude that the giving collections in S,, counting multiplicities, have
weight at least wt(S). Thus the weight of the giving collections in L is at least
1/2.1/2. wt(L):o wt(L). [q

It remains to prove Lemmas 3.2, 3.3, 3.4, 3.5.1, 3.5.2 and 3.5.3.
ProofofLemma 3.2. Claim. Following the redistribution step, Cg has size at least

(This follows from the lexicographic ordering ofSg, and C has size at most s +- Sg
the redistribution steps, and the fact that each giving collection redistributes at most- of its objects.)

Let - Sg + a + b be the size of Cg immediately before the redistribution step, let
sr + c be the size of Cr immediately before the redistribution step, and let a be the
number of items transferred. We know that: (1) Sr < Sg/2 (since if sg belongs to some
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(This followsclass then Sr can belong only to a class j, where j _-< 2). (2) c + a <-_ - Sg.
from the above claim regarding the size of Cr.) (3) a + b >-0 (this is trivial). And, (4)
16da> Sg (since a, the number of elements transferred is >Sg/16d). The weight
reduction WR is given by"

WR ( Sg + a + b)2 + (S + C)2-- ( Sg + b)2--(Sr + C+ a)2"-- 2a( Sg + b s c).

Observe that (2) and (3) above imply that b-c=-((c+a)-(b+a))>--Sg/8. Using
this and (1) above we get,

aSgWR ----> 2a( Sg Sg/2-- Sg)
2

By (4) above we get,
2

WR >- s_____g
32d

ProofofLemma 3.3. We assume, in contradiction, that ce does not exist and show
that the collections must have been balanced, which is contrary to assumption. To
show this we observe the following:

(a) The total weight of the collections in classes 0,..., average-1 is less than
WMIN.

(b) wt(Saverage) 4 WMIN; wt(Saverage+l) 16 WMIN; wt(Saverage+2) 64 WMIN.
(c) wt(Si)<-_ wt(Si_l)/2 for i> average+ 2 (since otherwise ce would exist).

The total weight is therefore,

E wt(Si)+ wt(Saverage)+ wt(Saverage+l)+ wt(Saverage+2)+ wt(Si).
average average+2

Observations (a), (b) and (c) above imply that this is

<= WMIN+ 4WMIN+ 16 WMIN+ 64WMIN+ 64WMIN 149 WMIN.

Since g_-> 298 we conclude that the collections are balanced.
ProofofLemma 3.4. The proof of Lemma 3.3 shows that wt(L) _-> W 149 WMIN.

By assumption, since the collections are unbalanced, W >- gWMIN >-298 WMIN; we
conclude that wt(L, >- W/2.

Proof of Lemma 3.5.1. Let Si, Si/k be large sets and suppose that for each
j, 1 <_-j < k, si+j is not large. Then, as in the proof of Lemma 3.3, we can show that

k-1wt(Si) >= Y.j= wt(Si/). Let Sh be the large set of greatest index; we can also show that
wt(Sh) >-->-_1 wt(Sh+). Since S is large the lemma follows.

Proof of Lemma 3.5.2. Observe that the large set whose index is maximal must
be useful. Consider a sequence of sets Sik+l/l, Sik+l/2,’’’, Sio, which satisfies the
following: (1) $io is the only set in the sequence which is both useful and large. (2)
Either Si+, is both useful and large; or ik+l is a-1. (3) Si, Si_,,"" ", Si,, Sio is the
subsequence of large sets in this sequence. We show that k= wt(Si) <- 4 wt(Sio). Since
any large set must lie in such a sequence the lemma follows.

Let T be the union of the small sets between Si and S_1. Let the sequence
Ri, Ri_l, , Rio, comprise the merge of the sequence Si, , Sio, and the nonempty
sets in the sequence T,..., T. We actually prove that j__ wt( )=4 wt(Ro)=
4 wt(Sio). This result is an immediate consequence of the following claim: Claim 1.
For l<-j<-h, wt(Ri)<-22- wt(Rio). This in turn, is an immediate consequence of the
following two claims" Claim 2. For 1 <=j <- h, IR,I <= 2lR,o[. Claim 3. For 1 -<_j -<_ h, the
weight of any collection in Ri is at most 2- of the weight of any collection in Rio.
Claim 3 is immediate.
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_Proof of Claim 2. For each set R,,j >- 1, we prove the following assertion: the
number of collections in x=o Rix LI Lio is greater than the number of collections in
Claim 2 follows by induction on j, from the assertion, when we note that It,ol-<-IR,01.
The proof of the assertion breaks into two cases.

Case 1. R, is a set Sir. Because S,,. is not useful IS,yl < ILiy+ll, and the assertion
follows.

Case 2. Ri, is a set T/x. We note that IT,ll <  ls, l. Also, since S, is not useful,
Is, l < r, l / It,_,l. Thus r, l < h(I r, l / Izi._,[). We deduce that r, l < IL,_,I. Again, the
assertion follows. [-i

Proof of Lemma 3.5.3. We note that Isi- l / Is, / 341s, for Si large and
useful. There are two possibilities"

Possibility 1. [sil<-_p/36. Then S, has at least 3lsil neighbors, of which at least
ISi] lie outside Si-1 [-J Si 12

Possibility 2. lsl>p/36. Then Si has at least 35p/36 neighbors. Observe that
t_Jj=o S[=p/2 (since i> average+2). Therefore, at least 17p/36 of these neighbors
are in [.J=oS. Also, i>average+2, implies that [s,l<-p/4. Thus Si has at least
7/9ls,l>lsil neighbors in ,-2[-J=o Sj This completes the proof of Lemma 3.5.3.

Note that we have required thatf=> g,f>= (8d)2. Thus, in the definition of balanced
above, we set f max {g, (8d)2}.

4. List ranking. We give an optimal O(log n) time algorithm to solve the following
generalization of list ranking.

Input. A linked list of n nodes, stored in an array with index range [0: n- 1]. In
addition, for each node, we are given the distance to its successor in the list (typically
this distance is unity, though in general it need not be). For each node, we store the
pointer and the distance to its successor in the arrays D(0: n-1) and R(0: n-l),
respectively. For the last node v in the list we have R(v)= 0 and D(v)= nil.

Problem. Compute into array R, for each node u, the distance from u to the end
of the list.

It is useful to assume that each node knows its predecessor in the list. We store
the predecessors in array P. P can be computed in O(1) time using O(n) operations,
in the obvious way.

The algorithm starts with a series of O(log n) steps. Each step takes O(1) time.
In each step we reduce the problem to a smaller subproblem by removing a set of
nonadjacent nodes from the list. We remove node u, the successor of node v (that is
u D(v)), by the following group of assignments.

R(v):=R(v)+R(u);
D(v):=D(D(v))
if D(v) nil then P(D(v)) := v

At each step of the algorithm each processor is associated with a node. If these
assignments are performed by a processor associated with node v this is called a
traversal by node v; if they are performed by a processor associated with node u this
is called a removal by node u. Since, in any given step the removed nodes are
nonadjacent, it is easy to perform the removals by an EREW algorithm.

Our algorithm has three stages.

Stage 1. In O(log n) steps the input list will be reduced to a list of at most
n/log n+ 1 nodes. This will take O(log n) time and O(n) operations.

Stage 2. We compute the list ranking on the remaining list (the reduced list) using
Wyllie’s list ranking algorithm [W-79]; it will perform O(n) operations in time O(log n).
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Stage 3. We show how to "reconstruct" the list ranking ofnodes that were removed
in Stage 1; it is reconstructed from the list ranking of the reduced list, computed in
Stage 2. We first observe that given the list ranking for the list present at the end of a
step of Stage 1, the ranking for the nodes present at the start of the step can be
computed in O(1) time. Specifically, let the vector Rac,uat contain the final list ranking
(to be computed). Let u be a node, other than the last node, which was removed from
the list at a step of Stage 1. Suppose that Rac,uat(D(u)) is known. (Note that neither
D(u) nor R(u) was changed by our algorithm after this removal). Then R,u,l(U) can
be computed by Ractuai tl ".----- R (u) + Ractual(D(u)).SecOnd we apply the idea of back-
tracking. Specifically, each processor "revisits" the operations it performed at Stage 1
from the most recent to the earliest; at the time of revisiting the operation of removing
node u it simply computes R,,ua(u). We refer the reader to [CV-86a] for a more
detailed discussion of the "backtracking" procedure required. The time complexity of
Stage 3 is dominated by the time complexity of the forward steps of Stage 1.

So the total complexity of the algorithm is O(n) operations and O(log n) time.
The rest of this section is concerned only with the traversals and removals of Stage

1. The goal is to obtain a reduced list of at most n/log n + 1 nodes (the reduced list
will include the first node of the input list). We call the nodes in the reduced list full
nodes. The traversals and removals are performed by a set of n- 1 tasks, associated
with each node in the list (except the first node). Each task performs at most 5 log n- 1
steps of traversals and removals. Our main effort in this section is to show how to
formulate these tasks so that we can use the duration-unknown task scheduling
algorithm from 3 to schedule them. We need the following definition.

DEFINI’rION. An r-ruling set of a linked list is a subset U of the nodes of the list
such that

(i) No two nodes of U are adjacent in the list.
(ii) If v is a node in the list, the next node from U in the list is at most r edges

(links) distant from v.
We recall that there is a 4 log n-ruling set algorithm that performs O(n) operations

in O(1) time [CV-86a]. To make the paper self-contained we have described a slightly
modified version of this algorithm in Appendix A. The algorithm has the following
property: The first node in the list is always placed into the ruling set unless its successor
is the last node in the list (i.e. the list contains exactly two nodes). We remark, that
by definition, the ruling set contains the last node in the list. Also, the algorithm
actually provides a stronger result that we use below: Suppose we assign a processor
to each node in the list. Then, solely by looking at v, its predecessor and two successors,
the processor can determine in O(1) time whether v is in the log n-ruling set.

The task of v, for any node v in the list. At the beginning, the task of node v will
be waiting. At some step of Stage 1 a processor will be assigned to node v and the
task will become active. The task will remain active until it is completed. Upon
completing this task the processor will be able to determine whether v is in the reduced
list (i.e. whether v is a full node) or not. If v is not in the reduced list then node v
either: performs a removal, or "marks itself for removal," or is already removed.

On becoming active the task determines if node v has been removed from the
present linked list. If so, in one step, the processor completes the task of node v without
removing any node and v is not a full node. So, suppose that v is in the present list.
The processor of v will complete its task with the decision that v is a full node if and
when the following two conditions hold:

(i) Node v has performed at least log n traversals.
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(ii) The successor of node v in the present list is not marked for removal.
Each step comprises three synchronized substeps.

Substep 1.
If node v has performed at least log n traversals and the successor of node v in
the present list is not marked for removal

then the task is completed (without even proceeding to Substep 2); v is a full
node.

Substep 2.
If the successor of v has completed and is a full node

then if the predecessor of v is not active
then v performs a removal; the task is completed; v is not a full node.
else mark v for removal; the task is completed; v is not a full node.

Substep 3. v belongs to a "chain" of presently active nodes; the chain is of length
at least one and is followed by a node that is not full (either a node whose task is
waiting or a node marked for removal).

Use the stronger version of the log n-ruling set algorithm to find whether v is in
a log n-ruling set with respect to this chain. (Note: the last node in the chain is
always placed in the ruling set. Specifically, in the trivial case, where the chain
consists of a single node, this node is in the ruling set.)
If v is not in the ruling set and is not the first node in the chain

then mark v for removal; the task is completed; v is not a full node.
else if v is not in the ruling set and is the first node in the chain

then v performs a removal; the task is completed; v is not a full node.
else (* v is in the ruling set *) v performs a traversal.

Let us analyze the algorithm.
The reduced list comprises nodes that have traversed at least log n nodes each,

plus the first node in the input list. This implies:
LEMMA 4.1. The length of the reduced list is at most n/log n + 1.
LEMMA 4.2. The task of each node includes at most 5 log n- 1 tratersals.
Proof. We need the following observation. Consider the time at which node u is

marked for removal (but not removed). There must be a chain of length x _-< 4 log n + 1
nodes which ends at (and includes) u and satisfies the following: (1) The last x-1
nodes of this chain are marked for removal simultaneously. (2) The first node of the
chain is active and has performed less than log n traversals.

Now consider node v that has performed at least log n traversals. After the time
at which node v performed its log nth traversal, its successors could have formed a
chain of at most 4 log n 1 nodes marked for removal. This chain cannot grow while
node v traverses the chain. Finally, Substep 1 implies that node v completes its task
after traversing the -<_4 log n- 1 nodes in this chain. Lemma 4.2 follows. E]

Each removed node was subject to exactly one traversal or removal operation in
one of the n- 1 tasks. This implies the following corollary.

COROLLARY 4.1. There are n-1 tasks. Each task is of length O(log n) and the
total length of the tasks is O(n). Further, a task, once active, remains active until it is

completed.
Corollary 4.1 describes exactly the problem solved by the duration-unknown task

scheduling algorithm of 3. Thus these tasks require O(log n) time and O(n)
operations.

We have shown the following.
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THEOREM 4.1. There is an EREW PRAM algorithm for list ranking that runs in
O(log n) time using n/log n processors, which is optimal.

5. Summary. This paper has identified two scheduling problems, namely the object
redistribution problem and the duration-unknown task scheduling problem. The object
redistribution problem is solved optimally in O(1) time on n/log n processors (by the
redistribution procedure), and the task scheduling problem is solved in O(log n) time
on O(n/logn) processors; it used the redistribution procedure as a subroutine,
repeatedly. A key feature ofthe redistribution procedure is that it makes use ofexpander
graphs, resulting in large constants in the running time.

The other major problem solved in this paper is the list ranking problem. An
optimal deterministic algorithm is given: O(log n) time and O(n/log n) processors.

We pose the following open problem. Can a solution to the task scheduling
problem, that does not involve the use of expander graphs, be found?

Appendix A. The 4 log n-ruling set algorithm. The algorithm we describe is a
simplified presentation of the algorithm given in [CV-86a]; this presentation is due to
Goldberg, Plotkin and Shannon [GPS-87].

Assumptions about the input representation. The vertices are given in an array of
length n. The entries of the array are numbered from 0 to n- 1. Each entry number
is called the label of its vertex. The labels are represented as binary strings of length
[log n]. We refer to each binary symbol (bit) of this representation by a number
between 0 and [log n ]- 1. The rightmost (least significant) bit is called bit number 0
and the leftmost bit is called bit number [log n 1. Each vertex has a pointer to the
next vertex in the list (representing its outgoing edge). For simplicity we assume that
log n is an integer.

We show how to find a 4 log n-ruling set.
First, we show how to relabel the vertices. The new label of a vertex is called the

color of the vertex. Let a ak-1, ", ao and b bk_, , bo be the labels of vertex u
and its successor, respectively. Let j be the index of the least significant binary digit
in which a and b differ. The color of vertex u is (j, a). We consider the color to be a
binary number between 0 and 2k- 1. It is easy to see that the colors satisfy the following
two properties:

(1) There are at most 2 log n different colors.
(2) Each pair of adjacent vertices are colored differently.

A remark in [CV-86a] explains how a vertex can compute its label in constant time
using standard operations.

Second, we show how to select a 4 log n-ruling set. We define a vertex to be a
local maximum if its color is larger than the colors of its two neighbors. Then a
(4 log n 2)-ruling set can be chosen, as follows: select all vertices that are local maxima.
Since a monotone chain can have length at most 2 log n, it follows that we have selected
a (4 log n 2)-ruling set. A slight modification of this algorithm creates a 4 log n-ruling
set that contains the last vertex of the list, and if it is not adjacent to the last vertex,
the first vertex also, again in O(1) time.

Appendix B. Building the expander graph. For our construction we need e- 36.

In other words, for Iul<-_lv, I/36, we need that IN(u)l>-351u[. We use an expander
graph based on the construction described following Theorem 2 of [JM-85]. There, a
different definition of expander graphs, which is due to Margulis [M-75] is given. The

The base of all logarithms in the Appendix is 2.
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definition follows: A bipartite graph K (V1, V2, E) is an (n, k, 6) expander graph if
v,l-Iv21- , the degree is k, and for each subset U of
(1 /  (1-1uI/Iv, l))luI. (Comment: actually in [JM-85] Jimbo and Maruoka do not
restrict the degree; they merely require ILl <= kn; however, their constructions all obey
this less liberal definition.) To obtain an expander obeying the definition of 3, simply
identify the sets V and V2; for a given pair of values e and 6 it is easy to deduce the
corresponding y.

Jimbo and Maruoka [JM-85] give an expander graph K with k 5 and 6 > o.
From this graph, using standard methods, we can obtain the expander graph G needed
for our construction, as follows. We "iterate" the construction r times, for some constant
r (which depends only on e), creating graph H. Namely, the vertices of H comprise
the disjoint vertex sets V1, V2," ", Vr/l; we place a copy of the edges of K between
V and V/, for 1 =<i=< r. G has vertex sets V and Vr/. If in H, vertices v V1 and
w Vr/ are connected by a path of length r, then in G, v and w are joined by an edge.
K has vertex degree 5; thus G has vertex degree at most 5. Finding the constant r is
easy: For ul-<lv, the graph K satisfies that IN(U)] >-(1 /o6)1 uI >_-(1 /)1 uI. It
is easy to see that in G,[N(U)l>-min{6lV,l,(l+3)lU[}. Determining r is now
straightforward. (A more careful argument provides a much tighter bound.) There are
two more issues to be considered in order to adapt the construction of [JM-85] to our
needs:

(1) In [JM-85] Jimbo and Maruoka provide expander graphs for which V V21---
rn 2, where m is an integer. We actually wanted an expander graph on n vertices, not
on rn2 vertices. So let (m-1)< n <= m. Instead of using an expander graph on n
vertices, we use the expander graph on m2 vertices. This implies the algorithm assumes
m2 processors are available; but such an algorithm is readily simulated on n processors,
slowing it down by a factor of at most 2.

(2) We comment on the complexity of constructing the edges of K (and implicitly
of G). Each vertex has degree five. Each edge can be readily determined in O(1) time
by a single processor.
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AN O(n log log n)-TIME ALGORITHM FOR
TRIANGULATING A SIMPLE POLYGON*

ROBERT E. TARJANf* AND CHRISTOPHER J. VAN WYK"

Abstract. Given a simple n-vertex polygon, the triangulation problem is to partition the interior of the
polygon into n-2 triangles by adding n-3 nonintersecting diagonals. We propose an O(n log logn)-time
algorithm for this problem, improving on the previously best bound of O (n log n) and showing that triangu-
lation is not as hard as sorting. Improved algorithms for several other computational geometry problems,
including testing whether a polygon is simple, follow from our result.

Key words, amortized time, balanced divide and conquer, heterogeneous finger search tree, homogene-
ous finger search tree, horizontal visibility information, Jordan sorting with error-correction, simplicity test-
ing
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1. Introduction. Let P be an n-vertex simple polygon, defined by a list
Vo,V vn- of its vertices in clockwise order around the boundary. (The interior
of the polygon is to the right as one walks clockwise around the boundary.) We
denote the boundary of P by 0P. We assume throughout this paper (without loss of
generality) that the vertices of P have distinct y-coordinates. For convenience we
define vn Vo. The edges of P are the open line segments whose endpoints are vi,vi+l
for 0 < < n. The diagonals of P are the open line segments whose endpoints are
vertices and that lie entirely in the interior of P. The triangulation problem is to find
n-3 nonintersecting diagonals of P, which partition the interior of P into n-2 trian-
gles.

If P is convex, any pair of vertices defines a diagonal, and it is easy to triangulate
P in O (n) time. If P is not convex, not all pairs of vertices define diagonals, and even
finding one diagonal, let alone triangulating P, is not a trivial problem. In 1978,
Garey, Johnson, Preparata and Tarjan [10] presented an O (n log n)-time triangulation
algorithm. Since then, work on the problem has proceeded in two directions. Some
authors have developed linear-time algorithms for triangulating special classes of
polygons, such as monotone polygons [10] and star-shaped polygons [31 ]. Others have
devised triangulation algorithms whose running time is O (n log k) for a parameter k
that somehow quantifies the complexity of the polygon, such as the number of reflex
angles [13] or the "sinuosity" [5]. Since these measures all admit classes of polygons
with k 1 (n), the worst case running time of these algorithms is only known to be
O(n log n). Determining whether triangulation can be done in o (n log n) time, i.e.
asymptotically faster than sorting, has been one of the foremost open problems in
computational geometry.

In this paper we propose an O (n log logn)-time triangulation algorithm, thereby
showing that triangulation is indeed easier than sorting. The paper is a revised and
corrected version of a conference paper [27] which erroneously claimed an O (n)-time
algorithm. The goal of obtaining a linear-time algorithm remains elusive, but our
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approach suggests some directions in which to look and clarifies the difficulties that
must be overcome.

The starting point for our algorithm is a reduction of the triangulation problem to
the problem of computing visibility information along a single direction, which we take
to be horizontal. A vertex-edge visible pair is a vertex and an edge that can be con-
nected by an open horizontal line segment that lies entirely inside P. Similarly, an
edge-edge visible pair is a pair of edges that can be connected by an open horizontal
line segment that lies entirely inside P. Fournier and Montuno [9] showed that tri-
angulating P is linear-time equivalent to computing all vertex-edge visible pairs. The
reduction of triangulation to computing visible pairs was independently obtained by
Chazelle and Incerpi [5]. What we shall actually produce is an O (n log log n) -time
algorithm for computing visible pairs, which by this reduction leads to an
O (n log log n)-time triangulation algorithm.

Our visibility algorithm computes not only vertex-edge visible pairs but also possi-
bly some edge-edge visible pairs. It is reassuring that the total number of visible pairs
of either kind is linear.

LEMMA 1. There are at most 2n vertex-edge visible pairs and at most 2n edge-
edge visible pairs.

Proof. Each vertex can be in at most two vertex-edge visible pairs, for a total
over all vertices of at most 2n. Partition P into trapezoids and triangles by drawing a
horizontal line segment between each visible pair (of either kind) through the interior
of P. (See Figure 1.) Each edge-edge visible pair corresponds to the bottom boun-
dary of exactly one such trapezoid or triangle, the top boundary of which is either one
or two line segments corresponding to vertex-edge visible pairs (in the case of a tra-
pezoid) or a vertex that is in no visible pairs (in the case of a triangle). A vertex

FIG. 1. A simple polygon P, showing visibility information: dashed horizontal lines correspond to

vertex-edge visible pairs; dotted horizontal lines correspond to edge-edge visible pairs.
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gives rise to at most two top boundary segments of trapezoids or to at most one top
boundary of a triangle. Thus there are at most 2n trapezoids and triangles whose bot-
tom boundaries correspond to edge-edge visible pairs, and hence at most 2n such pairs.

The second cornerstone of our method is the intimate connection between visibil-
ity computation and the Jordan sorting problem. For a simple polygon P and a hor-
izontal line L, the Jordan sorting problem is to sort the intersection points of OP and
L by x-coordinate, given as input only a list of the intersections in the order in. which
they occur clockwise around t)P. (The list of vertices of P is not part of the input.)
Hoffman, Mehlhorn, Rosenstiehl and Tarjan 14] have presented a linear-time Jordan
sorting algorithm, which actually works for any simple curve, open or closed. This
algorithm, which we call "the Jordan sorting algorithm," requires that OP actually
cross L wherever it touches it, but the algorithm is easily modified to handle tangent
points, provided that each intersection point is labeled in the input as being either
crossing or tangent.

Computing visible pairs is at least as hard as Jordan sorting, in the sense made
precise in the following lemma:

LEMMA 2. Using an algorithm to compute vertex-edge visible pairs, one can
solve the Jordan sorting problem for an n-vertex polygon P in 0 (n) additional time,
given as input the polygon and the line L (and not the intersections).

Proof. Compute all vertex-edge visible pairs for P. Next, turn P "inside out" by
breaking P at its lowest vertex and drawing a box around it as shown in Figure 2,
forming a polygon Q with n+5 vertices. Compute the vertex-edge visible pairs for Q.
These pairs specify vertex-edge visibilities on the outside of P, and indicate which ver-
tices of P can see arbitrarily far left or right on the outside. Partition the inside and
outside of P into trapezoids, triangles, and .unbounded trapezoidal regions by drawing
horizontal line segments corresponding to each visible pair. Given a line L, the inter-
section points of OP and L can be read off in increasing x-order by moving left to
right through the regions that intersect L. The total time for this algorithm, not
including the two visibility computations, is O (n). rn

Since any visibility computation does Jordan sorting implicitly, it is natural to try
using Jordan sorting explicitly to compute visible pairs. This leads to the following
divide-and-conquer visibility algorithm (see Figure 3)"

Step 1. Given P, choose a vertex v of P that does not have maximum or
minimum y-coordinate. If no such v exists, stop: there are no visible pairs to compute.
Otherwise, let L be the horizontal line through v.

Step 2. Determine the intersection points of 0P and L in the order in which they
occur along the boundary of P.

Step 3. Jordan sort the intersection points and report the visible pairs that
correspond to consecutive intersection points along L.

Step 4. Slice P along L, dividing P into a collection of subpolygons.
Step 5. Apply the algorithm recursively to each subpolygon computed in Step 4.

The Jordan sorting algorithm has the fortuitous side effect of computing enough
extra information so that Step 4 is easy. The hard part of the computation is Step 2.
There are two major bottlenecks in the algorithm, either of which will make a naive
implementation run in quadratic time. First, it is possible for the algorithm to report
redundant visibility pairs; indeed, the example in Figure 4 shows that it can report
fl (n 2) nondistinct pairs.

We eliminate this bottleneck by modifying Step 2 to compute only some of the
intersections of 0P with L. This can cause the Jordan sorting algorithm used in Step
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FIG. 2. Polygon P of Figure turned "’inside out," and showing exterior vertex-edge visible pairs.

3 to detect an error, since the sequence to be sorted need no longer consist of all inter-
sections of a simple polygon with a line. Fortunately the sorting algorithm is incre-
mental, and when it detects an error, we can restart it in a correct state by computing
a few additional intersections and making local changes in its data structure. We call
this augmented sorting method Jordan sorting with error-correction.

By computing only some of the intersections of 3P and L and using Jordan sort-
ing with error-correction, we obtain a visibility algorithm that reports only O (n) visi-
ble pairs and runs in O (n) time not counting the time needed to find intersections.
This approach requires the use of a two-level data structure to represent polygon
boundaries, but imposes no further constraints on the details of the data structure.

The second, far more serious bottleneck is the problem of actually finding the
intersections. The line L divides 0P into pieces. If each of these pieces ended up in a
different subpolygon boundary, then we could obtain (with a little work) an overall
O (n) time bound for the visibility algorithm by using finger search trees in the boun-
dary data structure and appealing to the linearity of the following recurrence [20, p.
185]:

]O(1) if n-- 1;
T (n)

/ max {T(k) + T(n-k)+O(1 +logmin{k, n-k})}
I,l<k <n

ifn>l.

Unfortunately the pieces of the original boundary do not stay apart but are
regrouped to form the subpolygon boundaries. To beat the O (n log n) time bound of
previous triangulation algorithms, we need another idea, that of balanced divide and
conquer. We refine the visibility algorithm to choose L judiciously, so that each of the
subpolygon boundaries contains a relatively small number of pieces of the original
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STEP

FIG. 3. Illustrating Steps and 4 of the visibility algorithm.

boundary. Balanced divide and conquer combined with the use of finger search trees
in the boundary data structure produces a visibility algorithm that runs in
O (n log log n) time.

The remainder of this paper consists of five sections and an appendix. In Section
2 we review the Jordan sorting algorithm and modify it to do error-correction. In Sec-
tion 3 we present a generic visibility algorithm, based on Jordan sorting with error-
correction, that reports O(n) visible pairs. In Section 4 we refine the algorithm so
that it uses balanced divide and conquer. In Section 5 we propose a data structure for
representing the polygon boundary that consists of two levels of finger search trees.
We show that with this data structure the visibility algorithm of Section 4 runs in
O (n log log n) time. We close in Section 6 with some remarks, applications, and open
problems. The appendix contains a discussion of finger search trees, which are needed
not only in the visibility algorithm itself but also in the Jordan sorting algorithm.

2. Jordan sorting with error-correction. Let P be a simple polygon and let v be a
vertex of P. Let L be the horizontal line through v, and let Xo v, x,... ,Xm- be
the intersection points of igP and L in clockwise order around igP. (Since throughout
this paper we are assuming that the vertices of P have distinct y-coordinates, igP and
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FIG. 4. This class of polygons can cause the naive algorithm to produce a quadratic amount of out-
put. A first slice through v0 cuts off k + triangles. Successive slices at v,., i--l, 2 k, report
k- + visible pairs, but only two are new each time.

L intersect in a finite set of points.) Points X l,X 2 ,Xm_ are crossing points of OP
and L; point x0 is either a crossing point or a tangent point. We impose a total order
on the points xi given by the order of their x-coordinates. We wish to sort
Xo,Xl, Xm- according to this total order.

The sequence Xo,Xl Xm-1 gives rise to two forests, in the following way.
For convenience let Xm Xo. Without loss of generality assume that the part of 0P
from x0 to X lies above L. For O<i<m, let ei=min{xi_,xi} and
ri max{xi-l,Xi}. We say a pair {Xi-l,Xi} encloses a point x if gi < x < ri. We say
two pairs {Xi-l,Xi} and {X-l,X} cross if {Xi-l,Xi} encloses exactly one of xj-1 and x;
{Xi-l,Xi} encloses {xj_,x} if it encloses both of x._l and xj_. The simplicity of P
implies that if i----j mod2, then the two pairs {Xi-l,Xi} and {xj_,xj} do not cross.
We call this the noncrossing property. The Hasse diagram of the "encloses" relation
on the set of pairs {{x2,x2i+}lO < < m12} is a forest, called the upper forest. The
Hasse diagram of "encloses" on the set of pairs {{x2i-l,X2i}]O < < rnl2} is also a
forest, called the lower forest. We order each set of siblings in either forest by plac-
ing {xi-,xi} before {Xj_l,Xj} if r < gj. This makes each forest into an ordered
forest. We make the two forests into trees by adding the dummy pair {-oo, oo} to
each. Thus we obtain two trees, called the upper tree and the lower tree. (See Figure
5.) We call the set consisting of a parent in either tree and its children a family.
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FIG. 5. Hasse diagram of the "’encloses" relation with respect to line L. (Point xi is labelled i.)

We shall restate the Jordan sorting algorithm [14] in a form suitable for exten-
sion to the visibility computation. The algorithm proceeds incrementally, processing
the points X l,X 2 ,xm one at a time and building the upper tree, the lower tree,
and a list of the points in sorted order. Initialization consists of making {-oo, oo} the
only pair in both trees and defining the sorted list to be (-oo,x0,oo). The general step
consists of processing point xi by performing the following steps. Suppose is odd, i.e.
{xi-,xi} is to be added to the upper tree. Assume xi- < xi. (The case xi- > xi is
symmetric.)

Step 1. Find the point x that follows x_ in the sorted list.
Step 2. Find the pair {xj_,xj} in the upper tree such that x E {xj_,xj}.
Step 3. Apply the appropriate one of the following four cases (see Figure 6):

Case A (,aj < xi- < rj < xi). Halt: {xi-,xi} and {Xj-l,Xj} cross.
Case B (gj <xi- <xi <rj). Make {x_,xi} the new last child of

{x)_,x)}. If < m, insert xi after xi-1 in the sorted list.
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FIG. 6. The four cases for Jordan sorting.

Case C (xi < ). Insert {Xi_l,Xi} into the list of siblings of {Xj_l,Xj} just
before {x_,xj}. If < m, insert xi after xi- in the sorted list.

Case D (xi_ < j < xi). In the list of siblings of {x_],xj}, find the last
one, say {Xk-l,X,}, such that k < Xi. If rk > Xi, halt: {xi-,xi} and {Xk_I,Xk}
cross. Otherwise, if {Xk_I,Xk} is the last child of its parent pair {xp_,xp} and
rp < xi, halt: {xi-,xi} and {Xp_l,Xp} cross. If neither of these crossings is found,
remove from the list of siblings of {xj_],xj} the sublist from {Xj_l,X} to
{Xk_I,Xk} (inclusive) and replace it by {xi-],xi}. Make the removed sublist the
list of children of {Xi_1,xi}. If < m, insert xi after rk in the sorted list.
Observe that if {Xi-l,Xi} and {Xj_l,Xj} are two pairs with > j and------ j mod 2, all four points xi-,xi, x_,xj are distinct unless m and tn is odd,

in which case possibly xi c: {xj_,xj}. This means that Cases A-D exhaust the possi-
ble ordering relationships among the four points.

If is even, i.e. {xi-,xi} is to be added to the lower tree, the processing is analo-
gous to the above, with a few changes needed to accommodate the fact that Xo is in
no pair in the lower tree until xm x0 is processed (if then). The changes are as fol-
lows:

(i) Just before Step 2, if x x0, replace x by the point that follows x0 in the
sorted list.

(ii) In Step 2, find the pair {xj_,xj} that contains x in the lower tree (instead of
in the upper tree).

(iii) In Step 3, Cases B and C, if xi-i < Xo < xi, insert xi in the sorted list
after X o (instead of after Xi_l).

(iv) In Step 3, Case D, if rk < Xo < xi, insert xi in the sorted list after Xo
(instead of after rk).
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The sorting algorithm as stated tests for crossing pairs. If the input is guaranteed
to be correct (i.e. to have the noncrossing property), we can simplify the algorithm by
eliminating Case A and the two tests for crossing pairs in Case D.

Making the algorithm run in linear time requires the use of appropriate data
structures. Each list of siblings in the upper and lower trees is represented by a homo-
geneous finger search tree (see the appendix) in which each leaf is a pair in the list.
In addition, there are bidirectional pointers between each pair and its first and last
children (in whichever tree contains the pair). Thus each family forms a doubly-
linked circular list, with the additional property that any pair in the list can be
accessed from any other pair d away in either direction in O (1 + log d) time. Furth-
ermore the amortized time to insert a pair next to a given one in a family list is
O (1), and the amortized time to remove a sublist of d pairs from a list of s pairs,
given the end pairs of the sublist, is O (1 + log(min {d, s-d} + 1)).

The running time of the. Jordan sorting algorithm is dominated by the time spent
doing "remove a sublist/insert a pair" operations on family lists. Let T (p,s) be the
maximum amortized time needed to do a total of/9 such operations on an initial list of
size s and on the removed sublists. Then T (p,s) obeys the following recurrence:

0 ifp =0;
(2) T(p,s) max {T(i,d+l) + T(p-i-l,s-d+l)

/O<i<p

[o<d + 0 (1 + log (min{d, s -d} + 1))} if p > O.

A proof by induction shows that T (p,s) O (p +s). The list manipulation time
of the Jordan sorting algorithm is at most T([m/2], 1) + T([ml2], 1), from whicli it
follows that the algorithm runs in O (m) time. For further details of the algorithm
and the analysis see the original paper [14]. (In our restatement of the algorithm, we
have modified the data structure slightly, the main change being to eliminate circular
level links in the finger search trees. These changes do not affect the O (m) time
bound.)

We now want to augment the Jordan sorting algorithm so that when it detects
two crossing pairs, it can in certain cases restart itself in a corrected state that
represents the partial sorting of a sequence modified to eliminate the crossing. In the
application of Jordan sorting to the visibility computation, the sorting algorithm
receives as input only a possibly noncontiguous subsequence of the sequence of inter-
sections. In this subsequence, certain pairs are designated as special. (All other pairs
are normal.)

To accommodate the operation of the triangulation algorithm, we impose on each
special pair {xi-,xi} the additional requirement that it enclose no given intersections
other than xi-1 and xi. We call this the nonenclosure property. On the other hand,
special pairs are potentially modifiable: if {xi-,xi} is a special pair, there may be
additional intersections between x-i and x; along 0P. The Jordan sorting algorithm
is allowed to request such additional intersections if it detects a crossing or a violation
of the nonenclosure property.

The mechanism for providing additional intersections is a procedure named refine,
whose input parameters consist of a special pair {Xi-l,Xi} and a point x enclosed by

Amortized time is the time per operation averaged over a worst-case sequence of operations that
begins with an empty data structure. For a discussion of this concept see the first author’s survey paper
[261.
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{Xi_l,)i}. The procedure returns a bracketing pair x’,x" such that x’ and x" are
intersections of igP and L, the four intersections occur in the order xi-,x’,x",xi along
0P, and the five points occur in the order xi_,x’,x,x",xi (or its reverse) along L. If
there is no such pair, refine returns nothing. If a pair is returned, the new sequence to
be sorted is the old sequence with x’ followed by x" inserted between xi- and xi. Of
the three pairs that replace {xi-,xi}, the pairs {Xi-l,X’} and {x",xi} are special and
the pair {x’,x"} is normal. (This means that {x’,x"} is the closest pair of intersec-
tions to x.)

We shall modify the Jordan sorting algorithm so that it can handle special pairs,
using refine when possible to eliminate violations of the noncrossing and nonenclosure
properties. The modification consists of the following three additions to the algorithm
(see Figure 7):

(i) In Step 1, if {x_,xi} is special and x < xi, call refine ({xi_,xi},x). If
refine returns no pair, halt: {Xi-l,Xi} violates the nonenclosure property. If refine
returns a pair (x’,x"), insert x’ and x" in the sequence to be sorted between xi- and
xi and restart the processing with x’.

(ii) In Step 3, Case B, if {xj_,xj} is special, halt: the nonenclosure property has
been violated. Even if it can be restored by refining {xj_,xj}, this will produce a vio-
lation of the noncrossing property. (This also happens in Step 3, Case A: even if

FIG. 7. Modifications to make Jordan sorting error-correcting.
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{Xj__,Xj} is special and the crossing of {Xi_l,Xi and {Xj_l,Xj} can be eliminated by
refining {xj_,xj}, this will produce a new crossing pair.)

(iii) In Step 3, Case D, if {xk-,Xk} is special and rk > Xi, do not halt, but
instead call refine ({Xk-l,Xk}, xi). If refine returns no pair, halt: {Xk-m,Xk} violates
the nonenclosure property. If refine returns a pair (x’,x"), replace {X,-l,Xk} in the
upper forest by {Xk-,x’} followed by {x",Xk}. Insert {x’,x"} in the appropriate place
in the lower forest (as a sibling or child of the pair containing x, whichever is
appropriate). Proceed as in the remainder of Step 3, Case D, using {Xk-l,X’} in place
of {x_,x} and also in place of {x. 1,x.} if {x l,x.}---{xk ,x’} That is, if- J _- J
{Xj-l,Xj} {Xk-,Xk}, replace {X_l,X I in its list of siblings by {xi-,xi} and make
{xj_,x’} a child of {xi-,xi}. if {xj_,xj} ; {Xk-l,Xg}, replace the sublist from
{Xj_l,Xj} to {Xk-,x’} (inclusive) by {Xi-l,Xi}, and make the sublist the list of chil-
dren of {xi-,xi}. In either case insert xi after x’ in the sorted list (or after x0 if
x’ < Xo < x).

The correctness of the error-correcting Jordan sorting algorithm follows from the
observation that, while the algorithm is running, a special pair {x_,xj} can enclose at
most one intersection point xi q {x_,x}. To see this, suppose without loss of gen-
erality that {x_,xj} is a pair in the upper tree. An intersection xi {xj_,xj} can be
inserted between xj-1 and x in the sorted list because of the addition of a pair
{xi-,xi} to the lower tree, but the violation of the enclosure property will be detected
when the point xi+ is processed, as illustrated in Figure 7(ii).

The additions necessary to make the algorithm error-correcting cost only O (1)
time per point processed and per refinement, not including the time spent inside calls
of refine. (There are at most two insertions in sibling lists per refinement.) Thus the
error-correcting algorithm runs in O (m) time, where m is the number of intersection
points in the final refined sequence. In the next section, we shall see how error-
correcting Jordan sorting can be used to compute visible pairs.

3. An efficient visibility algorithm. Our algorithm for computing visible pairs fol-
lows the outline laid out in Section 1. It is a divide-and-conquer method that cuts up
the original polygon into subpolygons, cuts these into smaller subpolygons, and so on,
until none of the subpolygons can be further divided. In order to present the details of
the method, we must first discuss the structure of the subpolygons, which we call visi-
bility regions. The interior of a visibility region is a simply connected subset of the
original polygon interior contained between two horizontal lines, denoted by y ---Ymin
and y---Ymax (with Ymin < Ymax)" We require that the region boundary actually
intersect both of these lines. (See Figure 8.)

The boundary of a visibility region consists of connected pieces of the boundary of
the original polygon, called boundary segments, alternating with segments of the lines

Y Y min and y---Ymax. Each such horizontal segment that is not a single point
corresponds to a visible pair. At most one vertex of the original polygon lies on each
of the lines y--Ymin and y--Ymax. Although a visibility region is itself a simple
polygon, when we speak of its vertices we mean only those that are vertices of the ori-
ginal polygon P. A boundary segment begins with a vertex or part of an edge, called
a partial edge, and ends with a vertex or partial edge. We call the edge of the origi-
nal polygon that contains such a partial edge an end edge of the segment.

We divide the boundary segments into three types:
top: no end edge or vertex intersects the line y Ymin;

bottom: no end edge or vertex intersects the line y Ymax;
side: one end edge or vertex intersects the line y --Ymax and one intersects the

line y y min"
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FIG. 8. Schematic illustration of a visibility region. Each curve represents a segment of the polygon
boundary.

The degenerate case of a top or bottom boundary segment is a single vertex and
no partial edges; the degenerate case of a sde boundary segment is a single partial
edge and no vertices. Clockwise around the boundary of a region, the boundary seg-
ments consist of four contiguous parts: a set of top segments, which together with the
adjacent pieces of the line y -Ymax forms the top of the boundary; a side segment,
which forms the right side of the boundary; a set of bottom segments, which together
with the adjacent pieces of the line y --Ymin forms the bottom of the boundary; and
another side segment, which forms the left side of the boundary. Both side segments
must be present; either the top or the bottom or both can be empty.

We shall represent a visibility region by specifying Y min and Ymax and the four
parts of the boundary (left, right, top, and bottom). We represent the top and the
bottom by lists of the boundary segments they contain, in clockwise order around the
boundary. We represent the left and right sides by their single boundary segments.
Finally, we represent each boundary segment by a list of the vertices in it, in clockwise
order around the boundary, together with its end edges (if any). We leave unspecified
the implementation of the lists that represent the boundary segments and the top and
bottom boundaries of the region; this is the topic of Section 5.

Having discussed the structure of visibility regions, we now need to introduce
some terminology concerning the intersections of the boundary of a region with a hor-
izontal line. (See Figure 9.) Let V be a visibility region and let L be a horizontal line
that intersects its interior. We partition the boundary segments of V into three types,
depending on their relationship to L:

shallow: a segment that does not intersect L;
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FIG. 9. Illustrating three kinds of boundary segment. The top group includes a deep section of three
segments. Both top and bottom groups include shallow sections of two segments.

deep: a top segment whose vertices are all strictly below L or a bottom segment
whose vertices are all strictly above L;

mixed: any other segment.
A side segment is definitely mixed; a top or bottom segment can be of any type.

We define a shallow section to be a (contiguous) sublist of shallow boundary segments
in the list of boundary segments clockwise around 0V; we define a deep section simi-
larly. A deep or shallow section consists entirely of top segments or entirely of bottom
segments. Each of the partial edges of a deep section intersects L and these are the
only intersections of the section with L. We classify the intersections of 0V with L
into two types:

nonessential: an intersection within a maximal deep section that is not the first or
the last within the section;

essential: any other intersection.
The last issues we must discuss before presenting the visibility algorithm are the

notion of a special pair and the effect of the refine procedure, both of which affect the
running of the error-correcting Jordan sorting algorithm. A pair of intersections of igV

and L is special if the intersections are the first and last in some deep section (along
O V) and normal otherwise. (Observe that the intersections of a deep section with L
occur in the same order along L as they do along igV, or in reverse order.) A call
refine ({xi-,xi}, x) has the following effect. Points xi- and xi are the first and last
intersections in some deep section, say S. If S can be split into two deep sections S
and $2 with first and last intersections xi_,x’ and x",xi, respectively, such that
{x’,x"} encloses x, then refine returns (x’,x"). If S cannot be so split, refine returns
no pair. Observe that if a pair (x’,x") is returned, {xi_,x’} and {x",xi} are special
pairs and (x’,x") is a normal pair, as required by the Jordan sorting algorithm.

There is one more crucial observation about special pairs. Consider a special pair
{xi-,xi} that comprises the first and last intersections of a single deep boundary seg-
ment. If the segment is a top segment T, then T together with the appropriate seg-
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ment of the line y Y max forms a simple closed curve whose interior contains the line
segment joining xi- and xi and whose exterior contains the boundary of V other than
T. By the Jordan curve theorem, {Xi-l,Xi} can enclose no intersections other than

xi- and xi. Thus every special pair either can be refined or has the nonenclosure
property, as required by the Jordan sorting algorithm.

We are at last ready to discuss the visibility algorithm itself. The input to the
algorithm is a single visibility region V. To apply the algorithm to the original
polygon, we convert the polygon into a visibility region by dividing its boundary into
two side boundary segments whose end vertices are the vertices of minimum and max-
imum y-coordinate. The y-coordinates of these two vertices become Y min and Y max for
the region. The algorithm is the same as that in Section except that it computes
only the essential intersections of 0V and L in Step 2 and uses Jordan sorting with
error-correction in Step 3. That is, it consists of the following five steps"

Step 1. Given V with bounding lines y Ymin and y Ymax, choose a vertex of
V having y-coordinate Y eut such that Y min < Y cut < Y max" If there is no such v, stop:
there are no visible pairs to compute. Otherwise, let

_
be the line y Ycut.

Step 2. Find the essential intersections of 0V and L in the order in which they
occur along 0V.

Step 3. Use Jordan sorting with error-correction to sort by x-coordinate the
essential intersections and any others introduced by refinement. Report the visible
pairs corresponding to consecutive sorted intersections along L.

Step 4. Slice V along L, dividing V into a collection of subregions.
Step 5. Apply the algorithm recursively to each subregion formed in Step 4.

The observations made above concerning special pairs and refinement imply that
the Jordan sorting step works correctly; any nonessential intersection occurs along 0V
between the members of a special pair and is available by refinement if needed.

The last detail we must fill in before undertaking an analysis of the algorithm is
the effect of Step 4. The boundaries of the subregions are formed as follows. (See
Figure 10.) Split 0V at each of the intersections sorted in Step 3. Each of the pieces
so formed corresponds to a pair in the upper or lower tree constructed by the Jordan
sorting algorithm. Each family in each of the trees whose parent has odd depth
(counting the dummy roots as being of depth zero) corresponds to a subregion. The
boundary of the subregion consists of the pieces of OV that correspond to the pairs of
the family, in the order in which the members of the family occur in the family list in
the lower tree or the reverse of this order in the upper tree, interspersed with appropri-
ate segments of the line y -Ycut, with one crucial exception: if D is a piece of 0V
that corresponds to a deep boundary section, before using D as part of a subregion
boundary, each of its segments of the line y y min or y )’max must be replaced by a
corresponding segment of the line y---Y cut. Observe that this has no effect on the
representation of the deep boundary section, which means that no change in the data
structure representing the section is necessary. Furthermore the visibility regions cut
off by this replacement and henceforth ignored are trapezoids, on which the visibility
algorithm would terminate in Step 1 were it invoked on them. The visibility algorithm
obtains its efficiency by avoiding any computation associated with these trivial tra-
pezoids.

We define Y min and Y max for the subregions as follows. Consider a subregion
above L, which corresponds to a family in the upper tree. The value of Y min for this
subregion is Y cut. The value of Ymax for the subregion is Y max for the region if the
parent of the family is at depth one in the upper tree, or otherwise the maximum y-
coordinate of a vertex in the piece of 0V corresponding to the parent of the family. In
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FIG. 10. Assembling subregions. The family tree nodes associated with several regions are shown.
Trapezoids labeled "0" are ignored completely.

the latter case, the piece of OV corresponding to the parent consists of a single piece of
a boundary segment of V. We split this piece at the vertex with maximum y-
coordinate to form two pieces, which become the side boundary segments of the subre-
gion; the top of the subregion is empty. The definitions are symmetric for subregions
below L.

Let us restate the difference between the algorithm above and the one outlined in
Section 1. In the former, a maximal deep section is treated as if it had only two inter-
sections with L (the essential ones), until it is discovered that some intersection not in
the section is enclosed by these two. This approximation to the truth works because
the intersections in the section occur in the same order along the section as they do
along L (or in reverse order). If no "foreign" intersections intervened, the algorithm of
Section 1 would merely chop the section between each pair of contiguous boundary
segments in Step 2 and put them back together in exactly the same order in Step 4.
The new algorithm avoids this unnecessary work.

We now want to quantify the work saved by the new algorithm. Our main result
is that the total number of visible pairs reported during the processing of an n-vertex
polygon is O (n). This implies that the time spent doing Jordan sorting, not including
calls of refine, is O (n).

LEMMA 3. The processing of an n-vertex polygon requires at most n-2 invoca-
tions of Steps 2-4.
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Proof. Each vertex except the ones of maximum and minimum y-coordinate can
be selected as v in Step at most once. []

LEMMA 4. Consider a single invocation of Step 3. Let k be the number of visi-
ble pairs reported during this invocation that were not reported during previous invo-
cations. The total number of intersections sorted during this invocation, including
those introduced by refinement, is 0 (k + 1).

Proof. First we count the essential intersections. We call an essential intersec-
tion x good if x is a vertex (i.e. x---v) or if the two vertices preceding and following x
along 0V, say v’ and v", are in the same part of tgV (top, bottom, left, or right) and
not strictly on the same side of L. Otherwise x is bad. We claim that if x is a good
intersection other than v, then the edge that contains x belongs to a newly reported
visible pair. This is true if the part of 0V from v’ to v" consists of the line segment
joining v’ and v", since the visible pair containing the edge from v’ to v" that will be
reported is the first one reported containing that edge. It is also true if the part of
from v’ to v" consists of a partial edge from v’ to the line y ---Ymax (or y Y min), a
segment of the line y Y max (or y Y min, respectively), and a partial edge from the
line y ---Ymax (or y Y min, respectively) to v". To see this, suppose without loss of
generality that v’ is strictly below L and OV contains a partial edge from v’ to the line

Y --)’max. (See Figure 11.) Intersection x is on this partial edge. Along the line L,
the edge from v’ sees something other than the edge into v", and thus will be con-
tained in a newly reported visible pair, since if two edges see each other horizontally,
the part of each edge that sees the other is connected. Thus in either case the claim is
true. The claim implies that the number of good intersections is O (k + 1).

Consider the bad intersections. Any mixed boundary segment contains at most
two bad intersections (the first and last in the segment) and, if it is a top or bottom
segment, at least one good intersection. Any maximal deep section contains at most
two bad intersections (the first and last in the section). Such a section either (i) is
followed by a shallow segment, (ii) is followed by a mixed top or bottom boundary
segment, or (iii) contains the last segment on its side. In case (i) the last intersection
is good. The number of bad intersections in case (ii) is O (k + 1), since the mixed seg-
ment contains at least one good intersection. At most four bad intersections (the last
two within each of the top and bottom boundaries) can fall into case (iii). There are
also at most two bad intersections within each of the left and right sides. Thus the
number of bad intersections is O (k + 1).

It remains for us to count the nonessential intersections introduced by refinement.
Suppose that a call refine ({Xi_l,Xi} X) returns a pair x’,x". Both of the edges that
contain x’ and x" will be contained in newly reported visible pairs, since along L they

FIG. 11. The edge that contains x belongs to a newly reported visible pair.
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see something other than each other. Thus the number of intersections introduced by
refinement is O (k). rn

The following theorem summarizes our analysis of the algorithm so far.
THEOREM 1. Irl processing an n-vertex polygon, the visibility algorithm reports

0 (n) risible pairs and spends 0 (n) time in Jordan sorting, not including its calls to

refine. This includes all processing of subregions.
Proof Immediate from Lemmas 1, 3 and 4. Ixl

4. Use of balanced divide and conquer. The visibility algorithm of Section 3 can
in the worst case generate regions containing a total of 1 (n 2) boundary segments
(counting a boundary segment each time it occurs in a region). As we shall see in
Section 5, obtaining an O (n log log n)-time implementation of the algorithm requires
reducing the total number of boundary segments to O(nlogn). We do this by
refining the algorithm so that it uses a balanced divide-and-conquer strategy. The
refinement consists of choosing the vertex v carefully in Step 1. Roughly speaking, we
want to slice a region with many boundary segments so that at most a proper fraction
of the segments end up in any one of the subregions. A choice that works and that
can be made quickly is the following:

Choose splitting vertex. Let region V have top boundary segments and b bot-
tom boundary segments. Suppose >/ b. (Otherwise, proceed symmetrically.) If
< 2, choose any vertex v whose y-coordinate is not in {Y min ,Y max} Otherwise, divide

the list of top boundary segments into three sublists, with the first and last containing
[t/3J segments and the middle one the remainder. Among the segments in the middle
sublist, choose as v the vertex whose y-coordinate is minimum.

We call the visibility algorithm refined to use this selection strategy the balanced
division algorithm; we call the algorithm with an arbitrary selection strategy the gen-
eric algorithm. In the analysis to follow, we regard two boundary segments as distinct
only if their vertex sets or their end edges (if there are any end edges) are different.

LEMMA 5. In processing an n-vertex polygon, the generic visibility algorithm
creates 0 (n) distinct boundary segments altogether.

Proof The only way the algorithm can create new boundary segments is by split-
ting an old boundary segment in two, at an intersection point that is input to the Jor-
dan sorting algorithm or at the vertex of maximum or minimum y-coordinate in a
subregion. By Theorem there are O (n) such splitting points. Hence there are O (n)
distinct boundary segments, rn

LEMMA 6. Let V be a region that has s boundary segments. If V is sliced using
balanced division, then no subregion contains more than 7sl8 of the original boun-
dary segments of V.

Proof Let V contain top boundary segments and b bottom boundary segments.
We have s b + + 2. Suppose without loss of generality that >/ b. If < 2 the
lemma is immediate, since some boundary segment is cut into new boundary segments
distinct from the original; thus the original appears in no subregion. Suppose >/ 3.
Consider where the top boundary segments of V end up after slicing. A segment that
is mixed with respect to the slicing line L is cut into new boundary segments distinct
from the original; thus the original appears in no subregion. There are at most 2 [t/3J
deep top boundary segments, which implies that each subregion below L contains at
most b + 2tl3 + 2 < 7sl8 of the boundary segments of V. A deep top segment can-
not end up in a subregion above L; only a part of it, constituting a distinct boundary
segment, can. Thus among the top segments, only the shallow ones can end up in
regions above L. A set of shallow segments can end up in the same subregion only if
it forms a shallow section. By the choice of L, any such shallow section can contain at
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most [t/3J < 2tl3 top boundary segments of V. Thus any subregion above L
contains at most b + 2tl3 + 2 < 7sl8 of the boundary segments of V. rn

THEOREM 2. When the balanced division algorithm processes an n-vertex
polygon, the sum over all regions of the number of boundary segments per region is
O (n log n).

Proof. One way to prove this theorem is to write down a recurrence based on
Lemma 6 and solve it. Instead, we shall use an amortization argument based on a
credit analysis (see [26]). When the balanced division algorithm creates a distinct
new boundary segment, we assign 15 log16/15 n credits to the segment. Each subse-
quent time that the segment appears in a subregion, we remove a credit. We shall
show that the number of credits always remains nonnegative, which implies by
Lemma 5 that the sum over all regions of the number of boundary segments is
O (n log n).

To show that the number of credits remains nonnegative, we actually prove the
following stronger credit invariant: a region that has s boundary segments has at least
s 1og16/5 s credits. The invariant is certainly true initially. Suppose it is true before
some invocation of Steps 1-4. Let V be the region to be subdivided, and let s be its
number of boundary segments. Before the subdivision, V has at least s lOgl6/ss
credits, of which we allocate log6/ss to each boundary segment. One of these pays
for the appearance of the segment in V, leaving (1og16/15 s)-I log16/5(15s/16) as its
contribution to the credits of the subregion in which it appears. Consider a subregion
V’ formed by splitting V. Suppose its boundary contains p of the boundary segments
of V and q newly created boundary segments; let s’--p/q. To verify that V’ has
s’ logl6/15s’ credits, there are two cases to consider. If q > s’/15, then the total
number of credits is at least the number of credits assigned to new segments:

15q 1og16/15 n s’ log16/15 n s’ lOgl6/15 s’.

If q < s’/15, then since p < 7s/8 by Lemma 6, we have s’ < 15s/16. The total
number of credits is

p log6/5(15s/16) + 15q 1Ogl6/15 n p lOgl6/15 (15s/16) + 15q log16/15 (15s/16)

> s’ Iog6/15 (15s/16) > s’ 1og6/5 s’.

By induction on the number of steps, the credit invariant is always true, from which
the theorem follows.

5. Representation of the boundary using finger search trees. We have now almost
completed our presentation of the visibility algorithm. The task that remains is to
choose a data structure for the lists that represent the boundary segments and boun-
dary groups, and to analyze the effects of this choice. To represent both kinds of lists
we use heterogeneous finger search trees (see the appendix). As we shall see, this
gives an overall O(n log logn) running time for the balanced division visibility algo-
rithm.

We represent each boundary segment by a heterogeneous finger search tree in
which each leaf contains a vertex in the segment. Left-to-right order in the tree
corresponds to the order of the vertices along the segment. In addition, if the segment
has one or two end edges, we store these edges with the tree. Within the tree, we
maintain two heap orders, both with respect to the y-coordinates of the vertices. One
is by increasing y-coordinate, the other is by decreasing y-coordinate. That is, each
node in the tree contains the maximum and minimum y-coordinates of all leaves
reachable from it in the tree. (See Figure 12.) This allows us, for any given value of
y, to find the leftmost (or rightmost) vertex with y-coordinate less than (or greater
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FIG. 12. A boundary segment and its representation as a heterogeneous finger search tree. (The
drawing conventions are explained in Figure 22.)

than) the given value, in O(1 +log(min{d, s-d} + 1)) time, where s is the total
number of vertices stored in the tree and the one found is the dth. We can also find
the vertex of maximum (or minimum) y-coordinate in the same time. The amortized
time to split the tree at the dth out of s vertices is also O (1 + log(min{d, s-d} + 1)).

We represent each list of top boundary segments or bottom boundary segments
constituting the top or bottom boundary of a region by a heterogeneous finger search
tree in which each leaf represents a boundary segment. Left-to-right order in the tree
corresponds to the order of the boundary segments clockwise around the boundary.
Each leaf contains a pointer to the tree representing the corresponding boundary seg-
ment, as well as the end vertices or edges of the segment, and the maximum and
minimum y-coordinates of the vertices within the segment. We think of each node in
the tree as representing the section (sublist of boundary segments) corresponding to
the set of leaves reachable from the node. We store in each node the first and last end
vertices or edges of the corresponding section, the number of segments in the section,
and the maximum and minimum y-coordinates of vertices in the section. (See Figure
13.) All these values can be updated bottom-up in the interior of the tree and top-
down along the left and right paths.
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FIG. 13. A group of boundary segments and its representation as a heterogeneous finger search tree.
(The drawing conventions are explained in Figure 22; capital letters represent end edges.)

All of the following operations can be performed in O(1 +log(min{d, s-d} + 1))
time, where the segment found is the dth out of s:

(i) Find the leftmost (or rightmost) segment in the tree that contains a vertex
with y-coordinate less than (or greater than) a given value;

(ii) Find the dth segment;
(iii) Suppose all the segment vertices lie strictly above (or strictly below) a given

horizontal line L, and that all end edges of the segments cross L. Given a value x,
find the leftmost (or rightmost) segment in the tree having an edge whose intersection
with L has x coordinate less than (or greater than) x. (All four possibilities, leftmost
less than, leftmost greater than, etc., are allowed.)

In addition, inserting a new segment next to the dth out of s or splitting at the
dth segment out of s takes O (1 + log(min{d, s-d} + 1)) amortized time. Concatenat-
ing two trees takes O (1) amortized time.
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Let us examine the manipulations of the boundary data structures required to
carry out the steps of the balanced division visibility algorithm. We describe these
step by step, including a timing estimate for some of the computations.

Step 1. Given V, determine the number of top and bottom boundary segments in
its boundary, say and b, respectively (O(1) time). Assume > b. (The other case
is symmetric.) If < 2, choose a segment of the boundary that contains some vertex
with y-coordinate strictly between Y min and Y max, and select as v the first such vertex
in the segment (O (1) time). If >/ 3, find the minimum y-coordinate of the vertices
in the middle third of the top boundary segments (time to be analyzed below). This
defines the slicing line L.

Step 2. Split the tree representing the top boundary between each pair of seg-
ments that differ in type among the types shallow, deep, and mixed (time to be
analyzed below). This splits the top boundary list into mixed segments and maximal
deep and shallow sections. Repeat this for the tree representing the bottom boundary
(time to be analyzed below). For each mixed segment, split its tree between each pair
of consecutive vertices, one on each side of L (time to be analyzed below). Split the
tree that contains the vertex lying on L at that vertex, putting the vertex in both of the
resulting trees (time to be analyzed below). Each of the splits performed corresponds
to an essential intersection of the boundary with L. Form a list of these intersections,
in the order in which they occur along the boundary, by examining the list of trees
representing the deep sections and the new boundary segments that have been formed
by splitting mixed segments (O (1) time per essential intersection).

Step 3. To execute a call refine ({xi-,xi}, x), examine the tree representing the
deep section whose first and last intersections with L are xi- and xi. Assume
xi- < xi. (The other case is symmetric.) Find in this tree the rightmost segment
whose first intersection with L is less than x (time to be analyzed below). If the last
intersection of this segment with L is greater than x, return no pair (O(1) time).
Otherwise, split the section between this segment and the next one, and return as x’
and x" the last intersection of this segment and the first intersection of the next one
(time to be analyzed below).

Step 4. For each pair in the upper tree whose depth is odd and greater than one,
split the tree representing the corresponding boundary segment at its vertex of max-
imum y-coordinate (time to be analyzed below). Put the splitting vertex in both of
the resulting trees. Proceed symmetrically for the boundary segments corresponding
to pairs in the lower tree. For each family in both trees, concatenate the boundary
segments and deep sections corresponding to the pairs in the family to form the boun-
dary of the subregion corresponding to the family (O(1) time per pair). Because the
input polygon is simple, the order in which polygon vertices appear on the boundary of
the subregion is consistent with their order in the original polygon. (See Figure 14.)
This means that the concatenation will never need to reverse the order of boundary
segments.

Now let us analyze the running time of this implementation of the balanced divi-
sion algorithm. Observe that for each segment found within a top or bottom boun-
dary, and for each vertex found within a segment, a split occurs at that segment or
vertex. Since the timing estimates for finding and splitting are the same, the time
spent splitting dominates the time spent finding such segments and vertices, including
the time to find the y-coordinates of the splitting vertices in Step 1. Thus, by the tim-
ing estimates above and Theorem 1, the total running time of the algorithm is O(n)
plus at most a constant times the time for tree insertions, splits, and concatenations.

It remains to estimate the time for tree update operations. Every insertion is at
one end of a finger search tree and thus takes O (1) amortized time. The updates on
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FIG. 14. A subregion that would cause trouble for Step 4. The arrows indicate the direction of the
two boundary segments in the original polygon. Such subregions cannot occur for simple polygons.

the trees representing segments are only splits and insertions, of which there are O (n).
The total running time of these updates obeys a recurrence that is essentially the same
as (1) (Section 1) and is thus O (n).

The updates on the trees representing top and bottom boundaries include concate-
nations, and recurrence (1) does not apply. To analyze these operations, we first
observe that the amortized time per concatenation or insertion is O (1). Since the
total number of such operations is O (n), their total time is O (n).

To analyze the O(n) splits, consider a particular visibility region Vi that has a
total of si boundary segments. The total time to split the two trees representing the

.-.ki+ltop and bottom boundaries is O(ki + 2j-o log si,j), where k; is the total number of
splits and Si, O,Si, ,Si, ki+l are the numbers of segments in each of the trees that
are created by the splits. (Starting from two trees, k splits produce k + 2 trees; if
there is only one tree initially, we take Si, ki+l 1.) We have si,j >/ for all j, and

j-o si,j < si+l. Since the logarithm is a concave function, the estimate of splitting
time is maximized when all the pieces are of equal size, giving a bound of
O(ki + (ki+2) log ((si+l)/(ki+2))).

We evaluate the total time to perform all O (n) splits,
O(Zi (ki + (ki+2) log ((si+l)/(ki+2)))), in two parts. Call Vi a good region if

t si/(lg n)2, and bad otherwise. By Theorem 2, ,isi O(n logn), so the total
namber of splits that occur while processing good regions, ,ki<si/(logn)Eki, is
(tllog n); using O (log n) as a generous time bound for these splits, the total time to
l|it good regions is O (n). It remains to bound the time to split bad regions:

O[ (k+(k+2)log((si+l)/(ki+2)))]ki>si/(logn)

---0[ (kiW(ki+2)loglogn)]--O(nloglogn),
ki>si /(log n)

since Zi ki 0 (n).
We conclude that the total running time of the visibility algorithm with balanced

division is O (n log log n).

6. Remarks, applications and open problems. We have presented an
O (n log log n) -time algorithm for computing horizontally visible edge-vertex pairs
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inside a simple polygon. By the linear-time reduction of triangulation to the visibility
problem [5|,[9] we obtain an O(n log logn)-time triangulation algorithm. The main
ingredients of our algorithm are Jordan sorting, balanced divide and conquer, and
finger search trees. It is intriguing to note that both the Jordan sorting algorithm and
the visibility algorithm use finger search trees, but of two different kinds. The Jordan
sorting algorithm requires fast access in the vicinity of any position in the tree but
does not need to search on a secondary heap order. Homogeneous finger search trees
satisfy these requirements. The visibility algorithm itself does need to search on
secondary heap orders, but requires fast access only in the vicinity of the first and last
positions. Heterogeneous finger search trees satisfy these requirements. Our algo-
rithm exploits to the fullest the properties of these structures.

Finger search trees are sufficiently complicated that one would probably not want
to use them in an actual implementation. The dynamic optimality conjecture of Slea-
tor and Tarjan [23] suggests that the O (n log logn) time bound is still valid if splay
trees (a form of self-adjusting search tree) are used in place of finger search trees.
The use of splay trees might lead to a practical implementation of our algorithm,
although this must be verified by experiment. Other minor changes in the algorithm
might be useful in practice. We leave this as a topic for future research.

Our visibility algorithm can be modified to accommodate vertices having the same
y-coordinate. To handle the resulting tangent intersection points in the Jordan sorting
step (Section 2), we represent such a point xi by a dummy pair (xi,xi) which we add
to the lower tree if the tangency is on the top side of the splitting line L, or to the
upper tree otherwise. The remaining changes to the algorithm are straightforward.
(See e.g. 30].)

An efficient triangulation algorithm has a number of applications in computa-
tional geometry. These applications typically involve one (or possibly a few) triangu-
lations and some linear-time pre- and postprocessing. Our triangulation algorithm
gives O(n log logn)-time algorithms for these applications. Any improvement in the
time to triangulate would give corresponding improvements in the applications. Such
applications include:

(i) several polygon decomposition problems [9] (where minimality, as in [17], is
not required);

(ii) regularizing (or triangulating) a planar subdivision that is given as a con-
nected planar graph [8];

(iii) computing the internal distance between two points in a polygon, and finding
the point visibility polygon for a point inside the polygon [3];

(iv) solving the single source shortest path problem inside a polygon, and comput-
ing internal visibility information from an edge inside a polygon [11 ];

(v) testing two polygons for intersection, and decomposing simple splinegons [24]
into a union of differences of unions of convex sets [7];

(vi) determining translation separability of two simple polygons [1 ];
(vii) finding a shortest watchman route in a simple rectilinear polygon ([6, Thm.

31).
An important application of our visibility algorithm is to test whether an n-vertex

polygon P is simple, and to exhibit a self-intersection of OP if it is not simple. We
shall show how to modify our algorithm to perform these tasks in O (n log log n) time.

Even though the error-correcting Jordan sorting algorithm detects some instances
of nonsimplicity as uncorrectable crossings or violations of the nonenclosure property,
the successful completion of the visibility algorithm is not proof against nonsimplicity
of the input polygon. Among the problems with which a guaranteed simplicity test
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FIG. 15. Nonsimple polygons that cause no trouble in the algorithm for computing visibility informa-
tion. In (c), a slice through v separates the polygon into three simple pieces.

must cope are polygons that are self-tangent at a vertex (Figure 15a), polygons for
which an interior cannot be defined by any consistent labeling of the edges (Figure
15b), and nonsimple polygons that can be sliced into simple pieces (Figure 15c).

Our algorithm for testing simplicity is as follows. First we check that no two
consecutive edges of P intersect in more than their common endpoint. Next, we run
the visibility algorithm on the polygon P and on its "inside-out" partner Q, defined as
in the proof of Lemma 2. We abort the algorithm and declare that P is nonsimple if
one of the following cases occurs:

(i) the Jordan sorting step finds an intersection point common to two parts of P
other than an endpoint of two consecutive edges (see Figure 15a);

(ii) the Jordan sorting step detects an uncorrectable crossing or violation of the
nonenclosure property;
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FI. 16. The ordering of the four corners of this visibility region implies that it is not simple.

(iii) a subregion is constructed in Step 4 whose side boundary segments, say S
and $2, are known to cross, because the intersections of S and $2 with the top
bounding line are in the opposite order from the order of their intersections with the
bottom bounding line (see Figure 16).

If the visibility algorithm runs to completion on both P and Q, we declare that P
is simple.

In our discussion of Step 4 in Section 4, we noted that if the polygon is simple,
then the order of vertices along the boundary segments is consistent with the order of
the boundary of the subregion being reassembled. It is conceivable if the polygon is
not simple that Step 4 could be presented with a subregion whose boundary segments
appear in an anomalous order, as in Figure 14. Fortunately, this situation cannot in
fact occur: the existence of such a nested pair implies by the Jordan curve theorem
that the current region being processed has a nonsimple boundary, and indeed that the
segments of the boundary defined by the slicing line do not have the noncrossing pro-
perty. Therefore, the nonsimplicity will be detected in Step 3.

THEOREM 3. The simplicity-testing algorithm is correct.

Proof Certainly if the simplicity-testing algorithm declares that P is not simple
then 0P has a self-intersection. Suppose the algorithm reports that P is simple. The
visibility computations in the algorithm produce two sets of regions. Let P and Q be
the sets of regions produced when the visibility algorithm runs on P and Q, respec-
tively; each region in P and Q is either a trapezoid or a triangle. Some of the regions
in Q are bounded by one or more edges of Q-P, i.e., by edges that were added to
invert polygon P. Let Q’ be the set of regions formed by taking each region in Q and
extending it to infinity in the direction of any edge in Q-P. Regions in Q’ can be tra-
pezoids, triangles, halfplanes, or infinite regions bounded by two horizontal lines and
part of a side of P.

It is tempting to say that the regions in P partition the "interior" of P, but we
cannot say this, because we do not yet know that P has an interior. However, because
of the way in which the regions in P were produced, we know that they can be glued
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together along shared horizontal visibility edges to form a region that is topologically
equivalent to a disk. This is necessary but not sufficient for P to be simple (consider
the polygon in Figure 15c). The visibility algorithm could be modified easily to pro-
duce this "gluing," or, more properly, its dual graph, in which regions are vertices,
and regions that share a horizontal visibility edge are joined by an edge in the dual
graph.

Since the visibility algorithm succeeded, we also know that the regions in Q can
be glued together along horizontal visibility edges to form a region that is topologically
equivalent to the disk. This gluing can be extended naturally to Q’, which is topologi-
cally equivalent to the punctured plane. In what follows, we use the regions in P and
Q’ to construct a mapping from the plane onto itself.

Let C be a circle in the plane, and choose n distinct points on C corresponding to
the vertices of P; this induces a natural correspondence between points of 0P and
points of C. For each vertex-edge or edge-edge visible pair in P reported by the visi-
bility algorithm, connect corresponding points on C by a path through the interior of
C; make all these paths disjoint except for corresponding endpoints. (The dual graph
of the regions in P provides a natural way to do this constructively. Processing a ver-
tex of degree one in the dual requires that we draw a path between two points on C;
that path divides the disk into two parts, one of which can be discarded and never
enters into further computation of the mapping. Thus we can perform the complete
construction by processing and deleting vertices of degree one from the dual until the
dual is empty.) These paths divide the interior of C into regions corresponding to the
regions of P. Similarly, for each piece of visibility information in Q’, construct a
corresponding path joining two points of C and passing through the exterior of C. If
the piece of information represents a vertex or edge that sees arbitrarily far to the left
or right, the corresponding path leads from C to infinity. Make all the paths on the
exterior of C noncrossing. This partitions the exterior of C into regions corresponding
to the regions of Q’. (See Figure 17.)

We can construct a continuous mapping h of the plane onto itself that takes each
region of the interior of C onto the corresponding region of P and each region of the
exterior of C onto the corresponding region of Q’. The mapping is onto because every
point in the plane is in some region of P or Q’: For any point x, move horizontally
right from x until hitting OP. If the right side of 0P is hit (with respect to clockwise
order around igP), x is in some region of P. Otherwise x is in some region of Q’. If
0P is not hit, x is in some region of Q’.

Because P and Q’ are finite and the preimages of distinct regions have disjoint
interiors, the mapping h is a covering map from the plane onto itself: any point x in
the plane has an open neighborhood N such that h -1 (N) is the disjoint union of a
finite number of open sets [21]. Moreover, since the domain of h is connected, every
point in its range is the image under h of the same number of points of its domain
[21, ex. 8-3.5, p. 336]. Since any point in the open half plane that lies above the hor-
izontal line through the highest vertex of P is the image under h of only one point, h is
1-1. Thus h is a homeomorphism of the plane onto itself. This proves that OP is
homeomorphic to C, so P is simple, rn

If the simplicity-testing algorithm reports that P is not simple, we can produce a
witness to its nonsimplicity in O (n) additional time. If the nonsimplicity is detected
in Case (i), the self-intersection is available immediately. Otherwise (if Case (ii) or
(iii) occurs) we can find one or two bounding lines and two boundary segments S
and $2 with ends on the bounding lines such that the two boundary segments are
guaranteed to cross. There are seven possible configurations of the two boundary seg-



TRIANGULATING A SIMPLE POLYGON 169

V3

FIG. 17. Illustrating the mapping h constructed in the proof of Theorem 3. For 0 < < 5,
h (ui) vi. Dashed paths in the upper figure correspond to vertex-edge visibility segments in the lower
figure. Arrowheads indicate paths to infinity.

ments, illustrated in Figures 18 and 15b. We apply the following three steps repeat-
edly until an explicit crossing is found:

Step 1. Choose a vertex on S U $2 not having maximum or minimum y-
coordinate. Let L be the horizontal line through this vertex.

Step 2. Find all intersections of S and $2 with L, in the order in which they
occur along S1 followed by $2.

Step 3. Jordan sort the intersections. The Jordan sorting step must either find
an explicit self-intersection or a violation of the noncrossing property. If such a viola-
tion is found, let S’ and S[ be the crossing subsegments. Replace S and $2 by S’
and S[. If S’I and S[ are both single partial edges, report their intersection.
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(a)

(b) (e)

(c) (f)

FIG. 18. Possible configurations of crossing boundary segments: (a) four points on one bounding line;
(b) three points on one bounding line and one on the other; (c) two points on each bounding line; (d), (e),
and (f) are degenerate cases of (a), (b), and (c), respectively. Figure 15b depicts a degenerate case of (f).
Degenerate cases can be detected by examining the interior angle at the point or points of degeneracy.

An analysis like that in Sections 3-5 shows that this postprocessing takes O (n)
time if the segments are represented by finger search trees. (Concatenation of finger
search trees and balanced division are not needed.)

The algorithms for testing simplicity and producing a witness to nonsimplicity are
easily extended to work on connected polygonal paths that are not closed. The first
step of the extension is to draw a line through the two endpoints of the path, thus
chopping the path into boundary segments that lie entirely on one side of the line, and
to Jordan sort the points of intersection between the path and the line. If the Jordan
sorting detects a violation of the noncrossing property, the algorithm for finding a
crossing can be applied directly to the two boundary segments involved. Otherwise we
use processing akin to that in Step 4, augmented to cope with boundary reversals as in
Figure 14, to construct polygons that lie entirely on one side of the line; the path is
simple if and only if each of those polygons is simple.

The algorithms for computing horizontal visibility information, for testing simpli-
city, and for producing a witness to nonsimplicity, can be extended to work on curves
that obey certain mild restrictions. (See e.g. [22],[24].) To prepare the curve for pro-
cessing add vertices to each edge to form a curve each of whose edges is monotone in
the y-direction. The algorithms can now be run directly (given suitable procedures for
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computing the intersection of a curved edge and a line), because the edges of the
object have the property that if a collection of edges crosses two horizontal lines then
the edges cross both lines in the same order. The other extension occurs in simplicity
testing: we must check that the left and right sides of each trivial visibility region do
not cross. If all of the output regions have this property, then the curve is simple; oth-
erwise we have an immediate witness to its nonsimplicity. Both the preparation of the
curves and the postprocessing of the output regions can be performed in O (n) time.

Several open problems remain. First and foremost, of course, is determining
whether there is a linear-time triangulation algorithm, or even a o (n log logn)-time
algorithm. Resolving this question seems to require a new idea. One possible
approach is to invent a data structure for representing a polygonal curve that will
allow fast computation of its intersections with an arbitrary horizontal line segment, or
even with an arbitrary horizontal half line. Perhaps such a data structure can be built
using information computed by the visibility algorithm called recursively on small
pieces of the boundary, say of size O(logn). The result might be a visibility algo-
rithm running in O (n log" n) time. Another open problem is to determine how fast all
the self-intersections of a polygonal curve can be computed: can bounds better than
those for an arbitrary collection of line segments [4] be obtained?

Appendix. Finger search trees. A finger search tree is a type of balanced search
tree in which access in the vicinity of certain preferred positions, indicated by fingers,
is especially efficient. Finger search trees were introduced by Guibas, McCreight,
Plass and Roberts [12] and further developed by many other researchers
[2],[15],[18],[28],[29]. We shall discuss two kinds of finger search trees with slightly
different properties, heterogeneous trees and homogeneous trees. We base our
development on a particular kind of balanced tree, the red-black tree [20],[25],
although other kinds of balanced trees, such as a,b-trees [16],[19], form a suitable
basis as well. We are mainly interested in amortized, not worst-case, complexity
bounds.

For our purposes a binary search tree is a full binary tree in which each external
node contains a distinct item selected from a totally ordered universe, with the left-to-
right order of external nodes consistent with the total order on the items. Each inter-
nal node contains a key, which is an item greater than or equal to all items in its left
subtree and less than all items in its right subtree. We can use the keys to search for
the largest item in the tree less than or equal to a given one, by starting from the root
and going to the left child if the item in the current node is greater than or equal to
the given one, going to the right child otherwise, and repeating until an external node
is reached. The desired item is either the one in the external node reached or the one
in the preceding external node, which can be found by backing up the search path to a
right child, starting from its left sibling, and going through right children to an exter-
nal node. The time to search for an item is proportional to the tree depth.

A red-black tree is a binary search tree in which each node has one of two colors,
red or black. The node colors obey the following constraints (see Figure 19):

(i) all external nodes are black;
(ii) all paths from the root to an external node contain the same number of black

nodes;
(iii) any red node, if it has a parent, has a black parent.
The depth of a red-black tree containing n items is O(logn). To insert a new

item into a red-black tree, we search for the greatest item less than it in the tree.
When the search reaches an external node, we replace this node by an internal node
having two children, the old external node and a new external node containing the new
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FIG. 19. A red-black tree; solid nodes are black; hollow nodes are red. (Only the colors of the nodes
are shown.)

item. The new internal node contains as its key the smaller of the two items in its
children. The new internal node is colored red. This may violate the red constraint
(iii). To restore the red constraint, we proceed bottom-up along the search path,
applying the recoloring transformation in Figure 20a until it no longer applies, fol-
lowed by one application of Figure 20b, c, or d if necessary.

A deletion is similar. To delete an item, we find the external node containing it.
We replace the parent of this node by the sibling of the node to be deleted. This may
violate the black constraint (ii), producing a node that is short: all paths down from it
to external nodes contain one fewer black node than paths down from its sibling. To
restore the black constraint, we proceed bottom-up, applying the recoloring transfor-
mation of Figure 21a until it no longer applies, followed by one application of Figure
21 b if necessary, and then possibly one application of Figure 2 a, c, d, or e.

The worst-case insertion or deletion time in an n-item red-black tree is O (log n),
but the amortized insertion/deletion time is only O(1), not counting the time to
search for the node at which the insertion or deletion takes place. (This is a restate-
ment of a result of Huddleston and Mehlhorn [16] and Maier and Salveter [19] con-
cerning a,b-trees.) To prove this, we define the potential of a red-black tree to be the
number of black nodes with two black children plus twice the number of black nodes
with two red children. We define the actual time of an insertion or deletion to be one
plus the number of local transformations applied and the amortized time to be the
actual time plus the net increase in potential caused by the operation. With these
definitions, if we start with an empty tree, the total actual time for a sequence of
insertions and deletions is at most the sum of the amortized times, since the initial
potential is zero and the potential is always nonnegative. Furthermore the amortized
time of an insertion or deletion is O (1), since any of the transformations in Figures 20
and 21 increases the potential by O (1) and the nonterminal transformations 20a and
21a both decrease the potential by at least one.
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(a)

OR

FIG. 20. The rebalancing transformations in red-black tree insertion. Symmetric cases are omitted.
All unknown children of red nodes are black. In cases (c) and (d) the bottommost black node shown can
be external.

In an ordinary binary search tree, each node points to its two children. We con-
vert such a tree into a heterogeneous finger search tree by making each node along
the left path2 point to its parent instead of its left child, and each node along the right
path point to its parent instead of its right child. Access to the tree is by two fingers
pointing to the leftmost and rightmost external nodes. (See Figure 22.)

In an n-item heterogeneous search tree, we can search for an item d positions
away from either end in O(1 +log(min{d,n-d} + 1)) time, by searching up along the
left and right paths concurrently until we find a subtree or two subtrees guaranteed to
contain the desired item, and then searching down in this subtree or subtrees. Furth-
ermore we can insert or delete an item d positions from either end in
O(1 +log(min{d,n-d} + 1)) amortized time. We can also search for an item based
on its position or based on a secondary heap order. To accommodate search by posi-
tion, we store in each internal node the number of external nodes reachable from it
(by paths of pointers). To accommodate search based on a secondary heap order, we
assume each item has an associated secondary value. We store in each internal node
the minimum and maximum values of items reachable by paths of pointers. (See Fig-
ure 22.) By searching up along the left and right paths concurrently and then down
into an appropriate subtree or subtrees, we can perform the following kinds of
searches in O (1 + log(min{d,n-d} + 1)) time:

(i) Find the dth item in the tree;

2The left path in a binary tree is the path from the root through left children to an external node. The
right path is defined symmetrically.
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(o)

FIG. 21. The rebalancing transformations in red-black tree deletion. The two ambiguous (half-solid)
nodes in (d) have the same color, as do the two in (e). Minus signs denote short nodes. In (a), the top
node after the transformation is short unless it is the root.

(ii) Find the leftmost (or rightmost) item whose secondary value is at least (or at
most) a given value, if the item found is the dth.

The auxiliary position and secondary value information must be updated when
insertions and deletions are performed. This updating can be done bottom-up along
the search path, i.e. bottom-up within the tree and top-down along the left or right
path. The amortized time to insert or delete the dth item, including the search time,
is O (1 + log(min{d,n-d] + 1)).

We now wish to extend our repertoire of update operations to include concatena-
tion and splitting of trees. We shall discuss only the effect of these operations on the
tree structure; it is easy to verify that the pointers, keys, and auxiliary position and
secondary value information can be updated in the claimed time bounds. We define
the rank of a node in a red-black tree to be the number of black internal nodes on any
path from the node down to an external node; the rank of an external node is zero.
We can compute the rank of a node in time proportional to the rank by walking down
through the tree.

Concatenation is the simpler operation to describe. Suppose we wish to combine
two trees T1 and T2 into a single tree; we assume that all items in T1 are less than
all items in T2. Let xl with rank rl and x2 with rank r2 be the roots of T1 and T2,
respectively. Assume r < r2. (The other case is symmetric.) To concatenate T1
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FIG. 22. A heterogeneous red-black finger search tree. The colors of nodes are not shown. The items
are the letters a through f. The numbers in external nodes are secondary values. The numbers in internal
nodes are the minimum and maximum secondary values reachable from the nodes. The numbers outside
the nodes are the number of external nodes reachable from them.

and T2, we walk up the left path of T2 until we reach a node, say y, with rank equal
to r 1. We replace y in T2 by a new red node whose left child is X and whose right
child is y, correcting any violation of the red constraint as in the case of an insertion.
The amortized time for the concatenation is O(1 +min{rl,r2}). If we change the
definition of potential so that the potential of a tree is the rank of its root plus the
number of black nodes with no black children, then the amortized time of a concate-
nation is O(1); the amortized time for inserting or deleting the dth item out of n
remains O (1 + log(min{d,n-d} + 1)).

Suppose we wish to split a tree T containing n items at the dth item, dividing it
into a tree T1 containing the first d items and a tree T2 containing the last n-d
items. First we locate the dth item. Then we walk up along the search path to the
left or right path, deleting every node along the search path except the external node
containing the dth item, Assume we reach a node x on the left path. We concatenate
the trees to the left of the search path (including the one consisting of the single node
containing the dth item) in right-to-left order to form T1. We concatenate the trees
to the right of the search path whose roots are descendants of x to form a tree T. If
node x has no parent, then tree T is the desired T2. Otherwise, there remains
another tree T’ containing the parent of x, say y. Tree T’ is missing a node, since
node x was deleted. We replace node y by its right child, and repair the possible
resulting shortness as in a deletion. Then we concatenate T and T’ to form T2. A
careful analysis (see e.g. [20, pp. 214-216]) shows that the amortized time for split-
ting is O(1 +log(min{d,n-d} + 1)) for either the new or the old definition of poten-
tial.
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a, 4,4 d, 3,6 2

C, 3,6 2. e, 2,6 3

FIG. 23. The pointers in a homogeneous red-black finger search tree.

Heterogeneous finger search trees are used in the visibility algorithm to represent
parts of region boundaries. The term "heterogeneous" refers to the fact that the
pointer structure favors certain specific access positions, namely the two ends. In con-
trast, homogeneous finger search trees support fast access in the vicinity of any item.
We make a red-black tree into a homogeneous finger search tree by adding additional
pointers to it; namely, we make each node point to its two children and to its parent.
Each black node also points to its left and right neighbors, the black nodes of the
same rank that precede and follow the given node in symmetric order. (See Figure
23.) These extra pointers are called level links.

The level links support searching for a given item starting from an arbitrary item
in the tree in O(1 +log(min{d,n-d} + 1)) time, where d is the number of items
between the two given items. The search proceeds up from the starting item following
parent pointers and level links until a subtree or two in which the desired item must
be located are found; then the search proceeds downward in the standard way. Simul-
taneously with the search from the given starting item, searches are performed start-
ing from the first and last items in the list; all three searches terminate when the
desired item is first located (or discovered not to be in the tree).

Homogeneous finger search trees support fast searches only with respect to the
total order on the items, not searches by position or searches based on secondary heap
order. On the other hand, the extra time needed to update level links is only O (1) per
local transformation (of the kinds in Figures 19 and 20), and thus the amortized time
bounds of insertion, deletion, concatenation, and splitting are the same in homogene-
ous trees as they are in heterogeneous trees. Furthermore, homogeneous trees support
a more drastic splitting operation, called three-way splitting: given two items x and y
in a tree T, remove from T the sublist of items from x to y (inclusive) to form two
trees, one representing the removed sublist and the other representing the remaining
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items. The amortized time for a three-way splitting operation is
O(1 +log(min{d,n-d} + 1)), where d is the number of items in the removed sublist.
See [14] for details on how a three-way split can be performed within this time bound.
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version of the paper.
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PREFACE

In June 1985, a workshop on the mathematical theory of security was held at the
Massachusetts Institute of Technology’s Endicott House. The workshop, which was
run by Silvio Micali and Shaft Goldwasser, had three goals: to provide the necessary
mathematical framework for rigorously discussing security issues, to select archetypal
problems and provide concrete solutions, and to generate momentum and critical mass.

The participants in the workshop were invited to submit papers to this special
issue. Most of the papers in this issue were presented at the workshop. The submitted
papers went through the normal refereeing process; not all of them were accepted.
Finally, after two years, the issue is ready for publication.

The papers cover the following topics: randomization, pseudorandom number
generators, specific cryptographic protocols with certain provable security properties,
some cryptoanalytic attacks against specific protocols, and the theory of zero knowl-
edge. In addition, there are papers on various notions of security, as well as relevant
topics in complexity theory and hardware. Below, I discuss very briefly the main results
of the papers in this issue.

Some cryptographic protocols require generating a random integer in a certain
range with known factorization. The obvious method of selecting a random integer
and then factoring it is usually unfeasible, as factoring is assumed to be hard. In "How
to generate factored random numbers," Bach presents an efficient method. For a range
of the form N/2 < x < N, the algorithm requires O(log N) primality tests of integers
not larger than N. It can thus be performed in random polynomial time.

In "RSA and Rabin functions: Certain parts are as hard as the whole," Alexi,
Chor, Goldreich, and Schnorr prove the following property of the RSA and Rabin
encryption functions. If EN: ZN ---> ZN is either one of the two functions, then the
following computational tasks are equivalent under random polynomial-time transfor-
mations, given EN(X): (i) computing x; and (ii) guessing the least significant bit of x
with success probability 1/2+ 1/poly(n), where n is the length of N. Assuming integer
factoring is hard, they derive improved pseudorandom number generation and prob-
abilistic encryption schemes as a result.

In "Privacy amplification by public discussion," Bennett, Brassard, and Robert
consider the following setting: Two persons have an imperfect private channel and a

perfect public channel. The authors design protocols that allow the two persons to
assess the damage to the message sent and, in case it is not too severe, to extract from
it an undamaged part about which the eavesdropper has no information.

Recently, there were several papers that defined a model for weak random sources
and then showed how perfect or almost-perfect random bits can be generated using
such sources. In "Unbiased bits from sources of weak randomness and probabilistic
communication complexity," Chor and Goldreich define such a model, which general-
izes previous models. They show how to extract random bits from such sources. They
also derive results from probabilistic communication complexity and draw conclusions
about the robustness of the complexity class BPP.

In "Reconstructing truncated integer variables satisfying linear congruences,"
Frieze, Hastad, Kannan, Lagarias, and Shamir propose a polynomial-time algorithm
that finds small integer solutions to systems of linear congruences. They derive from
it polynomial-time algorithms that reconstruct the values of variables xl, , Xk, when
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there are some linear congruences relating them, together with certain bits from the
binary representations of these values (e.g., the high-order bits, the low-order bits, or
even an arbitrary window of consecutive bits). These algorithms yield two applications:
predicting linear congruential generators with truncated outputs, and breaking the
simplest version of Blum’s protocol for exchanging secrets.

In "The knowledge complexity of interactive proof systems," Goldwasser, Micali,
and Rackoff define the notion of zero-knowledge proofs as those proofs that convey
no additional information aside from the correctness of the assertion being proved.
The usual NP-proof that upholds the validity of the assertion (e.g., exhibiting a
Hamiltonian tour) is not zero-knowledge since it conveys much more than the fact
that the given string is in the language (e.g., it gives a tour which is much more than
merely the fact that the graph is Hamiltonian). They give two examples of zero-
knowledge proofs: one for the language of quadratic residues and another for its
complement.

In "A digital signature scheme secure against adaptive chosen-message attacks,"
Goldwasser, Micali, and Rivest present a new signature scheme that is based on the
assumed computational difficulty of integer factoring. The scheme has the strongest
security property, as it is secure against adaptive chosen-message attack" an adversary
who generates messages that may depend on previous signatures and who receives
signatures for such messages cannot forge the signature of an additional message. (The
task of forging a signature is equivalent to factoring.)

In "Minimum-knowledge interactive proofs for decision problems," 1Galil, Haber,
and Yung introduce a protocol for two parties, the prover and the verifier, with the
following properties: Following the protocol, the prover gives to the verifier a proof
of the value, 0 or 1, of a particular Boolean predicate that is hard for the verifier to
compute. This extends the "interactive proof systems" of Goldwasser, Micali, and
Rackoff, which are only used to confirm that a certain predicate has value 1. The
protocol is provably minimum-knowledge in the sense that it communicates no addi-
tional knowledge to the recipient aside from the value of the predicate. The protocol
is result-indistinguishable: an eavesdropper, overhearing an execution of the protocol,
does not learnthe value of the predicate that is proved, or anything else.

In "Complexity measures for public-key cryptosystems," Grollmann and Selman
use complexity theory to formulate two equivalent versions of cracking a public-key
cryptosystem. They prove several complexity-theoretic results related to these formula-
tions.

In "Solving simultaneous modular equations of low degree," Hastad shows how
to solve polynomial modular equations. His algorithm is polynomial when the degree
of the polynomial is small relative to the number of equations. Consequently, the use
of the RSA with a small exponent as a public-key cryptosystem is not secure in a large
network. A previously proposed protocol is broken using the new algorithm.

In "Unique extrapolation of polynomial recurrences," Lagarias and Reeds show
how to correctly extrapolate the values of an unknown polynomial recurrence modulo
M in k variables of degree at most d, where d and k are known and M is not known.
A polynomial-time algorithm predicts the next value given the first n values, and is
wrong for at most a constant number (that depends on d, k, and M) of values of n.

The first pseudorandom number generators gave methods that generate bits one
at a time, such that any advantage in guessing the next bit generated was computa-
tionally equivalent to a hard problem. In "The discrete logarithm hides O(log n) bits,"

This paper was handled by a different editor.
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Long and Wigderson show that obtaining any information about the O(log IPl) most
significant bits of x, given gX mod p, is equivalent to computing the discrete logarithm
mod p. So the method yields a pseudorandom bit generator, using seeds of length n,.
that generates log n pseudorandom bits at once.

It is known how to construct a pseudorandom function generator from a
pseudorandom bit generator. In "How to construct pseudorandom permutations from
pseudorandom functions," Luby and Rackoff show how to construct a pseudorandom
invertible permutation generator from a pseudorandom function generator. An implica-
tion of this result is that any pseudorandom bit generator can be used to construct a
private-key cryptosystem that is secure against chosen plaintext attack.

In "The notion of security for probabilistic cryptosystems," Micali, Rackoff, and
Sloan consider three formal definitions of security that have been proposed in the
literature and prove that they are equivalent. They consider their result evidence that
each one of the definitions captures the right notion of security.

In "A pipeline architecture for factoring large integers with the quadratic sieve
algorithm," Pomerance, Smith, and Tuler consider integer factoring from the practical,
economic point of view. Specifically, their "complexity measure" of a given algorithm
is the size of the largest numbers it can factor in one year while using equipment
costing less than $10 million. They describe an architecture and implementation of the
quadratic sieve algorithm that would yield 144 decimal digits as the measure. Currently,
the two best algorithms yield 101 and 126. The authors remark that the annual cost of
factoring a 200-digit number with their strategy would be about $1011--or only 5
percent of the current U.S. national debt.

In "Efficient parallel pseudorandom number generation," Reif and Tygar present
a simple parallel pseudorandom bit generator, assuming that the multiplicative inverse
problem is almost always not in the class RNC. Under this assumption, problems in
RNC can be solved by using only n random bits to serve as a seed for the generator.
They deduce some complexity-theoretic results.

At the time of the writing of this introduction the final versions of the two papers
on zero knowledge (by Goldwasser, Micali, and Rackoff and by Galil, Haber, and
Yung) were not ready. They may appear in a later issue of this journal.

2
--Zvi Galil Editor of Special Issue on Cryptography

Computer Science Department
Columbia University and Tel-Aviv University
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HOW TO GENERATE FACTORED RANDOM NUMBERS*

ERIC BACH?

Abstract. This paper presents an efficient method for generating a random integer with known factoriz-
ation. When given a positive integer N, the algorithm produces the prime factorization of an integer x drawn
uniformly from N/2 < x <= N. The expected running time is that required for O(log N) prime tests on integers
less than or equal to N.

If there is a fast deterministic algorithm for primality testing, this is a polynomial-time process. The
algorithm can also be implemented with randomized primality testing; in this case, the distribution of
correctly factored outputs is uniform, and the possibility of an incorrectly factored output can in practice
be disregarded.

Key words, factorization, primality, random variate generation

AMS(MOS) subject classifications. 1104, 11A51, 11Y05, 65C10

1. Introduction. Let N be a positive number, and suppose that we want a random
integer x uniformly distributed on the interval N/2 < x <: N. Further suppose that we
do not want to output x in the usual decimal form, but rather as an explicit product
of primes.

This is clearly possible if we are willing to factor x. However, the best known
algorithms for factorization [8], [16] require roughly O(logx)"/lgx/lglgx steps on
input x, so this approach is out of the question if N is large. In contrast, the method
of this paper uses primality testing rather than factorization. Since there are efficient
algorithms for determining primality [1], [10], [13], [17], the method is useful even
when N is so large that factorization is infeasible.

The algorithm works by assembling random primes, but it is not clear a priori
with what distribution these should be selected, nor how to efficiently implement a
desired distribution on the primes. Much of the paper will deal with these questions,
in a rather detailed fashion. However, if one is willing to overlook these technicalities,
the resulting method can be easily sketched.

It selects a factor q of x whose length is roughly uniformly distributed between
0 and the length of N, then recursively selects the factors of a number y between N/2q
and N/q and sets x--y. q. It has now chosen x with a known bias; to correct this, it
flips an unfair coin to decide whether to output x or repeat the whole process.

The results of this paper show not only that the distribution of x is uniform, but
that this is a fast algorithm. A rough measure of its running time is the number of
primality tests required; this quantity has expected value and standard deviation that
are both O(log N)--the same as required to generate a random prime of the same size.

This estimate is the basis for a finer analysis of the running time, which uses some
assumptions about primality testing. If there is a deterministic polynomial-time prime
test, as proved under the Extended Riemann Hypothesis by Miller [10], then the
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expected number of single-precision operations needed to generate x in factored form
can be bounded by a polynomial in log N.

If the method uses a probabilistic polynomial-time prime test such as those of
Rabin [13] and Solovay and Strassen [17], a similar result holds. In this case, the
distribution of correctly factored numbers is still uniform, and the possibility of
producing an incompletely factored output can in practice be disregarded- all within
an expected polynomial time bound.

The method has been implemented; on a medium-sized computer, it will generate
a 120-digit number in about 2 minutes.

The rest of this paper is organized as follows. Section 2 gives a heuristic derivation
of the algorithm, and 3 gives a general discussion of random variate generation.
Section 4 presents the algorithm in explicit form; its running time is analyzed in 5-8.
Finally, 9 gives experimental results.

2. Heuristics. Later sections present a detailed algorithm; this one provides motiva-
tion and sketches a design based on heuristic arguments.

First, what is meant by a "random factor" of a number? If we write down all
numbers between N/2 to N in factored form, we will have an array that is roughly
rectangular, because the juxtaposition of a number’s factors is about as long as the
number itself. If the factorizations are arranged one per line, and given in binary
notation, the picture will look something like this:

10 10 10 10011 100111111 100001100111001
11 11 11 1011011101 10100010111000111
10 101 11010011 10111110111110101011
10111111 100000111101110001010101
10 10 11 1111111010011 100000111110011
100101 1101101 1100011111010101101
10 111 111 111 10010100011 11111101011
11 101 1011110110111011110111001111
10 10 10 10 11101 11111 11100000000111101
11010100011 11101101001011011011

Choosing a random factorization is equivalent to picking a row at random from this
list; if the list were perfectly rectangular, we could do this by choosing a bit at random
and taking the row in which it appears.

Now suppose that we wanted to get the effect of this process by choosing a prime
factor p first and selecting one of the remaining N/p possibilities uniformly. To do
this, we would pick p with probability proportional to its "surface area," that is,
proportional to the total number of bits occurring in all copies of p.

This suggests selecting the first factor p with probability about log p/p log N, since
p occurs in about 1/p of the numbers, and a random bit of such a number will be in
p about log p/log N of the time (ignoring repeated factors).

It is instructive to see what effect this would have on the length of p. A weak form
of the prime number theorem [6, Thm. 7] implies that for 0 < x < N,

log p log x
p=x p log N log N"

Unless otherwise indicated, all logarithms in this paper are to the base e 2.718281
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Therefore, if we chose p with the proposed probability, the.length of p (relative to the
length of N) would be close to that produced by a uniform distribution, since for
0 =< a <- 1, log p/log N < c with roughly the same frequency in both cases.

One can justify this uniform length heuristic in another fashion. The factorization
of numbers into primes is analogous to the decomposition of permutations into disjoint
cycles; for instance, one can easily prove the "prime permutation theorem": a random
permutation on n letters is prime (a cycle) with probability 1/n. This analogy extends
to the distribution of factor lengths: Knuth and Trabb Pardo have shown that the
relative length of the kth largest factor of a random number has the same asymptotic
distribution as the relative length of the kth largest cycle in a random permutation
[7, 10]. Under this analogy, our prime selection technique corresponds to a process
that selects a random letter in a random permutation and outputs the cycle to which
it belongs. Results on random permutations [5, p. 258] imply that the length of this
cycle is uniformly distributed.

Thus, to choose x uniformly with N/2 < x < N, we might proceed as follows.
Select a length A uniformly from (0, log N) and pick the largest prime p with log p _-< A.
Then recursively select y (the remaining bits of x) to satisfy N/2p<y<= N/p, and
output x, as p times the prime factorization of y.

If the distribution of y were uniform, the probability of selecting x would be about

logp 1

plx P log N N/p- N/2p

This is 2/N, the correct probability for a uniform distribution, times a bias factor of

1
log

log N
p.

This bias should be close to 1, and it is, provided that x does not have too many
repeated prime factors.

Thus, one would suspect that this method is almost right; however, a closer look
at the algorithm reveals the complications listed below.

1) Merely picking the biggest prime less than some given value will not do; for
one thing, the first member of a twin prime pair will be chosen less frequently
than the second. A correct method must be insensitive to these local
irregularities.

2) The bias factor is quite small for certain x, say powers of 2. This problem can
be eliminated by also including prime power factors in the first step, but we
must further decide how often these are chosen.

3) At the end of the algorithm, x will have been chosen with a certain bias, but
the recursion will not work unless all x’s are equally likely. The odds must be
changed somehow to make the eventual output uniform.

4) Finally, we imagine selecting y, the rest of x, from (N/2p,N/p] with probability
2p/N. However, it is by no means certain, and in general not true, that there
are N/2p integers in this range.

Dealing with these problems requires some machinery that will be developed in
the next section.

3. Doctoring the odds. This section discusses a general technique for using one
distribution to simulate another, called the "acceptance-rejection" method [11], [15].
It requires only a little information about the distributions, a source of uniform (0,1)
random real numbers, and some extra time.
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This method is usually applied in situations where everything is known about the
distributions. In our case, we will only know the relative probabilities involved, hence
we need the following definition.

Let (Xl,..., xn) be a finite set. We will say that X has a finite distribution with
odds (Pl,..., Pn) if X xi with probability pi/Yj= p. The odds of a distribution are

only defined up to a multiplicative constant; this conforms to ordinary usage, in which
odds of 2:1 and 10:5 are regarded as identical.

To see how to turn one distribution into another, consider an example. Suppose
we have a coin that is biased in favor of heads with odds of 2:1, and we wish to make
it fair. This can be done by the following trick. Flip the coin. If it comes up tails, say
"tails"; if it comes up heads, say "heads" with probability 1/2, and with probability
1/2 repeat the process.

The stopping time can be analyzed by the following "renewal" argument.The
process must flip the biased coin once no matter what happens, and after this first
step, it has one chance in three of being born again. Thus the expected stopping time
E(T) must satisfy E(T)=I+E(T)/3, so E(T)=3/2. More generally, T=t with
probability (2/3). (1/3)t-; this is a geometric distribution with expected value 3/2.
At each reincarnation, the process has no memory of its past, so the stopping time
and the ultimate result are independent.

This example is not very useful, as it requires a fair coin to produce the effect of
one; however, it points out some important features of the method. First, decisions
are only made locally; after getting, say, heads, a decision can be made without knowing
the other possible outcomes or even their total number. Second, only the odds matter;
knowing only the relative probability of each outcome is sufficient for undoing the bias.

Here is the general version; we are given odds (Pl,...,Pn) but want odds
(ql,..., qn). Assume that q_-<p for all i; we can use the following recipe:

PROCESS A: Acceptance-rejection method.
(*) Select X from the original distribution.

Choose a real number A from the U(0,1) distribution.
If X x and A < q i/p , output Y x.
If not, go back to (*).

THEOREM 1. Let X have a finite distribution with odds (pl,... ,pn). If q<-p for
<-_i <- n, then the output of Process A has a finite distribution with odds (q 1,..., q,).

The stopping time T and the output value Y are independent random variables. If
P i= Pi, Q i= qi, then the stopping time is distributed geometrically with expected
value P/ Q.

Proof A direct calculation shows that the joint distribution of T and Y is

Pr[T= t, Y= x] =-- --d 1-

This technique is at the heart of the method, in two ways:
At the top level, the algorithm generates x, N/2 < x <-_ N, with probability propor-

tional to log x. It accepts x with probability log (N/2)/logx, producing a uniform
distribution.

To select a factor with approximately uniform length, the algorithm chooses prime
powers q with odds AN(q) (defined below). To do this, it first chooses integers q in
the following way: 2 and 3 each appear with odds 1/2, 4, 5, 6, and 7 each appear with
odds 1/4, and so on. It turns out that A N(q)< l/q, so acceptance-rejection is used
twice: first to produce the distribution A N(q), and then to throw away q’s that are not
prime powers.
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4. The complete algorithm. This section presents an explicit program for generating
factored random integers, using the language of real numbers. It assumes the uniform
(0,1) distribution as a source of randomness; 7 will show how this can be simulated
by a fair coin.

For real numbers a and b, let #(a,b] denote the number of integers x satisfying
a < x =< b. For prime powers q =p, and integers N, let

(1) A(q)
logp #(N/2q, N/q)
log N N

Note that if [x] denotes the greatest integer =<x, then #(a/2,a]=[(a+ 1)/2]; this
implies the frequently used estimate

(2) (a- 1)/2<= #(a/2, a]<- (a + 1)/2

and also shows that for q-< N,

AN(q)<=N/q+l
2N

The innermost part of the program selects random prime powers; using the above
notation, it is defined below.

PROCESS F: Factor generator.
(*) Select a random integer j with 1 =<j _-< log 2N.

Let q 2 + r, where r, 0-< r < U, is chosen at random.
Choose a random real number A from the U(0, 1) distribution.
If q is a prime power, q-<_ N, and A <AN(q)2[lgzq], output q.
If not, go back to (*).

The salient features of this process are given by the following result.
THEOREM 2. Process F almost surely halts; the number of times (*) is reached has

a geometric distribution whose expected value is O(log N). It outputs a prime power
q=p, 2<=q<=N, with odds AN(q). The stopping time and the output value are
independent.

Proof The first two steps select q with odds 2-[g2q], and since 2[g2qJAN(q)
(N+ q)/2N <= 1 for q N, Theorem 1 implies that q is output with the stated probabil-
ity. For the stopping time estimate, since

N

P Y 2-[lg2q] 10g2 N,
q=2

it will suffice to show that

Q= Y. AN(q)
qN

is bounded below by an absolute constant. This follows from two consequences of the
prime number theorem given by Rosser and Schoenfeld [14, p. 65]"

(3) E logp N+ O(N/log N)
pN

and

(4) E log p/p log N + 0(1).
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Using (3) and (4),

(5) AN(q)>__ Arv(p)>__
Iogp Iogp =-+O1 ( 1 )q<=N pNN pNN 2p log N p<_-N 2Slog N 2 log N

The independence statement is a consequence of Theorem 1.
Just as in the heuristic sketch, the factor generator is a subroutine in the main

program, presented below. This process uses a "stopping value" No, which can be
any convenient number.

PROCESS R: Random factorization generator.
If N =< No, pick a random x, N/2<x<=N, output the factors of x, and stop.
(?) Select a prime power q =p, 2_-< q _-< N, using Process F.

Let U’ Nq].
Call Process R recursively to choose a factored random y with N’/2 < y <-_ N’.
Let x-y.q.

() Choose a real number A from the U(0,1) distribution.
If A <log (N/2)/log x, output the factors of x and stop.
If not, return to (?).

The main result of this paper is the following theorem.
THEOREM 3. Process R generates uniformly distributed random integers x, N2 < x <=

N, in factored form.
Proof If N <_-No, there is nothing to prove. Otherwise, note that for integers y,

[x]/2 < y _-< [x] if and only if x/2 < y <- x, and so the recursive step chooses an integer
y uniformly with N/2q < y <= N/q. Therefore, by Theorem 2, x is chosen at step ()
with probability proportional to

AN(q) p 1ogp #(S/2q,S/q]. 1 log_______x
q=plx #(N/2q,N/q] q= [x log N S #(N/2q,S/q] Slog S

By Theorem 1, the last part of the algorithm ensures that x is output with probability
1/#(N/2,N]. [3

5. The distribution of factor lengths. It was stated earlier that Process F produces
a factor q whose length is roughly uniformly distributed. This can be refined into the
following precise statement: as N-o, log q/log N converges in distribution to a
uniform (0,1) random variable.2 This implies the following: if we define

FN(x) Pr[ q -< x in Process F],

then Fn(x) is close to log x/log N. Similarly, the expected values E[log (N/q)] and
E[log2 (N/q)] are close to log N and (log N)2, respectively. The next three lemmas
give upper bounds corresponding to these approximations, which are used in the next
section.

LEMMA 1. If N > 30, and 2 <-_ x <-_ N, then

logx+2
F(x)

log N 2

Proof For N > 30,

log p --< 1.04N

will not prove this as it is not needed later.
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and

1 logp<---- E <_--log N,log N- y -/3 -2 log N p<=N P

where

0.577215

is Euler’s constant and

/3 logp/p =0.755366...

(these are (3.21), (3.24) and (3.35) from Rosser and Schoenfeld [14]). Using these
inequalities, plus (1) and (2),

1 logp
-+

P
1.04 > logN-2.21ogNqNAN(q)>logN y /3

21ogN

Similarly

21ogN A(q)__< ylgP+/3+ log p__< log x + 2.
q<=x p<=x p q<=x N

Now apply these to the formula FN(X)--_.q<=xAN(q)/.q<=N AN(q). ["]

LEMMA 2. For N> 30,

logN logN+4
E[log(N/q)]<-.

2 log N- 2"

Proof. The expectation can be expressed as a Stieltjes integral:
N

log (N/x)dFN(X).
2-

Using integration by parts and Lemma 1,
N N N

Ilog(N/x)dFrq(x) ;FN(X)dx I lgx+2
<_

x log N-2 x’
2- 2

now computing the integral gives the result.
LEMMA 3. For N> 30,

(logN)2 logN+6
E log 2(N/q)<-.

3 log N 2

Proof As in the last proof, the expectation is
N N

I lg2 <2 I(logN-logx)(2+logx)dX.(N/x)dFN(X)=log N-2 x
2-

6. The expected number of prime-power tests. This section proves that the number
of prime-power tests done by Process R on input N has expected value and standard
deviation that are both O(log N).
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For every N, define random variables as follows. Tu is the number of prime-power
tests done by Process R on input N, and Uu, VN, and Wn count the prime-power
tests done during the first call to Process F, the recursive call, and after the first return
to (?), respectively.

THEOREM 4. If No> 106, E(T)= O(log N).
Proof Let N > No, for otherwise the theorem is true immediately. By Theorem 2,

we can choose C > 0 so that Uu-<-C log N; we now prove by induction on N that
TN <= 6C log N.

Since Tu Uu+ Vu+ Wu, E(Tu)=E(Uu)+E(Vu)+E(Wu). By the
definition of C and the formula E(X)= E y(E(XIY)) applied to Vu, this gives

E(Tn) _-< C log N + Eq(E(TIN +
log2

E(TN),
log N

since the probability of renewal is at most 1-1og(N/2)/log N. By induction and
Lemma 2,

E(TN)<= C log N+6CE(log N/q)+
log2

E(TN)
log N

logN logN+4
log N+6C.

2 log N 2

log2
E(TN).

log N

This implies

E(TN)<=
1 (1+31 log 2/log N

log N+) C log N,
log N-

and for N > 106 the coefficient of C log N is less than 6. S
The corresponding estimate for the variance is given below.
THEOREM 5. If No> 106, 0"2(TN) O(1og N)2.
Proof Let R denote the process obtained by replacing the top level stopping

condition A <log(N/2)/logx by A <l-log2/logN; the recursive call uses the
unaltered Process R. We can consider both processes to be defined on the same sample
space; then (extending the notation in an obvious fashion)

TN-- Uu + VN+ WN.

Since UN, VN, and WN are independent,

o-(,,,) o-(u,,,) + o-(v,,,) + o-(

Using the formulas o-2(X) E(X) E(X) and E(X) E (E(XI Y)),

E( 2N) N 0.( UN)+ E( N)2+ Eq(E( TN/q])) + log2
T).

log N

The proof of Theorem 4 actually shows that E(Tu)= O(log N); we can therefore
choose D>0 so that 0.2(Uu)+ E(u)2<= D(log N). Furthermore, for any N, Tu <-
TN, SO

E( -2TN) <=D(log N)2+ Eq(E( N/q]))+ log2 E(%).
log N
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An argument similar to the proof of Theorem 4, using Lemma 3, will show that
E( -2TN) 4D(log N)2. Since

O’2(TN) < E(T2) <= E(2N),

the result follows. [3

7. A single-precision time bound. The next two sections analyze the average number
of single-precision operations needed to generate a random factorization. Any serious
discussion of this must answer two questions. First, the algorithm uses real numbers,
which are not finite objects; how can these be simulated? Second, one might wish to
use randomized prime testing; what happens when the prime tester can make mistakes ?

This section addresses the real-number issue, assuming perfect prime testing;
probabilistic prime testing will be treated in the next section. In what follows, a "step"
means one of the basic arithmetic operations (including comparison) on single-bit
numbers, or a coin flip. All questions of addressing and space requirements will be
ignored.

The following result will be used repeatedly.
LEMMA 4. Let T1, T2, be a sequence of random variables, and let n be a positive

integer-valued random variable, such that T 0 for every > n. If E Til n >- i) < A and
E(n) <= B, then E(YL, Ti) <= AB.

Proof

E ri Y, E(T)= Y E(Tiln>=i)Pr[n>=i]<A Y Pr[n>=i]<=AB. [3
i=1 i=1 i=1 i=1

At several points in our algorithm we need to flip a coin with success probability
0, where 0 is a fixed real number between 0 and 1. This means we compare 0 with a
randomly generated real value ,, thus:

0 =.0101010101...,
A =.0110010111

A finitary procedure with the same effect simply does the comparison bit-by-bit from
the left, only generating bits as they are needed. This is clearly fast; since the bits of
A are specified by independent coin flips, we expect to use only two of them before
reaching a decision. However, it may not be convenient to generate the true bits of 0
one at a time; to avoid this difficulty, we base our procedure on approximations that
might be produced by some scheme like interval arithmetic.

We need the following definition. Let 0, 0 -< 0 -< 1, be a real number. A k-bit
approximation to 0 is an integer multiple 0k of 2-k with 10k 0l 2-k and 0 < 0k < 1.

The lemma below eliminates real numbers from our algorithm; it states, in effect,
that if 0 is approximable by any polynomial-time procedure, then a biased coin flip
with success probability 0 takes constant time on the average.

LEMMA 5. Let 0 <= 0 <= 1, and assume that a k-bit approximation to 0 can be computed
in f( k) steps, wheref is a polynomial of degree rn with nonnegative coefficients. Then the
expected time to decide if a uniform (0,1) random variable is less than 0 is at most

C,(1), where C depends only on m.

Proof Let A be the uniform (0,1) value; we can assume it is irrational, since the
set of rational numbers has measure 0. Consider the following procedure: for k=
1, 2, 3,..., compute a k-bit approximation Ok to 0 and compare this to A k, the number
formed from the first k bits of , if 0 k

q- 2-k <- A k or A k < 0 k 2-k, terminate the process.
The probability that no decision is reached after k steps is at most 2-k, SO the expected
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total time is at most a constant times

Y, f(k)21-k=2 Y. ajkJ2-k=2 Y, aj , kJ2-k,
k=l k=l j=0 j=0 k=l

where ao,..., a,, are the coefficients of f. Poly5. and Szeg/5 [12, p. 9] give the formula
(valid for [z] < 1)

k=l (1-z

where g2 is a polynomial with nonnegative coefficients, satisfying g(1)=j!. The result
follows by taking z 1/2 and C,, 2m+Zm !. [-]

LEMMA 6. Let p,q,N be integers with 2 <-p <-q <-N. Then a k-bit approximation to

log p #(N/2q,N/q]2’g2q

log N N

can be computed in O(k q- log log N) steps.
Proof. Let p 2’.e and N 2. r/, where a and/3 are integers and 1 -< e, r/< 2. Then

a log2+log e [(Nq-q)/2q]2[lg2q]

(6) 0
fl log 2 + log r/ N

We approximate 0 by using floating-point numbers to perform the computation implicit
in the above expression; k + O(1) bits of precision s!,ffice to get an absolute error less
than 2-k, by the following argument. First, since 0 _-< 0 _-< 1, it suffices to make the relative
error in the result less than 2-k. Brent [3, Thm. 6.1] shows that on the interval 1 <_- x <= 2,
one can compute log x with relative error 2-" in O(n3) steps. If we take n k + O(1),
we will have enough guard bits to nullify the effect of any remaining error, since there
are only a finite number of further operations. All the numbers involved have exponents
that are less than logzN, so the bound follows. [3

LEMMA 7. Let x andNbepositive integers withN2 < x <= N. Then a k-bit approxima-
tion to log (N/2)/log x can be computed in O(ka+log log N) steps.

Proof Approximate the logarithms as indicated in the proof of Lemma 6. E]

LEMMA 8. Let q > 1 be an integer. Then solving p’=q for an integer p and the
largest possible integer can be done in O(log q)a(log log q)2 steps.

Proof Let d [log2q]; then necessarily ce <_- d. For each such value of c, we solve
X"=q by bisection, using 0 and 2[d/]+l as starting values. This will find a solution
or prove that none exists after O(d/a) evaluations of f(X)=X. The total time is
therefore at most a constant times

(log q)3y2 <-- c _<-- d
lg a= O(log q)3(log log q)2. [-]

The next two results assume the Extended Riemann Hypothesis (ERH), a famous
conjecture of analytic number theory. The details of this hypothesis (for which see
Davenport’s book [4, p. 124]) are not important here; what matters is the following
consequence, first proved by Miller [10].

LEMMA 9 (ERH). To test if an integer p is prime requires O(log p)5 operations.
Proof We write /t2(X for the largest e such that 2e[x, and Zp* for the multiplicative

subgroup of integers modulo p. Then Miller’s primality criterion states that p is prime
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if and only if every a Zp* satisfies

(7) ap-1 1 and for all k < u2 (p 1), a (p-1)/2k 1 implies a(p-1)/2k+l =+1

(all congruences are interpreted modulo p). Ifp is composite, there is a proper subgroup
G of Zp* such that (7) is violated for all a (3 [9, proof of Thm. 6]. The ERH implies
that there is some number outside G that is less than 2(log p)2 [2, Thm. C]. Therefore
p is prime if and only if condition (7) holds for all positive a =< 2(log p); the result
follows. [3

We now make the following changes to our algorithm: prime-power testing is
done as indicated in the proofs of lemmas 8 and 9, and the real number calculations
are done as indicated in Lemmas 5, 6, and 7. With these modifications we have our
single-precision result.

THEOREM 6 (ERH). The expected number ofsingle-precision operations (arithmetic,
comparison, coin flips) needed by Process R on input N is O(log N)6.

Proof. Theorem 4 and inspection of the algorithm imply that none of its steps can
be executed more than O(log N) times on the average. By Lemma 4, it suffices to
show that no single step of the algorithm has expected time greater than the O(log N)
steps sufficient to test a number less than N for primality. By Lemmas 5, 6, and 7, this
is true for the real number comparisons. Everything else is easily estimated. [3

The real point to this extravagant bound is that it is a polynomial in logN. By using
the prime test of Adleman, Pomerance, and Rumely [1], one can also prove an
unconditional almost-polynomial time bound of O(log N) O(logloglogN). However, much
better estimates can be obtained by using probabilistic prime testing, as described in
the next section.

8. The use of probabilistic primality tests. This section proves theorems analogous
to the preceding results, assuming that a randomized prime test is used. First, a
definition: call a factorization x pl pe complete if all the Pi are prime; if it uses
a probabilistic prime test, Process R may output an incompletely factored number.
The results in this case can be simply summarized: the distribution of completely
factored numbers is still uniform, and incompletely factored numbers can be made
exponentially unlikely at very little cost.

The following result is analogous to Lemma 9.
LEMMA 10. TO test ifp is prime with bounded by 4 (error only being possible when

p is composite) requires n. O(log p)3 operations.
Proof. Rabin [13, Thm. 1] shows that condition (7) is violated for a random a

with probability at most 1/4, so choose n independent random values of a. [3

The prime tests referred to above have a very nice property; the decision is never
wrong unless the input is composite. This is the key observation in the next proof.

THEOREM 7. If the prime test used in Process F produces correct answers when the
input is prime, then the distribution of completely factored outputs is uniform.

Proof. Use induction on N; if N < No, this is clear. Otherwise, the prime powers
produced by Process F have the same relative distribution as before, since the prime
tester never makes a mistake on prime input. Since every subfactorization of a complete
factorization is complete, the calculation that proves Theorem 3 is still valid. C]

The order-of-magnitude bound for the average number of prime power tests still
holds, if the prime test used is sufficiently accurate. Since the average number of tests
increases with N, a constant number of the tests (7) per prime will not suffice. Instead,
we choose a bound e(N) in advance, and make every prime test used by the algorithm
have a chance of error at most e(N).
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THEOREM 8. Assume that the prime test used in Process F is correct on prime input,
and has error probability at most e(N) on composite input. If e(N)< N-2, then the
number of prime-power tests done by Process R on input N has mean and standard
deviation that are O(log N), and the probability that an incompletely factored number
is produced is O(e(N) log N)- O(log N/ N2).

Proof. For the time bound, it is only necessary to show that Lemma 1 still holds,
say for N > 106. The proof of Lemma 1 amounted to a lower bound on the relative
probability that q _-< N and an upper bound on the relative probability that q _-< x. The
lower bound still holds, and the new upper bound is at most

log y #(N/2y,N/y]
q<=x y<=x log N N

The second term is at most

2 log N" N / -yx \ y 2 log N

and this will not cause the bound to be exceeded. For the estimate relating to incorrect
output, apply Lemma 4 to the random variables X that are 1 if the ith prime test is
incorrect, and 0 otherwise, and use the inequality Pr[X _-> 1] _-< E (X).

By Lemma 10, error probability less than N-2 can be obtained with about log N
tests, each using O(log N) steps. This will give a polynomial time bound analogous
to Theorem 6.

9. Experiments. This section has two purposes" to show how the algorithm actually
behaves in practice, and to discuss what modifications are necessary to implement it
efficiently.

Call an arrival at (*) in Process F a probe; Theorem 4 implies that Process R
requires O(log N) probes on the average. The constant implied by the "O" symbol
can be estimated by the following heuristic argument. Typically the algorithm will
produce factors whose lengths are 1/2, 1/4, 1/8,... the length of N. Presumably,
then, the average number of probes is close to

21ogzN (1 + 1/2+ 1/4+ 41og2N,

since by (5), we expect Process F to use about 21og_N probes on input N.
This value of 41og2N is also the best bound provable as the stopping value No

and the first set of experiments were designed to see if this estimate is at all realistic
when No is small.

To do this, I coded the algorithm verbatim in C (the "real" numbers have about
15 decimal digits of precision) with No=4. Table 1 gives statistics on the number of
probes required to generate 100 random numbers for various values of N, together
with the presumed mean value 41og2N.

It will be seen from this table that the standard deviation tends to be a bit smaller
than the mean; however, I do not even have a heuristic argument to justify this
observation.

To test its feasibility for large N, I also coded the algorithm with multiprecise
arithmetic on a DEC VAX 11-780, a machine that takes about 5 microseconds to
multiply two 32-bit integers. When dealing with multi-word numbers, efficiency is of
primary importance; this concern led to the following version of Process F.

1) After building the random value q, the program first checks that q_-< N, and
then computes AN(q)2[g2q] in single precision with the formula (6), as if q
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TABLE
Statistics on the number ofprobes.

Standard
N 41og2N Average Maximum deviation

102 26.56 20.77 60 13.95
103 39.86 35.59 218 34.31
104 53.15 56.30 367 47.49
105 66.44 71.30 329 62.24
10 79.73 72.49 472 59.58
10 93.01 74.61 346 63.43
108 106.30 111.78 491 85.30
10 119.59 120.82 453 96.78

were prime. Only if this exceeds the random value A does it subject q to a
prime-power test.

2) The first part of this test sees if for any small prime p,

Plq and p2,q;

if this is true, q cannot be a prime power. This sieve procedure eliminates most
q from further consideration, for the probability that a random number q
survives this test for all p <= B is about

+
p<=B P

If we let

( )a=I] 1+ =1.943596...
p p(p- 1)

then the survival probability is, by Mertens’s theorem [6, p. 22], close to

a’log B
The program used B 1000, which screens out approximately 84% of the q’s.

3) If q passes through the sieve, it is subjected to a "pseudo" test designed to
cheaply eliminate numbers that are not prime powers. This checks that 2q-1 1
and gcd (2q-l- 1, q)= 1; if so, q can be thrown away. The average cost of this
is one modular exponentiation and one gcd computation.

4) Any number q that has survived so far is tested for primality, using (7) with
a 2, 3, 5,..., 29 (the first ten primes). There is a slight advantage to small
values of a, since about one-third of the multiplications done by the modular
exponentiation algorithm will involve a single-word quantity.

5) Only if q is not declared "prime" by the above procedure does the program
try to see if it is a perfect power.

(Various orderings of steps 1-5 were tried, and the one above seems to be the best.)
For the multiprecise implementation, a more realistic measure of the work done

is the number of times q reaches the sieve. Statistics on these values are given in Table
2, from runs that generated 50 numbers each; the last column gives the average CPU
time required per random factorization.
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TABLE 2
Statistics on the number of sieve tests, and the running time in seconds.

Standard Average
N Average Maximum deviation time

10t5 29.66 67 17.70 1.51
1030 65.42 225 46.36 4.66
1060 158.92 387 95.04 20.52
10120 250.34 805 174.54 100.08

It is worth noting that for these values of N the average running time is only
slightly worse than O(log N)2.

Table 3 presents the mean values of four quantities related to the output values
x" the number of prime factors of x, and the number of decimal digits in the largest
three factors of x (from the same experiments). It will be seen that the average number
of prime factors grows very slowly with N; the observations are close to the mean
values of log log N + 1.03465... predicted by prime number theory [7, p. 346]. Finally,
the average lengths of the largest three factors are roughly proportional to the length
of N; again, this is predicted by theory [7, p. 343], with constants of proportionality
close to 0.62, 0.21, and 0.088, respectively.

TABLE 3
Statistics on the prime factors.

Average Digits in 2nd 3rd
N number largest largest largest

1015 4.48 10.06 3.76 1.50
1030 5.32 19.84 6.80 2.80
1060 6.18 37.36 13.48 5.94
1012 6.70 78.54 26.56 8.46
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RSA AND RABIN FUNCTIONS:
CERTAIN PARTS ARE AS HARD AS THE WHOLE*

WERNER ALEXI, BENNY CHOR$, ODED GOLDREICH AND CLAUS P. SCHNORR’

Abstract. The RSA and Rabin encryption functions EN(" are respectively defined by raising x ZN
to the power e (where e is relatively prime to q(N)) and squaring modulo N (i.e., En(x)- x (mod N),
En(x)-- x (mod N), respectively). We prove that for both functions, the following problems are computa-
tionally equivalent (each is probabilistic polynomial-time reducible to the other):

(1) Given E(x), find x.

(2) Given EN(x), guess the least-significant bit of x with success probability 1/2+ 1/poly (n) (where n

is the length of the modulus N).
This equivalence implies that an adversary, given the RSA/Rabin ciphertext, cannot have a non-negligible
advantage (over a random coin flip) in guessing the least-significant bit of the plaintext, unless he can invert

RSA/factor N. The proof techniques also yield the simultaneous security of the log n least-significant bits.
Our results improve the efficiency of pseudorandom number generation and probabilistic encryption schemes
based on the intractability of factoring.

Key words, cryptography, concrete complexity, RSA encryption, factoring integers, partial information,
predicate reductions

AMS(MOS) subject classifications, llA51, 11K45, llT71, llY05, llX16, llZS0, 68Q99, 94A60

1. Introduction. One-way functions are the basis for modern cryptography [11]
and have many applications to pseudorandomness and complexity theories [6], [29].
One-way functions are easy to evaluate, but hard to invert. Even though no proof of
their existence is known (such proof would imply P NP), it is widely believed that
one-way functions do exist. In particular, if factoring large numbers (a classical open
problem) is hard, then the simple function of squaring modulo a composite number
is one-way [22].

Randomness and computational difficulty play dual roles. If a function f is one-way
then, given f(x), the argument x must be "random." It cannot be the case that every
bit of the argument x is easily computable from f(x). Therefore, some of these bits
are unpredictable, at least in a weak sense. A natural question is whether these bits
are strongly unpredictable. That is, are there specific bits of the argument x which
cannot be guessed with the slightest advantage (over a random coin flip), given f(x).

This question was first addressed by Blum and Micali [6]. They demonstrated
such a strongly unpredictable bit for the discrete exponentiation function (which is
believed to be one-way). This was done by reducing the problem of inverting the
discrete exponentiation function to the problem of guessing a particular bit with any
non-negligible advantage.

In this paper, we deal with two functions related to the factorization problem:
Rabin’s function (squaring modulo a composite number) [22] and the RSA (raising
to a fixed exponent modulo a composite number) [23]. Both functions are believed to
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be one-way. We show that both functions have strongly unpredictable bits. In particular,
inverting each of them is probabilistic polynomial-time reducible to guessing the
least-significant bit of their argument with any non-negligible advantage.

Our results have various applications. They allow the construction of more efficient
pseudorandom bit generators [6] than those previously known, based on the intractabil-
ity assumption of factoring. They allow the construction of efficient probabilistic
encryption schemes [15], which hide all partial information. Finally, our results imply
that the RSA public-key perfectly hides all partial information about the log n least-
significant bits of the plaintext (where n is the size ofthe RSA modulos).

Organization of the paper. In 2 we formally define the question of security for
RSA least-significant bit and cover previously known results. In 3 we review the
proof of the Ben-Or, Chor and Shamir result. This investigation is the basis for our
work, which is described in 4. Section 5 extends our proof to other RSA bits, and

6, to bits in Rabin’s scheme. In 7 we discuss applications of our results for the
construction of pseudorandom bit generators and probabilistic encryption schemes.
Section 8 contains concluding remarks and two open problems.

2. Problem definition and previous results. We begin this section by presenting
notations for two number theoretic terms which will be used throughout the paper.

DEFINITION 1. Let N be a natural number. ZN will denote the ring of integers
modulo N, where addition and multiplication are done modulo N.

It would be convenient to view the elements of Zv as points on a circle (see
Fig. 1).

Convention. Throughout the paper, n [log2 N] will denote the length of the
modulus N. All algorithms discussed in this paper have inputs of length O(n).

FIG. 1. Cyclic representation ofZ

DEFINITION 2. Let N be a natural number, and x an integer. [X]N will denote
the remainder of x modulo N (notice that for all x, 0_-< [x]u < N).

The RSA encryption function is operating in the message space Zu, where N---pq
is the product of two large primes (which are kept secret). The encryption of x is
Eu(X)=[Xe]N, where e is relatively prime to q(N)=(p-1)(q-1).

We now formally define the notion of bit security for the RSA.
DEFINiTiON 3. For 0 <--_ x < N, Lu(x) denotes the least-significant bit in the binary

representation of x.
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DEFINITION 4. Let e(.) be a function from integers into the interval [0, 1/2]. Let
TN be a probabilistic oracle which, given EN(x), outputs a guess, u(Eu(x)), for
Lu(x) (this guess might depend on the internal coin tosses of u). We say that 6N is
an e(n)-oracle for the least-significant bit (in short, e(n)-oracle) if the probability
that ’N is correct, given Eu(x) as its input, is at least 1/2+ e(n). The probability space
is that of all x Zu and all 0-1 sequences of internal coin tosses, with uniform
distribution.

DEFINITION 5. We say that RSA least-significant bit is e(n)-secure if there is a
probabilistic polynomial time algorithm which on input N, e (relatively prime to o(N))
and x Zu, and access to an arbitrary e(n)-oracle 6u, outputs y such that x EN(y)
ye (mod N). (That is, the algorithm inverts Eu using any e(n)-oracle u.)

DEFINITION 6. We say that RSA least-significant bit is unpredictable if it is
n-C-secure for every constant c > 0.

2.1. Previous work. Goldwasser, Micali and Tong 17] were the first to investigate
the security question of least-significant bit in RSA. They showed that the least-
significant bit is as hard to determine as inverting the RSA. Furthermore, they showed
that it is (1/2-1/n)-secure.

In a key paper, Ben-Or, Chor and Shamir [2] showed a (1/4+ 1/poly (n))-security
result. They showed that inverting the RSA is polynomially reducible to determining
the parity of messages taken from a certain small subset of the message space. To
determine the parity of these messages, they performed many independent "measure-
ments," each consisting of querying the oracle on a pair of related points. This sampling
method amplified the-+ 1/poly (n) overall advantage ofthe oracle to "almost certainty"
in determining parity for the above-mentioned subset. On the negative side, the sampling
of pairs of points doubles the error of the oracle and prevents the use of less reliable
oracles.

Vazirani and Vazirani [27] showed that the "error doubling" phenomena could
be overcome by introducing a new oracle-sampling technique. They proved that
incorporating their technique in the Ben-Or, Chor and Shamir algorithm, yields a
0.232-security result. Goldreich [13] used a better combinatorial analysis to show that
the Vazirani and Vazirani algorithm yields a 0.225 result. He also pointed out some
limitations of the Vazirani and Vazirani proof techniques.

All these results leave a large gap towards the desired result of proving that the
least-significant bit is unpredictable (i.e., 1/poly (n) secure).

3. A description of Ben-Or, Chor and Shamir reduction. In this section, we present
the reduction used by Ben-Or, Chor and Shamir [2]. It consists of two major parts:
An algorithm which inverts the RSA using a parity subroutine, and a method of
implementing the parity subroutine by querying an oracle for the least-significant bit.

3.0. Definition of parity. Let x be an integer. We define

def[X]N if [X]u < N/2,
absu (x)

N-[x]N otherwise.

Pictorially, abs (x) can be viewed as the distance from [x]N to 0 on the Zu circle (see
Fig. 2). Notice that absu (x)= absu (-x).

The parity of x, paru (x), is defined as the least-significant bit of absu (x). For
example, paru (N 3) 1.

3.1. Inverting RSA using a parity subroutine. Given an encrypted message, Eu(x),
the plaintext x is reconstructed as follows. First, two integers a, b ZN are picked at
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abs(y)
o abSN(Z)

Y

FIG. 2. The absN function.

random. A Brent-Kung gcd procedure [7] is applied to [ax]s and [bx]s. This gcd
procedure uses a parity subroutine PAR which we assume, at this point, to give correct
answers. Even though neither axis nor bx]s are explicitly known, we can manipulate
them via their encryption. In particular, we can compute the encryption of any linear
combination A[ax]s + B[bx]s when both A, B are known (since N and e are given,
and Es is a multiplicative function). When the gcd procedure terminates, we get a

representation of gcd (laX]N, [bx]s)=[lx]s in the form and Es(lx). If [ax]s and
[bx]s are relatively prime, then [lx]s 1. This fact can be detected since Es(1)= 1.
Therefore, x-= 1-1 (mod N) can be easily computed.

10.
11.
12.
13.
14.
15.

16.

1. procedure RSA INVERSION:
2. INPUTs-Es(x) (and N, e)

Step l--Randomization
3. Pick a, b Zs at random.

Step 2---Brent-Kung GCD of laX]N, [bx]s
{Z [aX]N 22--

4. Ce <-- n,
5.
6. count 0
7. repeat
8. while PAR (b, Es (x)) 0 do

Comment: PAR (b, Es(x)) returns a guess for pars (bx)
9. b-[b/2]s

{gcd [(ax]s, [bx]s) gcd (Zl, z2)}

count - count + 1
if count> 6n + 3 then go to line 3

od
if/3 <_- a then swap (a, b), swap (a,/3)
if PAR ((a+ b)/2, Es(x)) 0

Comment: PAR a + b)/ 2, EN (x)) returns a guessfor
pars ((ax + bx)/2)

then b-[(a+b)/2]s
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17.

18.
19.
20.

21.
22.
23.

else b - [(a b)/2]r
{gcd ([ax]r, [bx]rq) gcd (Zl, z2) }

count <-- count+ 1
if count> 6n + 3 then go to line 3

until b 0
Step 3mlnverting
if EN (ax) +/- 1 then go to line 3. (E (ax) E (a) E (x).)
x-[+a-’]N
return x.

We now consider a single run of Step 2. The assertions in the braces guarantee
that if the parity subroutine does not err, then the gcd of the current [ax]r, [bx]n is
invariant. It is not hard to verify that the Brent-Kung gcd makes at most 6n + 3 calls
to the parity subroutine. Therefore, if the original pair [aT]u, [bx]rq is relatively
prime and the parity subroutine answered correctly on all queries, the algorithm will
retrieve x. By a famous theorem of Dirichlet [19, p. 324], the probability that two
random integers in the range [-K, K] are relatively prime converges to 6/’rr2 as K
tends to

We assume so far that the parity subroutine always returns the correct answer.
As a matter of fact, the test in line 21 of the code makes sure that the algorithm never
errs, even if the answers of the parity subroutine are incorrect. The variable count
guarantees that even if the parity subroutine occasionally errs, we will not make more
than 6n + 3 parity calls in a single gcd iteration. The probability that x will be retrieved
in any single gcd attempt is

6
2" Pr (all answers of PAR in this gcd attempt are correct).

Thus, to invert Er in probabilistic polynomial-time it suffices to have a "reliable"
parity subroutine. In fact, it suffices to have a parity subroutine which is almost always
correct on every argument y with "small" absu (y). This is the case since, if absu (z)
and absr (z2) are "small," then (unless the parity errs) all intermediate arguments to
the parity subroutine are also "small." More formally, we use the following definition.

DEFINITION 7. Let e(. ), 6(.) be functions from integers into the interval (0, 1/2).
Let PAR be a parity subroutine, that on input d and Eu(x) outputs a guess for
parN (dx). We say that PAR is (e(n), 6(n))-reliable if for every d,xZrq with

absr (dx) < e(n)N/2,

Prob (PAR (d, Err(x)) # parv (dx)) < 6(n).

From the above discussion we derive the following lemma.
LEMMA 1 (Ben-Or, Chor and Shamir [2]). The RSA function Er is invertible in

O(e-2(n) n) expected number ofcalls to a (e(n), 1/(12n +6))-reliableparity subroutine.

Proof Let PAR be a (e(n), 1/(12n+6))-reliable parity subroutine. It suffices to
give a lower bound on the probability that all PAR calls in a single gcd attempt yield
correct answers. We define the following events, as functions of the random variables
a and b (assuming values in Z*)" Event ST(a, b) holds if both absx(ax) and abs(bx)
are smaller than e(n)N/2. Event Ci.(a, b) holds if the ith answer of PAR, on a run

This follows from the fact that c +/3 decreases by in every execution of line 10, and that throughout
the execution of the gcd lal =< 2 and Ibl =< 2/s. For further details see [7], [8].
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of gcd ([ax]N, [bx]N), is correct. Then

Prob((Vi)Ai,x(a, b))

_-> Prob(Sx(a, b)). Prob((Vi)Ai,x(a, b)] S(a, b))

e(n) 1 2 Prob (-nAi,x(a, b)lS(a, b)(Vj < i)A,x(a, b))
i=1

>-e(n). 1-(6n+3).12n+6
e2(n)/2. I-1

Remark. In Step (2) of the RSA inversion procedure, we used a Brent-Kung gcd,
which is faster than the binary gcd originally used in [2].

3.2. Implementing the parity subroutine. Given d and Eu (x) where absv (dx) <
e(n)N/2, the parity subroutine PAR determines (with overwhelming probability)
parv (dx), by querying UN, an oracle for RSA least-significant bit, as follows. It picks
a random r and asks the oracle for the least-significant bit of both [rx]v and [rx + dx]u,
by feeding the oracle in turn with E(rx)=E(r)E(x) and EN((r+d)x)=
Eu(r+d)Eu(x). The oracle’s answers are processed according to the following
observation. Since absu (dx) is small, with very high probability (>=l-e(n)/2) no
wraparound2 occurs when [dx] is added to [rx]u. If no wraparound occurs, the
parity of [dx]N is equal to 0 if the least-significant bits of [rx]u and [rx + dx]u are
identical; and equal to 1 otherwise. This sampling is repeated many times; every
repetition (instance) is called a dx-measurement.

1. procedure PAR:
Comment: PAR has access to a least-significant bit oracle

2. INPUT <- d, E(x)
3. counto <- 0
4. count1 <- 0
5. for <--1 to m do
6. pick ri E ZN at random
7. if (YN(Eu(rix)) (Yu(Eu(rix + dx))
8. then counto - counto + 1
9. else count1 <- count1 + 1

10. od
11. if counto > count1
12. then return 0
13. else return 1

3.3. Discussion. Analyzing the error probability of PAR on input d, Eu (x) reduces
to analyzing the error probability of a single dx-measurement. Suppose that the success
probability of a single dx-measurement can be made at least + 1/poly (n). Then by
performing sufficiently many independent dx-measurements, the majority gives the
correct answer for paru (dx) with overwhelming probability.

There are two sources of error in the parity subroutine. One source is wraparound
0 in a dx-measurement, the other is oracle errors. Wraparounds are unlikely (i.e., they

If [dx]v absv(dx) then wraparound 0 means [rx]v + absv(dx) > N. If [dx]v N-absN(dx) then
wraparound 0 means [rx]v absv(dx) < O.
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occur with probability_-< e(n)/2, since absN (dx)<-e(n)N/2). Thus, the main source
of errors in a dx-measurement is the errors of the oracle.

If no wraparound occurs, then the dx-measurement may be wrong only if the
oracle errs on either end points ([rx]rv, [rx+ dx]u). Thus the error probability of a
dx-measurement is no more than twice the error probability of the oracle. However,
there are oracles for which the error probability of a dx-measurement is twice the
oracle error. Overcoming the error-doubling phenomena requires a new parity sub-
routine, which constitutes the core of our improvement.

4. The main result. In this section we prove that RSA least-significant bit is
unpredictable. Working in the Ben-Or, Chor and Shamir framework, we modify the
parity subroutine. For this modification we introduce two new ideas. The first idea is
to avoid the error-doubling phenomena which occurred in the dx-measurement as
follows. Instead of querying the oracle for the least-significant bit of both end points,
we query the oracle only for the least-significant bit of one end point. The least-
significant bit of the other end point is known beforehand. The second idea is a method
for generating many end points with known least-significant bits. These end points are
generated in a way that guarantees them "random" enough to be used as a good
sample of the oracle.

4.1. Generating m = poly (n) "random" points with known least-significant bits. We
present a method for generating m -poly (n) random points, represented as multiples
of x, with the following properties:

(1) Each point is uniformly distributed in Zu;
(2) The points are pairwise independent;
(3) The least-significant bit of each point is known, with probability_-> 1- e(n)/4.

We generate m points [riX]s by picking two random independent elements k, Z
with uniform distribution, and computing [rix]s =[(k+ il)x]N for 1 <_-i<_-tn (see Fig.
3). Define the random variables y, z Zu by y=[kx]u, z=[lx]u. Each of the [rix]u
is uniformly distributed in ZN. We now show that (for 1 <-ij <-_ m) [rx]N and
are two independent random variables. For every cl, c2 Z, the equations y + iz =-cl
(mod N) and y +jz c2 (mod N) have a unique solution in terms of y, z ZN. (This
is the case since all of N’s divisors are larger than m, and thus i-j has a multiplicative
inverse modulo N.) Thus, for every c, c2 ZN,

1
Pr ([rix]rq Cl and [rjx]rv c2)=-5 Pr ([rix]N c,). Pr ([rjx] c2).

O
Z

Y-1-2z

FIG. 3. The points y, z and [r2x]rq =y + 2z.
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The least-significant bits of the [riX]N’S are computed as follows: We try all
possibilities for the least-significant bit of y, and for its location in one of the intervals
[j(e(n)N/4), (j+ 1)(e(n)N/4)], O<=j<4e-l(n). We try all possibilities for the least-
significant bit of z, and for its location in one of the intervals

je(n)N e(n)N] O<=j < 4me-
4m

(j+l)
4m _1’ (n).

There are (2.4e-(n)) (2.4me-(n)) 26me-2(n) possibilities altogether, and exactly
one of them is correct. We will refer to that possibility as the right alternative for y
and z.

Let us now assume that we are dealing with the right alternative for y and z. Since
the location of y and z are known up to e(n)N/4 and e(n)N/4m, respectively, the
integer Wi--defy+iz is known up to e(n)N/2 (remember l<-i<=m). As [wi]u is
uniformly distributed in ZN, the probability that the integer w falls in an interval of
length e(n)N/2 containing an integral multiple of N is exactly e(n)/2. If w is not in
such interval, then the integral quotient of wi!N is determined by and the approximate
locations of y and z. This in turn, together with the least-significant bits of y and z,
determines the least-significant bit of [Wi]N [riX]N. In case the interval wi belongs to
contains an integral multiple of N, we make the (arbitrary) assumption that w is at
the bigger part of the interval (out of the two parts determined by the integral multiple
of N).

4.2. Using the generated [rix]N in the parity subroutine. The parity subroutine
described in 3.2 makes use of mutually independent random r’s, and queries the
oracle for the least-significant bits of both [rix] and [rx + dx]N. We modify it by using
ri’s generated as in 4.1, and querying the oracle only for the least-significant bit of
[rx + dx]N. In the sequel we will refer to the modified parity subroutine as to PAR*.

The generation of [rx]N’s is performed once per each gcd invocation, as part of
Step 1 (the randomization step) in the inversion procedure of 3.1. The choice of k
and l(y=[kx]N,z=[lx]) is independent of the choice of a, b. We run 28me-2(n)
copies of the gcd procedure in parallel, each with one of the possibilities for the
approximate locations and least-significant bits of y and z. Each copy of the gcd
procedure supplies its corresponding possibility for y and z as an auxiliary input to
all calls of PAR* that it makes. Note that the run with the right alternative for y and
z has the least-significant bit of [rx]N correct, for all 1_<-i_<- m, with very high
probability.

4.3. Probability analysis of the modified parity subroutine. In this subsection we
analyze the success probability of the modified parity subroutine PAR*. We show that
given an e(n)-oracle for RSA least-significant bit, CN, and setting m O(n. e-2(n)),
makes the parity subroutine PAR* be (e(n), 1/(12n+6))-reliable. The running time
of the subroutine is polynomial in n and e-l(n), and so is the expected running time
of the entire RSA inversion procedure.

In analyzing the success probability of PAR* on input d, E(x), we assume that
[dx] is small (absN (dx)<e(n)N/2) and it is given, as auxiliary input, the right
alternative for y and z. From this point on, probabilities are taken over all choices of
y, z with uniform probability distribution (x and d are considered as fixed).

Recall that on input d, EN(X) the parity subroutine conducts m dx-measurements.
Each measurement "supports" either par (dx) 0 or parN (dx) 1. The subroutine
returns the majority decision. For every 1 =< i-< m, the ith individual dx-measurement
consists of comparing the precomputed least-significant bit of [rix] to the answer of
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the oracle for the least-significant bit of [rix+ dx]N. Such measurement has three
potential sources of error"

(1) The oracle errs on the least-significant bit of [rix + dx]N;
(2) A wraparound 0 occurs when [dx]u is added to [rx]u;
(3) The precomputed least-significant bit of [rx]u is wrong.

Note that [rix+ dx]u is uniformly distributed in ZN. Therefore, a type 1 error has
probability - e(n). Since absu (dx) < e(n)N/2, a type 2 error has probability at most
e(n)/2. A type 3 error may occur only if absu (rx)u < e(n)N/2. A more careful look
at the way the least-significant bit of [rx]u is determined in these "fuzzy" cases show
that a type 3 error has probability at most e(n)/4. (This follows from the assignment
of correct least-significant bit values to points in the larger part of the interval.)

Thus, the overall error probability in a single dx-measurement is bounded above
(n)/4. Define the random variableby-e

if the ith dx-measurement is wrong,
0 if the ith dx-measurement is correct.

Clearly, Exp () Pr 1 < e n / 4 and Var () < . Since Exp () < e n / 4,
we get

Pr 2 i Pr 2 i- Exp ()

Applying Chebyshev’s inequality (see [12, p. 219]) we get

1 e(n) Var((1/m)2= )
Pr

m = 4 (e(n)/4)
Since (for 1N Cj N m) [rix]u and [x]u are two independent random variables,

and are also independent random variables with identical distribution. (Whenever
the same function is applied to two independent random variables, the two results are
independent random variables.) Let =-Exp(). By pairwise independence
Exp ( .)= Exp (). Exp (). Hence,

Var = 2 2 Exp(.)
i=1 i=lj=l

-)-m xp()+ 2 xp()xp()
i=1 liCjNm

1

m

1

4m

Thus, Pr (1/m 2= ) < 4/me2(n). The probability that 1 / m 2= 5 is exactly
the error probability of the parity subroutine PAR* on a single input d, E(x). To
summarize, we have proved

LEMMA 2. Let d, x Zu and suppose that absu (dx) < e (n) N/2. Let
def -2(m 64n. e n)) be the number of measurements done by PAR*. On input d, Eu(x)

the right alternative for y and z, and access to an e(n)-oracle for RSA least-significant
bit, , the probability that the parity subroutine PAR* outputs paru (dx) is at least
1-1/(12n + 6). e probability space is that of all choices of y, z Zu and all internal
coin tosses of. In other words, with the right alternative for y and z as an auxiliary
input, the parity subroutine PAR* is e (n), 1 / 12n + 6))-reliable.
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4.4. Main theorem. Combining Lemmas 1 and 2, we get the following theorem.
THEOREM 1. RSA least-significant bit is unpredictable.
Proof In Lemma 2, we have analyzed the success probability of PAR*, assuming

that it is given the right alternative for y and z as an auxiliary input. When executing
the RSA inversion procedure, only one of the copies of PAR* satisfies this condition,
but this is good enough.

We conclude the proof by calculating the overall expected running time of the
RSA inversion algorithm, given an e(n)-oracle for the least-significant bit. We count
elementary ZN operations (addition, multiplication, division), RSA encryptions, and
oracle calls at unit cost. The expected number of times that Step 1 of the RSA inversion
procedure is repeated equals O(e-2(n)). For each execution of Step 1, O(me-2(n))
copies of the gcd procedure are invoked. Each copy makes O(n) calls to PAR*. The
parity subroutine, in turn, makes O(m) operations. Multiplying these terms and
substituting m 64ne-2(n), the overall expected run time is

O(e-4(n). mZn)= O(e-8(n). n3). ]

5. Extensions. By reductions due to Ben-Or, Chor and Shamir [2], we get
COROLLARY (to Theorem 1).
(a) Let I c [0, N- 1] be an interval oflength N/2. The/-bit ofx is the characteristic

function of I (i.e., 1 if x I and 0 otherwise). This bit is unpredictable.
(b) The kth least-significant bit is (1/4+(1/2n-k)+(1/2k)+ 1/poly (n))-secure. At

least half of these bits are (1/6+(1/2n-k)+(1/2k)+ 1/poly (n))-secure.
5.1. Simultaneous security.
DEFINITION. We say that the j least-significant bits are simultaneously secure if

inverting E is polynomial-time reducible to distinguishing, given E(x), between the
string of j least-significant bits of x and a randomly selected j-bit string.

We have defined the notion of simultaneous security in terms of an indistinguish-
ability test. It is also possible to define simultaneous security in terms of an unpredicta-
bility test: Given E(x) and the j- 1 least-significant bits of x, the jth least-significant
bit of x is still 1/poly (n) secure. Yao [29] has shown that the indistinguishability test
is equivalent to the unpredictability test. (Although Yao’s proof was given in a different
setting, it still applies here.)

Our proof technique easily extends to show that log n least-significant bits pass
the unpredictability test.

THEOREM 2. Let j
o_ O(log n).

(a) Thejth least-significant bit in the binary expansion of the plaintext is 1/poly (n)
secure.

(b) The j least-significant bits of the plaintext are simultaneously secure.

Proof (a) First note that when generating y and z, it is feasible to guess not only
their 1st least-significant bit, but all j least-significant bits of y and z. The overhead
for trying all possibilities is 22j, which is polynomial in n. Together with the locations
of y and z, these bits will determine (with high probability) all j least-significant bits
of each [rx]u. Also, with probability about 2-, the gcd of [ax]u and [bx]u is 2j-

(instead of 1), which we will assume is the case. This way all [dx]u’s in the gcd
calculation will have zeros in all j-1 least-significant bits. Finally, we replace all
references to the least-significant bit in the inverting algorithm, by references to the
jth least-significant bit. This can be done since we now have access to an oracle for
the jth least-significant bit. The reader may find it convenient to view this process as
taking the gcd of [ax/2J-]u and [bx/2J-]u. (This method of transforming certain
inverting algorithms which use an oracle for the first least-significant bit into inverting
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algorithms which use an oracle for the jth least-significant bit originates from Vazirani
and Vazirani [27].)

(b) Going through the proof of part (a), notice that when querying the oracle
about the jth least-significant bit of [rix + dx]N we can give it the j- 1 previous bits
of [rix + dx]N. This is the case since, if no wraparound occurs, these j- 1 bits are the
same as the j-1 least-significant bits of [rix]v, which we know. [3

Remark. Vazirani and Vazirani [28] had previously shown that certain inverting
algorithms which use an e(n)-oracle for RSA least-significant bit, can be transformed
into inverting algorithms which use an e(n)-oracle for predicting xj (given
xj-1, , xl). It turns out that the inverting algorithm of 4 falls into the above category
[28]; this yields an alternative (but much harder) way of proving Theorem 2(b).

5.2. Multi-prime moduli with partial factorization. The results about bit security
for the RSA function were described with respect to composite numbers N which are
the product of two large primes. However, the same proofs hold for the case of
multi-prime composite N =PlP2""P,, where the exponent e is relatively prime to
q(N). In fact, exactly the same proofs hold also in the case that partial factorization
of the modulus is given. Namely, given N, e and some of the p’s, the following tasks
are computationally equivalent:

(1) Given Eu(x), find x;
(2) Given E(x), guess the least-significant bit of x with success probability

1/2+ 1/poly (n).
In this context, one may wonder whether RSA remains hard to invert given partial

factorization of its modulus. Using the Chinese Remainder Theorem it is not hard to
show that inverting E4 (M pl p.) is equivalent to inverting EN (N pP2P3 Pk
and both exponents in EM and E are the same) when all primes but p, p are known.
For details see [8].

6. Bits equivalent to factoring in Rabin’s encryption function. The Rabin encryption
function is operating on the message space ZN, where N- pq is the product of two
large primes (which are kept secret). The encryption of x is Eu(x)=[x2]u. The
ciphertext space is Qu df {yl3x" y x2 (rood N)}. Rabin [22] has shown that extracting
square roots ("inverting E") is polynomially equivalent to factoring.

6.1. Previous results. The function E defined above is 4 to 1 rather than being
1 to 1 (as is the case in the RSA). Blum [3] has pointed out the cryptographic importance
of the fact that for p-- q-- 3 (mod 4), E induces a permutation over Qn. Composite
numbers of this form will be called Blum integers.

Goldwasser, Micali and Tong [17] have presented a predicate the evaluation of
which is as hard as factoring. Specifically, they showed that if p--- 3 (mod 4) and p- q
(mod 8) then factoring N is polynomially reducible to guessing their predicate with
success probability 1 (1 / n).

Ben-Or, Chor and Shamir [2] considered the same predicate. Using a modification
of their RSA techniques, they showed + 1/poly (n) security also for this predicate.
Their modification requires that N be a Blum integer and furthermore that there exist
a small odd number h (h poly (n)) with (h/N)=-1. The correctness proof makes
use of nonelementary number theory.

6.2. Our result. Using the techniques of 4, we show that the least-significant bit
in a variant of Rabin’s encryption function is also unpredictable. Our proof uses only
elementary number theory, and holds for all Blum integers.
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Throughout this section we make use of the Jacobi symbol. Let us review the
definition and some properties of the Jacobi symbol. Let p be an odd prime number,
and h an integer relatively prime to p. The Legendre symbol (h/p) is defined to be 1
if h is a quadratic residue modulo p, and -1 otherwise. For N pq, a product of two
odd primes, and h relatively prime to N, the Jacobi symbol (hi N) is defined to be
(h/p). (hi q). Even though the definition of the Jacobi symbol uses the factorization
of N, it can be easily computed even if N’s factorization is not given. Other facts
which are used in this section are: (h. h’/N) =(h/N) (h’/N), and for a Blum integer
N, (-1/N) 1. For further details, see [21, Chap. 3].

Let N be a Blum integer. Define

S= x O-<_x<

def{ O-<x<--^ =1
2

Redefine EN for x MN as

N
Eu(x)

[x2]u if [x2]u <--
2’

[N-x2]u otherwise.

This makes EN a 1 1 mapping from Ms onto itself. The intractability result of Rabin
still holds. That is, factoring N is polynomially reducible to inverting EN. Let Lv(x)
denote the least-significant bit of x.

The security of the least-significant bit of this function is now defined in a manner
analogous to the RSA case. We would like to use the same techniques to demonstrate
that the least-significant bit of the modified Rabin function is unpredictable. The
difficulty is that the queries to the oracle may not be of the right form. Namely, we
would like to feed the oracle with EN(rix+dx) and get the least-significant bit of
[rix+ dx]u, but it might happen that [rix+ dX]N: Mu and then the oracle’s answer
does not correspond to [rx+dx]u (but rather to the square root of [(rx+dx)2]N
which resides in Mu). This ([rx + dx]u

_
Mu) may happen if either [rx + dX]N Su

or ((fix + dx)/N) -1. Both cases are easy to detect with very high probability. When
any of them occur, we discard this dx-measurement. We will show that we only discard
about of the dx-measurements, and the remaining points constitute a large enough
sample to retain the high reliability ofthe parity subroutine. A more elaborate exposition
follows.

For technical reasons, we slightly change the definition of "small" here. In this
section, h is small means abSN (h)< e(n)N/8 (instead of absN (h)< e(n)N/2 as in

4). This will restrict all [dx]u’s in the gcd calculation to have absu (dx)< e(n)N/8.
Doing this, the probability that a wraparound of either 0 or N/2 occurs when [dx]u
is added to [rix]u is no greater than e(n)/4. Similarly, the partition of ZN (for both
y and .z) is refined by a factor of 4.

Given the original encryption Eu(x), pick y kx and z lx, two random multiples
of x. By exhausting all possibilities, the approximate magnitude in Zu of y and z, and
their least-significant bits are known. Let [rx]u [y + iz]u as before. If [rix]N is not
in an e(n)N/8 interval around either 0 or N/2, then we can determine whether
[rix]u Su, and compute the least-significant bit of [rx]u as before. In the "fuzzy"
cases, where [rx]u is in an e(n)N/8 interval around either 0 or N/2, we determine
its least-significant bit assuming that [rx]N SN.
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It remains to determine the parity of [dx]N by comparing the known least-
significant bit of [rix]N with the least-significant bit of [rix+ dx]u. We consider the
following three cases:

(1) If [rix]u : Su (according to y, z locations), then we ignore this dx-measure-
ment;

(2) If ((ri + d)/N)=-1, then we ignore this dx-measurement;
(3) If[rix]u SN (according to y, z locations) and ((ri+ d)/N)= 1, then we feed

the oracle 0u with Eu(rx+ dx), and take its answer as our guess for the
least-significant bit of [fix + dx]u.

In the analysis of this procedure, we assume that we are dealing with the right
alternative for y and z. With high probability (>=l-(e(n)/8)) we correctly determine
whether [rx]u SN.

We first estimate the probability that we ignore the dx-measurement. Since the
cardinality of Mu is IZ*NI/4, and our only error is in testing membership in Su, we

>_1end up in Case (3) with probability =4-e(n)/8.
We now estimate the error probability given that we are in Case (3). It is easier

to estimate the error given that [rx]u Su and ((r+ d)/N)= 1 (i.e., given that we
should have been in Case (3)). These two conditional probabilities are very close, as
we will see below. Let denote the event that we produce an incorrect value for the
ith dx-measurement, denotes the event that we are in Case (3), and denotes the
event [riX]N SN and ((r q- d)/N) 1.

Pr (] ) Pr (fq ])+Pr ((q . )
__< pr (s4l c).

Pr(c_____)__ pr ([ ).
Pr()

The reader can easily verify that

e(n)
4

Pr (@)__>--
1 e(n)
4 8

The error we would have made when [rix]N SN and ((ri+ d)/N)= 1 stems from two
sources. The oracle’s error and the possibility that [rx + dx]u

_
SN (although [riX]N

SN). The first conditional probability is bounded above by 5-e(n) and the second by
e(n)/8. Thus, Pr(s c)<5-e(n)+ e(n)/8. Using the calculations above, we get

7e(n) + e(n)/8 e(n)pr (])<
_

8 - e(n)/8 4

(n)
2 8

Define the random variable

if the ith dx-measurement is ignored,
if the ith dx-measurement is wrong,
if the ith dx-measurement is correct.

In case [rix] N Sn we have determined correctly the least-significant bit of [rix]N e SN. This follows
by the manner in which we determine the least-significant bit of [rix]N.
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The reader can easily verify that Exp (sri) Pr (’i 1) < 1/2- e(n)/64 and Var (sri) < .
The rest of the analysis is similar to the analysis presented in 4 (as also here the
probability that (l/m)Yi=l sr -> is exactly the error probability of the parity sub-
routine). This implies

THEOREM 3. The least-significant bit for the modified Rabin encryption function is

unpredictable. That is, inverting Ev (") is probabilistic polynomial-time reducible to the
following: Given Err(x) (for x MN), guess the least-significant bit of x with success
probability -+ 1/poly (n).)

COROLLARY (to Theorem 3). Factoring a Blum integer, N, is polynomially reducible
to guessing LN(x) with success probability + 1/poly (n) when given EN(x), for x MN.

The proofs from the previous section about simultaneous security of the log n
least significant bits hold here just as well. The extension of the result to multi-prime
moduli is possible, but much harder. For details see [10].

7. Applications. In this section we present applications of our result to the con-
struction of pseudorandom bit generators and probabilistic encryption schemes.

7.1. Construction of pseudorandom bit generators. A pseudorandom bit generator
is a device that "expands randomness." Given a truly random bit string s (the seed),
the generator expands the seed into a longer pseudorandom sequence. The question
of"how random" this pseudorandom sequence is depends on the definition of random-
ness we use. A strong requirement is that the expanded sequence will pass all polynomial
time statistical tests. Namely, given a pseudorandom and a truly random sequence of
equal length, no probabilistic polynomial time algorithm can tell which is which with
success probability greater than 1/2 (this definition was proposed by Yao [29], who also
showed it is equivalent to another natural definitionmunpredictability [6]).

Blum and Micali [6] presented a general scheme for constructing such strong
pseudorandom generators. Let g: M - M be a 1 1 one-way function, and B(x) be an
unpredictable predicate for g. Starting with a random s M, the sequence obtained
by iterating g and outputting the bit b= B(g(s)) for each iteration is strongly
pseudorandom. Using their unpredictability result for the "half, bit" in discrete
exponentiation modulo a prime p, Blum and Micali gave a concrete implementation
of the scheme, based on the intractability assumption of computing discrete logarithm.
More generally, if Bl(x),..., Bk(x) are simultaneously secure bits for g, then the
sequence obtained by iterating g, and outputting the string (bi,"" bi,k)=
(B(g(s)) B(g(s))) for each iteration, is strongly pseudorandom. Long and Wig-
derson [20] have shown that the discrete exponentiation function has log log p simul-
taneous secure bits.4 Their result implies a pseudorandom bit generator which produces
log log p bits per each iteration of the discrete exponentiation.

Using our results, we get an efficient implementation of strong pseudorandom
generators, based on the intractability assumption of factoring. The modified Rabin
function E is iteratively applied to the random seed s M. In the ith iteration, the
generator outputs the log n least-significant bits of E s2’N(s) + rood N. Thus it outputs
log n pseudorandom bits at the cost of one squaring and one subtraction modulo N,
and is substantially faster than the discrete exponentiation generator. Previous strong
pseudorandom generators based on factoring ([17], [2], [27]) required the use of the
exclusive-or construction of Yao [29] and were less efficient.

Another efficient pseudorandom generator was previously constructed by Blum,
Blum and Shub [4]. Their generator output one pseudorandom bit per one modular

Kaliski [18] has recently simplified and generalized the argument.
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multiplication. Blum, Blum and Shub proved that their generator is a strong pseudoran-
dom generator if the problem of deciding quadratic residucity modulo a composite
number is intractable. Vazirani and Vazirani [28] have pointed out that, using our
techniques, the Blum, Blum and Shub generator is strong also with respect to the
problem of factoring Blum integers.

7.2. Construction of probabilistic public-key encryption schemes. A probabilistic
encryption scheme is said to leak no partial information ifthe following holds: Whatever
is efficiently computable about the plaintext given the ciphertext, is also efficiently compu-
table without the ciphertext [15]. Goldwasser and Micali presented a general scheme
for constructing public-key probabilistic encryption schemes which leak no partial
information, using a "secure trap-door predicate" [15]. A secure trap-door predicate is
a predicate that is easy to evaluate given some "trap-door" information, but infeasible
to guess with the slightest advantage without the "trap-door" information. Goldwasser
and Micali also gave a concrete implementation of their scheme, under the intractability
assumption of deciding quadratic residucity modulo a composite number. A drawback
of their implementation is that it expands each plaintext bit into a ciphertext block
(of length equal to that of the composite modulus).

Using our results, we get an implementation of a probabilistic public-key encryp-
tion scheme that leaks no partial information, based on the intractability assumption
of factorization. This implementation is more efficient that the one in [14], which is
also based on factoring. However, our implementation still suffers from a large band-
width expansion.

Recently, Blum and Goldwasser 5] used our result to introduce a new implementa-
tion of probabilistic encryption, equivalent to factoring, in which the plaintext is only
expanded by a constant factor. Blum and Goldwasser’s scheme is approximately as
efficient as the RSA while provably leaking no partial information, provided that
factoring is intractable.

8. Concluding remarks and open problems. Standard sampling techniques draw
mutually independent elements from a large space. We employed a strategy of getting
elements with limited mutual independence (only pairwise independence). This strategy
allows more control on properties of the chosen elements.

Trading off statistical independence for control turned out to be fruitful in our
context. We believe that such trade-off may be useful in other contexts as well.

We conclude by presenting two open problems:
(1) In 5 (6), we have shown simultaneous security results of O(log n) bits in

RSA (Rabin) encryption function. Extending the result beyond O(log n) bits
is of major theoretical and practical importance. In particular, if more bits
are shown to be simultaneously secure, then the efficiency of the resulting
pseudorandom generator will be greatly improved.

(2) Another interesting question is that of investigating the bit security of the
internal RSA bitsmare they also 1/poly (n) secure ?
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PRIVACY AMPLIFICATION BY PUBLIC DISCUSSION*

CHARLES H. BENNETT?, GILLES BRASSARD$ AND JEAN-MARC ROBERT

Abstract. In this paper, we investigate how the use of a channel with perfect authenticity but no privacy
can be used to repair the defects of a channel with imperfect privacy but no authenticity. More precisely,
let us assume that Alice and Bob wish to agree on a secret random bit string, and have at their disposal an

imperfect private channel and a perfect public channel. The private channel is imperfect in various ways:
transmission errors can occur, and partial information can leak to an eavesdropper, Eve, who also has the
power to suppress, inject, and modify transmissions arbitrarily. On the other hand, the public channel
transmits information accurately, and these transmissions cannot be modified or suppressed by Eve, but
their entire contents becomes known to her. We consider the situation in which a random bit string x has
already been transmitted from Alice to Bob over the private channel, and we describe interactive public
channel protocols that allow them, with high probability: (1) to assess the extent to which the private channel
transmission has been corrupted by tampering and channel noise; and (2) if this corruption is not too severe,
to repair Bob’s partial ignorance of the transmitted string and Eve’s partial knowledge of it by distilling
from the transmitted and received versions of the string another string, in general shorter than x, upon
which Alice and Bob have perfect information, while Eve has nearly no information (or in some cases

exactly none), except for its length. These protocols remain secure against unlimited computing power.

Key words, cryptography, error-correcting codes, information theory, key exchange, privacy, random-
ness, universal hashing, t-resilient functions, wiretap channel

AMS(MOS) subject classifications. 94A60, 94A40

1. Introduction. Alice and Bob wish to agree on a secret random bit string. In
order to achieve this goal, they have at their disposal an imperfect private channel
and an authenticated public channel. The private channel is imperfect in various ways:
transmission errors can occur, and partial information can leak to Eve, the eavesdrop-
per, who also can modify the transmissions arbitrarily, as explained below. The only
limitation we impose on Eve is the knowledge by Alice and Bob of an upper bound
on the amount of partial information that can leak to her when she eavesdrops on a

private channel transmission.
We allow Eve to tamper arbitrarily with the private channel transmissions. For

instance, she can suppress the transmission of selected bits, perhaps to replace them
with bits of her choice, to inject new bits, to toggle transmitted bits or to jumble them
around. We allow her to introduce as much malicious noise as she wishes. In this
paper, we granted Eve unlimited tampering power even though probably no real
channel performs quite this badly, so that our results will hold true in any circumstance.

The quantum channel of [BB1], [BB2] is a prime example of an imperfect private
channel, and this paper effectively allows the removal of its previous defects. Indeed,
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the quantum channel allows an eavesdropper to attempt reading a few bits of the
transmission with a reasonable probability of not perturbing it, and hence of escaping
detection. It also allows several types of blind tampering, such as toggling a selected
bit (even if unable to read it) by passing the corresponding faint light pulse through
an appropriate sugar solution. More classically, Diffie and Hellman’s public-key
distribution scheme [DH] can be thought of as an imperfect private "channel." Indeed,
it efficiently leaks partial information on the (not-so-random) string exchanged, even
if the discrete logarithm is hard to compute, because it is easy for an eavesdropper to
determine whether the resulting secret is a quadratic residue or not.

On the other hand, the public channel transmits information accurately (possibly
because it is supplemented by a classic error-correcting code [vL], [MS]), and these
transmissions cannot be modified or suppressed by Eve, but their entire contents
becomes known to her. Newspapers are an example of a secure public channel on
which eavesdropping is easy but tampering nearly impossible. Such inherently authentic
public channels are commonly suggested for disclosing public keys in a public-key
cryptography/digital signature system such as [RSA]. If message authenticity is not
thus enforced by the physical properties of the channel, it can be provided by an
unconditionally secure authentication scheme such as that of [WC]. In this latter case,
a small number of shared secret random bits must be known initially between Alice
and Bob, and some of these are used up in the process of authentication; thus the net
effect of our protocol in this case can be viewed as key expansion rather than key
distribution. Computationally secure authentication [Br], [GGM] can also be used if
protection against unlimited computing power is not sought. We shall assume
throughout that Alice and Bob did not share initially any secret information, except
perhaps for what is needed to implement this public channel authentication feature.

In this paper, we assume that some random bit string has already been transmitted
from Alice to Bob over the private channel. We investigate authenticated public channel
protocols that, with high probability, detect tampering and transmission errors. Sub-
sequent protocols transform both strings in such a way as to eliminate most, and in
some cases all, of Eve’s information on the resulting string, except for its length. These
public channel protocols remain secure against unlimited computing power, so that
the entire exchange is as secure as the initial private channel transmission. It should
be noted that excessive tampering on the private channel can result in suppressing
communications between Alice and Bob, but it cannot fool them into thinking that
they share a secret random string when in fact their strings are different or otherwise
compromised.

Let us make our setting mathematically precise. Alice and Bob initially share no
secret information. Alice chooses a random string x of length N and transmits it over
the private channel. Independently, Eve chooses an eavesdropping function e {0, 1 } N

_
{0, 1}K, where K < N, and a tampering function t:{0, 1} N {0, }o

_
{0, }u. Alice and

Bob know K but otherwise nothing about e or t. When Alice transmits x, Eve learns
the value e(x) and forwards the potentially corrupted value y t(x, R) to Bob, where
R is a random string representing channel noise. Notice that Eve does not herself
learn the value of t(x, R) nor can she influence the random string R (although she
may choose a function that does not take R into consideration). Her information
about x from the private channel transmission consists only of knowing e and e(x);
her information about y consists only of knowing e, e(x), and knowing the function
that was applied to x in order to obtain y. In this very hostile context, we show that

Alice and Bob can publicly agree on a protocol that will allow them to ascertain whether
x =y (with an exponentially small error probability) and, if this is so, to end up with
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a shorter shared string z on which Eve has nearly no information or, in some cases,
no information at all. If x y, they can detect this with high probability and, if the
differences are not too great, continue with the protocol.

To summarize, we investigate how the use of a channel with perfect authenticity
but no privacy can be used to repair the defects of a channel with imperfect privacy
but no authenticity. In 2, we explain why classic error-correcting codes are inappropri-
ate in this context. In 3, we investigate how transmission errrors and tampering can
be detected with high probability, and sometimes corrected, at the cost of leaking some
information to Eve. In 4, we investigate how Alice and Bob can subsequently reduce
arbitrarily Eve’s information at the cost of reducing slightly the length of their shared
random string, assuming they have an a priori upper bound on the amount of informa-
tion that Eve collected on the private channel. In 5, we investigate the possibility of
depriving Eve entirely of any information on the final shared random string at the cost
of reducing its length more substantially.

Before we get started, let us give the following definition and some notation: if

i<L a function f:{0, 1}J{0, 1} is equitable if {xlf(x)=a}=U-i for every binary
string a of length i. If x and y are bit strings of equal length, xy denotes their
bit-by-bit exclusive-or. Finally, if x is a length N bit string and if 0 <- K <_- N, x rood 2/
denotes the length K bit string consisting of the rightmost K bits of x, and x div 2
denotes the length N-K bit string obtained from x by deleting its rightmost K bits.
We shall herein assume that the reader is familiar with the notions of information
theory [G], [Me], IS], universal hashing [CW], [WC], error-correcting codes [vL],
[MS], and the theory of finite fields [Be].

2. The inadequacy of classical error-correcting codes. Let us recall that the imperfect
private channel considered here is susceptible not only to random transmission errors,
but also to any amount of controlled and malicious tampering. This tampering capability
does not directly give Eve any additional information on x. It could, however, give
her indirect information, because it may force Alice and Bob to subsequently discuss
the situation over the public channel, as explained in 3. The classic theory of
error-correcting codes [vL], [MS] is not quite adequate for our purposes because it is
based on the assumptions that few errors are more likely to occur than many, and that
errors are not maliciously set by an opponent.

For instance, let x and y be Alice and Bob’s strings, respectively, and let N
be their length. Eve’s tampering ability enables her to actually select xy, barring
actual transmission errors. This is clearly intolerable if error detection is attempted
through a linear error-correcting code [MS]. Indeed, let x be the private channel
transmitted code word corresponding to Alice’s chosen random string. Let z be any
code word chosen by Eve. If she perturbs the private channel transmission so that Bob
receives y x@ z, it will not be possible for him to detect tampering. Notice that Eve
can achieve this without gaining any knowledge of the contents of the original trans-
mission x.

Nonlinear error-correcting codes are not susceptible to the above threat, but they
fall to an even simpler one because Eve is also capable of replacing Alice’s bits by
bits of her choice. If Alice sends some code word over the private channel, it suffices
for Eve to suppress the original communications entirely, and inject any other code
word of her choice instead. This simple-minded attack can be hindered by the post
facto application of an error-correcting code, as discussed in 3.2.

Classic error detection is therefore impossible in our context if Eve knows in
advance of the private channel transmission which code is to be used. On the other
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hand, we assumed that Alice and Bob did not initially share any secret, except perhaps
to implement the authenticated public channel. A solution is that Alice randomly
chooses an error-correcting code, produces the code word x corresponding to her
chosen random string, and sends x to Bob through the private channel. She then waits
for Bob to use the authenticated public channel in order to acknowledge receipt of
the private transmission. Only at this point does Alice use the public channel to send
Bob a description of the error-correcting code. This allows Bob to recover the original
string and to check for errors and tampering. Thig randomization approach allows
Alice to reveal sensitive information to Bob, hence to Eve, only after it is already too
late for her to efficiently alter the private channel transmission in an undetectable way.

Although such use of randomness is our main tool in this paper, it remains true
that classic linear error-correcting codes are not appropriate because, even randomly
chosen, they still assume few errors to be more likely than many. For instance, let us
assume that Alice uses a Hamming code of dimension [N, K] and that the random
part of the protocol is the order in which she sends the code-word bits. It is no longer
possible for Eve to toggle selected bits and to be certain to escape detection because
she does not know which bits to toggle. However, there are exactly (2)/3 code words
of Hamming weight 3 [MS], whereas there are () length N bit strings of weight 3.
Therefore, Eve can toggle 3 random bits and escape detection with probability

(--.
2 3 /

Using such a protocol, Alice and Bob could only achieve a very high probability of
not being fooled, say 1- 2-5, at the cost of exchanging unreasonably long strings.

It is instructive to compare our setting with the problem solved by the wiretap
channel of Wyner [W] which achieves similar results in a more classically information-
theoretic setting. In Wyner’s setting, Alice encodes information by a channel code of
her choice. The output of her encoder is fed into two classic (discrete, memoryless)
communication channels: the main channel, leading to the intended receiver Bob, and
the wiretap channel, of lesser capacity than the main channel, leading to the eavesdrop-
per. All participants know the channel code and the statistical properties of the two
channels. Under these conditions, Wyner showed that by appropriate choice of the
channel code, Alice can exploit the difference in capacity between the two channels
communicate reliably with Bob while maintaining almost perfect secrecy from the
eavesdropper.

In our setting, the users have an additional resource: the authenticated public
channel. This allows them to cope with a more powerful eavesdropper. Our eavesdrop-
per is more powerful in two ways, either of which would be fatal in Wyner’s setting:
she can tamper with Alice’s communications as well as listen to them, and she
eavesdrops by evaluating an arbitrary N-bit to K-bit function of her choice, unknown
to Alice and Bob.

In 3.1, we describe error-detection schemes such that the probability of unde-
tected tampering and transmission errors is independent of the number and position
of altered bits. Moreover, this probability can be exponentially small in the length of
the strings transmitted. Although never fully appropriate for the detection of tampering,
classic error-correcting codes remain interesting in order to correct actual transmission
errors over the private channel, as we investigate in 3.2.

3. Detection and correction of transmission errors and tampering. Let x be some
random bit string selected by Alice. Assume she transmits it directly through the
imperfect private channel, and let y be the string thus received by Bob. Let N be the
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length of both strings. The public channel protocols described in 3.1 allow Alice and
Bob to detect whenever x # y with an arbitrarily small error probability, independently
of how y differs for x. Should y be found to differ from x, the protocol of 3.2 can
be used to reconcile them with high probability. The reconciliation protocol can also
be used preventively, before using an error-detection protocol from 3.1, if y is expected
to be different from x merely due to normal transmission errors. The fact that these
protocols leak information to Eve about x is considered in 4.

3.1. Error detection. A very simple but impractical way of testing whether x =y
is for Alice to choose a random function f: {0, 1}n -*{0, 1}K, where K is a security
parameter. After the private channel transmission is completed, she sends f(x) to Bob
over the public channel, together with a complete description of the function f Should
Bob find out that f(y)=f(x), this would be considered as strong evidence that y x,
the error probability being 2-K, independently of the length of the strings and how
they might differ. On the other hand, should f(y) be different from f(x), Bob could
report to Alice with certainty that he did not receive the correct string. Notice that the
amount of information on x leaking to Eve from this protocol depends only on the
security parameter K, and not on the length N of the strings (except of course for the
fact that K < N). This would not be the case if a classic error-detecting code has been
used. Unfortunately, this scheme cannot be used in practice because there are 2
different such functions, and therefore as many as K2n bits are typically needed to
merely transmit a description of the randomly chosen function.

In some cases, it may be preferable for Alice to choose randomly the function f
among the set of equitable functions only. This can be done in theory (although not
in practice when N is large) by randomly selecting a permutation r :{0, 1}n - {0, 1}
and defining f(x)-- r(x) rood 2n for each string x of length N. Notice that this allows
a (very slight) reduction of the probability of undetected transmission errors or
tampering from 2-: to (2N-; 1)/(2N 1).

Universal hashing [CW] provides an efficient way to achieve the same goal. After
the private channel transmission is completed, Alice randomly chooses a function

f: {0, 1}N {0, 1} n among some universal2 class offunctions. She then sends both f(x)
and a description of f to Bob. Thanks to universal hashing, the description of f can
be transmitted efficiently this time. After computing f(y), Bob checks whether it agrees
with f(x). If it does, a basic property of universal hashing allows them to assume that
x y, their probability of error being bounded again by 2-:.

We refer the reader to [CW], [WC] for definition and discussion of universal
hashing. Several universal2 and strongly universal2 classes are described there. Let us
only stress here that they are entirely reasonable in practice. For instance, it suffices
to send about 2N bits over the public channel to describe a function f: {0, 1}n {0, 1}/
randomly selected among H1 [CW] or P ( 4), once the private channel transmission
is completed. Compare this with the unreasonable K2n bits needed to describe a
random function! Moreover, the computation of f(x) is very efficient. Therefore,
universalz hashing provides all the advantages of truly random functions, but none of
the inconveniences.

As we mentioned in 2, it is crucial that the actual verification function be
transmitted to Bob only after Alice has received confirmation through the public
channel that the private channel transmission is completed. This deprives Eve of any
strategy that would reduce her chances of being detected. For instance, if she knew
in advance that the functionf(x) simply returns the last K bits of x, she could arbitrarily
tamper with the other N-K bits without fear of detection.
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It is interesting to compare our use of universal hashing with the classic use of
this technique for message authentication [WC]. The use of hashing for authentication
depends on randomly choosing a hash function and keeping it secret at least until
after the message to be authenticated has been received. In our protocol for error
detection, the hash function cannot be kept secret, but it must be chosen randomly
after the message has been transmitted.

An alternative to universal hashing comes to mind: polyrandom collections
[GGM]. However, universal hashing is more appropriate in this context because it
offers security against unlimited computing power. It does not rely on unproved
assumptions, and it can be computed more efficiently.

3.2. Reconciliation of the strings. Whetherf: {0, 1} N -> {0, 1} K is chosen as a purely
random function or within some universal2 class of functions, what should Alice and
Bob do if they find that f(x) differs from f(y)? Whether anything can be done to
recover from this situation depends on how much x differs from y. If the Hamming
distance between x and y is relatively small, due to limited channel noise and/or
limited tampering, we show here how Alice and Bob can find and correct the errors
in y. Using subsequent protocols from 4, Alice and Bob can then distill from x and
y a shorter string on which Eve has nearly (and in some cases exactly) no information.
On the other hand, if the distance between x and y is large, Alice and Bob will be
able to discover this fact, but they will have no recourse but to discard x and y and
begin the protocol all over again by transmitting a new random string through the
private channel. As mentioned in the introduction, Eve can effectively prevent Alice
and Bob from agreeing on a secret bit string by interfering strongly with every private
channel transmission, but she cannot (except with low probability) fool them into
thinking they have succeeded when in fact they have not.

Reconciliation is particularly easy if it is suspected that only one or two errors
have occurred. Then Bob can try computing f(z) on all strings differing from y by
only one or two bits, in the hope of finding a match forf(x) and thus a likely candidate
for x. We call this approach bit twiddling.

In the presence of more than a very few errors, bit twiddling becomes too
time-consuming, but it is still practical to find and remove the errors by a post facto
application of error-correcting codes, as described below. If many errors are expected
even when no tampering occurs, the error detection protocol of 3.1 should be deferred
until after most or all of the errors have thus been found and corrected.

Many traditional error-correcting codes, such as Hamming codes, can be written
in a systematic format, in which each code word consists of the original source word
followed by a string of check bits. Given a source word x, the encoder thus generates
the concatenation xC(x), where C(x) is some check string depending on x, and sends
this longer string into the channel. At the receiving end, the redundancy in the code
is used (if one is lucky) to recover the original x despite the potential corruption of
both x and C(x) by channel noise. Systematic codes have no special advantage over
unsystematic ones (in which source and check information are mixed) for most ordinary
error-correcting applications, but they are useful in the present setting because they
allow the calculation of the check information C(x) to be performed post facto, after
the uncoded source data x has been sent through the private channel. They also allow
sending x and C(x) on different channels.

In 2, it was pointed out that error-correcting codes used in the traditional non-post
facto manner cannot defend against malicious tampering, because Eve, knowing the
code, can escape detection by deliberately mutating one channel code word into
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another. For example, in the case of a systematic code, if xC(x) was sent by Alice on
the channel, Eve could substitute zC(z), even without learning anything about x, and
Bob would be none the wiser. This threat can be avoided by applying the code in a
post facto manner, and by taking two further precautions:

(i) The check string C(x) generated by the code is not transmitted through the
private channel, where Eve could alter it, but through the public channel, where she
can only listen to it.

(ii) Before application of the error-correcting code, the strings x and y to be
reconciled are subjected to a preliminary uniformization transformation, consisting of
random permutation and complementation. The purpose of this transformation is to
make the difference between x and y behave as if y were the result of sending x
through a memoryless binary symmetric channel. To achieve this preliminary goal,
Alice randomly chooses a permutation tr:{1, 2,..., N} {1, 2,..., N} and a length
N bit string w. She then transmits both w and a description of cr to Bob over the
public channel. Finally, Alice and Bob transform their strings x and y, respectively,
by first shuffling the bits according to tr, then taking the exclusive-or of the permuted
string with w. It is clear that this leaves the number of errors unchanged, but redistributes
them to random places not under the control of Eve, who is thus prevented from
exploiting knowledge of the error-correcting code C to introduce a pattern of errors
against which the code would perform less well than average. It is also clear that the
uniformization transformation releases no new information to Eve about x and y.

To summarize, in order to use a systematic error-correcting code C for reconcili-
ation, Alice and Bob first uniformize their strings x and y, thus producing Xo and Yo.
Alice then applies C to x0 and transmits the result C(xo) to Bob over the public
channel, thereby giving away at most IC(xo)l bits of information to Eve about Xo. Bob
uses C(xo) to correct the errors in Yo, thereby recovering x0 if the code C is sufficient
to correct the errors that have occurred between Xo and Yo. If C(xo) is significantly
shorter than Xo, there is still some information about Xo that Eve does not know, and
the methods of 4 can be used to nearly obliterate the information known to her, by
allowing Alice and Bob to derive from Xo a shorter string, of length approximately
IXol-IC(xo)l, about which Eve has less than one bit of information.

It remains to be decided what kind of systematic error-correcting code to use. If
e, the density of errors, is not too great to begin with, a simple block code (such as a
Hamming code if we expect at most two errors per block) would suffice to reduce the
number of errors to the point where they can be found and corrected by bit twiddling.
If e is greater (say 0.01 or more), a systematic convolutional code [G] would be better,
since these tree codes, unlike block codes, can achieve exponential error reduction
without exponential decoding effort, while still transmitting data at a rate at least half
the theoretical channel capacity. As emphasized above, whatever error-correcting code
is used should be used in a post facto manner, being applied to the uniformized version
of Alice’s data, and the resulting check information C(xo) being sent to Bob over the
noiseless, tamper-proof public channel.

In the traditional non-post facto situation, where both x and C(x) are sent through
a binary symmetric channel with error probability e, the capacity
achievable by convolutional codes with polynomial expected decoding effort is denoted
Rcomp, and has the value l-log (1 +2x/e(1-e)), which ranges between 0.5 and 1.0
times the theoretical capacity 1-H(e), where H(e)= e log 1/e+(1-e)log 1/(l-e)
is the entropy function [G]. In the present situation, the original data is transmitted

Unless otherwise stated, all logarithms in this paper are to the base 2.



PRIVACY AMPLIFICATION BY PUBLIC DISCUSSION 217

with error probability e, but the check information is transmitted noiselessly; and
capacity should thus be defined differently, as the maximum of
taken over all possible codes C, since this is the fraction of the original information
in Xo that remains secret after reconciliation. Nevertheless, in the post facto situation,
Shannon showed that the theoretical capacity is still given by 1- H(e). By arguments
parallel to the derivation of Rcomp [G], it can be shown that the effective capacity
achievable by convolutional coding is still given by

Rcomp 1 log 1 + 2x/e e)).

In practice, the parameter e would not need to be known beforehand, since it can be
determined interactively, by having Alice first compute a generous amount of check
information, but then release only as much of this as Bob finds he needs for efficient
decoding. A table comparing Rcomp with Shannon’s theoretical capacity c for some
values of e follows.

0.001
0.01
0.03
0.05
0.10
0.25
0.40

Rcomp

0.9116
0.7382
0.5765
0.4781
0.3219
0.1000
0.0146

0.9886
0.9192
0.8056
0.7136
0.5310
0.1887
0.0290

4. Reduction of the eavesdropper’s information. Assuming that Alice and Bob agree
on their strings as a result of one of the protocols discussed above, Eve has two different
sources of information on that string: partial eavesdropping on the private channel,
as the original random bit string was being transmitted, and complete eavesdropping
on the public channel, as the agreement protocol was being carried out.

We now investigate how to reduce Eve’s information arbitrarily close to zero at
the cost of slightly shrinking the random bit string shared between Alice and Bob. In

4.1, we assume that no eavesdropping on the private channel has occurred, but that
transmission errors were possible. We also assume that the number of errors, if any,
is small enough to be handled by bit twiddling (this assumption is removed in 4.3).
In 4.2, we assume, on the contrary, that the eavesdropper has acquired partial
information on the private channel transmission, but that tampering and transmission
errors have not occurred. We finally consider in 4.3 the more realistic case where
both eavesdropping and arbitrary tampering on the private channel are possible, so
the eavesdropper may gain information both directly from eavesdropping on the private
transmission and indirectly by listening to the public channel reconciliation and
error-detection protocols of 3. All these protocols are secure against an eavesdropper
with unlimited computing power.

4.1. Eliminating the public channel eavesdropper’s information. Let us assume for
the moment that Eve is unable to eavesdrop on the private channel but that transmission
errors may have occurred. Assuming the number of errors is small enough to be handled
by bit twiddling, we now show that Alice and Bob can agree on a secret random string
on which Eve has no information, except for its length. In a companion paper [BBR],
we investigate how to handle efficiently an error rate that would make bit twiddling
ineffective. The interactive public discussion protocol discussed there allows Alice and
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Bob to agree with high probability on a (shorter) secret random string on which Eve
still has no information. Alternatively, 4.3 of the present paper uses the post facto
systematic convolutional codes of 3.2 in order to handle normal transmission errors,
but at the cost of leaking to Eve an arbitrarily small fraction of one bit of information
about the final random bit string.

Let x be the random string sent from Alice to Bob over the imperfect private
channel. Let y be the string received by Bob. An error detection protocol of 3.1 is
first applied to make sure, with high probability, that the random strings of Alice and
Bob are identical. If not, bit twiddling is attempted by Bob to transform y into x. If
bit twiddling fails, either repeat the whole process (Alice sends a fresh new random
string to Bob, etc.), use the interactive protocol of [BBR], or refer to 4.3. At this
point, assume that Alice and. Bob agree with high probability on some length N string
x, but that Eve has gained information on this string by listening to the public channel
error-detection protocol. We wish to eradicate this information of hers.

Let f: {0, 1} N -* {0, 1} K be the function used in the error-detection protocol. Eve
knows the K bit value of f(x), together with the function f itself. Although this may
not give her any physical bits of x, she has K bits of information on x in the sense of
Shannon’s information theory [S], assuming that f is equitable. If f is not equitable,
Eve’s expected information is less than K bits, although she could know more occasion-
ally. Her information can be characterized by the set C {z {0, 1}N ]f(z)=f(x)} of
possible candidates for x. From Eve’s point of view, each element of C is equally
likely to be the string x currently shared between Alice and Bob. Notice that Alice
and Bob also have complete knowledge on the set C.

In order to eliminate Eve’s information, Alice and Bob publicly agree on a function
g:{0, 1}u- {0, 1} R, for some integer R-<_ N-K, such that knowledge of the set C
yields no information on g(x), the final string on which Alice and Bob agree. In other
words, the purpose of this function g is to shrink the string x by at least K bits, in
order to compensate for the K bits of information that Eve knows on x. It is clear
that at least K bits of x must be sacrificed to privacy, but are K bits enough in general?
The proper choices of R and of this information-reduction function g depend on
which error-detection function f was chosen from 3.1.

4.1.1. Eliminating the information given by a truly random error-detection func-
tion. Assume the error-detection function f was chosen randomly from among all
functions from {0, 1 } to {0, 1 } K. This error-detection protocol is of no practical interest,
because it would require K2 bits to merely transmit function f It is nonetheless
instructive to figure out how the information given on x by f(x) can be eliminated in
this context. Indeed, this provides a nice intuitive insight into the realm of information
reduction. Moreover, it is interesting to compare what can be achieved in the truly
random case with the practical world ( 4.1.2). By analogy, recall Shannon’s result
that any channel can come arbitrarily close to achieving its theoretical transmission
capacity through the use of random codes that cannot be implemented in practice IS],
and that no practical codes known thus far can perform nearly as well. As we will see,
such is not the case here. For this reason, we only state the main results pertaining to
truly random functions and we refer the reader to [R] for the somewhat tedious proofs.

Recall that Eve’s information about x is characterized by the set C of possible
candidates, and that this set is also known for Alice and Bob. Let C denote the
number of elements in C. Let y be the index of x in C when C is ordered in lexicographic
order. Then y is available to both Alice and Bob, whereas it is just as likely to take
any value between 1 and 4e C as far as Eve is concerned. If C is large enough, such



PRIVACY AMPLIFICATION BY PUBLIC DISCUSSION 219

a y can thus be used as the resulting shared secret. The ideal situation occurs when
the function f is equitable. In this case, we always have :C=2u-: and thus y is a
uniformly distributed random bit string of length N- K on which Eve has no informa-
tion whatsoever save its length. This idea is captured in the following theorem:

THEOREM 1. Let N be the length of the originally transmitted bit string and let
K < N be the safety parameter used for error detection. Let r:{0, 1s {0, 1} s be a
randomly chosen permutation. Letf: {0, 1} N - {0, 1} K and g: {0, 1} u {0, 1} u-K be equi-
table functions defined by f(x) r(x) motl 2 and g(x) r(x) div 2. Then, knowledge
of r (hence off and g) andf(x) yields no information on g(x), except that it is of length
N-K.

From an information theoretic point of view, one might wonder if it is necessary
that this information-reduction function g be custom made for the particular error-
detection function f being used. At least two ideas come to mind: What happens if g
itself is chosen randomly, independently of f? and Could g be known to Eve even
before the private channel transmission takes place ? Although these ideas do not allow
wiping out Eve’s information with certainty, they come close.

Let us first consider the case when the information-reduction function g is ran-
domly chosen among all functions {0, 1}N -*{0, 1}R, where R _-< N-K is the desired
length of the final string. The intuitive hope is that a random g is very likely to map
the elements of C nearly uniformly onto {0, 1} R, thus releasing very little information
on the value of g(x) from knowledge of C and g alone.

In order to state the theorems precisely, we need to introduce some information-
theoretic formalism that will be used throughout 4. Let N and K be as in Theorem
1. Let S be any nonnegative integer smaller than N-K. Let R N-K- S. Let X, F
and G be three independent uniformly distributed random variables ranging over
{0, 1} N, {flf:{0, 1}N -’-> {0, 1} and {gig:{0, 1} N ---> {0, 1}R}, respectively. Define new
dependent random variables Y and Z ranging over {0, 1} K and {0, 1} R, respectively,
by setting y =f(x) and z g(x).

The expected amount of (Shannon) information given on g(x) by y =f(x), f and
g is defined by following formula:

prob [zlyfg]
I(Z; YFG) Z prob [z, y,f, g] log

y jg prob[z]
Notice that "expected" means "averaged over all possible choices for f, g and x."

THEOREM 2. Let N, K, S, R, F, G, Y and Z be as above, then

I(Z; YFG) -<_ log (1 + 2-s) < 2-S/ln 2.

Furthermore, this bound is fairly tight because

I(Z; YFG) >
ln2 2N--1

whenever 3 <- S <-_ N- K 2.
Intuitively, this says that if f and g are randomly chosen functions from {0, 1}u

to {0, 1} and to {0, 1}R, respectively, and if x is randomly chosen among all bit strings
of length N, then the expected amount of Shannon information given on g(x) by f(x),
f and g is less than 2-S/ln 2 bits.

As for the second idea, it turns out that a comparable level of information reduction
can be achieved through the use of any ad hoc equitable function. In particular, it is
enough to simply chop off any K + S physical bits of x in order to reduce the expected
eavesdropper’s information below 2-S/ln 2 bits. This remains true even if the reduction
function is chosen a priori and known to the eavesdropper before the private channel
transmission.
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THEOREM 3. Let N, R and S be as above. Let g:{0, 1}N {0, 1}R be any fixed
equitable function, then the expected amount of information given on g(x) by f(x), fand
g is less than 2-S/ln 2 bits.

4.1.2. Eliminating the information given by universal hashing error detection. Let
us now assume that a practical error-detection protocol was used from those proposed
in 3.1: the function f: {0, 1}N {0, 1}/( was randomly chosen among some universal2
class of hash functions. Rather than developing a general theory of information
elimination in this context, let us design an ad hoc technique for a specific universal2
class mentioned in [WC], which we call P. We assume here that the reader is familiar
with Galois field theory [Be].

Consider a, bGF (2N) such that a S0. The degree one polynomial qa,b(X)=
ax + b, arithmetic being done in GF (2u), defines a permutation of GF (2N). If we let
tr:GF (2v)- {0, 1}u stand for the natural one-to-one correspondence, this induces a
permutation 7ra,b(X):{O, 1} rv {0, 1}N defined by 7ra,b(X)- o’(q,b(O’-l(X))). Therefore,
for any fixed K<-N, the function h,b(x):{O, 1}N {0, 1}u defined by h,,b(X)=
7ra,b(X) rood 2/( is equitable. Define the class P {ha,b la, b GF (2), a 0}. It is
elementary to prove that P forms a universal class of hash functions, so that it can
be used for the error-detection protocol of 3.1. (In fact, the class becomes strongly
universalz if we allow a -0, but this is to be avoided here because ho,b is not equitable.)

THEOREM 4. Let a and b be any elements of GF (2N) such that a O. Let x be a
random string of length N. Then knowledge of a, b and h,b(x) gives no information on
the string defined as ga,b(X)= 7ra,b(X)div 2/(, except that it is of length N-K.

Proof This is an immediate consequence of the fact that 7r,,b is a permutation of
{0, 1}N: knowledge of the last K bits of zr,b(X) gives no information on its first N-K
bits.

In conclusion, use of the universal2 class P allows Alice and Bob to verify whether
their strings are identical, with an error probability of at most 2-/(. If they turn out to
be the same (or if they differ little enough that bit twiddling is applicable), they can
be transformed into new strings that are only K bits shorter, on which Eve has no
information at all. This is clearly optimal.

It is worth mentioning that the conceptually simpler universale class H1 of [CW]
can be used instead of P for error detection. This still allows subsequently a good,
efficient information-reduction scheme, but wiping out with certainty Eve’s information
does not seem to be feasible. This is due to the fact that the functions in H1 are not
equitable. Using this class, it is nonetheless always possible to reduce the eavesdropper’s
expected information below 2 bits, and even below any threshold ; > 0 by choosing
N large enough. For more details, please consult JR].

The following section investigates the situation in which eavesdropping has occur-
red, but tampering and transmission errors are not a concern for Alice and Bob.

4.2. Reducing the private channel eavesdropper’s information. Let us now assume
that partial eavesdropping may have occurred on the private channel. Recall that
eavesdropping consists of Eve selecting a function e: {0, 1}u - {0, 1}/( of her choice,
whose value e(x) she learns when x is transmitted over the private channel. Alice and
Bob know K but otherwise have no information on which function e was chosen by
Eve. If Eve chooses an equitable function, e(x) gives her K bits of information on x.
Otherwise, her expected amount of information is smaller, but she could occasionally
get more. In this section, we assume that transmission errors and tampering are not a
worry for Alice and Bob, so that an error-detection protocol of 3.1 is not carried out.
This assumption is removed in 4.3.
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To summarize, let x be the length N bit string common to Alice and Bob, and
let e(x) be the K bits of information known by Eve about x. Alice and Bob wish to
publicly agree on some function g: {0, 1}s {0, 1}n, for some R <-_ N-K, such that
knowledge of e, e(x) and g leaves Eve with an arbitrary small fraction of one bit of
information about g(x).

A similar question was addressed by Ozarow and Wyner [OW]. However, their
solution is nonconstructive (based on random coding), it assumes that the eavesdropper
can only read physical bits from the private channel, and it does not reduce her
information below one bit. On the other hand, their setting is not restricted to the
exchange of a random string, as they wish Alice to be able to safely transmit a message
of her choice to Bob. Moreover, they do not need to use an authenticated public
channel after the private transmission. Their results should also be compared with our
information-elimination protocol from 5.

Back to the analogy with Wyner’s original wiretap channel [W], the requirement
that the eavesdropping function be compressive is analogous to Wyner’s requirement
that the wiretap channel have less capacity than the main channel. One might hope
to generalize our setting to cover eavesdropping through an arbitrary channel of capacity
K/N, selected by Eve but unknown to Alice and Bob. However, this generalization
would weaken our results rather than strengthen them. For example, Eve could satisfy
the K/N capacity bound by asking for all N bits of Alice’s message K/N of the
time, while asking for none of it the rest of the time.

Notice that the effect of eavesdropping over the private channel is very similar to
that of eavesdropping over the public channel described in 4.1 in that the information
gained by Eve can be characterized by a set E {z {0, 1}N ]e(z)= e(x)} of possible
candidates for x. However, there is a fundamental difference: contrary to the previously
discussed set C, it is not the case that Alice and Bob have complete knowledge of E.
For this reason, it is not possible for them, in general, to eliminate Eve’s information
with certainty.

THEOREM 5. If Eve is free to choose her function e:{0, 1}N - {0, 1}/( without any
constraints, there is always a chance that she will gain complete information on g(x), no
matter how Alice and Bob choose the function g:{0, 1}u - {0, 1}R.

Proof The idea is to make e very nonequitable, so as to have a small chance of
learning x exactly from e(x). For example, Eve could choose:

x rood 2/( if x div 2/( 0N-t,
e(x)= 0/( otherwise.

Withprobability(2/(-1)/2N, e(x)yieldscompleteinformationonx;henceong(x). [3

The eavesdropping function described above is for gamblers only: with probability
greater than 1-2/(-, e(x) gives almost no information on x. In fact, the expected
information on x given by e(x) is less than (N+ I/In 2)2/(-N bits. For instance, if Eve
is allowed to observe the result of a 50-bit function applied to a 56-bit DES key [NBS],
her expected information would be less than one bit if she had used the above very
nonequitable eavesdropping function. Clearly, it would be more prudent for Eve to
select some equitable function, so as to maximize her expected amount of information
on x. Even then, an analogue to Theorem 5 can be given:

THEOREM 6. No matter how Alice and Bob choose theirfunction g: {0, 1}N {0, 1}R,
for any R > O, there is always an equitable function e: {0, 1 }N .__) {0, 1 }/(, for any K > O,
such that knowledge of e, g and e(x) yields some information on g(x).

Proof Should Alice and Bob choose a nonequitable function g, Eve would have
some information on g(x) from the mere knowledge that x is truly random, without
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even looking at e(x). On the other hand, assuming that g is equitable, e(x) could give
as much as min(K, R) bits of information on g(x). This is accomplished if one of the
two functions is an equitable refinement of the other. Of course, Eve cannot select e
so that this will happen, because she does not yet know g when she has to choose e.
However, Alice and Bob cannot prevent this coincidence from happening, or even
detect it, because they never get to know the function e. ]

The above two theorems show that the best Alice and Bob can hope for is to
reduce Eve’s information arbitrarily close to zero. There can be no analogue to Theorems
1 and 4. Nonetheless, if we restrict even further Eve’s choice of e, so that she can only
read a selection of physical bits of x, it becomes possible again for Alice and Bob to
eliminate her information entirely, as discussed in 5.

As usual, we consider two approaches for the reduction of Eve’s information: one
based on truly random functions and one based on universal hashing techniques.
Section 4.2.1 is only of theoretical interest, and the proofs can be found in [R]. Here
again, it is nice to find out that the practical schemes of 4.2.2 are just as efficient for
information reduction as the unrealistic random scheme.

4.2.1. A random information-reduction approach. Recall that knowledge of
e:{0, 1}N - {0, 1} t< allows Eve to restrict the set of her possible candidates for x to
E {z {0, 1}N e(z) e(x)}, where 4 E=2-t if e is equitable.

LEMMA 7. Let E be a nonempty set of equally likely candidates for x, and let R be
an integer. Let g:{0, 1}u - {0, 1}R be a randomly chosen function. Then, knowledge ofE
and g yields less than an expected log (1 + 2R/4 E) bits of information on g(x). Here,
the result holds for any specific E and the average is only over all choices for g.

THEOREM 8. Let e:{0, 1}N -{0, 1}: be any function, let S < N-K be a safety
parameter, and let R N- K S. Ifg: {0, 1 } u {0, 1 } R is chosen randomly, the expected
amount ofinformation on g(x) given by knowledge ofe, g and e(x) is less than log (1 + 2-s)
bits, hence less than 2-S/ln 2 bits.

4.2.2. A universal hashing information-reduction approach. Contrary to the error
detection protocols of 3, it is no longer sufficient to consider universal2 classes: here,
we need strongly universal2 classes [WC].

LEMMA 9. Let E and R be as in Lemma 7. Let H be a publicly known strongly
universal2 class of hash functions from {0, 1}N to {0, 1}R. Let g be a function chosen
randomly within H. Then, knowledge of E and g yields less than an expected log (1 +
2R/ 4# E) bits of information on g(x). Again, the average is only over all choices of g, not
over E or H.

Proof Let us first recall some notation from universal hashing:
if x {0, 1 N, Z {0, 1 }R and g H, then

1 if g(x) z,
Azx,g=

0 otherwise.

If E
___

{0, 1} N, then

Similarly, if F H, then

af’"= E a;,"= ,{xelg(x)= z}.
xcE

AXz’F 2 AXz’g :z {g Fig(x) z}.
gcF

By definition of strong universal2,

{gH]g(x)= z and g(x’) z’}= +H/2zR

for any x, x’ {0, 1}u and z, z’ {0, 1} R, provided x x’.
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An immediate consequence of this definition is that

A," #{gHIg(x)= z}

2 #{gH]g(x) z and g(x’) z’}
z’c{0,1}

2a# H/2TM # H/2a,
where x’ is chosen as any string different from x in {0, 1} N.
Therefore,

Az’g= 2 AX’Hz =#E#H/2a.
gcH xE

Similarly,

( )2E (/zE’g)2= E E /X,gz
gH gH xE

gc H E x’e E

E E #{gH]g(x) z and g(x’) z}
E x’ E

#El#HI2a +(#E-1)#H/2TM]

(from splitting the cases x’= x and x’ # x)

#EH[2R 1+ 2R

Let us now come back to Eve’s set E c_ {0, 1}N of equally likely candidates for x. In
this proof, we consider two independent random variables X and G ranging over {0, 1 }N

and the set of functions from {0, 1}N to {0, 1} R, respectively, with the probability
distributions

ifxE,
prob [X x]

0 otherwise,

and

ifgH,
prob [G g]

0 otherwise.

Consider also the dependent random variable Z ranging over {0, 1}a corresponding
to the equation z g(x). We wish to find an upper bound on I(Z; G), the expected
information on g(x) given from the knowledge of g and of the fact that x E. For
this, we need to compute a few conditional, joint and marginal probabilities: given
z{0, 1}a and gH,

prob [Z =z[G g] AEz’g/: E,

prob [Z= z, G g] prob [G g] prob [Z z[G g]

az,./E H,
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and

prob[Z=z]= prob [Z= z, G- g]
gH

1 AE’g=2-R.
# E#H gH

By information-theoretic definitions, we therefore obtain"

I(Z;G)= ] prob [Z= z, G g] log
,1} gH

AE’gz A’2R

z Z log, #E#H #E

2 A,2
EH E

2-" 2 og L (’"2"/)/

(by Jensen’s lemma [Mc], because g ’g2/EH 1)

2- } log
(E)H (,g)2

g

=2-log+

prob [Z zig g]
prob [Z z]

log 1 + 2R/ E). l-’l

THEOREM 10. Let e, S and R be as in Theorem 8, and let H and g be as in
Lemma 9. The expected amount of information on g(x) given by knowledge of e, g and
e(x) is less than log (1 + 2-s) bits, hence less than 2-S/ln 2 bits. Notice that this is true

for every e, despite the fact that Eve already knows the class H, but of course not the
specific function g, when she gets to choose her function e.

Proof This is an immediate consequence of Lemma 9 if e is equitable. Indeed,
the eavesdropper’s set E is then always reduced to exactly 2N-K equally likely
candidates for x. The expected information on g(x) given by knowledge of E and g
is thus less than log (1 +2R/2N-K)--log (1 +2-s)<2-S/ln2 bits.

If e is not equitable, the theorem still follows from Lemma 9, but through the use
of Jensen’s lemma [Mc]. For any x {0, 1}, let Ex {y {0, 1}N[e(y) e(x)}. Since
each x {0, 1 }S is equally likely a priori, Lemma 9 tells us that the expected information
on g(x) given by knowledge of g, e and e(x) is less than

XG{0,1}

2- log (1 +2R/#Ex) =<log (2- +2R-/#E,)

(by Jensen’s lemma, because 2-N- 1)

--<log (1 +2-s)

(because 1/+ E<-2K, by an easy exercise left to the reader). [3

Let us finally point out that almost strongly universal2 classes [WC] can also be
used in this information-reduction context. A similar analysis shows that if g is chosen
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randomly from an almost strongly universal2 class, knowledge of e, g and e(x) yields
at most 1+1og(!+2-(s+l) bits of information to Eve about g(x). This could be
interesting when R is much smaller than N: in that case the description of a randomly
chosen function within an almost strongly universal2 class requires significantly fewer
bits to be transmitted over the public channel [WC]. [3

4.3. Putting the concepts together. If Eve obtained some information on the string
x as it was being transmitted over the private channel, and additional information by
listening to the public channel messages exchanged during the error-correction and
error-detection protocols of 3.2 and 3.1, it may still be possible for Alice and Bob
to efficiently agree on a random string on which Eve has nearly no information. The
key idea is that if Eve obtained an expectation of K bits from the private channel
transmission, and an expectation of L more bits from eavesdropping on the subsequent
public discussion, then she can expect at most K + L bits from both sources combined.
This is formalized in the following easily proven lemma.

LEMMA 11. Let e:{0, 1}u ->{0, 1}/( andf:{O, 1}u -{0, 1} be any two functions.
Let x be a random string of length N. The expected information on x given by knowledge
of e, e(x), f and f(x) is at most K + L bits.

Therefore, an obvious adaptation of the protocol implied by Theorem 10 allows
for the efficient reduction of Eve’s information to less than 2-S/ln 2 bits for any
S < N- K L, at the cost of ending up with a random string of length N- K L- S.
Notice that ad hoc information-elimination schemes, such as those in Theorems 1 and
4, offer no advantages in this context (unless an information-elimination scheme from
5 is used initially). Therefore, the choice of a universal2 class in the error-detection

part of the protocol does not have to be motivated by the existence of a subsequent
information-elimination scheme.

5. Elimination of the eavesdropper’s information. The protocols of 4.2 should be
sufficient for most applications, despite the fact that Eve retains an arbitrarily small
fraction of one bit of information on the resulting shared random string. Although we
were able to eliminate her information entirely in Theorems 1 and 4, the techniques
used could only be applied because Alice and Bob had complete knowledge of Eve’s
information. As shown in Theorems 5 and 6, this cannot be extended whenever Eve
is allowed to access a limited amount of information of her choice from the private
channel transmission.

In this section, we investigate a protocol by which Alice and Bob can nonetheless
wipe out Eve’s information, assuming that she obtained a maximum of K physical bits
of her choice from the private channel transmission, as opposed to the more general
K bits of information in Shannon’s sense discussed in 4. Although the value of K
is known to Alice and Bob, they do not know, of course, which particular bits of their
string are compromised. This protocol is expensive in the sense that the resulting string
is generally substantially shorter than those resulting from the protocols of 4; however,
this is the unavoidable price to pay in order to make sure that Eve is left with no
information at all.

An error-detection protocol could be applied, if desired, after Eve’s information
has been eliminated, still leaving her with no information if the universal2 class P of
Theorem 4 is used. Bit twiddling on the initial strings is also possible afterwards in
order to reconcile the final strings, if there were only one or two transmission errors.
Unfortunately, the more sophisticated protocol of 3.2 would transform Eve’s knowl-
edge from physical bits to information in Shannon’s sense, so that the elimination
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protocols described below could no longer be applied. We do not know how to
efficiently eliminate Eve’s information and reconcile Alice and Bob’s strings if several
transmission errors occurred.

5.1. The notion of (N, J, K)-functions. In order to eliminate Eve’s information,
we introduce the following definition: for any integers N, J and K such that N _-> J + K,
J > 0 and K > 0, a function f: {0, 1 } n

_
{0, 1 }J is (N, J, K) if, no matter how one fixes

any K of its input bits, each of the 2J output bits can be produced in exactly 2N-J-

different ways by varying the remaining N-K input bits. Intuitively, an (N, J, K)-
function compresses an N bit string into a J bit string in such a way that knowledge
of any K of the input bits gives no information on the output. This is equivalent to
the notion of t-resilient functions independently introduced by [CGHFRS].

Given such a function, Alice and Bob can apply it to their respective strings, thus
producing a new (shorter) string on which Eve has no information. Notice that this
still holds even if she already knows which function will be used by Alice and Bob in
advance of her deciding which K bits to read from the private channel. Therefore, the
subsequent public transmission between Alice and Bob is not necessary in this case.
By analogy with [OW], these (N, J, K)-functions are not restricted to the exchange
of random strings. If Alice wished to communicate some specific J bit string y to Bob,
she could send over the private channel some randomly chosen N bit string x such
that f(x)= y. This would allow Bob to obtain y unambiguously, assuming no trans-
mission errors occurred, whereas Eve would gain no information on y from eavesdrop-
ping over any K bits of x. One (nonconstructive) protocol in [OW] achieves something
similar with N J+ K, which is better than what we get here, but it yields slightly
more than one bit of information to Eve about y.

Example. The function f(u, v, w, x, y, z) (u )vwx, wxyz) is (6, 2, 3):
knowledge of any 3 of the input bits yields no information at all on the output.

The case J N-K is the best possible because there is obviously no hope of
producing a completely secret string of length N-K + 1 if Eve knows K of the N
original bits. A function f that is (N, N-K, K) is said to be (N, K). The following
theorem shows how to build (N, K)-functions whenever they exist.

THEOREM 12. (1) For any N > 1, there are N, 1) and N, N 1)-functions.
(2) For any N > 3, there are no (N, K)-funetions whenever 1 < K < N 1.

Proof (1) Produce the ith output bit as the exclusive-or of the ith and the (i + 1)st
input bits to get an (N, 1)-function; and produce the only output bit as the exclusive-or
of all N input bits to get an (N, N-1)-function.

(2) Assume for a contradiction that some f:{0, 1}N-{0, 1}N-K is (N, K) for
N > 3 and 1 < K < N 1. By definition f(xl) # f(x2) for any two distinct strings xl and
x2 that have at least K bits in common. Let X {x {0, 1 } n ix ON and x mod 2: 0: },
the set of nonzero N bit strings ending with K zeros. Notice that f must be one-to-one
on X because any two strings in X have their last K bits in common. Now, consider
the strings u ln-:+0:- and v= ln-:0/-l. Both u and v have at least K bits in
common with each string of X. Therefore, f(u)_f[X] and f(v)_f[X]. Since fiX]
spans all of {0, 1}n- but one string, we must have f(u)=f(v). This is a contradiction
because u and v have (K 2) + (N K) N 2 ->_ K bits in common. [3

Moreover, there exist only two distinct (N, N-1)-functions for each N > 1: the
one given in the proof of Theorem 12 and its complement:

THEOREM 13. The only (N, N- 1) functions are f(x, X2," ", XN) Xl(X2(
"q)Xn and its complement.
Proof This easy proof by induction on N is left to the reader. [3



PRIVACY AMPLIFICATION BY PUBLIC DISCUSSION 227

5.2. How to build (N, J, K)-functions. We wish to answer the following question:
given N and K, what is the maximum value for J such that an (N, J, K)-function
exists? Alternatively, given N and J, find the maximum value for K. In other words,
what is the longest secret random string on which Alice and Bob can agree if they
start from a random string of length N, of which K bits are compromised? Theorem
12 showed that J must be strictly smaller than N-K unless K 1 or K N-1.

We were unable to answer the above question in its full generality. For this reason,
we restrict our attention to the special class of (N, J, K)-functions for which every
output bit is produced as the exclusive-or of some of the input bits. Such functions
are referred to as xor-(N, J, K)-functions. We conjecture that these functions are as
efficient as possible, in the sense that if no xor-(N, J, K)-functions exist for given
values of N, J and K, then no general (N, J, K)-functions exist either. This Xor-
Conjecture is proved in [CGHFRS] for the case J 2.

The following characterization, known as the Xor-Letnma, allows us to establish
an equivalence between xor-(N, J, K)-functions and binary linear codes [vL].

LEMMA 14 (independently discovered by [CGHFRS]). Let M be a J N Boolean
matrix. Let f: {0, 1}N -> {0, 1}J be the function represented by M in the natural way (i.e.,
f(x) xM’, all operations being performed modulo 2). The function f is (N, J, K if and
only if the exclusive-or of any set of rows ofM contains at least K + 1 ones.

Proof. One direction is obvious: if the exclusive-or of some subset of the rows
contains K ones or less, it is sufficient to know the value of these K input bits to infer
the exclusive-or of the corresponding output bits.

Conversely, assume that the exclusive-or of any set of rows of M contains at least
K + 1 ones. We have to show that, no matter how many K input bits are fixed, each
of the 2J output strings can be obtained in exactly 2N--/ different ways by varying
the other N-K input bits. Without loss of generality, let us assume that the first K
input bits are fixed, say to some u {0, 1}:. Let M1 and M2 stand for the first K and
the last N-K columns of M, respectively.

The key observation is that M2 has full rank, because if the exclusive-or of some
rows of M2 were zero, the exclusive-or of the same rows of M would contain at most
K ones. A classic result of linear algebra applies to conclude that there exists a
nonsingular (N-K) (N-K) matrix F such that M2 RF, where R is the J
(N-K) matrix such that Rii- for 1=< i<--J and Ro=O otherwise [ND].

Now, consider any y{0, 1}. Let z be any string in {0, 1}
(y@uM’ -1,z)(F) Let x=(u,v). We have f(x)=xM’=uM
[(yuM’l, z)(F’)-IF’R’]=y. Furthermore, it is clear that different values for z give
in this way different values for v, hence for x. Therefore for any y {0, 1}J, there are
at least 2 u-K-J different x{0,1}u such that tile first K bits of x are u andf(x)=y.
By a pigeonhole argument, 2u-:-J is the exact number of such x’s. This is the required
condition for f to be (N, J, K).
ToaM 15 (independently discovered by [CGHFRS]). For given values of N,

J and K, there exists an xor-(N, J, K)-function ifand only if there exists an [N, J] binary
linear code with minimum distance at least K + 1 between any two code words.

Proof This is an immediate consequence of Lemma 14, if one makes the correspon-
dence between the matrix M used to represent the (N, J, K)-function and the generator
matrix G of the binary linear code.

Consequently, our problem is equivalent to a classic problem of algebraic coding
theory. Unfortunately, no efficient algorithms, much less closed-formed formulae, are
known to determine the largest possible minimum code-word distance among all N, J]
binary linear codes. There are, however, several well-known lower and upper bounds
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on this value [vL], [HS], [MS], and these bounds apply just as well to our problem.
For instance, Hamming codes [MS] tell us that xor-(2L- 1, 2L- L- 1, 2)-functions

exist for every L-> 2. Conversely, Hamming’s upper bound [MS] shows that no xor-
(2L- 1, 2L- L, 2)-functions can exist because

Notice that elimination of Eve’s information in this case (K =2) costs L-2-S
additional bits than if we had been satisfied to reduce her information below 2-S/ln 2
bits, as in 4.2.

Similarly, Griesmer’s upper bound and the simplex code [MS] allow for the
building ofxor-(2L- 1, L, 2L-l- 1)-functions for any L -> 2, whereas neither xor-(2L- 1,
L, 2L-1)-functions nor xor-(2L-1, L+ 1, 2L--l)-functions can exist. Moreover,
Varsharmov-Gilbert’s lower bound together with McEliece’s upper bound [vL], [MS]
allow for the construction of xor-(N, J, K)-functions such that J is at least half the
optimal (xor) value, as long as KN< 0.3 and N is large enough. Also, the zigzag of
[BCR] yields an xor-(3L, 2L, 2L- 1)-function, for every positive integer L.

Finally, the general question of (N, J, K)-functions is solved completely when
2K >N- 1, thanks to the proof of the Xor-Conjecture for J 2 [CGHFRS]. In this

case, it is easy to see that no xor-(N, 2, K)-functions can exist, and therefore no general
(N, 2, K)-functions can exist either. Since the exclusive-or of all the input bits is
(N, 1, K), we conclude that 1 is the maximum possible value for J when 2-N-I<K<N.
On the other hand, there is always an (N, 2, [N-lJ)-function. We encourage the
reader to consult [CGHFRS] for additional results on (N, J, K)- (alias t-resilient)
functions.

6. Conclusions. If no eavesdropping occurred over the private channel, it is
possible for Alice and Bob to publicly verify that no transmission errors or tampering
occurred either, with a 2-K error probability, and end up with an entirely secret final
string that is only K bits shorter than the original private transmission. This is optimal.

If partial eavesdropping occurred over the private channel, leaking up to K bits
of information to Eve, in Shannon’s sense, it is still possible for Alice and Bob to
publicly verify that no transmission errors or tampering occurred, with a 2-L error
probability, and end up with a final string that is K + L+ S bits shorter than the original
private transmission, on which Eve has less than 2-S/ln 2 bits of information on the
average. Moreover, discrepancies between the transmitted and received versions of the
private channel transmission, whether they are due to channel noise or tampering, can
be handled at the cost of a further reduction in the length of the final shared secret
string. If the discrepancies are too numerous, no final shared secret string can be
constructed, but Alice and Bob will detect this condition with very high probability,
and will not be misled into constructing a string that is neither shared nor secret.

Finally, if partial eavesdropping over the private channel is restricted to K physical
bits secretly chosen by Eve, it becomes possible again for Alice and Bob to verify with
high probability that no errors or tampering occurred, and to end up with a new string
on which Eve has no information whatsoever. However, the new string will be substan-
tially shorter than if Alice and Bob had tolerated knowledge by Eve of an arbitrarily
small fraction of one bit of information. This remains possible even if a small number
of transmission errors occurred, but we do not know how to eliminate Eve’s information
and reconcile the strings efficiently in the presence of severe transmission errors.
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UNBIASED BITS FROM SOURCES OF WEAK RANDOMNESS
AND PROBABILISTIC COMMUNICATION COMPLEXITY*

BENNY CHOR? AND ODED GOLDREICH$

Abstract. A new model for weak random physical sources is presented. The new model strictly generalizes
previous models (e.g., the Santha and Vazirani model [27]). The sources considered output strings according
to probability distributions in which no single string is too probable.

The new model provides a fruitful viewpoint on problems studied previously such as:

Extracting almost-perfect bits from sources of weak randomness. The question of possibility as well as

the question of efficiency of such extraction schemes are addressed.
Probabilistic communication complexity. It is shown that most functions have linear communication

complexity in a very strong probabilistic sense.
Robustness of BPP with respect to sources of weak randomness (generalizing a result of Vazirani

and Vazirani [32], [33]).

Key words, randomness, physical sources, discrete probability distributions, communication complexity,
randomized complexity classes

1. Introduction. The notion of randomness is central to the theory of computation.
Thus, the question of whether and how randomness can be implemented in a computer
is of major importance. Our intention is not to address the metaphysical aspect of the
above question. Rather we assume that there are physical phenomena which appear
to be "somewhat random," and study the consequences of such an assumption.

In reality, there is a variety of physical sources, the output of which appears to
be unpredictable in some sense (e.g., noise diodes, Geiger counters, etc.). However,
these sources do not seem to be perfect (i.e., they do not output a uniform distribution).
This phenomenon is amplified when trying to convert the analogue signal to a digital
one, and in particular when sampling the physical source very frequently.

The main contribution of this paper is in presenting a general model for sources
of weak randomness. This model not only generalizes previous models, but is also
very convenient to manipulate and analyze. The new model provides a new viewpoint
on several problems studied previously, and enables us to obtain interesting new results:

txtracting almost-perfect bits from sources of weak randomness. It is shown that
almost all functions can be used for extracting many "almost-unbiased" bits from two
independent sources of "weak" randomness. An explicit function which performs
almost as well is also presented. These results yield an extraction scheme which is
efficient both in terms of output entropy and computational complexity.

Probabilistic communication complexity. It is shown that most Boolean functions
have linear communication complexity in a very strong probabilistic sense. This resolves
an open problem of Yao [35].

Robustness of BPP with respect to sources of weak randomness. It is shown
that any probabilistic polynomial-time algorithm can be modified so that it works with
bits supplied by a single source of weak randomness.
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1.1. Previous models. Previous works on extracting unbiased bits from nonperfect
sources have implicitly or explicitly proposed models of "weak randomness." Von
Neumann’s classic algorithm 18] deals with sequences ofbits generated by independent
tosses of a single coin with fixed bias. This model is totally memoryless. Blum [6]
models physical sources as finite state Markov chains (with unknown transition prob-
abilities). In this model, it is possible to describe a dependency of the next bit (output
by the source) on the previous c bits (for any fixed c).

Santha and Vazirani [27] have further relaxed the restrictions on the physical
source. Their model, hereafter referred to as the SV-model, is the starting point for our
investigations. In the SV-model each bit in the output sequence is "slightly random"
in the sense that it is 0 with probability at least 6 and 1 with probability at least
where 6 <- is a constant. This allows us to model a probabilistic dependency of the
next bit (output by the source) on all previous bits. However, no bit of the output may
be totally determined by the previous bits. It follows that in the SV-model, every bit
sequence is output with some positive probability. This restriction could be violated
by some "random" physical sources, which are constrained in a way that prevents
certain bit sequences.

1.2. The new model. We introduce and study a general model for physical sources,
hereafter referred to as the model ofProbability-Bounded sources (PRB-sources). Loosely
speaking, the probability that a PRB-source will output a particular string is bounded
above by some parameter. This allows the source to be very imperfect, still it may not
concentrate its probability mass on too few strings.

The PRB-model is formalized using two constants (length parameter) and b
(probability bound). A physical source S is a device which outputs an infinite sequence
of bits. We say that S is an (I, b)-source if for every prefix a of the output sequence,
and every /-bit string /, the conditional probability that the next bits output by S
equal/3 is at most 2-b (i.e., Pr (/3 a)_-< 2-b).

The PRB-model is a strict generalization of the SV-model. To see the inclusion,
note that any SV-source with parameter 6 is a (1, log2 (1-6)-)-source. To see that
the inclusion is proper, consider the (2, 1)-source which outputs 11 with probability 5
and 10 with probability 1/2. Clearly, this source is not an SV-source. Thus, all positive
results (with respect to the PRB-model) presented in this paper apply also to the SV-model.

1.3. Extracting unbiased bits from sources of weak randomness. Algorithms for
extracting unbiased bits from nonperfect sources depend on the underlying source
model. Von Neumann’s algorithm [18] for generating a sequence of unbiased bits by
using a coin with fixed bias, is a well-known classic:

(1) Toss the biased coin twice. Denote the outcome by o-- {HH, HT, TH, TT}.
(2) If r " then goto step (1). (Nothing is output.)
(3) If o-= HT output 0; If m-= TH output 1; Goto step (1).

Elias [11] improved upon yon Neumann’s algorithm, showing how to nearly achieve
the entropy of the source. He also considered special types of visible finite Markov
chains. Elias’s algorithm produces perfect bits from such sources.

Blum [6] has considered extracting (perfect) unbiased bits from general finite
Markov chains with unknown structure and transition probabilties. He gave algorithms
which work in linear expected time. Using Elias’s techniques [11], the extracted bits
reach the entropy of the source in the limit.

It seems that as far as extracting perfect unbiased bits is concerned, Blum’s schemes
are optimal. However, as pointed out by Santha and Vazirani [27], for practical purposes
we may lower the standards and settle for "almost" unbiased bits. Having this goal
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in mind, they further relaxed the restrictions on the physical source and introduced
the SV-model (see 1.1). Santha and Vazirani showed that a single SV-source cannot
be used to extract almost unbiased bits, while sufficiently many independent SV-sources
can be used for this purpose. Vazirani [29] showed that by applying inner-product
mod 2 to strings of length Ca" log2 e -1 output by two independent SV-sources, a bit
with bias -<1/2+ e is produced.

Summarizing the results in [27] and [29], we conclude that the SV-model presents
a sufficient condition for the extraction of almost unbiased bits from two independent
physical sources. We substantially relax this condition.

In this paper we show that almost all functions can be used to extract many
independent unbiased bits from the output of any two independent (l, b)-sources. To
be more specific, let m 1/2(b-3-log l)> 0, and consider extraction functions from
l+ bits to m bits. The m extracted bits are almost unbiased and independent in the
sense that each m-bit string appears with probability at least (1-1/2"). 2-" and at
most (1 + 1/2") 2-". This is achieved by a 1-2-2b fraction of all functions from 2/-bit

strings to m-bit strings. Notice that the number of bits we extract from the two sources
is within a constant factor (1/6) of the information theoretic bound, a feature not
achieved in previous works [27], [29]).

We also prove that, for all bl + b2 >- + 2 + 2 log2 e -1, all functions corresponding
to 2-by-2 Hadamard matrices can be used to extract a single bit with bias =2 - e from
any two independent PRB-sources which are (l, b)- and (l, bz)-distributed, respectively.

A new result contained in this paper, resolves a problem left open in the preliminary
version ofthis work [9]: an extraction scheme which is efficient both in terms ofinformation
rate and computation complexity. The core of the new method is the discrete logarithm
function, and its analysis is based on the method of trigonometric sums. Recently, this
open problem was resolved independently by Vazirani [31]. His solution is simpler
than ours.

1.4. Probabilistic communication complexity. Vazirani pointed out that "good"
bit-extraction functions have high communication complexity [29]. We establish further
connections between the two notions. We show that functions which can be used for
extracting an almost unbiased bit from two probability-bounded sources have linear
communication complexity in a very strong sense. It follows that almost all functions,
and in particular all functions corresponding to Hadamard matrices, have linear
communication complexity. This resolves Yao’s open problem [35] regarding the
probabilistic communication complexity of random functions and ofthe set intersection
function. (Related lower bounds on the communication complexity ofrandom functions
were presented independently by Alon, Frankl and R6dl [5] and by Orlitsky and
E1-Gamal [20]. Our linear (12(n)) lower bound on the inner product modulo 2 function,
improves over Vazirani’s fl(n/log n) bound presented in [29].)

Another contribution in the field of communication complexity is the presentation
of definitions and results for the case that the inputs are taken from probability-bounded
distributions (i.e., distributions in which no string is too likely). This contribution is
in the spirit of Vazirani’s suggestion to analyze the communication complexity with
respect to inputs chosen by an SV-model [29]. However, we feel that probability-
bounded distributions are more natural in the context of communication complexity.
We consider randomized protocols where the objective is to guess the value of the
function with average success probability exceeding 1/2+ e. Both the average length of
a run and the average success probability are taken with respect to the "best" (for the
protocol) probability-bounded distribution. We show that, even with respect to such
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protocols and distributions, the average communication complexity of almost all
functions is linear in the probability bound b (where no input appears with probability
greater than 2-b).

1.5. On the robustness of BPP. The class R [1] and its symmetric version BPP
13] consist of problems which can be solved with high probability in polynomial time.
The probability is taken over the tosses of an unbiased coin. Umesh Vazirani raised
the question whether BPP problems can be efficiently solved if a (single) SV-source is
producing the coin tosses. Recently, Vazirani and Vazirani have answered this question
affirmatively [32], [33]. In this paper, we generalize their result by showing that BPP
problems can be efficiently solved if a (single) PRB-source is producing the coin tosses.
The underlying principles of our proof originate from Vazirani and Vazirani [32], [33]
and [30].

The main idea ofthe proof is that while a single PRB-source is useless for producing
a single unbiased bit, it can nevertheless be used for producing polynomially many
bits, most of which are unbiased. Our key observation is that any function which
extracts almost unbiased bits from any two independent PRB-sources, can be used for
this purpose. Thus, our contribution in explicitly reducing the problem of "the robust-
ness of BPP" to the problem of "extracting almost unbiased bits from two independent
sources."

1.6. Organization. In 2, we present our basic definitions and results concerning
the extraction of unbiased bits from sources of weak randomness. These results are
the basis for the rest of the paper. Section 2.1 consists of definitions. In 2.2, we
present impossibility results. In 2.3, we introduce the notion of flat distributions and
demonstrate its importance. In 2.4, we show that almost all functions extract unbiased
bits from any two independent PRB-sources, and in 2.5 we show that functions
corresponding to Hadamard matrices also perform well.

Each of the next three sections is based on 2 only, and can be read independently
of the others. In 3, we further study the problem of extracting unbiased bits from
probability-bounded sources. In 3.1, we analyze extraction schemes with respect to
two efficiency measures: rate and computation complexity. In 3.2, we present and
analyze the "discrete logarithm" extraction scheme. In 3.3, we consider extraction
from slightly dependent sources. In 3.4, we consider various extensions of our model
and results.

In 4, we present results concerning probabilistic communication complexity. In
4.1, we present old and new definitions of probabilistic communication complexity.

In 4.2, we prove linear lower bounds on the communication complexity of functions,
and in 4.3 we present almost-matching upper bounds. In 4.4, we suggest and
investigate a robust notion of communication complexity.

In 5, we deal with the robustness of BPP with respect to probability-bounded
sources.

2. Extracting unbiased bitsmPart I. In this section we present our basic definitions
and results concerning the extraction ofunbiased bits from sources ofweak randomness.
These results will be the basis for our more advanced study ofthe efficiency of extraction
schemes, as well as our results concerning communication complexity and the robust-
ness of BPP. In 2.1, we define probability bounded sources (distributions) and robust
extraction schemes. In 2.2, we present impossibility results which will be used later
to demonstrate the optimality of our positive results. In 2.3, we introduce the notion
of fiat distributions and demonstrate its importance. In 2.4, we use a counting
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argument to prove the existence of good extraction schemes. In 2.5, we show that
functions corresponding to Hadamard matrices constitute good extraction schemes.

2.1. Definitions. The first two definitions are used to characterize the PRB-sources.
DEFINITION 1. Let be a positive integer, and b > 0 a real number. Let X be a

random variable assuming values in {0, 1} !. We say that X is (l, b)-distributed if for
every c {0, 1} 1, the probability that X cr is =<2-b.

DEFINITION 2. Let X, X2,’’’, X, be a sequence of random variables, each
assuming values in {0,1} !. The random variable Xt is (l,b)-distributed given
X,..., Xt_l if for every {0, 1}’-) and {0, 1}, Pr (X, ]X X,_ )
2-b.

An (l, b)- source is an infinite sequence of random variables X, X2, X3"’" each
assuming values in {0, 1} such that for every t, the random variable X, is (1, b)-
distributed given the values of the variables X through X,_. Unless otherwise stated,
all distributions are conditioned on the entire past.

The next definitions will be used in evaluating the quality of the extracted bits.
DEFINITION 3. Let Z be a random variable assuming values in {0, 1}m. l is said

to be e-robust if for every {0, 1}m,
(l--e)" 2-mpR(Z=)(I+e) 2-m.

DEFINITION 4. Let X, X2,’’’, X, be s independent random variables, each
assuming values in {0, 1}. A function f: {0, 1} {0, 1} is said to be -robust on X,
X2," ", X if the random variable Z rf(X, X2," ", X) is e-robust.

A function f: {0, 1}{0, 1} is said to be e-robust with respect to properties P,
P2,""", P if f is e-robust on every s independent random variable X, X2,’"’, X,
satisfying P, P2,"" ", P, respectively.

2.2. Impossibility results. It is no surprise that one probability-bounded source
cannot be used to generate unbiased bits, since probability-bounded sources include
SV-sources for which an impossibility result was shown [27]. Yet, a stronger impossibil-
ity result holds for our model.

T.oeM 1. Let k 1 be an integer, andf: {0, 1} {0, 1} be a Boolean function.
en there exists a {0, 1} and a sequence of k random variables X, X2,"’, X,
each l, l- 1)-distributed given the previous ones, such thatf XX2 X) is identically

Proof The proof is by induction on k. For the base case k 1, assume without
loss of generality, that f attains the value 1 on at least half the inputs. Setting X’s
probability distribution to be uniform on these inputs and 0 otherwise, f(X) is
identically 1. By the induction hypothesis, for every {0, 1}, there is a {0, 1} such
that the function f(Xz,’’’,X)=f(,X2,’",X) can be made identically .
Without loss of generality, for at least half the ’s, f can be made identically 1. When
we set X’s probability distribution to be uniform on these ’s and 0 elsewhere, the
theorem follows.

While a single source cannot be used at all, there is a lower bound on the robustness
of functions applied to the output of two probability-bounded sources. We start with
a combinatorial lemma.
LMM 2. Let M be an L N Boolean matrix. en there exists a {0, 1} and

an L/16 N/2 submatrix of M containing at least . (L/16)(N/2+(N/2) -entries.

Proof Without loss of generality, at least half the rows contain at least half l’s.
We restrict ourselves to these L/2 rows. Fix any such row, pick N/2 columns at
random, and let P denote the probability that at least T=(N/2+(N/2) of the

This definition is somewhat less restrictive than the one sketched in the Introduction.
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corresponding entries are l’s. Clearly, P is minimized when each of these rows contains
exactly N/2 ones. In that case P is the tail of a hypergeometric distribution, and by
Uhlmann (see [16, Chap. 6, 5, p. 151]) is bounded below by the corresponding tail
of the binomial distribution. That is,

p2-N/2

i=T

This last expression can be approximated by the normal distribution, and in particular
is bounded below by 1-O(1)->1-0.8413>1/2. By standard probabilistic arguments,

1. L/2 L 16 rows which havethis implies that there is a choice of N/2 columns and
the desired proportion of l’s.

THEOREM 3. Let b <- 1, and f: {0, 1}21 {0, 1} be an arbitrary Boolean function.
Then there exist a tr {0, 1} and two independent random variables X and Y, such that
X is (1, 1-4)-distributed Y is (l, b)-distributed, and Pr (f(X, Y) tr) >1/2(1 +2-b/2).

Proof View f as a 2-by-21 Boolean matrix, with the (i, j)th entry specifying f(i, j).
Let L 2 and N 2b+l. Applying Lemma 2 to an arbitrary L-by-N submatrix S, there
exist a tr and a 21-4-by-2b submatrix S’ of S with a fraction 1/2(1 + 2-b/2) of or-entries.
Making X flat on the rows of S’, and Y flat on its columns, we get the desired result.

The above argument was based on estimating the probability that the number of
ones in randomly selected columns is at least one standard deviation away from the
mean. One can consider the probability that this number is several standard deviations
away from the mean. This yields a bigger bias but fewer rows, and thus a more
concentrated X. Thus, for every constant , and sufficiently large b, there exists tr {0, 1}
such that Pr (f(X, Y) tr) > 1/2(1 + 2-(b-’)/2).

When b is very small, the situation is even worse.
THEOREM 4. Let b <-_ log2 (1 log2 1) 1, and f: {0, 1}21

_
{0, 1} be an arbitrary

Boolean function. Then there exist a tr {0, 1} and two independent random (l, b)-
distributed variables X and Y, such that Pr (f(X, Y)= o-)= 1.

The statement here is actually a (slightly weaker) version of a known Ramsey
type theorem that every n x n Boolean matrix contains a monochromatic x submatrix,
where log2 n log2 log2 n.

Proof Consider (arbitrarily) the first r d=er 2b+1 columns in the 21x 21 matrix of f.
This defines a 21x r submatrix. There is an r-bit string which occurs in at least 21/2
rows of the submatrix. Pick these rows. Let cr {0, 1} be a bit which occurs >-r/2
times in each of these rows. Picking the columns containing or, we get a 21-rx
submatrix with identical entries tr. As 2/-r> 2b and >-2b, this submatrix corresponds
to a. pair of (l, b)-distributed variables.

2.3. Flat distributions. In this section we introduce the notion of fiat distributions.
The importance of this notion stems from two facts. First, as we will shortly show, the
worst behaviour of extraction functions occurs on fiat distributions. Second, as demon-
strated through the paper, fiat distributions are very easy to deal with.

DEFINITION 5. Let X be a random variable assuming values in {0, 1} 1, and
S c {0, 1} . We say that X is equiprobable on S if for every a,/3 S,

Pr (X ) Pr (X fl).

We say that X is fiat on S if X is equiprobable on S and for a S, Pr (X a)= 0.
We say that X is (1, b)-fiat if X is (l, b)-distributed and there exists some S such that
X is flat on S.
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For simplicity, we assume throughout this section that 2b, 2b and 2b2 are integers.
Flat distributions are interesting because the "worst-case behaviour" of a function
occurs on them. Namely,

LEMMA 5. For every function f" {0, 1}2/--") {0, 1} and every a {0, 1}

sup {Pr (f(X, Y)= a)} max {Pr (f(X, Y)= a)}
X, Y independent X, Y independent
X is (l, b)-distributed X is (l, b)-flat
Y is b2)-distributed Y is b2)-flat

and

inf {Pr (f(X, Y) a)} min
X, Y independent X, Y independent
X is (1, b)-distributed X is (1, bl)-flat
Y is b2) -distributed Y is (l, b2)-fiat

{Pr (f(X, Y)= a)}.

Proof Denote p Pr (X= i) and q; Pr Y=j). Let f(i,j) l if f(i,j) a and
0 otherwise. Then

def

P(X, Y)= Pr (f(X, Y)= )

2 Pr (X i, Y=j). f(i,j)
i,j

Y piqjf i, j ).
i,j

The last equality follows from the independence of X and Y. P (X, Y) is a function
of the variables Pi, qj, and it attains a global maximum in the range 0-<_pi-<2-b,,
0 -< q -<_ 2-b2, i Pi q 1. We look for a characterization of this global maximum.
Fixing the probability distribution of X (i.e., fixing the pi’s), P(X, Y) is a linear
program in the q’s, subject to the constraints 0_-< qj =<2-b2 and j q 1. (For basic
linear programming terminology consult [22, Chap. 2].) One can verify that every basic
feasible solution has exactly 2b2 nonzero variables q, each equals 2-b2. Thus, we have
shown that for every fixed X, flat distributions are among the distributions which
maximize/minimize the value P (X, Y), over all possible choices of (1, b)-distributions
for Y. The same obviously holds for fixed Y. Now let Xo, Yo be the pair of (l, bl)-
distribution and (l, bz)-distribution where P(X, Y) attains its maximum. Then both
Xo and Yo must be flat. Note that the characterization holds for any function f V1

We demonstrate the utility of Lemma 5 by using it to argue that the following
Boolean function f" {0, 1}2 x {0, 1}2 {0, 1} (tabulated below) is 1/2-robust with respect
to all pairs of independent (2, 1)-distributed variables.

X\ Y 00 01 10 11

O0 0 0 I 1

O1 1 0 0 1

10 0 1 0 1

11 1 0 1 0

Using Lemma 5, it suffices to consider the behaviour of the function on all pairs
of independent (2, 1)-flat variables. There are 62--36 possibilities altogether, each
corresponding to a 2 x 2 submatrix of this table. It is readily verified that no such
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submatrix contain all l’s (or all O’s). Thus, for every pair of independent (2, 1)-
distributed variables, X and Y, we have 1/4 <_- Pr (f(X, Y) 1) _-< .

2.4. A counting argument. In this section we show that two independent probabil-
ity-bounded sources can be used to get almost-unbiased bits. In fact we show that
almost all functions can be used for this purpose. To this end, we use the characterization
of the distributions on which the "worst-case behaviour" of any function occurs (i.e.,
Lemma 5), and apply a counting argument to estimate the fraction of functions which
are good with respect to all fiat distributions.

It is helpful to note that there is a natural correspondence between fiat distributions
and the set of strings on which they are concentrated. This suggests the following
notation: Let Z be an arbitrary fixed (1, b)-flat variable. We write z Sz if Pr (Z z)

In the next lemma we consider two fixed and independent flat variables, and
bound below the fraction offunctions which are e-robust for these two specific variables.

LEMMA 6. Let X and Y be two independent distributions, such that X is (1, bl)-flat
and Y is (1, b2)-flat, and 0<e <1/2. The fraction offunctions f {O, 1}2--{0, 1}’, which
are e-robust on X and Y, is at least 1--2 m-22’+2-’-2.

Proof We say that a function f: {0, 1} -{0, 1} is e-bad on the string a (a
{0, 1}m) if

I{(x, y) Sx x Sv f(x, y) cell [(1 e) 2-", (1 + e) 2-"].2bt+b2

Let P,, denote the fraction of functions which are e-bad on the string a. To study
P, we consider the probability space of the functions in f:{0, 1}2/--{0, 1} taken
with uniform distribution. For each e Sx and j St, let the random variables ’a be
defined as follows:

iff(i,j)=a,
’= 0 otherwise.

Then

P Pr (2b!- (" m) )Y ia >--
Sx,j Sy

Recall the Chernoff Bound [26, Chap. VII, 4, Thm. 2]: Let , ,. ., t be indepen-
dent random variables with Pr (i 1) =p and Pr ( =0) l-p, where p. Then for
all 0 < p(1 p) we have

Pr(. (fig-p)>)<2.exp- (
tS

-P)) -2/=1
2p(1--p) 1 +2p(1

Letting p 2-, 2+ and 8 2-. e, we get

+b-P, < exp [-z e2 ].

Switching to base 2 and summing over all possible a’s, the probability that a function

f: {0, 1} {0, 1} is e-bad on some a {0, 1} is at most

a{O,1}

The lemma follows.
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We are now ready to prove that almost all functions work.
THEOrEM 7. Let 1 <= m <= b be an integer, and 0 < e <= 1/2. Let F be the set offunctions

/:{0,1}2t+{0,1}’.
(1) Let G. c F the set offunctions which are e-robust for any two independent

(l, b)-distributed random variables. If m + 2 log2 e -1 -<- b 2 log2 (2l + 1) then

(2) Let Hb. c F the set offunctions which are e-robust for any two independent
random variables which are (1, bl)-distributed and l, bz)-distributed, respectively, where
bl + b2 >= 2b. If m + 2 log2 e -1 <- 2b 1- 5 then

Proof For part (1), by Lemma 5, f Gb. if and only if it is e-robust for every
two independent (l, b)-flat random variables. By Lemma 6, the fraction of functions
in F which fail on a particular pair of independent (1, b)-flat variables is double-
exponentially vanishing (<2m-ZzZb-"-2). Evidently, the fraction of functions which
could fail on some pair of independent (1, b)-flat variables, is at most the number of
pairs of (1, b)-flat variables times the above fraction. Let No denote the number of
(l, b)-flat variables. Clearly

(2’) 2’2b
Nb

2b < 2---g-.

Thus,

]Gb,el>= 1 N, 2 8222b > 1 2e. (21_822b-m-2)

Since m+2 log2 e -l<- b-2-1og2 (2/+ 1), we get 21-- e22b-m-2 <= --l, and (1) follows.
Part (2)" For every fixed bl and b2, the fraction of functions in F which fail on

a particular pair of independent variables which are (l, bl)-ttat and (1, bz)-flat resp., is
(2m-ez2+2-’-2. We multiply this fraction by (2’) =2 which is an obvious upper
bound on the number of possible pairs of flat variables. We get

H’ -> 1 22’+1 m--e222b-m-2 22’+’ --g222b-m-2

IFI
2 > 1- +m

Since m + 2 1og2 8
-1 < 2b l- 5, we get 2+1 + m e222b-m-2 < --2 t, and (2) follows.

There is a trade-off between m, the number of extracted bits, and e, the robustness
of these bits. Some cases of special interest are listed below"

(1) Setting m= b-4-1og2 (2l+ 1) and e =, we convert two independent (l, b)-
sources to a single (m, m-1)-source. Intuitively, this conversion is very efficient in
terms of rate: even if the entropy of the input sources is b units per each block, we
extract a block of b bits with entropy b.

(2) Setting m =(b-2-1oge (2/+ 1))/3 and e =2-", we see that most functions
can be used to extract many high-quality bits per each block of the two independent
(l, b)-sources.

(3) Setting m 1 and e 2-(b-3-1g2(21+l))/2, we see that all but a 2-2b fraction of
the Boolean functions are e-robust with respect to two independent (l, b)-sources.
This bias is almost optimal: Theorem 3 states that no Boolean function can be
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2-(b-(1))/2-robust with respect to such sources. Theorem 4 asserts that "nothing can
be extracted" if b < log2 (l log2 l) 1.

(4) Setting m 1 and e 2-(2b-6-1)/2, we see that all but a 2--’ fraction of the
Boolean functions are e-robust for any pair of (l, bl), (l, b2) sources satisfying bl + bz-
2b.

2.5. Hadamard matrices. In 2.3 we showed that the bias of a Boolean function

f" {0, 1}2t
_

{0, 1} with respect to two independent (l, b)-sources, can be estimated by
considering fiat distributions only. Viewing f as a 21 2 matrix of + 1, this corresponds
to taking all 2b 2 submatrices off (not necessarily consecutive), and estimating the
maximum submatrix elements’ sum. While in the previous section we showed that
most functions have a small submatrix sum, this section deals with a specific class of
functions, whose matrices are Hadamard matrices.

A Hadamard matrix is a +1 matrix in which every two distinct rows (columns)
are orthogonal (see [14, Chap. 14] and [17, Chap 2, 3]). Hadamard matrices are a
subject of rich literature. In particular it is well known that submatrices of any
Hadamard matrix are "balanced." In order to make the paper self-contained, we
present a proof of this fact, following Erd6s and Spencer [12, p. 88].

LEMMA 8 (J. H. Lindsey). Let H (hi,) be a Hadamard matrix. Then the sum

of elements in every r s submatrix ofH is at most x/s. r. t.

Lindsey’s lemma, as it appears in [12, p. 88], is only a special case of Lemma 8
(although the proof generalizes easily). The lemma as it appears here, with a slightly
different proof, appears in [4].

Proof Since orthogonality is preserved under any row and column permutation,
it suffices to consider lY_-j h3l, the sum of elements in the leftmost/uppermost
r s submatrix. Let h denote the ith row of H, and

l--s

-,def -I =(1, 1,..., 1,0,0,...,0).

Then by the Cauchy-Schwartz inequality

Since the hi are orthogonal,

i=lj=l

11 ,1122 x/r"
i=1 2

and the bound on 12i=1 2j=l hi, j[ follows. [q

THEOREM 9. Let M be an 21 21 Hadamard matrix corresponding to the Boolean
functionf (i.e., f(i,j)=1/2(1 + Mij)). Suppose bl + b2 >- /+2+2 log e -1, where e < 1. Then
the function f is e-robust with respect to any pair of independent random variables X, Y
which are l, b)-distributed and (l, bz)-distributed, respectively.

Proof By Lemma 5, it suffices to show that every 2b 2b2 submatrix has a relatively
small elements’ sum. Substituting in Lemma 8, r--2hi, s--2b2 and t--2 l, the submatrix
sum is at most (e/2). 2b’+b2. ["]
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Subsequently Noga Alon proved a more general statement (without using Lemma
5) [3].

Remarks. (1) The case where b2= l-1 will be useful in 5. We get that any
Hadamard matrix is 2-b-3)/2-robust with respect to any pair of independent random
variables which are (l, 1)-distributed and (1, b)-distributed, respectively.

(2) Inner-product modulo 2 corresponds to a special form of Hadamard matrices,
known as Sylvester matrices. This provides an alternative proof for Vazirani’s Theorem
[29], for the case 3> 1-v/-i/2- 0.293 (but not for smaller 6’s).

For inner-product modulo 2, Theorem 9 cannot be significantly improved (with
respect to probability bounded sources).

PROPOSIa-ON 10. Let bl + b2-<- 1-4+ 2 log2 e -1, where e < 1. Then the inner-product
modulo 2 function is not e-robust on some pair of independent, (1, b)-distributed and
(l, b2)-distributed variables.

Proof First, consider the case where bl + b2 =</. Picking X to be flat on strings of
the form 0t-b1{0, 1} bl and Y to be flat on {0, 1}b20l-b2 the inner product of X and Y is
identically 0. For the case b + b2 > l, repeating exactly the same construction does not
yield the desired bias. However, we can modify it using Theorem 3. Let A d.d.def b + b2-/.
Consider the following family of (l, b)-distributed variables . Each variable X
is the concatenation of three independent variables X, X2, X3, where X1 is uniformly
distributed over {0, 1}bt-A-4, X2 is (A+8, A+4)-distributed, and X3 has 1-bl-4 bits
which are identically 0. Similarly, Y Y Y2 Y3 od satisfies Y is identically 0-b2-4,
Y2 is (A+8, A+4)-distributed, and Y3 is uniformly distributed over {0, 1}b2-a-4. For
every pair X and Y , the inner product of X and Y equals the inner product
of X2 and Y2. Since both X2 and Y could be any (3 + 8, 3 + 4)-distributed variables,
by Theorem 3 their inner product may have bias >1/2(1 + 2-(6+4)/) --1/2(1 + 2(t-b-b2-4)/2).
Thus, for e =< 2(l-b’-b2-4)/2), the function is not e-robust. [3

The last proposition demonstrates an inherent limitation of the inner-product
function with respect to (l, b)-distributions when b <-1/2. This limitation need not be
shared by all Hadamard matrices. In fact, a simple construction, known as the Paley
Graph, is conjectured in the combinatorial folklore to have a stronger imbalance (small
submatrix sum) property.

Let p be a prime, and () be the Legendre symbol of the residue mod p. The
matrix M with Mia (-) is "almost" Hadamard 17, p. 47], as for any 0 -<_ a < b -<_ p 1,

i- a i- b
=-1.

Thus, with minor modifications, Theorem 9 applies also to the matrix M.
CONJECTtRE. For any constant 0</x < 1, there exists a constant 1.5/x < c, <

such that everyp x p" submatrix ofM has elements’ sum at most p e,, for large enough p.
Remark. By Theorem 3, the constant c, must satisfy c, > 1.5/x.
COROLLARY 11. Let f(i, j) 1/2. (1 + ()). Under the Paley Graph conjecture, the

function f is pe,-2"-robust with respect to any pair of independent (log p,/z. log p)-
distributed random variables.

3. Extracting unbiased bits---Part II. In this section we further investigate the
problem of extracting unbiased bits from probability-bounded sources. In 3.1, we
introduce two efficiency measures: rate and computation complexity and consider
extraction schemes, arising from our results, with respect to these measures. In 3.2,
we present and analyze the discrete logarithm extraction scheme (this result did not
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appear in the preliminary version of this paper [9]). In 3.3, we consider extraction
from slightly dependent sources. In 3.4, we further extend the probability-bounded
model" we consider sources with lower bound on entropy, and sources with varying
block length and probability bound.

3.1. Efficiency considerations. Before going any further, let us discuss the sig-
nificance of the results presented in 2. A first consequence is that it is possible to
generate a sequence of almost-unbiased and independent bits from the output of two
independent probability-bounded sources. Once the question of possibility is resolved,
we are interested in the efficiency of the extraction schemes. We consider two
measuresrate and computational complexityboth with respect to the desired
robustness.

3.1.1. Efficiency measures. In 2, we have considered functions which operate on
corresponding /-bit blocks of two (1, b)-sources. In order to improve the robustness,
we now consider deterministic algorithms (families of functions) which may use several
blocks from each (l, b)-source at a time. Given a "robustness parameter" n, the
algorithm will output bits with bias in the range + e(n). The number of blocks used
by the algorithm will typically increase with n. Of special interest is the case where

--1e (n) grows faster than any polynomial. In this case the extracted bits are as good
as perfect bits for all "poly (n)-time purposes."

In the following definition of an extraction scheme, e(n) denotes the robustness
of the scheme, s(n) denotes the number of bits taken from each source, e(n) denotes
the number of extracted bits, and c denotes the number of (l, b)-sources used.

DEFINITION 6. Let e be a function from integers to the interval (0, 1), and s, e
be functions from integers to integers. Let c, be integers and b (0-< b _-< 1) be real. An
(e(’), s(. ), e(.), l, b, c)-extraction scheme is a family of functions {f,} such that for
every n the following holds"

(1) For every c, c,..., a{0, 1}<) f,(cl, c2,’’’, c){0, 1}<").
(2) The function f,’{0, 1}"->{0, 1}") is e(n)-robust with respect to any c

independent variables X, X,..., X, where each of the Xi’s is the first s(n) bits
output by some (l, b)-source.

The efficiency of an algorithmic scheme should be evaluated with respect to the
resources it uses. In the setting of randomness extraction schemes the resources to be
considered are the amount of "randomness" in the input sources and the deterministic
computation required to effect the extraction. We measure the efficiency with respect
to the randomness resource by the ratio of the entropy entering the extraction scheme
and the entropy leaving it.

DEFINITION 7. The rate of an (e(.), s(. ), e(. ), l, b, c)-extraction scheme is defined
as

def e(n). Hor(n)
c" s(n)" Hi’

where Ho is the entropy of each output bit (Ho 1- eZ(n)), and HI b/! is a lower
bound on the average entropy of each input bit. If there exists a constant r > 0 such
that for every n, r(n)> r, then we say that the extraction scheme has constant rate.

For every n, the rate r(n) is the ratio of the input and output entropies to f,. The
entropy of the input is taken by the worst possible one since the extraction scheme
cannot "adapt" to better sources without an explicit guarantee.

DEFINITION 8. The computational complexity of an extraction scheme, {fn}, is
defined as the complexity of a family of circuits {C,} such that for every n, the circuit
C, implements f,.
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3.1.2. Efficient extraction schemes. We now present several extraction schemes,
which follow immediately from the results presented in 2, and analyze their perform-
ance with respect to the above efficiency measures. The following is a simple but
important observation used in developing these schemes" for every integer q > 1, an
(1, b)-source is also a, (q. 1, q. b)-source.

A rate efficient scheme which is not computationally efficient. One consequence of
Theorem 7 is that for every and b and every desired bias e(. ), there is a nonuniform
circuit family {Cn} which extracts bits at constant rate from any two independent
(/, b)-sources. This is obtained by letting s(n)= (3lib) log2 e-l(n), e(n)= log2 e-l(n),
and using Theorem 7 with respect to two (s(n), (b/l) s(n))-sources. Since the entropy
per input block is at least b, the rate is 1/6. The size of Cn is e-61/t’(n) log2 e-(n).

Computationally efficient schemes which do not have constant rate. By Theorem 9,
for every and b > 1/2 and every desired bias e(. ), taking the binary inner product
of l.(b-I/2) -1 log2 e-l(n) bits from two independent (l, b)-sources, a single e(n)-
robust bit is extracted. While this yields an efficient algorithm, its rate is 1 / 0(log e-(n)).

Under the number theoretic conjecture of 2.5, efficient algorithms exist for any
and b. For every desired bias e(. ), let p > e-c/b)(n) be a prime (where C(p)> 0 is

a constant depending on p). Taking log2p bits from each of the two independent
(l, b)-sources, and computing the Legendre symbol of their integer difference modulo
p, we get an e(n)-robust bit. The extracted bit can be computed by an algorithm
running in time polynomial in log2 e-(n) (and 1/b).

A direct consequence of Theorem 7 is that for every and b > 5 + log2 there exists
a table of size 22/ which transforms two independent (1, b)-sources into one (m, m-
2-")-source, where m=(b-3-1og:l)/3. In other words, we can transform two
independent but very weak sources into one source which is quite good (although it
is far from being "almost perfect"). For every bias e(n), using the inner-product
function on the output of the virtual (m, m-2-m)-source and a third independent
(1, b)-source, we get the desired bias. We conclude that for every 0 < b _-< and e(. ),
there is a fast algorithm (running in time O(log2 e-(n)) that on input n and access
to three independent (l, b)-sources, generates e(n)-robust bits.

The problem of finding an extraction scheme which combines both rate and
computational efficiency was left open in our preliminary report [9]. This was true
even for the SV-model. In the following section we present a solution to that problem.

3.2. An extraction scheme efficient in both measures. In this section we present an
extraction scheme based on/th power residues modulo a prime. The scheme is efficient
both in terms of information rate and computation complexity. This scheme is a
generalization of the Paley graph construction, and was developed through conversa-
tions with Liszl6 Babai. We begin this section by presenting the scheme. We then use
results of Ajtdi, Bahai, Hajnal, Koml6s, Pudlk, R/Sdl, Szemer6di and Turin [2] to
show that the scheme has high robustness. To guarantee high information rate, our
scheme uses large values of/, and is related to computing (partial) discrete logarithms
in Zp. We investigate the conditions under which the scheme is efficiently computable,
and show that primes satisfying these conditions can be precomputed in expected
polynomial time, given access to two probability-bounded sources.

DEFNIXON 9. Let p be a prime, g a primitive element of Zp, and k> 1 an
integer dividing p-1. We define fk’ZpZ,->{0,1,’",/-l} by fk(x,y)=
(logg (x-y))mod k, where log’g is the discrete logarithm of to base g in Zp.

Comments. (1) For a6{0,1,...,/c-1},let R={g+i:o<:i<:(p-1)/k}.Then
f(x, y) , if and only if x-y z for some z R.
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(2) By restricting the function to a subset of Zp, the function fk can be viewed as
a function from {0, 1} {0, 1} to {0, 1,. , k- 1}, for l= [log2 pJ.

(3) The range offk is {0, 1,’’ ", k-l}. Taking m= [log2 kJ, the range offk can
be viewed as {0, 1} {_1_} (in case of _t_, the function is undefined). This causes at
most a factor 2 loss in entropy.

To evaluate the robustness of fk, we would like to have upper and lower bounds
on Pr (f(X, Y)= a) for all pairs of independent (l, bl)-distributed, (l, bz)-distributed
sources X, Y. By Lemma 5, it suffices to consider flat distributions. Therefore, we are
interested in bounds on the number of solutions x y z for x A, y B, z R,, where
A, B c Zp are arbitrary subsets of size 2b,, 2 b2, respectively. Let v(A, B, a) denote this
number. Clearly, v(A, B, a)= v(g-’A, g-"B, 0), and thus it suffices to consider Ro,
the set of kth residues modulo p.

Let w C (C denotes the complex field) be a primitive pth root of unity. Let
qk(j) ExR (-ix, and k maxl=<__<p_ [qk(J)l- A result of [2] relates v(A, B, a) to the
size of A, B via k-

LEMMA 12 [2]. Let A, B Zp be two arbitrary subsets, and a an integer, 0<=
(1)- 1)/k. Then

(A, B, )_lalIB___I -<*.,/Ial" IBI.k

The following bound on k was given by Lfiszl6 Babai (private communication).
LEMMA 13. k (V.
Proof. The proof uses methods of trigonometric sums over finite fields (see [28]).

We start by presenting some definitions and notation. An additive character of Zp is
a mapping O:Zp-> C satisfying O(a + b) O(a) O(b); the unit character satisfies
4’o(" 0. A multiplicative character of Zp is a mapping X" Zp* C* satisfying x(a" b)
x(a) x(b); the unit character satisfies Xo(" 1 (X(0) d=er 0 unless X Xo). A Gaussian
sum S(X, 0) is defined as xz X(x)tp(x). It is well known [28, p. 47, Thm. 3A] that
for X # Xo, 0 # qo, IS(x, 0)1 x7, while S(Xo, 0)=0.

Let : C be a primitive kth root of unity. For 0_-< =< k-1, define X, "Zp* C*
by X,(x)= ’ og, x, then X, is a multiplicative character, Xo is indeed the unit character
and

(1)

(2)

x Ro:=>logg x kix,(x) 1,

O#xRologgx=ki+a for some l<= a <= k-1
k-1 k-1

E x,(x)= E (C)’=0,
=0 =0

k-1

(3) x O Y’, X,(x) 1.
t=O

Forl<j <p 1, define0j Zp->CbyOj(x)= 2xw then b2 is an additive character 0o.
Using (1), (2) and (3), we get (for all j)

k-1 k-1

Z S(x,, 0)= E Z xt(x)O(x)
t=0 t=0 xZp

k-1

E ox E x,(x)+
R t=O

=k E wJX/l.
R

k-1 k-1

Y ,ox E x,(x)+ E x,(O)
OCx R =0 =0
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Using the above-mentioned equalities for Gaussian sums, the last equality implies that
for every =<j =< p

Iq(j)l= to Jx =- -1+ 2 S(x,, )
t=O

=0

1

<.
Reformulating these bounds in terms of sources and robustness, we get Theorem 14.
TOM 14. Let p(n), k(n), /(n)= [log p(n)], f( be as above, and e(n)>0.

Suppose b(n)+b(n) l(n)+ +2 log e-(n)+2 log k(n). en
{0, 1,. ., k(n)- 1} is e(n)-robust for any pair of independent, (l(n), b(n))-distributed,
l( n ), b(n ))-distributed sources.

Proo It suces to consider flat sources X, Let A c Zp( be the set where
Pr (X= a)= 1/2,( (similarly for B, Y, b(n)). Then Iel 2’(, BI 2b(, and for
every e {0, 1,. ., k(n)-l} we have

(A,B,)
Pr (f(X, Y)= )= 2b,( .

Combining Lemmas 12 and 13, we have

k(n)
1 k(n) 2,(+b( < Pr (f(X, Y) ) < 1 + k(n) 2(+(

Substituting p(n) <2(, b(n)+ ba(n) l(n)+ 1 +2 log e-(n) +2 log k(n), the claim
follows.

We now establish some relations between the various quantities above. We denote
by n the security parameter, and parameterize by it the block length, the probability
bounds, the prime p, the divisor of p- 1, k and the bias guarantee e (that is, they will
be denoted by l(n), b(n), b(n), p(n), k(n) and e(n), respectively). Typically, e(n)=
1/n h(n where h(n) 0 is either a constant (the case of a polynomial bias) or a function
tending to with n (the case of a subpolynomial bias).

The information rate of the scheme is log k(n)/2 log p(n). Therefore, in order
to guarantee a constant rate, k(n) must be >p(n)e for some constant d, 0< d < 1. We
will typically use Nd N. Assuming hi(n)+ b(n) 1.75/(n)+ 1 (an assumption we
will later justify), and substituting log e(n) h(n) log n, log k(n) d. l(n) in the
equality of the last theorem, we see that l(n) h(n)/(3/8-d)log n is a necessary
condition for the scheme to produce e(n)= n-h(-robust bits. The case of equality in
the last equation implies that e-(n) N k(n) N e-(n) for N d N ), an expression which
relates the size of k(n) to the robustness of bits produced by f(.

The computation complexity of the scheme equals the (deterministic) complexity
of finding discrete logarithms modulo k(n) in the field Zp(. We first assume that
p(n), k(n) and g a primitive element of Zp(,, are given, and analyze the run time of
the scheme. We then turn to the complexity of the preprocessing stage, in which p(n),
k(n) and g are produced.

Given p(n), k(n) and g, a primitive element of Zp(, then by essentially trying
all possible candidates, we can compute log (.) mod k(n) in time O(k(n) log (p(n)))
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(see [19]). Thus, if the bias e(n) is required to be just polynomial in n(e(n) n-(),
then by employing our scheme with brute-force discrete logarithm subroutine, the
computational complexity is polynomial in n.

In order to generate subpolynomially biased bits e(n)= n-h(, with h(n)-),
we need more efficient ways of computing discrete logarithms (modulo k(n)) in Zp(.
There are known algorithms with complexity 2(/gp(n)ggp(n)), and this run-time
would suit our needs, but unfortunately these algorithms are randomized, so we cannot
use them to (deterministically) evaluate fk(. Instead, we look for p(n)’s with smooth
k(n), and use an algorithm of Pohlig and Hellman [24] which is sufficiently fast in
such circumstances.

A positive integer z is called y-smooth if all its prime factors are _-_y. Suppose
p(n) is a prime in the range n’/lgg<-p(n)<-_n’/gg, so that k(n) (k(n)[p(n)-l)
is n-smooth. Given a primitive element g of Zp(n), the Pohlig and Hellman algorithm
[24] finds logg (.) mod k(n) in O(n log n) deterministic time.

Given l(n), every pair of (/, bl)-distributed, (1, b)-distributed sources can be
viewed as (l(n), l(n) b/1), (l(n), l(n) b2/1) sources, respectively. Using "nice"
primes as above, we have the following theorem.

THEOREM 15. Suppose p(n) is a prime in the range n"/iglgn <-p(n)
so that k(n)lp(n)-I p(n)a/16<-_k(n)<-p(n) 1/4, and k(n) is n-smooth. Let gZp(,) be
a given primitive element. Furthermore, let l, bl, b2 satisfy b + b2 >-_ 1.75/. Then for any
pair of independent (l, bl)-distributed and (l, b2)-distributed sources, the function
fk(n)" Zp) Zp)-- {0, 1," , k( n)- 1} produces 1/ n’/lglg/S-robust bits, with informa-
tion rate at least 2 and computational complexity O(n log n).

We now turn to the preprocessing stage, starting with the question of finding
appropriate primes. Let XF(x, y) denote the number of positive integers not exceeding
x which are y-smooth. Canfield, Erd6s and Pomerance [8] proved the following theorem
concerning xF(x, y)"

THEOREM 16 [8]. For y >= log2 y, (X, y) XU -"+(u), where u log x/log y.
In particular, for large enough x, (x, y)>=xu-. Choosing h(n)= 2x/log log n,

y n and x n h(", we have that u log x/log y h(n). Substituting these quantities
in the last theorem, we conclude that for large enough n, the probability that a randomly
chosen z <-n h(") will be n-smooth is bounded below by h(n)-2h(")=
1/(2x/log log n)4"/lggn)’log-1/3 n. Obviously, the same lower bound holds for the
probability that a random z has an n-smooth divisor d such that z3/16<d <z1/4.
However, for our purposes it is not enough for z to have such divisor, but z + 1 must
be a prime as well. Carl Pomerance (private communication) has provided us with an
estimate of the probability of this event.

THEOREM 17 For a randomly chosen /,/x/loglogn < Z< n2x/loglogn

1
Pr (z has an n-smooth divisor in the range [z3/16 z 1/4] and z + 1 isprime)

log2 n"
By choosing random integers in the above range, an appropriate prime p(n) with

a large n-smooth divisor k(n) and a generator for Zp can be found in expected
polynomial time, given access to an unbiased independent coin. This is done as follows.
First, we choose p(n) at random, factor p(n)-1 and look for a sufficiently large
n-smooth divisor k(n). For factoring p(n)-1, we use Dixon’s algorithm [10], that
runs in expected time 2O(x/lgp(n)lglgn) (which is polynomial in n). Next, we verify
that p(n) is a prime, using Pratt’s algorithm [25] (again using Dixon’s algorithm as a
factoring subroutine, and trying to find primitive elements by choosing elements at
random). In case p(n) is indeed a prime, Pratt’s algorithm yields a primitive element
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of Zpn). We now substitute the unbiased independent coin used in the preprocessing,
by bits extracted from two probability-bounded sources, using any of the computa-
tionally efficient (but not necessarily rate-efficient) schemes of 3.1.

Finally, in order to satisfy bl + b2> 1.75/, we start with four independent (lo, bo)-
distributed sources (where the ratio between the constants bo and lo can be arbitrarily
small). Using Theorem 7 and the observation that (for every integer q> 1) an (l, b)-
source is also a (q. 1, q. b)-source, we convert every pair of these sources into a single
(1, 0.9/)-distributed source (where l=21o(lo/bo)log2 (lo/bo)). This conversion is rate
efficient, and its complexity does not depend on e(n).

3.3. Slightly dependent sources. In 2, we showed how to extract unbiased bits
from the output of two independent probability-bounded sources. A natural question
is whether the independence requirement can be relaxed, and if so, to what extent.
We suggest the following definition and investigate its ramifications.

DEFNVrON 10. Let 6 =>0. We say that two variables X and Y are 6-dependent
if, for every a,/3 {0, 1 }1 with Pr (X a) Pr Y=/3) # 0 the following holds:

Pr(X=cand Y=fi)
-<(1+6)(1+6)-1-<

Pr (X a) rr (Y=/3)
Thus, 0-dependence identifies with independence. Also, notice that this is a more

refined measure of dependency than correlation. A different definition of slightly
dependent SV-sources was presented in [29], and does not seem to extend to PRB-
sources. The following lemma can be easily verified.

LEMMA 18. Suppose that f is e-robust for any two independent variables satisfying
properties P1 and P2, respectively. Thenf is 6 + 1 + 6) e -robustfor any two 6-dependent
variables satisfying properties P1 and P2, respectively.

Applications to extracting unbiased bits from slightly dependent functions follow
immediately by combining Lemma 18 with Theorems 7, 9 and 15. Lemma 18 may seem
weak at first glance. It only guarantees that, for small 6, the added bias introduced by
the 6-dependency does not exceed 6. However, this result is almost optimal! We will
show that 6-dependency may add an 1(6) term to the bias.

THEOREM 19. Let 0< 6 _--<4 andf: {0, 1}21 -> {0, 1} be an arbitrary Boolean function.
Then at least one of the following two conclusions holds:

(1) There exist a cr6 {0, 1} and a pair of 6-dependent (l, 1-2)-distributed variables
X and Y such that Pr (f(X, Y) or) _-> . (1 + 6/64).

(2) There exist a r {0, 1} and a pair of independent (l, /-7-1og2 6-1)-distributed
variables X and Y such that Pr (f(X, Y) or) _-< 3.

Proof Without loss of generality, we assume that l{(i,j){O, 1}21:f(i,j):l}l>=
1/2.2. The function f is represented as a bipartite graph G(V, E), where V A U B
(A {ai: {0, 1} !} and B {bj:j {0, 1}!}) is the bipartition and the edge set E A x B
satisfies

(a,, bj) E ifff(i,j)= 1.

Throughout the rest of the proof, we assume that conclusion (2) of the theorem does
not hold" namely, we assume that the function f is -robust with respect to any two
independent (1, l-7- log2 6-)-distributed variables. The idea of the proof is to show
the existence of a large regular subgraph with relatively high degree. Once this subgraph
is found, the variables are defined to be flat on the vertex sets of the subgraph, and
the dependency allowance is used to make the edges of the subgraph "heavy." Thus,
the probability mass is concentrated more on entries on which the function has value
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1, and the function is biased towards 1 as required in conclusion (1) of the theorem
The following lemma guarantees the existence of such a subgraph.

LEMMA 20. Let 0< 3--<4 and G((A, B), E) be a bipartite graph with n vertices
on each side and at least n edges. Suppose that the number of edges in every subgraph

def
of G, with q 3/128. n vertices on each side, is in the range [q2/3,2q2/3]. Then there
exist m >= n/4 and k m/32 such that G contains a k-regular subgraph with m vertices
on each side.

The proof of Lemma 20 is given in the Appendix. A similar statement was attributed
by the referee to Pyber and R6del (as yet unpublished). They showed that every graph
with n vertices and f(n2) edges contains an 12(n)-regular subgraph.

Let Go((Ao, Bo), R) be the regular subgraph guaranteed by Lemma 20. We now
use this regular subgraph to present a pair of &dependent probability-bounded sources,
X and Y, which make the function bias. X will be fiat on Ao and Y will be fiat on
Bo; that is,

_er Aol-’ if ai C Ao,
Pr (x i)

0 otherwise,

_e Inol-if b no,
Pr v=j)

0 otherwise.

Now consider two cases. If the number of edges in the subgraph induced by Ao and
q2Bo is smaller than (1- 3/64). then we let X and Y be independent and get the

desired bias (towards 0). If the number of edges in the induced subgraph is =2(1-
8/64). q2 then we use the dependency allowance as follows:

Pr(X--i,Y=j) d=er{(I+3)’Pr(X=i)’Pr(Y=J) if(ai, bj)cR,
(1 3/31) Pr (X i) Pr Y j) otherwise.

The reader may verify the validity of the above definition, by noting that 1/32 (1 + 6) +
31
32. (1 3/31) 1. It follows that

1 (15Pr(f(X, Y)=l)>_--.(l+3)+ 32
1 3

2 128

The theorem follows.

3.4. Variations: entropy, varying length. We conclude our investigation into the
problem of extracting unbiased bits from weak sources of randomness by two remarks.
The first remark concerns the probability bound b, while the second remark concerns
both b and /.

We have defined probability-bounded variables as having an upper bound (2-b)
on the probability for each individual/-bit string. A more "natural" but less convenient
definition considers variables with a lower bound on the (information-theoretic)
entropy. Every (l, b)-variable has entropy >- b, but the converse does not hold. Neverthe-
less, every source which has nonzero entropy is in fact a probability-bounded source
(a quantitative statement is omitted).

So far, we have considered sources where for some fixed integer l, given the
history, the next bits have a particular distribution. A natural question, raised by Jeff
Lagarias, is what happens when the number of next bits is a variable. More precisely,
let l(.) and b(.) be functions, and consider a source S with the following output
distribution: for every integer n >0, for every c {0, 1}" and every /3 {0, 1} t(’), the
conditional probability that the next l(n) bits output by S equal/3 given that the first
n bit output by S equals c does not exceed 2-("). We call this a varying probability-
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bounded source (VPRB-source). Extending Theorems 7 and 4, we get an almost sharp
threshold for the value of b(. which allows the extraction of almost-unbiased bits
from two VPRB-sources. Such an extraction is possible whenever b(n)> 4+1og2 l(n),
and is impossible whenever b(n < log2 (l(n) log2 l(n )) 1.

4. Communication complexity. In this section, we present results concerning prob-
abilistic communication complexity. In 4.1, we recall the common definitions of
communication complexity, present new definitions and compare them. In 4.2, we
prove lower bounds on the communication omplexity of the functions considered in

2. In 4.3, we demonstrate the tightness of our results by presenting upper bounds
on the communication complexity of all functions. In 4.4, we suggest a robust notion
of communication complexity and extend our lower bounds to it.

Consider two interactive parties A and B, such that A knows an input x {0, 1}
and B knows an input y 6 {0, 1}". The inputs are randomly and independently chosen,
each with uniform probability distribution. Let f: {0, 1} {0, 1} -- {0, 1} be a function
and assume that A and B wish to compute f(x, y). To this end they use a possibly
randomized protocol P. As commonly assumed, the messages sent at each round are
prefix-free. The protocol is terminated by party A and the last bit B sent to A is their
joint guess of the value off(x, y). A natural question is how many bits should be
exchanged among the party so that their joint guess is significantly better than the a
priori guess. The answer depends on the exact definitions of the notions "number of
bits" and "success probability."

4.1. Definitions. Let x, y {0, 1}". We consider the probability space defined by
the coin tosses of the parties A and B. Let le(x, y) be the random variable denoting
the number of bits A and B exchange on the pair (x, y), using the protocol P. Let
Le(x, y) denote the expected value of le(x, y) and l*e(x, y) denote the supremum of
le(x, y). Let se,/(x, y) be the random variable denoting the success of P with respect
to f on the pair (x, y); and let Se,/(x, y) denote the expected value of se,(x, y). That
is, Se,/(x, y) is the probability that the last bit exchanged by A and B on inputs x and
y equals f(x, y).

The average operator (denoted Ave), and the minimum and maximum operators
(denoted Min and Max, respectively) are defined in the obvious manner. These
operators are used in defining the various measures. For example, Ave (Le)
2-" x,yo,l" Le(x, y) is the average number of bits exchanged in the protocol P;
Max (Le) is the expected number of bits on the worst pair of inputs; and Max (l’e)
maxx,yo,ln {l*e(x, y)} is the maximum number of bits taken over all possible executions
and pairs. Two measures for success are Min (Se,g) (worst pair) and Ave (Se,g)
(averaged over all pairs).

Previous definitions. Various definitions ofrandomized communication complexity
have appeared. We present some of them2 (other definitions can be found in [21], [15]
and [29]):

Yao’s definition of randomized communication complexity [35] (hereby denoted
C(f)) is thus the infimum of Max (le), when taken over all randomized protocols P
satisfying Min (Se,/) ->+ e.

Yao’s definition of distributed communication complexity [36] (hereby denoted
DE(f)) is the infimum of Ave (Le), when taken over all deterministic protocols P
satisfying Ave (Se,) =>+ e.

The role of e in our notation differs from its role in [35], [36], [20]. Here e denotes the advantage
of the protocol over 1/2, while originally it was used to denote the error probability.
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Orlitsky and E1-Gamal [20] measure the average communication complexity
(hereby denoted C(f)) as the infimum of Ave (Lp), when taken over all randomized
protocols P satisfying Min (Sp,y)>-+ e.

Paturi and Simon [23] define the unbounded communication complexity (hereby
denoted U(f)) to be the infimum of Max (l’e), when taken over all randomized
protocols P satisfying Min (Sp,s > 1/2.

Our definitions. We say that the protocol P has average e-advantage in guessing
f if Ave (Sp,s)>= 1/2+ e. In the following definitions we consider protocols with average
e-advantage.

We define the average randomized communication complexity of function f
(denoted AR(f)) as the infimum of Ave (Lp), when taken over all randomized protocols
P which have average e-advantage in guessing f

The worst-case randomized communication complexity of function f (denoted
W(f)) is defined as the infimum of Max (l’e), when taken over all randomized
protocols P which have average e-advantage in guessing f

The deterministic communication complexities (A(f) and W(f)) of the func-
tion f are defined similarly, for deterministic protocols.

Comparison of definitions. For all functions f Fn, the following inequalities are
immediate from the definitions;

AR(f) < (f) < C(f)

AR(f) =< AD (f)= .D(f)=< wD (f).

Yao showed that C._,(f)>--D1/2_2n(f) [34], [36].
There are, however, functions for which A(f) << C(f), D(f). One such function

is the ordering function g defined by g(x, y) 1 if and only if x_-< y. Yao showed that
for any fixed e >0, C(g)=f(log n) [35]. The protocol in which A sends the most
significant bit of x has a -]-advantage in guessing g, and thus A/4(g) 1 (in fact,
Wl4(g) 1). (Paturi and Simon [23] showed that U(g)=2.) The three measures
W(f), U(f) and C(f) are not always comparable.

4.2. Lower bounds. We begin this section by stating our lower bounds, and compar-
ing them to recent results of other researchers.

THEOREM 21. Let O< e <=.
(1) For at least a 1- 2-2" fraction of the Boolean functions f

W(f) > n 7 3 log2 1 -1,

AR(f) > 2e (n --7--3 log2 e-in) 1.

(2) For every f F, representable by a Hadamard matrix, the following holds"

W(f) > n 3 3 log2 e -1,

AR(f) > 2e (n-3-3 log2 e-’n)- 1

In particular, this holds for the inner-product function.
Comparison to other works. Our result implies that for almost all f F,, C (f)->_

2e(n-7-3 log2 e-n)-l. This is related to a recent independent result of Orlitsky
and E1-Gamal [20], who showed that almost allf F, have C(f)>=2e(n l-log2 n).
(Actually, they showed that for all 2 < r_-< 1/2, almost all functions f with r. 22n ones
in their table, have (f)>-_2e(n-log2 r-n).)
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Our bound on W(f) (for almost all f e Fn) is related to a recent independent
result of Alon, Frankl and RSdl [5] who showed that almost allfe Fn have U(f) >- n 5.
Their result implies that C (f) > 2e(n 5).

All three works resolve Yao’s open problem [35]" What is C(f) for a random
fFn?

4.2.1. Proof of Theorem 21.
PROPOSITION 22. Let 0< 6 <_-- 1. Then AR(f) >-- (2-- 6)e. W/z(f). (In particular,

RAR(f) >= e. W/(f).)
Proof. Consider runs of protocol P which have an e-advantage in guessing f and

average length a. Truncate runs of P that exceed e-a/(2 6) bits. In the event of a
long run, flip a coin to determine the final guess. Such runs occur with probability
_-<(2-6)e, and by guessing at random we lose at most (2-6)e/2 of the average success
probability. This yields a protocol with (6/2). e-advantage, the runs of which are no
more than e-la/(2-6) bits long.

PROPOSITION 23. W(f)= W(f)
Proof For a randomized protocol, the average advantage is a sum over both the

inputs and the coin tosses. There must be at least one sequence of coin tosses which
does at least as well as the average. Using this string, we get a deterministic protocol
with the same length and at least the same average advantage.

Notice that both the above argument holds since we are interested in average
advantage; the advantage on individual pairs may decrease. Using Propositions 22 and
23, we may concentrate on studying W(f).

THEOREM 24. Let k, n be integers, and 0 < e <-1. Suppose that for every bl + b2
2n k- 1 + log2 e, the Booleanfunctionf" {0, 1}" x {0, 1}" --> {0, 1} is e-robust with respect
to any pair of independent random variables X, Y satisfying" X is n, bl)-distributed and
Y is (rt, bz)-distributed. Then

wD (f) > k.

Proof Suppose, towards a contradiction, that P is a deterministic protocol with
average e-advantage in guessing f such that Max (l*,)<-_k. Consider all possible
executions of P and assume, without loss of generality, that A and B exchange exactly
k bits on each pair of inputs.

For every / {0, 1}, denote by C(y) the set of (x, y) pairs on which the communi-
cation of A and B consists of 3’. Note that by prefix freeness, the parsing of y is unique.
Let A(y) {x" By s.t. (x, y) e C(y)}, and B(y) {y" ::Ix s.t. (x, y) e C(y)}. By a cut-and-
paste argument of Yao [35], C(y)= A(7) B(3,).

Denote by last (3,) the last bit exchanged in the communication 3/, and let G(y)=
{(x, y) e C( y)" last y) f(x, y)}. since P has e-advantage on f we have that
v{o.1} ](3(3’)1--> (1/2+ e). 22". Let us say that C(y) is small if [C(y)[ < e. 2zE--. Since
there are at most 2 rectangles C(y), the number of points in all small rectangles is
at most e. 22"-. Thus

IG( )I > /
3’ s.t. [C(y)l=>e-22"-k-

This implies that there exists a y{0,1}k such that both ]C(y)[=>e’22"-k- and
IG(y)[ >- (1/2+ e/2). IC(y)I (i.e., C(y)is sufficiently large, and the protocol has nonnegli-
gible advantage on the pairs in it). Fix such a y.

Set X and Y to be two independent random variables, flat on A(y) and B(y),
respectively. Then Pr (f(X, Y) last (y)) >-5. (1 + e). Let b log2 [A(y)[ and b2=
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log2lB(,)l. Then X is (n, bl)-distributed, Y is (n, b2)-distributed, and bl+b2 >
log2 (e. 22n-k-l) 2n- k-1 + log2 e. This contradicts the e-robustness of f fi

Theorem 21 (above) is a consequence of combining Theorem 24 (and Propositions
22 and 23) with Theorems 7 and 9 (of 2.4 and 2.5, respectively). The arithmetic
details are as follows.

Part (1)" Let 0 -< e _-< 1/2. By Theorem 7 (see special case 4), all but at most 2-2" of
the functions f" {0, 1}2"

_
{0, 1} are e-robust for any pair of (n, b), (n, b2) sources

satisfying b + b2 >-- n + 6 + 2 log2 e -. Setting k n 7 3 log2 e -, these functions f
satisfy the condition of Theorem 24 (being e-robust for sources with bl + b2_-> 2n k
1-log2 e-). Thus, these functions f have W(f)> n-7-3 log2 e -. To get the bound
on Ae(f), we use Propositions 23 and 22:

RA(f) >= max (2- B)e. W/2(f)
0<61

>_- (2- 2/n)e"

>2e. (n-7-3 log2 e-in) 1.

Part (2)" Similarly, by using Theorem 9, and setting k n-3-3 log2 e -. This
completes the proof of Theorem 21. [3

4.3. Upper bounds. The lower bound on A(f) for almost all f’s is nearly optimal,
since Orlitsky and E1-Gamal showed that most f Fn have C (f) =< 2e(n + 6 log2 e- n)
[20] (recall that Ae(f) < C,.(f))j The lower bound on We(f) is also nearly optimal,
since we have the following upper bounds.

THEOREM 25. (1) For every fF, and every 2-"/2+1<e<, W(f)<=
n + 11 2 log2 e -1.

(2) For all f F, W-,/2+5.5(f) <= 2.

Proof For part (1), we use the following protocol. Party B sends the n+9-
2 log2 e- most significant bits of y to party A. This defines a 2 x 2 (32e)-2 strip in
f’s table. By Lemma 2 each such strip contains a 2n-4 (32e)-2 submatrix S with
5+ 32e fraction of identical entries cr in it. In addition, party B sends a bit specifying
whether y corresponds to a column in S. Party A replies by r if (x, y) is in S, and by
the outcome of a coin flip otherwise. In this way, we get an average e-advantage.

For part (2), let S be a 2n-4 2n-1 submatrix containing a 5+2-( fraction of
identical entries o- in it (Lemma 2 guarantees the existence of S). Party B sends a bit
specifying whether y corresponds to a column in S. Party A replies by cr if (x, y) is
in S, and by the outcome of a coin flip otherwise. In this way, we get an average
+/-’32 2(-/2-advantage.

4.4. Extension to (n, m)-distributions. In the definitions and results presented
above, we have assumed that the inputs to the protocol are uniformly distributed in
{0, 1} ". A natural question is what happens if we allow the inputs to be (n, m)-
distributed. In particular, we consider protocols which have advantage with respect to
some (n, m)-distributions, and study the infimum average number of bits they
exchanged under these "advantageous" distributions. We show that most functions in
F, have (R)(m) complexity, even in this weak measure.

DEFINITION 11. Let D and D2 be two (n, m)-distributions, and let Pi(z) be the
probability that D assigns to z. For any protocol P, a function f F,, and a metric
Me.y over runs of P, we define the average operator on D D2

Aveo,,o2 (Me,.r) Z P,(x) P2(y) M,<c.(x, y).
x,ye {0,1 }"
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Similarly, we define the maximum operator on D1 D2

MaXD1,D2 (Mp,f)-- max {Mp,f(x, y)},
xsupp (Dl),ysupp (D2)

where supp (Di) {z {0, 1} Pi(z) > 0}.
We say that the protocol P has D1 D2-average e-advantage in guessing f if

AveD1 ,D Sp,f 1/2 -1- e.
We define the average randomized communication (n, m)-complexity offunction

ARf (denoted (n, m)- (f)) as the infimum of AVeD,.D2 (LP), when taken over all
(n, m)-distributions D1, D2 and all randomized protocols P which have DI
D2-average e-advantage in guessing f

The worst-case randomized communication (n, m)-complexity of function f
(denoted (n, m)-WR(f)) is defined as the infimum of MaXD,,D2 (l’P), when taken over
all (n, m)-distributions D1, D2 and all randomized protocols P which have DI
D-average e-advantage in guessing f

The deterministic communication (n, m)-complexities ofthe functionf are defined
similarly, for deterministic protocols.

The key to dealing with (n, m)-complexities, is the fact that they are minimized
on flat distributions (the proof is analogous to Lemma 5). Using the proof techniques
ofTheorem 21, the problem reduces to the existence of large submatrices with significant
advantage inside the submatrix specified by the pair of flat distributions. We get the
following.

THEOREM 26. Let 0 < e <-- .
(1) _For at least a 1 2-2m fraction of the Boolean functions f Fn,

(n, m)-WR(f)> m--7--3 log e -1,

(n, m)-AR(f) > 2e (m-7-3 logz e-lm) 1

(2) For every f Fn representable by a Hadamard matrix, the following holds"

(n, m)-WR(f)>2m-n-3-3 log2

AR (2m n 3 31oge-lm) 1.(n,m)- (f)>2e

In particular, this holds for the inner-product function.
5. On the robustness of BPP. The class R [1] and its symmetric version BPP [13]

consist of problems which can be solved with high probability in polynomial time,
with the use of an unbiased coin. Recently, Vazirani and Vazirani [32] showed that
all BPP problems can be efficiently solved even if a single SV-source is producing the
coin tosses. In this section, we generalize their result by showing that BPP problems
can be efficiently solved if a (single) PRB-source is producing the coin tosses.

The main idea of the proof is that any function which is robust with respect to
two independent PRB-sources, can be used to produce polynomially many bits such
that almost all of them are unbiased. Repeating this process m times, we get poly (m)
strings of length m each. Most of these strings are almost uniformly distributed, and
thus the fraction of these strings which hit the witness set Wc {0, 1} is close to the
density of W. If W’s density is large enough (say, 2_-0.8) then with probability bounded
away from 0.5 (e.g., >_-0.55), the majority of the generated strings hit W. This argument
needs careful formalization, which is carried out below. The final observation is that
there are explicit and efficiently computable functions which are appropriate for the
above procedure (e.g., the inner-product or the Paley graph functions).

The key technical lemma used in the proof is the following.
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LEMMA 27. Let 0< e < 1 be a real and f: {0, 1}tx {0, 1}/-{0, 1} be a Boolean
function. Definef {0, 1 }I {0, 1 } byf (j f( i, j) for every i, j {0, 1 } i. Suppose that the
f is e-robust with respect to any two independent random variables which are (1, l-
1)-distributed and (1, b )-distributed, respectively. Then for every (1, b )-distributed Y, all
but x/ fraction of the fi’s are 4x/-robust on Y.

The reader may find it convenient to picture the two-argument Boolean function
f:{0, 1}/x {0, i}t-{0, 1} as a table where the (i,j)-entry corresponds to f(i,j). The
lemma can be stated (informally) as follows: if a function can be used for extracting
almost unbiased bits from the output of any two independent PRB-sources, then most of
its "rows" can be used for extracting an almost unbiased bit from a single PRB-source.
The identity of these "good" rows depends on the specific PRB-source, but for each
source most of the rows will work. The proof is by contradiction, showing that if the
conclusion of the lemma is violated, then it is possible to find a pair of probability
bounded sources which falsify the robustness of f. While the proof of this lemma is
rather simple, it seems much harder to prove a similar statement based merely on
robustness with respect to SV-sources.

Proof. Let Y be an arbitrary (1, b)-distributed random variable. This defines a
probability space on the entries of the rows. We will show that the number of rows
which are biased too much towards 1 is small (rows with high 0 bias are treated
identically). Let B denote the set of these rows, that is,

B {i: Pr (f(Y) 1 > 1/2(1 + 4x/-)},
and let k denote the size of B.

We first show that k _-< 2l-. Assume, on the contrary, that k > 21-. We will reach
a contradiction by defining an (1, l-1)-distributed source X1 to be flat on B. Then

Pr (f(X, Y) 1) k- Y, Pr (f(Y) 1)
iB

1
>-.(l+4v/-)

2

1
>-. (l+e).
2

Now that we know k <_-2I-, we define an (l, l-1)-distributed source X2 to be flat on
{0, 1}l- B. Applying the e-robustness off to the pair (Xo, Y), where Xo is the uniform
source, we have

1

2 Pr (f(Y) 1) Pr (f(Xo Y) 1)
i ,1}

1
<-(l+e).

2

In order to bound k from above, we first derive an upper bound on Pr (f(X2, Y) 1):

Pr (f(X2, Y) 1)
1

Z, Pr (f(Y) 1)21-k i,{o,1}-B

Yi{o,,}’ Pr (f(Y) 1)-Yi.B Pr (f(Y) 1)
21-k

21. (1/2(1 + e)) k. (1/2(1 + 4x/--))
21-k
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Applying the e-robustness of f to the pair (X2, Y) we get

Pr (f(X2, Y) 1) > 1/2( 1 e ).

Combining the upper and lower bounds on Pr (f(X2, Y)= 1), we have

1+ 2’-k 1>--(-
By a simple manipulation, k-<v/- 2 follows. [3

With Lemma 27 at our disposal, we can use a single source to generate many
strings, most of which are almost unbiased. These strings are generated one bit at a
time (i.e., in step t, the tth bit of all strings is generated). In the BPP application, the
generated strings are tested for membership in a witness set W. A careful probabilistic
analysis shows that if W is dense enough, then there is a fairly large probability that
the majority of these strings will hit W.

PROPOSITION 28. (1) Let m be an integer, and Wc {0, 1}" be an arbitrary set.
def defDenote by p the density of W (i.e., p WI/2"), and let q 1-p.

x{0,1 -{0,1}be(2) Let be an integer, and 0 < b < 1. Let 0 < e < - andf" {0, 1} }
a Boolean function. Suppose thatf is e-robust with respect to any two independent random
variables which are (1, 1)-distributed and l, b )-distributed, respectively.

(3) Let Y, Y2,’’’, Y,, be a sequence of arbitrary random variables assuming
values in {0, 1}l such that for every 1 <- <= rn the variable Yt is (l, b)-distributed given
Y1, Y2," ", Yt-. Let Y denote the concatenation of the Yt’s.

(4) For every i{0, 1}, let f’{0, 1}-{0, 1} be defined as in Lemma 27 (i.e.,
f(j)=f(i,j) for every i,j {0, 1}/). Let hi(Y) be a random variable assuming values in

{0, 1}m, such that hi(Y) is the concatenation of the random variables f(Y),
fi( ), ,f,( ).
Then the probability that a majority of the hi( Y)’s miss W, does not exceed 2q + 8rnv/7.
That is,

Pr (l({hi(Y): i{0, 1}’}if) W)l<-_2’-)<-_Zq+gmx/7.
5.1. Proof of Proposition 28. Convention. Throughout the proof, the probability

space is the Cartesian product of Y (of item (3) above) with an (m, m)-distributed
random variable Z. The random variable Y= Y Y2"’" Ym assumes values in {0, 1} "’1,
and Z- ZZ2... Z,, is uniformly distributed in {0, 1} independently of Y. A value
which Y may assume will be denoted by a ala2’’" a,,, where at % {0, 1} 1. A value
which Z may assume will be denoted by/3 fl2""fl,, where fit {0, 1}. We will
also use the notation Y’t= YY’’" Yt and at =aa2-..at to denote the prefix
consisting of first elements of Y and a, respectively.

DEFINITIONS. (1) For every i{0,1}1, O<--t<--m, we define a Boolean function
i,t :{0, 1}1" {0, 1}" -> {0, 1} as follows:

fO iff(a)f(ce2) fi(ogt)lt+llt+2 [3m W,
i,t(c,/3) 1 otherwise.

(2) For every {0, 1} , 0_-< _-< m we define a Boolean function r/i,t {0, 1}"- {0, 1}
as follows:

if 1/2- 2v/7 _-< Pr (f(Y,+) 1] Y’, c’,) =<+ 2v/7,
otherwise.

Explanation. Letting c assume values in {0, 1} lm according to the random variable
Y, and /3 assume values in {0, 1} according to the uniform distribution Z, the two
functions above induce two random variables :i.,(Y, Z) and r/i,t(Y). These random
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variables correspond to hybrids of the (1, b)-source and truly unbiased, independent
coin tosses. The random variable sci,,(Y, Z) equals 0 ("a success") when a hybrid
element, generated by applying the function f to the first blocks output by the source
Y and letting the rest be truly random, hits the set W. The random variable Ti,t (Y)
equals 0 ("a good bit") if, given the first blocks of the source, the bit generated by
applying f to the (t + 1)st block is almost unbiased.

Elementary observations.
FACT 1. For every {0, 1} , we have

Pr (:i,o( Y, Z) 0) p.

Proof Immediate by the definition of i,o( Y, Z) and wl- p2".
FACT 2.

m--1

2 Y exp (,,t(Y)) <--2’mv;7.
i{0,1} t=0

Proof By Lemma 27, for every 0 -< < m and every c {0, 1}", we have

2 r/i,,(ce)
i{o,1}

Thus, for every 0 =< t-< m- 1,

2 li,t(Y) <= 2’v/7.
i{0,1}

The sum of m such expressions (for the m values of t) is thus bounded above by
2tmv/7, and so is the expected value. Changing the order of summation, we get the
claimed bound. [3

The next fact formulates the intuition that, when the + 1)st bit produced in the
ith row is almost unbiased, then the (t + 1)th hybrid of this row has almost the same
success probability as the tth hybrid to hit W.

FACT 3. For every {0, 1}t and 0 <= < m, we have

Pr (so,,,+,( Y, Z) 0[ Ti,t (Y) 0) Pr (so:i,, Y, Z) 01 r/i,,(Y) 0) 2v/7.

Proof Consider an arbitrary a {0, 1} tm such that r/i,,(ce) =0. Let r=
Pr (f(Y,+I) I Y, c’,) . Then Irl < 2v/7. Let s Pr (sci.,( Y, Z) 01Y’, c’,), So
Pr(gi,,(Y,Z)=OIY’,=’,,Z,+I=O) and s=Pr(i,,(Y,Z)=OIY’,=’,,Z,+=I). By

Thendefinition s 5s0 +5sl.

Pr (i,,+1( Z)---0 Y’,= ce’,)= (1/2- r). So+ (1/2+ r). s,

s r(so- s,)

_>_ s-2v/7.

Averaging over all such or, s, Fact 3 follows.

Probability calculation. The next fact is crucial to our proof. It expresses the
(unconditional) success probability of the (t + 1)st hybrid of the ith row, in terms of
the tth hybrids of this row. The difference between the (t+ 1)st and tth hybrids is
bounded by the sum of a small error probability (-<2/), introduced by runs in which
the (t + 1)st bit is almost unbiased, and the probability that the (t + 1)st bit is biased.

FACT 4. For every {0, 1}l and 0 <- < m, we have

Pr (,i,,+( Y, Z) =O) >= Pr (i,,( Y, Z) =O)-2vrT-2 Pr (rti,,( Y) 1).
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Proof By following manipulation, using Fact 3 (when passing from the first line
to the second line), and the inequality Pr(AIB)>=Pr(A)-Pr(B) (passing from the
third line to the fourth line), we have

Pr (i,t+l( Y, Z) --O) > Pr (i,t+l( Y, Z) --Ol rli, t( Y) =O) Pr (rli, t( Y) =O)

--> (Pr (si,t(Y, Z)-Olrli,,(Y)-O)-2x/). (1-Pr (r/,,,(Y) 1))
>_- pr (si,,( Y, Z)= O] r/i,,(Y) O)- 2x/-d- pr (n,,(Y) 1)

>= Pr (sCi.,( Y, Z) =O)-2x/-2 Pr (rli.,( Y) 1). [3

This yields an upper bound on the probability that the ith row does not hit W, when
being generated from the blocks of the (l, b)-source using the function f.

FACT 5. For every i {0, 1}l
m-1

Exp (sci,m( Y, Z)) -< q + 2x/--m + 2 Exp (r/i,,(Y)).
t=0

Proof Follows by combining Fact 1 with repeated use of Fact 4, and using the
fact that for any 0-1 random variable V, Exp (V) Pr V 1).

Conclusion. We now bound the probability that the majority of rows produce
elements which do not hit the set W.

FACT 6.

Pr(
i {0,,1} i’’(Y’Z)>-2t-1) <-2q+8v/-m"

Proof Applying the Markov inequality (the sum of the i,t( Y Z)), using Fact 5
(when passing from the first line to the second line) and Fact 2 (when passing from
the second line to the third line), we have

) Exp (Ei{o,1} i,m( Y Z))
Pr E ,sci, Y, Z) > 2!-1 <

_-<2-’+1. (2’. (q+Zm)+2
2q+4m+4.m

=2q+8m.

m_l )Z , E Exp(ni,,(Y))
i{0,1 =0

Since i, Y Z) 1 is just a fancy way of writing hi(Y) W, we get

Pr(l({hi(Y): i{0, 1}/}f"1W)l<=21-1)<=2q+8x/m,
and Proposition 28 follows.

5.2. The transformation of BPP algorithms. It will be convenient to consider
randomized algorithms as deterministic algorithms with an auxiliary random input.
The performance of such an algorithm (on input x) will be evaluated with respect to
the distribution of the auxiliary random input (denoted y). The issue of the robustness
of the class BPP is then stated as follows: can a BPP algorithm be converted to a
polynomial-time algorithm which has an advantage bounded away from 1/2 even when its
random input is generated by a single probability-bounded source ?

DEFNIaqON. The class (l, b)-BPP consists of all decision problems D: {0, 1}*->
{0, 1} for which there exists polynomials P, Q and an algorithm A:{0, 1}* {0, 1}*->
{0, 1} such that for every (1, b)-source Y the following holds:
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(1) On each input of length n, algorithm A runs at most P(n) steps, and then
stops, outputting a single bit.

(2) Let x {0, 1}" be an input and let y {0, 1}P(’) be the auxiliary random input
generated by the (l, b)-source Y. Then

Pr (A(x, y)= D(x))>=+ (n).

Clearly, (1,/)-BPP is just a fancy way of writing BPP. Theorem 29 states that so is
(/, b)-BPP.

THEOREM 29. For every integer and real 0 < b <-l,

(/, b)-BPP- BPP.

Proof. Let D be a decision problem in BPP, and Ao be a randomized polynomial-
time algorithm for D. Let P(n) be the number of random bits used by the algorithm
Ao on inputs of length . Without loss of generality, we may assume that for every
input x {0, 1}", the witness set W(x) for x (i.e., the y’s satisfying Ao(x, y)= D(x))
contains p-> 0.8 of" the strings in {0, 1},(’).

Given and b, let e(n) df(160"P(n))-:, B(n) d-3+21og:e-(n), and
L(n) df lB(n)/b . By Theorem 9, every function corresponding to a Hadamard matrix
is e(n)-robust with respect to any pair of independent random variables X, Y which
are (L( n ), L(n) 1 -distributed and (L(n), B n )) -distributed, respectively. Further-
more, some of these families of functions, such as the inner-product modulo 2 or the
quadratic residuocity modulo a prime (the Paley Graph function), can be computed
by poly (n)-time algorithms. Let f be one of" these functions. Let F be an algorithm
that on inputs n and i, j {0, 1}(’), outputs f(i,j).

By Proposition 28, we can use a single (L(n), B(n))-source to efficiently generate
2(’) strings such that for every x {0, 1}’, the majority of these strings hit the witness
set W(x), with probability greater than 1 2q 8P(n)x/e (n) >_- 0.55(q <_- 0.2). We remind
the reader that the (l, b)-source can be used as an (L(n), B(n))-source. Consider the
following Algorithm A for deciding membership in D (with a two-sided error bounded
above by 0.45).

1. Algorithm A
2. INPUT (--- X

Let n Ixl, and rn P(n).
3. AUXiLiARY INPUT: y {0, 1}L(’)’ generated by an arbitrary (l, b)-source.

Let y YlY2 Y,,, where each Yt {0, 1} L(’).
4. For every i{0, 1}(’) and l<-j<=m, compute f i, y, ), by invoking F(n, i,y).

For every {0, 1}(’), let W denote the concatenation
f(i, Yl)" f( i, Y2) f( i, Ym).

def
5. For every {0, 1}(’) compute vi Ao(x, wi).
6. If i(o,l)L(.) vi <-- 2(’)-1 then d (-- 0 else d (-- 1.
7. OUTPUT: d.

By the above discussion, Pr (A(x, y) D(x)) >- 0.55. The running time of A(x, y)
is polynomial in 2L( n o(1, and in the running time of Ao(x, and F(Ixl, ", ). The
theorem follows.

Remarks. (1) Algorithm A above is identical to the algorithm used in [32], [30],
except that the auxiliary input is generated by a PRB-source instead of an SV-source.
The difference is in the analysis of the success probability of this algorithm. Vazirani
and Vazirani rely on properties of a particular function (inner-product modulo 2) to
show that the different runs of Ao use auxiliary inputs related in a ’good way." We
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reduce the existence of "good runs" of Ao to the robustness of the function with respect
to two independent sources.

(2) Clearly, the same algorithm also works for the class R. It produces one-sided
error, since for x D the original algorithm Ao never errs.

(3) Proposition 28 can be viewed as proving a method for using a single PRB
source to distinguish "high-density" sets from "low-density" sets. That is, given
K c {0, 1} k so that either IKl>-p2 or IKI-< q2, determine which of the two cases
occurs, with success probability about 1- 2q.

This viewpoint is helpful in solving the following additive approximation problem"
for any e, 6>0, and any set Sc {0, 1}% find an additive (6, e) approximation of the
density of S, denoted 0, using a single probability-bounded source (when we have an
oracle for deciding membership in S). By an additive (6, e)-approximation we mean
that with probability >_-l-e, Io-a]<-6 where a is the approximated values and

def ISI/2" is the true density. To get this approximation, we first transform the problem
of additive approximation into 2/3 problems of the form "P" is 0
[j. 3/2,j. 3/2+3]?" where 0<-j<=(2-23)/3 (notice that every pair of consecutive
intervals overlaps by 3/2). By sampling k 0(3-2 log (e3) -1) points in {0, 1}m, and
counting the number of times S is hit, every P has a corresponding witness set

S c {0, 1}m. It is easy to see that for at most two consecutive j’s in the above range,
Sj has more than (1-e3)2n points, while all other j’s (except possibly another
consecutive j) has fewer than e32 points. Now we use the ideas above to try and hit
all Sj’s by strings generated from a single probability-bounded source. With probability
> 1- e, we get positive answers only for j’s in a 3 neighbourhood of . In case we get
positive answers for several ’s, we choose the median j, and estimate as being in
the middle of the jth interval.

Appendix: Proof of Lemma 20.
LEMMA 20. Let 0 < 3 <--_ 4 and G((A, B), E) be a bipartite graph with n vertices on

in2 edges. Suppose that the number of edges in every subgraph ofeach side and at least
clefG, with q 3/128. n vertices on each side, is in the range [q2/3,2q2/3]. Then there

exist m >-n/4 and k m/32 such that G contains a k-regular subgraph with m vertices
on each side.

Proof Our proof is constructive. The construction proceeds in two phases. First,
we use brute force to find a subgraph G’ of G, which has m >-n/4 vertices on each
side, average degree >:(1/2-6/128).m, and minimum degree >-m/8. Next we apply
Hall’s Theorem to find a spanning k-regular subgraph of the latter.

The subgraph G’ is found by applying the following procedure.
1. procedure 1: FIND LARGE SUBGRAPH G’

A vertex a A in a bipartite graph G((A, B), E) is called bad if its degree
is <.

2. INPUT <- G( V, E)
Step lmOmitting bad vertices from both sides

3. G’<-G
4. While both sides of G’( V’, E’) contain bad vertices do begin

Let L (resp. R) be the set of bad vertices in the left (resp. right) side of
ar"

5. /3 -min {ILl, Iel};
6. Omit 3 vertices of L and/3 vertices of R from G’.

The resulting graph is referred to as G’.
7. end;
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10.

Step 2--Omitting bad vertices from the remaining side
Let L (resp. R) be the set of bad vertices in the left (resp. right) side of G’.

[By the above, either L or R is empty. W log let R .]
8. Omit all remaining bad vertices (i.e., L) from the graph.
9. Omit, from the right side of the remaining graph, IL vertices of minimum

degree.
return G’.

Throughout the execution of Step (1) of the above procedure, we only omit vertices
with degree not exceeding half the current average degree. Thus, at the end of Step
(2) average degree in the remaining graph is no less than half the number of vertices
in one side of the graph.

Let 2t denote the number of vertices omitted in Step (1). Then the number of
edges deleted in Step (1) is at most

n
t.-+t.(n--t).

4

(We charge deleted edges with a bad leftpoint to vertices omitted from the left side
of the graph, while charging all other deleted edges to the vertices omitted from the
right.) Using the above upper bound on IE- E’I, we get

n 2 n
----< ’[ / I ’l -< t" -+ t" (n t) + (n t)2
2 4

2which yields t-<.n.
Now we claim that in Step (2), L could not be too big. If ILl >-36/128. r, where

r is the number of vertices in the right side of G’ after Step (1), we reach contradiction
by considering the subgraph induced on G’ by all the vertices of the right side and
the vertices in L. (This subgraph has at most 41- of all possible edges, contradicting the
Lemma’s hypothesis.) It is easy to see that after Step (2) the number of vertices on
each side of the graph, denoted rn, is >-(1-36/128)n/3> n/4. Also, the minimum
degree in the remaining graph is >=r/4-3. r/128>-m/8, and the average degree is
>=(1/2- 3/(32.4). m.

The second phase of our construction consists of finding a spanning k-regular
graph of Go G’. This is done by applying the following procedure.

1. procedure 2: FIND SPANNING k-REGULAR SUBGRAPH

2. INPUTS- Go((Ao, Bo), Eo)
3. R
4. For i= 1 to k do begin
5. Find a perfect matching Mi in Gi-1.
6. RRUMi.
7. Omit Mi from Gi_l, resulting in Gi.
8. end;
9. return R.

We now show that Procedure 2 does not fail. Assume on the contrary that in some
iteration i+ 1_-< k a perfect matching is not found. Namely, Gi does not contain a
perfect matching. By Hall’s Theorem [7, 5.2, p. 72], the left side of Gi (i.e., Ao)
contains a set of vertices A’ such that the neighbourhood of A’ (denoted B’) has
cardinality smaller than IA’I. Since the residual degree of Gi is >=m/8-i, we get

m

8
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Consider the neighbourhood of a node in Bo-B’ (such a node does exist since

IB’I < ]A’] _-< IB01). This neighbourhood has cardinality >=m/8 k and does not intersect
with A’. We conclude that

m
Bo- B’I > Ao- A’] >-_- k.

It should be noted that there are no edges in Gi between A’ and Bo-B’. Thus, Go (or
G for this matter) contain at most i. min {IA’I, ]Bo-B’I} edges between A’ and Bo-B’.
This is at most one-third of IA’I" Ino- n’l (since < k m/32 and min {IA’I, Ino- n’[} ->

m/8-k 3m/32), which contradicts the lemma’s hypothesis.
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RECONSTRUCTING TRUNCATED INTEGER VARIABLES
SATISFYING LINEAR CONGRUENCES*

ALAN M. FRIEZE?, JOHAN HASTAD$, RAVI KANNAN, JEFFREY C. LAGARIAS
AND ADI SHAMIR]

Abstract. We propose a general polynomial time algorithm to find small integer solutions to systems
of linear congruences. We use this algorithm to obtain two polynomial time algorithms for reconstructing
the values of variables x, , xk when we are given some linear congruences relating them together with
some bits obtained by truncating the binary expansions of the variables. The first algorithm reconstructs
the variables when either the high order bits or the low order bits of the xi are known. It is essentially
optimal in its use of information in the sense that it will solve most problems almost as soon as the variables
become uniquely determined by their constraints. The second algorithm reconstructs the variables when an

arbitrary window of consecutive bits of the variables is known. This algorithm will solve most problems
when twice as much information as that necessary to uniquely determine the variables is available. Two
cryptanalytic applications of the algorithms are given: predicting linear congruential generators whose
outputs are truncated and breaking the simplest version of Blum’s protocol for exchanging secrets.

Key words, pseudorandom numbers, linear congruential generators, lattice basis reduction algorithm,
cryptography

AMS(MOS) subject classifications. 11T71, 11K45

1. Introduction. The basic techniques of cryptanalysis are methods for solving
various sorts of reconstruction problems. Given diverse kinds of information about a
cryptosystem together with some enciphered messages, the cryptanalyst wishes to
combine this information to recover the original plaintext messages, which is the
message reconstruction problem. The cryptanalyst often accomplishes this by solving
the possibly harder problem of finding the key used by the encipherer, which is the
key reconstruction problem. From this perspective a general method of cryptanalysis is
one that solves a wide class of reconstruction problems. General reconstruction methods
serve as building blocks in the cryptanalysis of complex cryptosystems and also serve
to set limitations of the possible design of secure cryptosystems.

This paper studies a reconstruction problem arising from the combination of two
basic operations used in the design of pseudorandom number generators and crypto-
systems. These two operations consist of modular arithmetic operations used as a com-
putationally efficient way to "mix" the values of certain variables and the (non-
linear) operation of truncating the binary representation of the results. A simple
scheme of this type (which was used extensively on early computers) generates a
pseudorandom sequence of integers by alternately squaring the previous n-bit value
and discarding the top and bottom n/2 bits of the 2n-bit result. A related scheme is
that of using the high-order bits of a linear congruential sequence, which is generally
called a truncated linear congruential pseudorandom number generator. This was pro-
posed by Knuth [10].
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The problem we consider is that of reconstructing a set (xl, x2, , xk) of integer
variables given two sorts of information about them. First we are given a set of
modular equations

k

(1.1) Y’, ai2x2 c (mod M) for 1 -< i<= 1,

that the variables satisfy. We assume that the ai2, ci and M are known, and that the
unknowns xi satisfy the bounds

(1.2) O<=x<M for =<j k.

Second, we are given side information about some of the bits of the x, which consists
of knowledge of blocks of consecutive binary digits of the variables x. More precisely,
this partial information consists of knowledge of

(mod 2,) for 1 =<j <_- k.

Here [z] denotes the greatest integer of a real number z. In this case we know a fraction
6 of the bits of each x, where is given by

[log 2 M]

whenever 11+ 12<=[log2 M]. The interesting case for cryptanalysis occurs when the
number of equations is less than the number of unknowns k. In this case the
congruences (mod M) taken by themselves constrain the variables x (mod M) but do
not determine them uniquely.

The first question to deal with is: how much side information is needed to make
unique reconstruction possible? We may obtain an information-theoretic lower bound
for the amount of side information required as follows. Suppose 2n-1 <_- M < 2 so that
the x are n bit integers, and that we know a block of n bits of each xj. Now modular
equations (mod M) with side conditions 0-<_ x < M can normally be used to eliminate
of the variables. The remaining k-l variables contain (k-l)n unknown bits of

information which must be uniquely determined by the kGn bits given by the variables

yj.. Consequently we infer that a necessary condition for unique reconstruction is that
k6n >= k- 1)n, which is

(1.4) 6 => 1
k"

In fact it turns out that the fraction 6 1- (l/k)+ e of the highest-order bits of each

x suffice to guarantee unique reconstruction for the overwhelming majority of systems
(1.1)-(1.3), in a sense made precise in 2. However, there does exist a small minority
of such systems which require a larger 6 than given by (1.4) to guarantee unique
reconstructibility.

The main result of this paper is a general technique for solving this type ofproblem.
It uses lattice basis reduction ideas and is guaranteed to run in polynomial time, but
is not always guaranteed to produce a reconstruction. In the problems we are consider-
ing there are two major cases. The first case applies when the truncated variables y.
either consist of the highest-order bits of the x, or consist of the lowest-order bits of
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the xj and M is odd. We show in Theorem 2.1 that our general algorithm succeeds
for "most" instances when

a > 1 --;-+ e,

where

Ck

log M

We will quantify what "most" means in 2. The constants Ck are of size O(k). Our
second case applies to systems with arbitrarily truncated variables yj. To be effective
it requires that twice as much side information be given as that needed to guarantee
uniqueness, that is,

and it then works for "most" systems (Theorem 2.3). There is a small fraction of
problems on which the algorithms fail, and there is a smaller fraction of exceptional
problems for which unique reconstruction is not possible.

We demonstrate the usefulness of these reconstruction procedures with two appli-
cations:

(1) We show that truncated linear congruential pseudorandom number generators
are cryptographically insecure in most cases.

(2) We show that the simplest version of Blum’s protocol [1] for exchanging
secrets is insecure. We remark that Blum suggests other implementations ofthis protocol
which do not seem vulnerable to the attack described here.

The two applications are described in 3 and 4, respectively, where we give an
analysis of our algorithm applied to these cases. The main technical difficulty is to
analyze the behavior of the lattices arising in the special problems.

Some of the results of this paper appeared in preliminary form in Frieze, Kannan
and Lagarias [5] and Hastad and Shamir [6].

2. Reconstructing truncated variables satisfying linear congruences. Let M be a
given modulus and Xl,"" ", Xk unknown values in the range 0 -< x < M satisfying
independent linear congruences (mod M):

k

(2.1) Y aijX C (mod M) for 1 _-< -< l,
j=l

where I_<-k. The coefficients ao and ci and the modulus M are assumed to be known.
We are given (or somehow obtain) certain bits y of each xj where

[xJ](mod21’),(2.2) yj----

and our goal is to combine this partial knowledge with the given linear relationship
to compute the remaining bits of all the x’s. Our main tools to do this will come from
the geometry of numbers, see [3], [4]. Let us recall some facts. A (full rank) lattice L
is defined to be the set of points
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where the bi are linearly independent vectors in k. The set {hi" 1 <=i-< k} is called a
basis of L and k is the dimension of the lattice. The determinant d(L) of a lattice L
is defined to be the absolute value of the determinant of a matrix whose rows are the
bi. Geometrically the determinant can be interpreted as the volume ofthe parallelepiped
spanned by the basis vectors. Using this interpretation it is possible to prove that the
determinant is equal to the inverse of the density of the lattice (where the density is
the average number of lattice points per unit volume). This characterization shows
that the determinant is independent of the choice of basis.

We define the ith successive minimum hi A(L) of a lattice L to be the smallest
radius r such that the sphere or radius r around 0 in Ek contains linearly independent
points of L in it or on its boundary. We will be interested in lattices whose successive
minima are roughly the same size.

We will be interested in bounding hk from above. To do so, we use the dual lattice
L* which is defined to be

L* {yl(y, x) 2 for all x L}.

It is well known that d(L*)=d(L)-. A classical result asserts that hh*-<k! [3,
p. 371], and a recent result of Lagarias, Lenstra and Schnorr 12, Thm. 4.4] shows that
A*Ag <-_k:/6 for k_->7, where hi* denotes the length of the shortest vector of L*, and
h*h _-< k: for all k. Thus a lower bound for h * gives the desired upper bound for hg.

The idea to use the dual lattice was suggested to us by C. P. Schnorr [17]. Our
original method gave constants having a worse dependence on k.

Let us return to our problem. Let L(a, M) be the lattice in E spanned by the
vectors 1 ---(ai,1,... ai,k) (the coefficients of the known modular relations) in (2.1)
and by the k vectors Mei where ei are the unit vectors along the coordinate axes. We
will use this lattice in our algorithm, and the performance of the algorithm depends
on properties of this lattice. Observe that the dual lattice L* L*(a, M) is

{--Y (y, ai)=- O (mod M) for l <-- <-- l}
where (y, ai) is the Euclidean inner product.

Let us start by giving the theorem which will be our main tool.
THEOREM 2.1. The system of modular equations

k

Y aijxj=- ci (mod M), i= 1, 2,...,
j:l

has at most one solution x zk satisfying the bound

(2.3) Ilxll <-- MA 12-(k/2-1,
where hk is the largest successive minimum of the lattice L(a, M). If the ai, ci and M
are known then there is a polynomial time algorithm that either finds x or proves that no
such x exists.

Proof We use a three-stage algorithm. First, we apply a lattice basis reduction
algorithm to the lattice L L(a, M) ofknown modular relations to get modular relations
with small coefficients. Second, we use size constraints on the xj to transform these
equations to equations over the integers. Third, we use these equations over the integers
to recover the exact values of the x.

We apply the lattice basis reduction algorithm of Lenstra, Lenstra and Lovzisz
[13] to the lattice L of modular relations to obtain a good basis. They prove the
following result.
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THEOREM 2.2. There exists an algorithm, the L3-algorithm, that when given as input
a basis {bi" 1 <-- <--_ k} of an integer lattice L

_
k finds a basis {b*" 1 <-_ <-_ k} such that

(2.4) lib,*I[ 2k/2Ai(L) for 1 <--_ <- k.

This algorithm always halts in O(n6(log B)3) bit operations, where B2=ki=l I]bi[I 2--
k 2

i=l j=l bi.
We do not have a basis for the lattice L(a, M) but we can obtain one as follows.

Using a Hermite normal form reduction algorithm (see [8]) we obtain in polynomial
time an integer matrix V in GL(k + l, 77) such that

w
w
0 =V

al

where the matrix on the left is in Hermite normal form and {w’i: 1i k} is a basis
of L(a, M). Now the L3-algorithm applied to this basis produces an L3-reduced basis
{wi" -< <- k} and a unimodular matrix U in GL(k, 77) such that

W1 W

--U[
w kw

and

Ilw, 2k/2Ak, i k.

Combining these steps we obtain an integer matrix Y such that

[Wl]
a

(Alternatively the L3-algorithm can be adapted to work on a set of generators of a
lattice and produce (2.5) directly.) Now by multiplying (2.5) on the right by x and
reducing (mod M) using (2.1) we obtain modular relations with small coefficients:

k

(2.6) wix=-- c’i (mod M), l <- <- k.
j=l

Note that, although we started with modular equations in (2.1), we have now obtained
a full set of k modular relations which are independent over the integers.

To perform the second stage of the algorithm we observe that
k

Z wix
j=l

M
Ilw, Ilxll <2k/2AkMA--12-(k/2)-’ <--.

2

Thus if we choose c’i to satisfy Ice[ < M/2 we know that
k

l<i<k,2 WijXj--Ci,
j=l

holds over the integers.
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Finally we solve this system of k linearly independent equations in k unknowns. [3

Let us see how to use Theorem 2.1 if the variables are not small but some of the
bits are known. Define for convenience

k 1
(2.7) So log Ak +2+ log k + 1,

Z Z

where Ak Ak(L(a, M)).
COROLLARY 2.3. The system of modular equations

Y aijxj= ci (mod M), i= 1, 2,...,
j=l

has at most one solution x in which either of the following conditions holds:
(i) The So most significant bits of each xj are specified.
(ii) The So least significant bits of each x are specified, and M is odd.

If the ao, ci and M are known there is a polynomial time algorithm that either finds x or
proves that no such x exists.

Proof To prove case (i) we just observe that xi x})+x2 where x1) are the
known most significant bits and Ixl2>l _-< M12-</2-l,/k=l. Substituting the known x)

we come into position to use Theorem 2.1.
(2)For the case (ii) write xi 2Sx11)+ xl2 where x are known and xl1 satisfies the

same size bounds. Since M is odd (2So) -1 (rood M) is defined, and after multiplying
the equations by (2")- (mod M) we can use Theorem 2.1.

Note that the algorithm of Theorem 2.1 can be applied without knowing the value
of )tk or whether or not the bound (2.3) holds. To explain this, we associate with any
basis {hi: 1 =<iN k} of a lattice L in Nk the quantity

(2.8) Ak(b,,""", bk)= max

Then by the proof of Theorem 2.1 the algorithm succeeds whenever

(2.9) So >- log Ak(bl*,..., bk*)+1/21og k+ 1,

where {b/*: 1 i=< k} is the L3-reduced basis of the lattice L(a, M) obtained in the
algorithm. The bound (2.9) can be checked during the algorithm.

When can the algorithms of Corollary 2.2 be expected to succeed? This depends
on the value of Ak, and to get an idea how large it usually is we estimate it in the case
where the modulus M is a fixed prime and the coefficients a of the modular relations
(2.1) are drawn independently from the uniform distribution on [0, M-1].

THEOREM 2.4. Let p be prime. For the pk possible systems A of modular equations

arising by choosing

k

aixj=-O
j=l

(modp) for l <- =<

O<=ai<p forl<-i<=land l=<j<-_k

at least (1--e--O(p-l/k))p kl of these give rise to lattices L(A,p) which have

(2.10) ’.k ( 5k3/2E-l/kp 1-1/k.

Proof We will use the previously mentioned result by Lagarias, Lenstra and
Schnorr 12] that A l,k =< k2 for all k _-> 1.



268 FRIEZE, HASTAD, KANNAN, LAGARIAS AND SHAMIR

We estimate the probability that L* contains a short vector. We know that pL* is
the integer lattice {Yt(Y, ai)---0 (mod p); 1-<_i<-_ l}. Take a sphere S centered around 0
of radius R where R < p. For any nonzero point z in S the probability that z pL* is
p-l. Thus the probability that any point inside S is in pL* is bounded by Sk (R)
where Sk (t) counts the number of lattice points in a k-dimensional sphere of radius
centered at the origin. Since Sk(t) Vk tk +O(kVktk-1) with Vk--7rk/2/F(k/2+ 1) as
o we conclude that if we choose R (rk/2/F(k/2+ 1))-l/kel/kp ilk then p-ISk(R)

e + O(p-t/k) as p). Hence we conclude that with probability 1-e- O(p-l/k) the
inequality

holds, and thus

1( 71"k/2) -1/k

p F(k/2+ 1)
1 1/kpl/k-1

Ak 5k3/2e-1/kp 1-1/k.

This completes the proof.
A slightly weaker result than Theorem 2.4 can be proved to hold for all moduli

M. We omit the details.
We may now infer that the algorithm of Corollary 2.3 succeeds in most cases for

a random system (2.1) whenever the number s of known bits exceeds the information
bound (1- (1/k)) log M by a small amount. Indeed for M a prime p, for most lattices
L(a, p) the bound (2.7) implies that this happens if s satisfies

-+21ogk+ Iloge[+3,(2.11) s -> 1 logp+
2

which exceeds the information bound by a constant depending only on the dimension
k and desired failure rate e.

In cryptanalytic applications, the set of problems (2.1) that arises may be dis-
tributed in an entirely different way than the uniform distribution studied in Theorem
2.4. For this reason, in 3 and 4 we separately analyze the distributions of Ak arising
in our two applications. However in the absence of other information, the bound (2.11)
is a useful heuristic to use.

We now describe and analyze our second algorithm, which applies to the set of
modular equations

k

(2.12) aox c, (modM), lil
j=l

where we are given an arbitrarily located window of bits for each x. We suppose that
the window of s truncated bits is from bit w to bit w + s- 1, i.e.,

w+s. (3)x x+2Wx+ 2

where x1) <2w, x) <2 and x3)< M2-w-, and x) is assumed to be known. Thus
w+s..(3)the unknown is x)+2

To use Theorem 2.1 we want to transform (2.12) to an equation with small
unknowns. To do this we find a which satisfies

(2.13) aM2-w-/2 and la2w+ (moO M)2w+/z.

Such an a always exists and we can find it in polynomial time using the result of
Lenstra [14] that there is a polynomial time algorithm for solving integer programs in
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a fixed number of variables. This is because (2.13) can be written as the integer program
in three variables (a, Yl, Y2) given by

-M2-w-/2) <- a Myl < M2-w-/)

_2w+/) <_ a2w+ My2 < 2 w+(/2)

O<a<M.

Multiplying the equation (2.12) by a and using the unknowns
w+s.,.(3)

zi axl) + a2 i

we obtain the modular equation

E aijzi :-- C’i (mod M),
j=l

where the quantities

( k )c’ -2 12)a Ci aijx
j=l

are known. Now we know by (2.13) that

Iz, I--< lal Ix’)l / la2w+ (mod M)[ [x3) _-< M2-s/e+.

Thus provided that

s > 2 log/k -- k + log k + 4

holds that we can apply Theorem 2.1 and find zi. If (a, M)= 1 then all that remains
is to compute a-zi (mod M). If M is prime then (a, M)= 1 is guaranteed to hold and
we have proved the following result.

COROLLARY 2.5. Suppose M is prime and we are given a known system of modular
equations

k

2 aijxj Ci (mod M), 1 _-< _-< l,
j=l

and a window of s truncated bits of each x consisting of bits w to w + s- 1 where

s> 2 log hk+k+log k+4.

Then there is a polynomial time algorithm that either finds a solution x to the modular
equations matching the truncated window data, or else proves that no such x exists.

However in the case of a general modulus M we cannot assume that (a, M)= 1.
There might not even exist an a such that (a, M)= 1 which has the desired properties.
To get around this problem we will use a different approach. We will prove a result
for general M which depends on Diophantine approximation properties of the number
M/2w+s. Define for a real number 0 the quantity

(2.14) a(0, x)= min InO- ml.
tn, GZ
lnx

We have the following result.
THEOREM 2.6. Suppose that we are given a known system of modular equations

k

aox=-c (modM), i=l,2,...,l
j=l
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and that we are given a window of s bits of each of the variables xi whose largest bit is
the w + s)th bit. If

(2.15) s-->logAk++ 1oga 2w+s,x/-2(k/2)+lAk +logk+l
then the xi are uniquely determined and can be found in polynomial time.

Proof As in the proof of Theorem 2.1 we get a system of equations
k

(modM), l<i<k,X wox c,

where l]w[l 2k/Ak. Over the integers we can write this as

k

(2.16) wox c; + dM, 1 k,
j=l

where we know by the bound for the w that ]dl2k/ZAk. Using x=
(2) X.3)gw+s XJ2)xSl+x 2 + where are known we get

k
(1)(2.17) wox ci + d,M (mod2W+*),

j=l

where the integers c are known. Since x))[ N 2 the bounds on w imply that

(.a) o
j=l

Using (2.17) we obtain

(2.20a)

(2.20b)

Then

(mod 2w+SC -Jr- diM
where Izi[ <_-v 2(k/2)+Wak Now we know that each d satisfies the integer program in
two variables (ai, ti) given by

w+st <Xi 2(k/2)+w(2.19a) -x/ 2(k/2)+W,k < Ci-1-

(2.19b) -x/ 2k/Zak <= <--X/ 2k/2ak.
We can find a solution (d, t) to this integer program in polynomial time by Lenstra
[14] (see also [7]). We claim that all solutions of (2.19) have d d. Suppose not, and
let d1), d2) be distinct solutions. Then their difference di d}1)- d}2) satisfies

[d-iM+2W+S(tl,) .) w+l

IdOl 2/2+’a.

X/ 2(k/2)-s+llk

for some integer r tl) .{2)
--t Using the bound on d and the definition of

a(M/2w+*, / 2{k/2)+lak) if d 0 this yields

Og s+w, f--2(k/2)+lAk X/2(k/2)-s+l}kk

This inequality contradicts the bound for s in (2.15). Consequently d d. Hence we
have found di by solving (2.19). Now we determine the xj by solving the invertible
linear system (2.16). [3



RECONSTRUCTING TRUNCATED INTEGER VARIABLES 271

To estimate the useful range of Theorem 2.6 we need information about the
quantities c(M/2+w, v 2k/2)+1,k). Dirichlet’s theorem for Diophantine approxima-
tion (see [3, p. 165], [9]) asserts that for all real 0 one has

1
a(O,x)<--

X

for integer x, and it is known that for most pairs (0, x) one has a(O, x) of size
about 1/x. Hence one expects that for most triples (M, w,s) one has
o(M/2S+w,x/2(k/z)+A.t,).--, k-/22-t’/zA- and hence that the bound (2.15) is about
twice that necessary to uniquely determine the variables xi. The loss of efficiency of
this algorithm in the information-theoretic sense arises in stage 2 of the algorithm. We
are given a window of s truncated bits. The effect of the low-order bits y’ is inflated
by the coefficients wo of the reduced basis and in the integer program (2.19) they
destroy the information in the bottom log, bits of the "window." Since we need
about log information bits to recover the input, the window must contain this many
undestroyed bits of information, so it must have at least 2 log , bits, i.e., its efficiency
is halved.

3. Cryptanalysis of truncated linear congruential pseudorandom number
generators. A linear congruential pseudorandom number generator is based on the
recurrence

(3.1) xi+ ax + c (mod M).

Several kinds of reconstruction problems relating to linear congruential generators
have been studied previously. In the case where the parameters (a, c, M) are unknown
and {xi: 1 -<_ <- k} are known, J. Boyar [2] shows that one can start predicting subsequent
values of the sequence withhigh accuracy given a short initial segment. Her method
is to find parameters (, , M) consistent with the available data (in polynomial time)
and to extrapolate the sequence using these parameters. If a later disagreement occurs,
the values (, , M) are changed to remain consistent with the new data. She shows
that at most O(log M) disagreements can ever occur, using this procedure. Knuth 11]
considered problems arising when only truncated high-order bits y of the generator
are known. He supposed that M 2" is known and that the parameters (a, c) are
unknown, and he gave an attack which, when given {y: 1-<_i -< k} where y=[xi/2l]
(mod M), will usually reconstruct the parameters (a, c) and seed Xo in O(nZ221/k2)
steps. This running time bound is exponential time, as may be seen for example in the
case when half of the bits are truncated and when the number k of values y observed
is small. Reeds [15], [16] was the first to study linear congruential generators from a
cryptographic viewpoint. In 16] he studied a cryptosystem which in its simplest version
enciphers the plaintext P as

E-= y + Pi (mod 256),

where y [257x/M] and x ax_l (mod M). He showed how to break it in a reason-
able time when both the modulus M 23- 1 and multiplier a 75 are known, using
a partially known plaintext attack. His attack appears to take exponential time for
general parameters (M, a, c).

We consider here the situation in which the modulus M and multiplier a are
known, the constant term c is unknown and a segment yi of truncated high-order bits

(3.2) y for 1 _<-- --< k
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of the linear congruential generator are given as data. We give a polynomial time
reconstruction procedure and prove that it succeeds on nearly all problems in which
sufficient data is available to permit unique reconstruction (Theorem 3.1), provided
the modulus M is squarefree. We also prove a similar result which applies to all moduli
M, provided that any fraction greater than one third of the bits of the original xi is
given as input (Theorem 3.5). In our analysis for simplicity we treat only the case that
high.order truncated bits yi are given as data, but our technique applies to the cases
where the low-order truncated bits are given, or where an interior window of truncated
bits is given. In the interior window case we would achieve only 50 percent efficiency
in the use of the available information.

We will show that unique reconstruction of the sequence Xk is usually possible in
the case that the parameter c 0. The case c # 0 is different. In the case c # 0 we set

xl X+l- x and Yl Y+l-Y and observe that x’i satisfies the recurrence

(mod M)Xi+ lX

with c 0 and y’ is essentially a truncated version of xl. Now the methods of this
section will show that x can usually be uniquely reconstructed. However, x does not
determine the sequence xi since x and xi + d for any d will give the same xl and both
are generated by linear congruential generators. In fact for small d the two sequences
{xi} and {xi + d} will usually have the same s most significant bits, and so it is impossible
to uniquely reconstruct the original {xi} in this case. What we can do in the general
case that c # 0 is to predict future values of the truncated sequence {y} with great
accuracy, using the s most significant bits of Xl together with the uniquely reconstructed
sequence {x}.

Now we consider the case where the parameter c O. The k unknowns {xi: 1 <- <=
k} satisfy

Xi+ axi (mod M)

and consequently are related by the following system of k-1 independent
homogeneous congruences:

(3.3) a-lxl-x=-O (modM) for2=<i-<k.

Since we are given the high-order bits y of the x as input, we have exactly a problem
of the kind analyzed in Corollary 2.2. In this case L(a, M)= La is the lattice consisting
of all vectors (vl,’’ ", Vk)7/k satisfying (3.3), which has as a basis the vectors

bl (M, O, O,..., 0),

b2 (a,-1, O,..., 0),

113--(a 2, 0,-1,""", 0),

bk=(a k-l, O, 0,’’’,-1).

The determinant D D(La) is given by

(3.4) D(L,,) M.

The analysis of the size of Ak(La) is the only problem in applying Corollary 2.2. In
the case where M is squarefree we are able to prove that Ak is small for most Lo.
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THEOREM 3.1. For squarefree M > c(e, k) there is an exceptional set E(M, e, k) of
multipliers ofcardinality IE(M, e, k)l <-_ M- Such thatfor any multipliernot in E(M, e, k)
thefollowing is true. The xi are uniquely determined by knowledge ofthe (1/k + e) log M+
c(k) leading bits of all {xi: 1 <- <= k}, where

k 7
Ck =+(k- 1) log 3+log k+2.

Furthermore, there is an algorithm which runs in time polynomial in log M + k which

finds the xi.
Remarks. (1) The number of bits needed for unique reconstruction is essentially

optimal on information theory grounds, except for the presence of the e.

(2) Some sort of exceptional set E(m, e, k) is necessary because a 1 is always
a "bad" multiplier. In the case a 1, all the observed truncated bits y will be equal
to the high-order bits of the seed Xo, and one never gets any information about the
low-order bits of the seed. (Of course we can extrapolate future values of the generator
very well in this case.) There are usually other multipliers a in the exceptional set
E (M, e, k) defined below, though they are in general not easy to characterize.

(3) The proof actually shows that we could take e to be a constant times
1/log log M as M

Proof Our object is to apply Theorem 2.1, and our only problem is to bound the
number of lattices La which have a large hk. We define the exceptional set

E(M, e, k)= {La" hk(La) > 2k33k-M(1/k)+}

and our object will be to show that for squarefree M _>- c(e, k) there are at most M-lattices La in the exceptional set E (M, e, k).
We will study the dual lattice L*, which is generated by l/M(1, a, a2, ., a k-l)

and the unit vectors e, 1,..., k. For notational simplicity let us study ML*. A
short vector in ML* corresponds to an integer such that {ta " 0 <-_iN k-1} are all
small (mod M). For a fixed R we are interested in estimating the size of the set

SR={a]Zlt, l<=t<M, lta(modM)l<R for0-<_ i=< k- 1}.

Define for d dividing M the sets

SR.d={a" Zit, l<-t<M,(M,t)=d, ltai(modm)]<R for0=< i<= k-l}.

It is clearly true that SR U aim SR,d. Let us first estimate the size of SR,.
LEMMA 3.2. If a SR, then a satisfies an equation

k

(3.5) Z l"i ai-l 0 (mod M)
i=1

with

(3.6) Il (2kR)/(k-).

Proof By assumption we have such that (t, M)= 1 and Ital<R for0-< i<-k-1.
Consider all linear combinations 2 k-1

i;0 S tai with O<=si<(2kR)1 for O<-_i<=k-1.

There are (2kR) k/(k-1) such combinations and the value of any such combination is
bounded in absolute value by kR(2kR) /(k-l). Thus by the pigeonhole principle there
are two different sets of s’s which give the same value. Subtracting the two expressions
and dividing by we get the desired solution to (3.5). [3
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To estimate the size of SR,1 we must estimate how many numbers a satisfy an
equation (3.5) with small coefficients. Let M--1-Ifi=1Pi. We count the number of a s
satisfying this equation having

(3.7) d g.c.d. (M, v Vk).

If d is the product of g of the prime factors of M then an upper bound for the number
of solutions is d (k-1)f-g. The reason for this is that we have at most k-1 solutions
to the congruence

k

v,a --=- 0 (modpi)
i=1

for each of the f-g primes p of M not dividing d. We next bound the number of
vectors v (u, , Uk) satisfying the condition (3.7), using the following lemma.

LEMMA 3.3. If d divides M then the number of nonzero integer vectors satisfying

g.c.d. (M, u, uk)= d

and lull<= Tfor l <-i<-k is less than (3T/d) k.
Proof Dividing all ui and M by d shows it is enough to prove the lemma for

d 1. In this case the estimate follows from a trivial bound on the number of lattice
points in the region considered.

Combining the above results we get

ISg ll <=dlM kf-gd ( (2kR)l/(k-1)d

< k(2kR) k/(k-)" 3k Z d-k.
dim

To simplify this further we use a well-known number-theoretic estimate valid for
squarefree numbers M that shows that there is a constant Co such that for M-> 20
one has

Hence

log M
log log M

f M(Colgk)/(lglgM)

and

d -k < 1 < 2f "< M(clg2)/(lglgM)

giving

(3.8) ISR,I < 3k(2kR)k/(k-1)Mcog:k/lg’g’.

Next let us consider SR,d for d > 1. Whether a SR,d only depends on a(mod Md).
To be more precise a SR,d if and only if there exists an integer with 1 -< < M/d,
and (t, M/d) 1 with

Ita’ (mod M/d)l<-- R/d, O<__i<_k-1.
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Reasoning as in Lemma 3.2 we find that a solves an equation with small coefficients
(mod Md). Using that each solution (mod Md) lifts to at most d solutions (mod M)
we get

M(Co log 2k log log M)

3 k d-/(k-1)(2kR)k/(k-1)M(Colog2k)/(loglog M)

Thus we obtain

ISl=l U S,aI<=E IS,aI<3k(2kR)/(k-M(’gk/(lg’gM Z d-/(-l
d d

(3.9) 3k(2kR)k/k-)Mg2k)/gg)2

3k(2kR)k/(k-1)M(Colg4k)/(lglgM).

Now choose R Mk-)/k3-g-l(2k)-l. Then (3.9) yields for M c(e, k) that

IS<M-,
and that for all a not in SR we have

1 -k- /k-A(L)3 M-

Then the inequality A Ak k proved in [12] yields

(3.10) Ak (L) 2k33k-1M1/k+.

Hence E(M, e, k) SR SO [E(M, e, k)[ M-.
To complete the proof of Theorem 3.1, we choose

s +e logM+c(k)

with c(k) k/2 + (k- 1) log 3+ log k + 2, and apply Corollary 2.2, after observing that
if a (M, e, k) then (3.10) implies that

k 1s so=log &++log k+ 1.

This proof of Theorem 3.1 does not carry over very well to non-squarefree moduli
M, the worst case being M =pe a prime power. The problem in that case is that
polynomials (mod pe) may have many roots, e.g.,

k

uiai-0 (modpe)
i=1

may have up to kpe- roots, and we get a much weaker estimate for ]S] in this case.
We can still use this weaker bound to extend the proof of Theorem 3.1 to apply to
moduli M which are almost squarefree. Define a number M to be 6-squarefree if

f f
M=p, and p-NM.

i=1 i=1

Then we have the following result.
ToaM 3.4. Suppose that the modulus M is 6-squarefree and let the number of

iterates k and a constant e > 0 be given. en there exists a constant c2( e, 6) such that
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for all such M > c2(e, 6) and all residues not in an exceptional set E(e, M) ofcardinality
at most M1- given knowledge of s leading bits of {xi" 1 <-i <- k} where

s> (-+e+)logM+c(k)
suffices to determine the {xi" 1 <-_i<= k} uniquely. Furthermore, there is an algorithm that
runs in time polynomial in log M + k which always reconstructs all the xi in this case.

The proof is essentially the same as that of Theorem 3.1, using the weaker bound
for ISRI, and we omit the details.

For the special case k 3 we are able by a more careful argument to prove an
essentially optimal bound valid for all moduli M.

THEOREM 3.5. Given e > O, for any M the knowledge of (+ e) log M + c(k) leading
bits of xl, x2 and x3 allows the recovery of x, x2 and x3 in polynomial time for all
multipliers a except a set of cardinality c(e)M-/2.

Proof As we have seen the hard part of.the proof will be to count the number of
solutions to second-degree congruences when the modulus is highly composite. To fix

2 Wenotation let V(x)= ,o+ ,x+/32x2 and v= (’o, ’, ’) with Ilvl[ (,o+ ,2+ ,22)1/z
want to estimate the size of the following set"

F() ={a" l<=a<M and ::lllvll <- M" with V(a)=- 0 (mod M)}.
Assume first that g.c.d. (,o, ul, ’2, M) 1. Suppose M I]s=1 pi where the p are

distinct primes. We study the number of solutions to a quadratic equation modulo
prime powers p e. Let D(V)= ’-4’o’2 denote the discriminant of the quadratic
polynomial V(x). Note that the polynomial has a double root (mod p) if and only if
D(V)-= 0 (rood p). We have the following lemma.

LEMMA 3.6. Ifp does not divide g.c.d. (o, ’1, ’2) then the number of solutions of
b’2 x2 -Jr" /31 x -1- /20 0 (mod pe)

is at most 2 min (p[e/2], ptr/J) where r is the largest integer such that

D(V) 0 (mod p).

Proof We can assume that the highest-degree coefficient of V is not divisible by
p since otherwise the congruence has at most one solution.

Suppose now that there is at least one solution, so that V factors as t(x + a)(x + b)
(mod pe) with (t, p)= 1. The discriminant D(V) (mod pe) is t2(a- b)- and if s is the
largest integer such that a----b (modps) then r=>min (2s, e). We have two cases,
depending on the size of 2s.

If 2s < e then the solutions of the congruence are precisely those x
and those x-= b (mod pe-S). There are 2p solutions in this case.

If 2s>-e then the solutions of the congruence are exactly those x-=a-b
(modpie and there are p[e/2J such x (mod pe).

In both these cases the bound of the lemma holds.
We next estimate the frequency with which the condition in Lemma 3.6 is satisfied.
LEMMA 3.7. Given e > 0 and d < M2 the number of Ilvll <= Mr that satisfy

D(V)=-O (modd)
is O((1/d)M3+).

Proof The congruence ,-4,o,2-=0 (modd) splits into the O((1/d)M2)
equations

1
/--4/,’o/2-- kd for Ikl-<_ M2,
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over the integers. For each fixed Vl the equation is of the form 4Vo v2 c. If c 0 this
equation has as many solutions as divisors of c, and it ,is not hard to see that this
number is O(M) since c-<_ M2". The remaining case c--0 gives 4M" possibilities for
Vo and v2 but in this case vl is determined by k and hence the total number of solutions
is O((1/d)M3’+). [3

Now we are able to estimate F(/z) in the general case.
LEMMA 3.8. For any e > 0 it is true that

]F()] c(e) max (M3+, M1/2+(3/2)+e).
Proof First observe that by Lemma 3.6 if (D(V), M)= d then the number of

solutions to V(x)=0 is bounded by d2 where f is the number of prime factors of
M. The contribution S() to [F()] from V(x) with g.c.d. (Uo, u, u2, M)= 1 and
D(V) 0 can be estimated using Lemma 3.7 by

S()
a, cd2r( 1 M3+e/2)
dM2

(3.11)
cd(M)2fM3+/2 c3 M3+e,

where d(M)= O(Mf/(lglgM)) denotes the number of divisors of M.
Now we let Sd() count the set of a in IF()I arising from polynomials V(x)

with g.c.d. (M, o, u, u2)= d and D(V) 0. Dividing such an equation for V(x) by d
we get a polynomial (1/d) V(x) with integer coefficients of size (1/d)M and modulus
M/d, and g.c.d. (M/d, uo/d, u/d, uz/d)= 1. Looking at the corresponding F-set
(mod (M/d)) we see by the argument giving (3.11) that the F-set has cardinality
O((1/d3)M3+) and furthermore that each solution to it (mod M/d) will lift to
exactly d distinct solutions (mod M). This leaves us with the bound

We need also to estimate the number of a that satisfy the congruence V(x) 0
(mod M) with D(V) 0 and I1 11 < ". fg.c.d. (o, , , M) d then the congruence
is

Uxa+ x+ 0 mod(3.12)
d

By the analysis of the second case in Lemma 3.6 this congruence has at most
2(/d)(M/d)l/ solutions (mod M/d), where w(M/d) counts the number of distinct
prime divisors ofMd. These lift to a total of at most 2(Md solutions x (mod M).
Since d NM, we have at most 2(d(M)M/Z+"/2 solutions to (3.12). This is
O(M1/2+/2+/2) for any fixed e, as M . Finally the number of polynomials V that
satisfy D(V)=0 and [[v[[ < M" is O(M"+/2) for any fixed by similar reasoning to
that of Lemma 3.7.

The total count of solutions F() therefore satisfies

[F()I Sa()+M1/=+/2+/={V: D(V)=0}
dim

c4(M+e +
This proves Lemma 3.8.

Now Lemma 3.8 implies Theorem 3.5 by a proof similar to that of Theorem 3.1.
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4. Cryptanalysis of Blum’s protocol for exchanging secrets. Blum’s paper 1 was
one of the first to deal with the issue of simultaneity in sequential processes. He
proposed several versions of a protocol to enable two parties to exchange the factoriza-
tions of their two published moduli ma and mB, which are the products of two large
primes in a fair and verifiable way. The simplest of these is as follows. Let n log ma
log mB be the size parameter. The protocol is symmetric, and the two parties alternately
perform the following steps:

(1) Choose k random numbers Yl,’", Yg and send their squares modulo the
opponent’s modulus to the other party.

(2) Extract the four square roots modulo your own number of each number y/2
received from the other party. This is possible since you know the factorization. Now
write the 4k square roots in a 4k n binary matrix where the least significant bits are
in the last column.

(3) Send the ith column of the matrix to the other party (for i-- 1,. ., n).
The idea behind this procedure is that by having one of the square roots of y2 at

hand it is possible to check that what you receive is correct information. If B wants
to cheat he can guess which square root A has and send that square root and its
negation correctly while the rest are unrelated bits. The probability that such cheating
would not be detected by A is 2-g. The security of the protocol depends on the inability
of the parties to factor efficiently before all (or almost all) the columns have been
exchanged. Blum stated this as an assumption in the proof of correctness in this
protocol. We show that this assumption is incorrect.

THEOREM 4.1. There is an algorithm which when given as input k random numbers
yi and the n k + cg, most significant bits of all square roots of the y (mod M) factors
M with probability 1- e. The probability is taken over the probability distribution on the

Yi and the running time of the algorithm is polynomial in n but not in k.
Proof For each the four square roots of y2 can be denoted by yi, -yi, x ryi

and -xi=-ryi (mod M) where r is a square root of 1 (mod M) different from +/-1.

Since y is known, we can easily pair y and -Yi with their Nk+ cg, most significant
bits in the data received. However, we do not know how to pair the remaining two
sets of most significant bits with xi and -xi, so we must guess. However, for fixed k
the total number of guesses is the constant 2g. When the correct guess is made we have
paired each xi with its Nk+ Ck, most significant bits. Observe that if we can recover
any of the x we can factor M since g.c.d. (x-Yi, M) will be nontrivial.

Since the unknown values of the x are fixed multiples of the known values of
the y, they are related by k-1 modular linear equations:

yiXl --ylXi 0 (mod M) for 2, , k.

The lattice L spanned by the k-1 coefficient vectors

(Yi, 0,’’’, O,-yl, 0," ’’, O)

together with the vectors Me,. ., Meg is the set of vectors

(i=2 YiPi’ --YlP2’ --YPk) +(a’M’ akM)

for all possible choices of ’2,’", Uk and a,..., ag in 7/. When yl is invertible
(mod M), as is usually the case, we obtain the following characterization of this lattice:

L= vZg y,-=O(modM)
i=1
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and Ly has determinant M. To apply our general technique, we only have to bound
Ak (Ly) from above for almost all choices of y.

As usual we do this by bounding from below the length of the shortest vector in
the dual lattice Ly*. In this case Ly* is the lattice spanned by (1/M)(yl,..’, Yk) and
the unit vectors ei. We use the following lemma.

LEMMA 4.2. Let e > 0 and k be given. Then there is a positive constant dk, such
that for a random drawing of integers (Yl,"" ", Yk) in (7/M7)k where M=plP2 and
min (pl, p2)>=1/2dk,M/k, then with probability at least 1-e the inequalities

(4.1) Ityi (mod M)I<--_dk,Mk-’/k

cannot be solved with 0 < < M, and so

A,(L*y )>= dk,M-’/k.

Proof For each fixed and a fixed index the probability that

Ityi (mod M)l dk,M<k-)/k

is at most

(t,M)
M
4-2dk,M-1/k <- 3dk,eM-1/k,

since

(t,M) M M
---t-m dk,eM(k-1)/k.
M P P2

Since the draws for different are independent, the probability that (4.1) holds for
fixed is <=(3dk,)kM-1. Summing over 0< < M the total probability that (4.1) holds

1/kis at most <=(3dk,) k, and we may choose dk,
Now we complete the proof of Theorem 4.1. By Corollary 2.2 we can recover

(x,. ., Xk) if we know So log Ak + (k/2)+ log k + 1 significant bits of each xi. Using
Lemma 4.2 and the bound A *Ak--<--k we obtain

Since n log M this yields

Ak(Ly) < k2d -’ M/k
k,

n k 3
So<-+-+ log k-log dk -t- 1=k 22

We are given sl n k + Ck, significant bits, so on choosing

k 3
Ck, --+-- log k log dk + 1

2 2

we can find the xi. As pointed out earlier, this enables us to factor M by calculating
g.c.d. (xi-yi, M) so the theorem follows.

Theorem 4.1 shows that Blum’s original protocol can be broken by somebody
who only deviates from the protocol by stopping early and using this algorithmmthere
is no need to control the choice of random bits or to lie to the other party.

The alternative protocol in which the columns of the matrices are exchanged in
reverse order (from least significant bits to most significant bits) is just as insecure,
again using the algorithm of Corollary 2.2, noting that M is odd.
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Discussion. Blum proved that his protocol is secure assuming the truth of certain
(unproved) assumptions. Due to the care with which Blum listed his assumptions, it
is easy to trace the source of the cryptographic weakness we exploit to the following
one [1, p. 187]:

"Alice cannot use the 100, k most significant bits, ykl, "’’, YO0, to split MB any
better than she can use just the k most significant bits y."

Our attack shows that this assumption was too strong. Blum considered the
possibility that his original protocol might be insecure, and in his paper he described
a modified protocol in which the participants use several moduli each. A second
possible modification is to ask the parties to exchange fewer columns from their matrices
and to use our algorithm to factor the moduli at an earlier stage. Neither of these
variants seems to be vulnerable to the cryptanalytic attack proposed in this paper.

The existence of this cryptanalytic attack demonstrates once more the extremely
delicate nature of proofs of security in cryptology. It also shows the importance when
proposing cryptographic protocols to clearly distinguish sources of insecurity. Blum’s
paper certainly does this.
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bringing this problem to our attention. We thank Shaft Goldwasser and Rick Statman
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Abstract. We present a digital signature scheme based on the computational difficulty of integer
factorization.

The scheme possesses the novel property of being robust against an adaptive chosen-message attack:
an adversary who receives signatures for messages of his choice (where each message may be chosen in a

way that depends on the signatures of previously chosen messages) cannot later forge the signature of even
a single additional message. This may be somewhat surprising, since in the folklore the properties of having
forgery being equivalent to factoring and being invulnerable to an adaptive chosen-message attack were
considered to be contradictory.

More generally, we show how to construct a signature scheme with such properties based on the
existence of a "claw-free" pair of permutations--a potentially weaker assumption than the intractibility of
integer factorization.

The new scheme is potentially practical: signing and verifying signatures are reasonably fast, and
signatures are compact.

Key words, cryptography, digital signatures, factoring, chosen-message attacks, authentication, trap-door
permutations, randomization
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1. Introduction. The idea of a "digital signature" first appeared in Diffie and
Hellman’s seminal paper, New Directions in Cryptography [DH76]. They propose that
each user A publish a "public key" (used for validating signatures), while keeping
secret a "secret key" (used for producing signatures). In their scheme user A’s signature
for a message M is a value which depends on M and on A’s secret key, such that
anyone can verify the validity of A’s signature using A’s public key. However, while
knowing A’s public key is sufficient to allow one to validate A’s signatures, it does
not allow one to easily forge A’s signatures. They also proposed a way of implementing
signatures based on "trap-door functions" (see 2.1.1).

The notion of a digital signature is useful and is a legal replacement for handwritten
signatures [LM78], [MAT9]. However, a number of technical problems arise if digital
signatures are implemented using trap-door functions as suggested by Diffie and
Hellman [DH76]; these problems have been addressed and solved in part elsewhere.
For example, [GMY83] showed how to handle arbitrary or sparse message sets and
how to ensure that if an enemy sees previous signatures (for messages that he has not
chosen) it does not help him to forge new signatures (this is a "nonadaptive chosen-
message attack"; see 2.2).

The signature scheme presented here, using fundamentally different ideas than
those presented by Diffie and Hellman, advances the state of the art of signature
schemes with provable security properties even further; it has the following important
characteristics:

What we prove to be difficult is forgery, and not merely obtaining the secret
key used by the signing algorithm (or obtaining an efficient equivalent algorithm).
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Forgery is proven to be difficult for a "most general" enemy who can mount
an adaptive chosen-message attack. (An enemy who can use the real signer as "an
oracle" cannot in time polynomial in the size of the public key forge a signature for
any message whose signature was not obtained from the real signer.) In contrast to
all previous published work on this problem, we prove the scheme invulnerable against
such an adaptive attack where each message whose signature is requested may depend
on all signatures previously obtained from the real signer. We believe that an adaptive
chosen-message attack is the most powerful attack possible for an enemy who is
restricted to using the signature scheme in a natural manner.

The properties we prove about the new signature scheme do not depend in any
way on the set of messages to be signed or on any assumptions about a probability
distribution on the message set.

Our scheme can be generalized so that it can be based on "hard" problems
other than factoring whenever one can create claw-free trap-door pair generators.

Our scheme can be based on any family of pairs of claw-free permutations, yielding
a signature scheme that is invulnerable to a chosen-message attack even if the claw-free
permutations are vulnerable to a chosen-message attack when used to make a trap-door
signature scheme (see 2.1.1).

Fundamental ideas in the construction are the use of randomization, signing by
using two authentication steps (the first step authenticates a random value which is
used in the second step to authenticate the message), and the use of a treelike branching
authentication structure to produce short signatures.

We note that our signature scheme is not of the simple Diffie-Hellman "trap-door"
type. For example, a given message can have many signatures.

Our signature scheme is seemingly "paradoxical," in that we prove that forgery
is equivalent to factoring even if the enemy uses an adaptive chosen-message attack.
We can restate the paradox as follows:

Any general technique for forging signatures can be used as a "black box" in
a construction that enables the enemy to factor one of the signer’s public moduli (he
has two in our scheme), but

The technique of "forging" signatures by getting the real signer to play the role
of the "black box" (i.e., getting the real signer to produce some desired genuine
signatures) does not help the enemy to factor either of the signer’s moduli.

Resolving this paradox was previously believed to be impossible and contradictory
([Wi80] misled by Rivest).

The rest of this paper is organized as follows. In 2 we present definitions of
what it means to "break" a signature scheme and what it means to "attack" a signature
scheme. In 3 we review previously proposed signature schemes. In 4 we review
more closely the nature of the "paradox," and discuss how it can be resolved. Section
5 defines some useful conventions and notation, and 6 describes the complexity-
theoretic foundations of our scheme. In 7 we give some of the fundamental notions
for our signature scheme, and in 8 we give the details. In 9 we prove that it has
the desired properties. In the last section we discuss some ways to improve the running
time and memory requirements of this scheme.

2. Fundamental notions. To properly characterize the results of this paper, it is
helpful to answer the following questions:

What is a digital signature scheme?
What kinds of attacks can the enemy mount against a digital signature scheme?
What is meant by "breaking" the signature scheme?
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Little attention has been devoted so far to precisely answering these questions.
For instance, signature schemes have been generically called "secure" without specify-
ing against what kind of attack. This way, it would not be surprising that "secure"
signature schemes were later broken by an unforseen attack. We hope that the
classification we propose in this section may prove useful in resolving unpleasant
ambiguities.

2.1. What is a digital signature scheme? A digital signature scheme contains the
following components:

A security parameter k, which is chosen by the user when he creates his public
and secret keys. The parameter k determines a number of quantities (length of
signatures, length of signable messages, running time of the signing algorithm, overall
security, etc).

A message space, which is the set of messages to which the signature algorithm
may be applied. Without loss of generality, we assume in this paper that all messages
are represented as binary strings, that is, {0, 1}/. To ensure that the entire signing
process is polynomial in the security parameter, we assume that the length of the
messages to be signed is bounded by kc, for some constant c > 0.

A signature bound B, which is an integer bounding the total number of signatures
that can be produced with an instance of the signature scheme. This value is typically
bounded above by a low-degree polynomial in k, but may be infinite.

A key generation algorithm G, which any user A can use on input 1 k (i.e., k in
unary) to generate in polynomial time a pair (PA, S) of matching public and secret
keys. The secret key is sometimes called the trap-door information.

A signature algorithm r, which produces a signature r(M, SA) for a message
M using the secret key SA. Here o- may receive other inputs as well. For example, in
the scheme we propose first, o- has an additional input which is the number of previously
signed messages.

A verification algorithm V, which tests whether S is a valid signature for message
M using the public key PA. (That is, V(S, M, PA) will be true if and only if it is valid.)
Any of the above algorithms may be "randomized" algorithms that make use of auxili-
ary random bit stream inputs. We note that G must be a randomized algorithm, since
part of its output is the secret key, which must be unpredictable to an adversary. The
signing algorithm r may be randomized--we note in particular that our signing algor-
ithm is randomized and is capable of producing many different signatures for the same
message. In general, the verification algorithm need not be randomized, and ours is not.

We note that there are other kinds of "signature" problems that are not dealt with
here; the most notable being the "contract-signing problem" where two parties wish
to exchange their signatures to an agreed-upon contract simultaneously (for example,
see [B183], [EGL82], [BGMR85]).

2.1.1. A classical example: trap-door signatures. To create a signature scheme,
Diffie and Hellman proposed that A use a "trap-door function" f: informally, a function
for which it is easy to evaluate f(x) for any argument x but for which, given only f(x),
it is computationally infeasible to find any y with f(y)=f(x) without the secret
"trap-door" information. According to their suggestion, A publishes f and any one
can validate a signature by checking that f(signature)= message. Only A possesses the
"trap-door" information allowing him to invertf: f-(message) signature. (Trap-door
functions will be formally defined in 6.) We call any signature scheme that fits into
this model (i.e., uses trap-door functions and signs by applying f- to the message) a
trap-door signature scheme.
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We note that not all signature schemes are trap-door schemes, although most of
the ones proposed in the literature are of this type.

2.2. Kinds of attacks. We distinguish two basic kinds of attacks:
Key-only attacks in which the enemy knows only the real signer’s public key, and
Message attacks where the enemy is able to examine some signatures correspond-

ing to either known or chosen-messages before his attempt to break the scheme.
We identify the following four kinds of message attacks, which are characterized

by how the messages whose signatures the enemy sees are chosen. Here A denotes the
user whose signature method is being attacked.

Known-message attack. The enemy is given access to signatures for a set of
messages ml, , mr. The messages are known to the enemy but are not chosen by him.

Generic chosen-message attack. Here the enemy is allowed to obtain from A
valid signatures for a chosen list of messages ml," ", mt before he attempts to break
A’s signature scheme. These messages are chosen by the enemy, but they are fixed and
independent of A’s public key (for example the mi’s may be chosen at random). This
attack is nonadaptive: the entire message list is constructed before any signatures are
seen. This attack is "generic" since it does not depend on the A’s public key; the same
attack is used against everyone.

Directed chosen-message attack. This is similar to the generic chosen-message
attack, except that the list of messages to be signed may be created after seeing A’s
public key but before any signatures are seen. (The attack is still nonadaptive.) This
attack is "directed" against a particular user A.

Adaptive chosen-message attack. This is more general yet: here the enemy is also
allowed to use A as an "oracle"; not only may he request from A signatures of messages
which depend on A’s public key but he may also request signatures of messages which
depend additionally on previously obtained signatures.

The above attacks are listed in order of increasing severity, with the adaptive
chosen-message attack being the most severe natural attack an enemy can mount. That
the adaptive chosen-message attack is a natural one can be seen by considering the
case of a notary public who must sign more-or-less arbitrary documents on demand.
In general, the user of a signature scheme would like to feel that he may sign arbitrary
documents prepared by others without fear of compromising his security.

2.3. What does it mean to "break" a signature scheme? One might say that the
enemy has "broken" user A’s signature scheme if his attack allows him to do any of
the following with a nonnegligible probability:

A total break. Compute A’s secret trap-door information.
Universalforgery. Find an efficient signing algorithm functionally equivalent to

A’s signing algorithm (based on possibly different but equivalent trap-door infor-
mation).

Selective forgery. Forge a signature for a particular message chosen a priori by
the enemy.

Existential forgery. Forge a signature for at least one message. The enemy has
no control over the message whose signature he obtains, so. it may be random or
nonsensical. Consequently this forgery may only be a minor nuisance to A.

Note that to forge a signature means to produce a new signature; it is not forgery
to obtain from A a valid signature for a message and then claim that he has now
"forged" that signature, any more than passing around an authentic handwritten
signature is an instance of forgery. For example, in a chosen-message attack it does
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not constitute selective forgery to obtain from the real signer a signature for the target
message M.

Clearly, the kinds of "breaks" are listed above in order of decreasing severity;
the least the enemy might hope for is to succeed with an existential forgery.

We say that a scheme is respectively totally breakable, universally forgeable, selec-
tively forgeable or existentially forgeable if it is breakable in one of the above senses.
Note that it is more desirable to prove that a scheme is not even existentially forgeable
than to prove that it is not totally breakable. The above list is not exhaustive; there
may be other ways of "breaking" a signature scheme which fit in between those listed,
or are somehow different in character.

We utilize here the most realistic notion of forgery, in which we say that a forgery
algorithm succeeds if it succeeds probabilistically with a nonnegligible probability. To
make this notion precise, we say that the forgery algorithm succeeds if its chance of
success is at least as large as one over a polynomial in the security parameter k.

To say that the scheme is "broken," we not only insist that the forgery algorithm
succeed with a nonnegligible probability, but also that it must run in probabilistic
polynomial time.

We note here that the characteristics of the signature scheme may depend on its
message space in subtle ways. For example, a scheme may be existentially forgeable
for a message space but not existentially forgeable if restricted to a message space
which is a sufficiently small subset of .

The next section exemplifies these notions by reviewing previously proposed
signature schemes.

3. Previous signature schemes and their security. In this section we list a number
of previously proposed signature schemes and briefly review some facts about their
security.

(1) Trap-door signature schemes [DH76]. Any trap-door signature scheme is
existentially forgeable with a key-only attack since a valid (message, signature) pair
can be created by beginning with a random "signature" and applying the public
verification algorithm to obtain the corresponding "message." A common heuristic for
handling this problem in practice is to require that the message space be sparse (i.e.,
requiring that very few strings actually represent messagesmfor example this can be
enforced by having each message contain a reasonably long checksum). In this case
this specific attack is not likely to result in a successful existential forgery.

(2) Rivest-Shamir-Adleman [RSA78]. The RSA scheme is selectively forgeable
using a directed chosen-message attack, since RSA is multiplicative: the signature of
a product is the product of the signatures. (This can be handled in practice as above
using a sparse message space.)

(3) Merkle-Hellman [MH78]. Shamir showed the basic Merkle-Hellman "knap-
sack" scheme to be universally forgeable using just a key-only attack [Sh82]. (This
scheme was perhaps more an encryption scheme than a signature scheme, but had
been proposed for use as a signature scheme as well.)

(4) Rabin IRa79]. Rabin’s signature scheme is totally breakable if the enemy uses
a directed chosen-message attack (see 4). However, for nonsparse message spaces
selective forgery is as hard as factoring if the enemy is restricted to a known-message
attack.

(5) Williams [Wi80]. This scheme is similar to Rabin’s. The proof that selective
forgery is as hard as factoring is slightly stronger, since here only a single instance of
selective forgery guarantees factoring (Rabin neeeded a probabilistic argument).
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Williams uses effectively (as we do) the properties of numbers which are the product
of a prime p=-3 (mod 8) and a prime q=-7 (mod 8). Again, this scheme is totally
breakable with a directed chosen-message attack.

(6) Lieberherr [LiS1]. This scheme is similar to Rabin’s and Williams’, and is
totally breakable with a directed chosen-message attack.

(7) Shamir [Sh78]. This knapsack-type signature scheme has recently been shown
by Tulpan [Tu84] to be universally forgeable with a key-only attack for any practical
values of the security parameter.

(8) Goldwasser-Micali-Yao [GMY83]. This paper presents for the first time
signature schemes which are not of the trap-door type, and which have the interesting
property that their security characteristics hold for any message space. The first
signature scheme presented in [GMY83] was proven not to be even existentially
forgeable against a generic chosen-message attack unless factoring is easy. However,
it is not known to what extent directed chosen-message attacks or adaptive chosen-
message attacks might aid an enemy in "breaking" the scheme.

The second scheme presented there (based on the RSA function) was also proven
not to be even existentially forgeable against a generic chosen-message attack. This
scheme may also resist existential forgery against an adaptive chosen-message attack,
although this has not been proved. (A proof would require showing certain properties
about the density of prime numbers and making a stronger intractability assumption
about inverting RSA.) We might note that, by comparison, the scheme presented here
is much faster, produces much more compact signatures, and is based on much simpler
assumptions (only the difficulty of factoring or more generally the existence of claw-free
permutation pair generators).

Several of the ideas and techniques presented in [GMY83], such as bit-by-bit
authentication, are used in the present paper.

(9) Ong-Schnorr-Shamir [OSS84a]. Totally breaking this scheme using an adap-
tive chosen-message attack has been shown to be as hard as factoring. However, Pollard
[Po84] has recently been able to show that the "OSS" signature scheme is universally
forgeable in practice using just a key-only attack; he developed an algorithm to forge
a signature for any given message without obtaining the secret trap-door information.
A more recent "cubic" version has recently been shown to be universally forgeable in
practice using just a key-only attack (also by Pollard). An even more recent version
[OSS84b] based on polynomial equations was similarly broken by Estes, Adleman,
Kompella, McCurley and Miller [EAKMM85] for quadratic number fields.

(10) tH-Gamal [EG84]. This scheme, based on the difficulty of computing discrete
logarithms, is existentially forgeable with a generic message attack and selectively
forgeable using a directed chosen-message attack.

(11) Okamoto-Shiraishi [OS85]. This scheme, based on the difficulty of solving
quadratic inequalities modulo a composite modulus, was shown to be universally
forgeable by Brickell and DeLaurentis [BD85].

4. The paradox of proving signature schemes secure. The paradoxical nature of
signature schemes which are provably secure against chosen-message attacks made its
first appearance in Rabin’s paper, Digitalized Signatures as Intractable as Factorization
IRa79]. The signature scheme proposed there works as follows. User A publishes a
number n which is the product of two large primes. To sign a message M, A computes
as M’s signature one of M’s square roots modulo n. (When M is not a square modulo
n, A modifies a few bits of M to find a "nearby" square.) Here signing is essentially
just extracting square roots modulo n. Using the fact that extracting square roots
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modulo n enables one to factor n, it follows that selective forgery in Rabin’s scheme
is equivalent to factoring if the enemy is restricted to at most a known-message attack.

However, it is true (and was noticed by Rabin) that an enemy might totally break
the scheme using a directed chosen-message attack. By asking A to sign a value x2 mod n
where x was picked at random, the enemy would obtain with probability another
square root y of x2 such that gcd (x + y, n) was a prime factor of n.

Rabin suggested that one could overcome this problem by, for example, having
the signer concatenate a fairly long randomly chosen pad U to the message before
signing it. In this way the enemy cannot force A to extract a square root of any
particular number.

However, the reader may now observe that the proof of the equivalence of selective
forgery to factoring no longer works for the modified scheme. That is, being able to
selectively forge no longer enables the enemy to directly extract square roots and thus
to factor. Of course, breaking this equivalence was really the whole point of making
the modification.

4.1. The paradox. We now "prove" that it is impossible to have a signature scheme
for which it is both true that forgery is provably equivalent to factoring, and yet the
scheme is invulnerable to adaptive chosen-message attacks. The argument is essentially
the same as the one given in [Wi80]. Byforgery we mean in this section any of universal,
selective, or existential forgery; we assume that we are given a proof that forgery of
the specified type is equivalent to factoring.

Let us begin by considering this given proof. The main part ofthe proofpresumably
goes as follows: given a subroutine for forging signatures, a constructive method is
specified for factoring. (The other part of the equivalence, which shows that factoring
enables forgery, is usually easy, since factoring usually enables the enemy to totally
break the scheme.)

But it is trivial then to show that an adaptive chosen-message attack enables an
enemy to totally break the scheme. The enemy merely executes the constructive method
for factoring given in the proof, using the real signer instead of the forgery subroutine!
That is, whenever he needs to execute the forgery subroutine to obtain the signature
of a message, he merely performs an "adaptive chosen-message attack" step--getting
the real user to sign the desired message. In the end the unwary user has enabled the
enemy to factor his modulus! (If the proof reduces factoring to universal or selective
forgery, the enemy has to get the real user to sign a particular message. If the proof
reduces factoring to existential forgery, the enemy need only get him to sign anything
at all.)

4.2. Breaking the paradox. How can one hope to get around the apparent contra-
dictory natures of equivalence to factoring and invulnerability to an adaptive chosen-
message attack?

The key idea in resolving the paradox is to have the constructive proof that forgery
is as hard as factoring be a uniform proof which makes essential use of the fact that
the forger can forge for arbitrary public keys with a nonnegligible probability of success.
However, in "real life" a signer will only produce signatures for a particular public
key. Thus the constructive proof cannot be applied in "real life" (by asking the real
signer to unwittingly play the role of the forger) to factor.

In our scheme this concept is implemented using the notion of "random rooting."
Each user publishes not only his two composite moduli nl and n2, but also a "random
root" r. This value r is used when validating the user’s signatures. The paradox is
resolved in our case as follows:
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It is provably equivalent to factoring for an enemy to have a uniform algorithm
for forging; uniform in the sense that if for all pairs of composite numbers n and n2
if the enemy can randomly forge signatures for a significant fraction of the possible
random roots r, then he can factor either n or n2.

* The above proof requires that the enemy be able to pick r himself--the forgery
subroutine is fed triples (n, n, r), where the r part is chosen by the enemy according
to the procedure specified in the constructive proof. However, in "real life" the user
has picked a fixed r at random to put in his public key, so an adaptive chosen-message
attack will not enable the enemy to "forge" signatures corresponding to any other
values of r. Thus the constructive method given in the proof cannot be applied! More
details can be found in 9.

5. General notation and conventions.
5.1. Notation and conventions for strings. Let a Co(ll.. "x be a binary string,

then c will denote the integer Yk=o ak2x- (Note that a given integer may have several
denotations, but only one of a given length.) The strings in {0, 1}* are ordered as
follows: if a and/3 are binary strings, we write a </3 if there exists a string y such
that a is a prefix of y, y has exactly the same length as/3, and </</3.

If is a /c-bit string, we let DFS (i)= {/3[/3 <-i}. (Imagine a full binary tree of
depth /c whose root is labelled e, and the left (right) son of a node labelled a is a0
(a l) and let DFS be the Depth First Search algorithm that starts at the root and
explores the left son of any node before the right son of that node. Then DFS (i)
represents the set of nodes visited by DFS up to and including the time when it reaches
node i.) Note that DFS (i) contains the empty string.

5.2. Notation and conventions for probabilistic algorithms. We introduce some
generally useful notation and conventions for discussing probabilistic algorithms. (We
make the natural assumption that all parties, including the enemy, may make use of
probabilistic methods.)

We emphasize the number of inputs received by an algorithm as follows. If
algorithm A receives only one input we write "A(. )," if it receives two inputs we write
"A(.,. )," and so on.

We write "PS" for "probability space;" in this paper we only consider countable
probability spaces. In fact, we only deal with probability spaces arising from probabilis-
tic algorithms.

If A(. is a probabilistic algorithm then, for any input i, the notation A(i) refers
to the PS which assigns to the string o- the probability that A, on input i, outputs o-.

We point out the special case that A takes no inputs; in this case the notation A refers
to the algorithm itself, whereas the notation A( refers to the PS defined by running
A with no input. If S is a PS, we denote by Ps(e) the probability that S associates
with element e. Also, we denote by [S] the set of elements which S gives positive
probability. In the case that [S] is a singleton set {e} we will use S to denote the value
e; this is in agreement with traditional notation. (For instance, if A(. is an algorithm
that, on input i, outputs 3, then we may write A(2)= 8 instead of [A(2)] {8}.)

Iff(. and g(., .) are probabilistic algorithms thenf(g(., .)) is the probabilis-
tic algorithm obtained by composing f and g (i.e., running f on g’s output). For any
inputs x, y,... the associated probability space is denoted f(g(x, y,...)).

If S is a PS, then x-S denotes the algorithm which assigns to x an element
randomly selected according to S; that is, x is assigned the value e with probability
Ps(e).
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The notation P(p(x,y,...)lxS; y T;...) will then denote the probability
that the predicate p(x, y, .) will be true, after the (ordered) execution ofthe algorithms
x -S, y - T, etc.

We let t denote the set of probabilistic polynomial-time algorithms. We assume
that a natural representation of these algorithms as binary strings is used. By 1 k we
denote the binary representation of integer k, i.e.,

k

6. The complexity theoretic basis of the new scheme. A particular instance of our
scheme can be constructed if integer factorization is computationally difficult. However,
we will present our scheme in a general manner without assuming any particular
problem to be intractable. This clarifies the exposition, and helps to establish the true
generality of the proposed scheme. We do this by introducing the notion of a "claw-free
permutation pair," and by showing the existence of such objects under the assumption
that integer factorization is difficult.

This section builds up the relevant concepts and definitions in stages. In 6.1 we
give a careful definition of the notions of a trap-door permutation and a trap-door
permutation generator. These notions are not directly used in this paper, but serve as
a simple example of the use of our notation. (Furthermore, no previous definition in
the literature was quite so comprehensive.) The reader may, if he wishes, skip 6.1
without great loss.

In 6.2 we define claw-free permutation pairs and claw-free permutation pair
generators.

In 6.3 we show how to construct claw-free permutation pair generators under
the assumption that factoring is difficult.

Finally, in 6.4 we show how to construct an infinite family of pairwise claw-free
permutations, given a generating pair fo, fl, of claw-free permutations.

Altogether, then, this section provides the underlying definitions and assumptions
required for constructing our signature scheme. The actual construction of our signature
scheme will be given in 7 and 8.

6.1. Trap-door permutations. Informally, a family of trap-door permutations is a
family of permutations f possessing the following properties:

It is easy, given an integer k, to randomly select permutations f in the family
which have /c as their security parameter, together with some extra "trap-door"
information allowing easy inversion of the permutations chosen.

It is hard to invert f without knowing f’s trapdoor.
We can interpret the two properties above by saying that any user A can easily

randomly select a pair of permutations, (f, f-l), inverses of each other. This will enable
A to easily evaluate and invert f; if now A publicizes f and keeps secret f-l, then
inverting f will be hard for all other users.

In the informal discussion above, we used the terms "easy" and "hard." The term
"easy" can be interpreted as "in polynomial time"; "hard," however, is of more difficult
interpretation. By saying that f is hard to invert we cannot possibly mean that f-
cannot be easily evaluated at any of its arguments. We mean, instead, that f- is hard
to evaluate at a random argument. Thus, if one wants (as we do) to use trap-door
functions to generate problems computationally hard for an "adversary," he must be

For example, any f can be easily inverted at the image of a fixed argument, say 0. In fact, we may
consider inverting algorithms that, on inputs x and f, first check whether x =f(0).
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able to randomly select a point in the domain off and f-1. This operation is easy for
all currently known candidates of a trap-door permutation, and we explicitly assume
it to be easy in our formal treatment.

DEFINiTiON. Let G be an algorithm in Yt that on input 1 k, outputs an ordered
triple (d,f,f-) of algorithms. (Here D [d( )] will denote the domain of the trap-door
permutation f and its inverse f-.) We say that G is a trap-door permutation generator
if there is a polynomial p such that

(1) Algorithm d always halts within p(k) steps and defines a uniform probability
distribution over the finite set D [d )]. (That is, running d with no inputs uniformly
selects an element from D.)

(2) Algorithms f and f- halt within p(k) steps on any input x D. (For inputs
x not in D, the algorithms f and f-1 either loop forever or halt and print an error
message that the input is not in the appropriate domain.) Furthermore, the functions
xf(x) and xf-(x) are permutations of D which are inverses of each other.

(3) For all (inverting) algorithms I(.,.,., Ytsg, for all c and sufficiently large
k:

P(y=f-l(z)l(d, ff-1)-G(l’); z <- d(); y<- 1(1 ’, d,f, z))<k-.
We make the following informal remarks corresponding to parts of the above

definition.
(1) This condition makes it explicit that it is possible to sample the domain of f

in a uniform manner.
(3) This part of the definition states that if we run the experiment of generating

(d, f, f-l) using the generator G and security parameter k, and then randomly generating
an element z in the range of f, and then running the "inverting" algorithm I (for
polynomially in k many steps) on inputs d, f, and z, the chance that I will successfully
invert f at the point z is vanishingly small as a function of k.

DEFINITION. If G is a trap-door permutation generator, we say that [G(I)] is
a family of trap-door permutations. We say that f and f-1 are trap-door permutations if
(d,f,f-1)[G(l)] for some k and trap-door permutation generator G.

6.2. "Claw-free" permutation pairs. The signature scheme we propose is based
on the existence of "claw-free" permutation pairs; informally, these are permutations
fo and fl over a common domain for which it is computationally infeasible to find a
triple x, y, and z such that fo(x)=f(y)= z (a "claw" or "f-claw"--see Fig. 1).

DEFINITION. Let G be an algorithm in that, on input 1, outputs an ordered
quintuple (d, fo, f-l, fl, f-) of algorithms. We say that G is a claw-free permutation
pair generator if there is a polynomial p such that:

(1) Algorithm d always halts within p(k) steps and defines a uniform probability
distribution over the finite set D [d )].

FIG. 1. A claw.
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(2) Algorithms fo, f-l, fl and f-l halt within p(k) steps on any input x D. (For
inputs x not in D, these algorithms either loop forever or halt with an error message
that the input is not in the necessary domain.) Furthermore, the functions xfo(x)
and xfl(x) are permutations of D which are inverses of each other, as are xfl(x)
and X"f?l(x).

(3) For all (claw-making) algorithms I(.,., .,.) s4, for all c and sufficiently
large k:

P(fo(x) =fl(Y)= zl(d, fo,f,fl,fCl) +- G(lk); (x, y, z) I(1 k, d, fo,fl))< k-c.
Note. It would be possible to use a variant of the above definition, in which the

functionfmay actually return answers for inputs outside of D as long as it is understood
that the difficulty of creating a "claw" applies to all x, y for which the function f
returns an answer. Thus, it should be hard to find any triplet (x,y, z) such that
fo(x) =fl(Y)= z even when x, y are not in D. We do not pursue this variation further
in this paper.

DEFINITION. We say that f= (d, fo,fl) is a claw-free permutation pair (or claw-free
pair for short) if (d, fo,fl,fl,f?l)[G(lk)] for some k and claw-free permutation
pair generator G. In this case, f-1 will denote the pair of permutations

6.2.1. Claw-free permutation pairs versus trap-door permutations. In this subsection
we clarify the relation between the notions of claw-free permutation pairs and trap-door
permutations, by showing that the existence of the former ones implies the existence
of the latter ones. (Since trap-door permutations are not used in our signature scheme,
this subsection can be skipped by the reader without loss of clarity.)

CLAIM. Let G sd be a claw-free permutation generator. Then there exists a
G sd which is a trap-door permutation generator.

Proof The algorithm ( is defined as follows on input 1 k" Run G on input 1 k.
Say, G outputs the ordered tuple (d, fo,fl,fl,fl). Then, ( outputs (d, fo,fl).

We now show that G is a trap-door permutation generator. Assume for contradic-
tion that it is not the case. Namely, there exists a constant c> 0 and an inverting
algorithm I(.,., .,. )s such that for infinitely many k:

P(fo(y) zl(d, fo,fffl) t(lk); z <-- d( ); y [(1 k, d, fo, z)) k-c.
Note now, that since fl is a permutation, algorithms fl(d (.)) and d (.) both define

the uniform probability distribution over [d( )]. Thus, for infinitely many k,

P(f(x) fo(Y)

zl(d, fo,f’,fl,f) G(lk); x +- d( ); z -fl(x); y- [(1 k, d, fo, z))>= k-c.
Let I(.,., .,.) be the following inverting algorithm" On input 1 k, d, fo and

compute x-d( ), zf(x), y-[(1 k, d, fo, z) and output (x, y,z).
Then, I is in s and for infinitely many k,

P(fo(x) =fl(Y)= z[(d, fo,fl,fl,f;-1) - G(lk); (x, y, z) I(1 k, d, fo,fl)) >- k-.
This contradicts G being a claw-free permutation generator and thus G must be

a trap-door permutation generator.
We note, however, that the converse to the above claim may be false. For example,

the pair of ("RSA") permutations over Z,*= {1 <-x <- n" gcd (x, n)= 1}, defined by

fo(x) x (mod n) and f(x)-- x (mod n)

(where gcd (b(n), 15)= 1) is not claw-free" since the two functions commute it is easy
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to create a claw by choosing w at random and then defining x-=fa(w), y =-fo(w), and

z =fo(x)=-fa(Y) =- w as (mod n).
However, it is likely that fo and fa are trap-door permutations.

In practice, one may want to relax the definition of a claw-free permutation pair
generator slightly, to allow the generator to have a very small chance of outputting
functions fo and fl which are not permutations. We do not pursue this line of develop-
ment in this paper.

6.3. Claw-free permutations exist if factoring is hard. The assumption of the
existence of claw-free pairs is made in this paper in a general manner, independent
of any particular number-theoretic assumptions. Thus, instances of our scheme may
be secure even if factoring integers turns out to be easy. However, for concretely
implementing our scheme the following is suggested.

We first make an assumption about the intractability of factoring, and then exhibit
a claw-free permutation pair generator based on the difficulty of factoring.

Notation. Let

Hk:{n:p" q[ipl=lql=k,p=-3 (mod8), q=-7(mod8)}
(the set of composite numbers which are the product of two k-bit primes which are
both congruent to 3 modulo 4 but not congruent to each other modulo 8), and let
H=UkH.

Remark One way to choose "hard" instances for all known factoring algorithms
seems to be to choose k to be large enough and then to choose n randomly from Hk.

These numbers were used in [Wi80] and their wide applicability to cryptography
was demonstrated by Blum in [B182]; hence, they are commonly referred to as "Blum
integers."

Let Qn denote the set of quadratic residues (mod n). We note that for n H:
-1 has Jacobi symbol +1 but is not in Qn;
2 has Jacobi symbol -1 (and is not in Qn).

We also note that every x Qn has exactly one square root y Q,, but has four
square roots y, -y, w, -w altogether (see [B182] for proof). Roots w and -w have
Jacobi symbol -1, while y and -y have Jacobi symbol +1.

The following assumption about the intractability of factoring is made throughout
this section.

Intractability Assumption for Factoring (IAF). Let A be a probabilistic polynomial-
time (factoring) algorithm. Then for all constants c > 0 and sufficiently large k

1
P(x is a nontrivial divisor of n[n Hk( ); x-A(n))<--77.

K-

(Here we have used the notation n H() to denote the operation of selecting an
element of H uniformly at random.)

Define fo,, and fl,, as follows:

x (mod n)
fo,, (x) _x2 (mod n

4x (mod n)
fl,,(x) _4x2 (mod n)

if x2 (mod n) < n/ 2,
if x (mod n) >= n/2,
if4x: (mod n) < n/2,
if 4x2 (mod n) >= n/2.

The common domain of these functions is

()=1 and 0<x < n/2};
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it is easy to see that the range of these functions is included in Dn for n H. Note
also that it is easy to test whether or not a given element x is a member of Dn, since
Jacobi symbols can be evaluated in polynomial time.

We now show that fo.. and fl.. are actually permutations of D. for n H. Suppose
fo,n is not a permutation of Dn; then there exist distinct elements x, y in Dn such
that fo,.(x) =fo..(Y). This can only happen if x2= y2 (mod n), which would imply that
x= +y (mod n). But this is impossible if x and y are both in Dn, thus proving that
fo,. is a permutation. The proof for fl.. is similar.

Not only are fo.. and f.. permutations of D. when n H, but their inverses are
easily computed, given knowledge ofp and q. Given p and q, it is easy to distinguish
quadratic residues (mod n) from nonresidues with Jacobi symbol equal to 1; this ability
enables one to negate the input to the inverse function if necessary in order to obtain
a quadratic residue (mod n). Of course, dividing by 4 is easymthis step is needed only
for inverting fl.n. Next, taking square roots (mod n) is easy, since we can take square
roots modulo p and q separately (making sure to pick the square root which is itself
a quadratic residue) and combine the results using the Chinese Remainder Theorem.
Finally, the result can be negated (mod n) as necessary in order to obtain a result in

D.. Since all of these steps are computable in polynomial time, each of the inverse
functions f( and fl-,ln is computable in polynomial time, given p and q as additional
inputs.

THEOREM 1. Under the IAF, the following algorithm G is a claw-free permutation
pair generator. On input 1 k, G.

(1) Generates two random primes p and q of length k, where p---3 (mod 8) and
q 7 (mod 8),

(2) Outputs the quintuple

(d, fo,,,f(-,,,f,,,f
where

(a) Algorithm d generates elements uniformly at random in
(b) Algorithms f0,n and f, are as described in the above equations,
(c) Algorithmsfff,, andf, are algorithmsfor the inversefunctions (these algorithms

make use ofp and q).
Proof. We first note that uniformly selecting k-bit guaranteed primes can be

accomplished in expected polynomial (in k) time (by the recent work of Goldwasser
and Kilian [GK86]) and that asymptotically one-quarter of these will be congruent to
3 (mod 8) (similarly for those congruent to 7 (mod 8)). (In practice, one would use a
faster probabilistic primality test such as the one proposed by Solovay and Strassen
[SS77] or Rabin [RaS0].)

Let n H and (d, fo,,f(-,,f,n,f,-,)[G(lk)]. First, fo, andf, are permutations
of D, [d )]. Then, we need only show that if there exists a fast algorithm that finds
x and y in Dn such that fo,(x)=fl,n(y) (mod n) (i.e., a claw-creating algorithm) then
factoring is easy. Suppose such an x and y have been found. Then x2 4y2 (mod n).
(Note that xe--- -4y2 (mod n) is impossible: since 4ye is a quadratic residue (mod n),
-4y2 cannot be a quadratic residue (mod n), for n H.) This implies that (x +2y)
(x-2y)-=0 (mod n). Moreover, we also know that x +2y (mod n), since (x/n)= 1
and (2y/n)=-1. Thus gcd (x+2y, n) will produce a nontrivial factor of n.

6.4. An infinite set of pairwise claw-free permutations. For our scheme we need
not only claw-free pairs of permutations, but an infinite family of permutations which
are pairwise claw-free and generated by a single claw-free pair f= (d, fo,f).
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We define the function f(. for any string 6 {0, 1}+ by the equation:

f(X) "--f/0(fl ( (fid_l(fid(X))’"

if i= ioil"’" ia_lia. (Also, read f-l as (f)- so that f[l(f(x))= x.)
Each f is a trap-door permutation: it is easy to compute fi(x) given fo, fl, i, and

x, and to compute f[(x) if f6- and f- are available. However, given only fo and
it should be hard to invert f/ on a random input z, or else fo and fi are not trap-door
permutations. (By inverting f on a random input we also effectively invert fo on a
random input, where io is the first bit of i.)

This way of generating an infinite family of trap-door permutations was also used
in [GMY83].

Looking ahead, we shall see that a user A of our scheme can use the f’s to perform
basic authentication steps as follows. Let us presume that A has published fo and f
as part of his public key, and has kept their inverses f- and f- secret. If user A is
known to have authenticated a string y, then by publishing strings and x such that

f(x)=y,

he authenticates the new strings and x.
For this to work, when the signer A reveals f-(y), he should not enable anyone

else to compute f-(y) for any other j.
The signer achieves this in our scheme by coding using a prefix-free mapping

(.). This prevents an enemy from computing f(x) from f,(x) in an obvious way
since (j) is never a prefix of (i). The following Lemma 1 shows that this approach is
not only necessary but sufficient.

Note. Actually, the mapping (.) that we use is a one-to-one mapping from tuples
of strings of bits to strings of bits. The mapping (.) is prefix-free in the sense that
(al," ", an) is never a prefix of (bl,. ., b,,) unless n rn and a b,...,
Any prefix-free mapping is usable if it and its (partial) inverses are polynomial-time
computable and the lengths of a,..., an and (a,- , a,) are polynomially related.
For concreteness, we suggest the following encoding scheme for the tuple of strings
a,. ., a,. Each string ai is encoded by changing each 0 to 00 and each 1 to 11, and
the encoding is followed by 01. The encodings of al,..., an are concatenated and
followed by 10.

Lemma 1 essentially says that if (d, fo, fi) is a claw-free pair, then it will be hard
to find two different tuples of strings and j, and elements x and y such that
f(i)(x ---f(j)(y).

LEMMA 1. Let f= (d, fo, f) be a claw-free pair, x and y be elements of d and i, j
two different tuples ofbinary strings such that there exists a string z such that z
f(j>(y). Then there exists an f-claw (x, x2, x3) where x3 f[ (z) for some prefix c of (i).

Proof Let c {0, 1}* be the longest common prefix of (i) and (j). Such a c must
exist since (.) is a prefix-free encoding scheme. Thus, setting x3 <--f-(z), x <-f-o(Z),
and x<-f(z), we obtain an f-claw (x, x2, x3). (If c is the empty string then f-
denotes the identity function, so x3 z.) Note that the f-claw is easily computed from
f x, and y. [:]

7. Building blocks for signing. In this section we define the basic building blocks
needed for describing our signature scheme. In 8, we will define what a signature is
and how to sign, using the objects and data structures introduced here.

Assumption. We assume from here on that all claw-free functions used are defined
over domains which do not include the empty string e.
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This assumption is necessary since we use e as a "marker" in our construction;
note that it is easy, via simple recodings, to enforce this construction if necessary.

We begin by defining the essential notion of an f-item.
DEFINITION. Let f=(ds, fo,f) be a claw-free pair. A tuple of strings

(t, r; c,..., e,,) is an f-item if

fc,,...,c,,>(t)--r.

DEFINITION. In an f-item (t, r; c,. ., Cm),
is called the tag of the item,

r is called the root of the item, and
the ci’s are the children of the item. We note that the children are ordered, so

that we can speak of the first child or the second child of the item.
Note that given a claw free pair f and a tuple it is easy to check if the tuple is

an f-item by applying the appropriate ji> to the tag, and checking if the correct root
is obtained.

Figure 2 gives our graphic representation ofanf-item (t, r; Cl, c2) with two children.
DEFINITION. We say that a sequence of f-items L1, L2,’’’, Lb is an f-chain

starting at y if, for 1, , b- 1, the root of Li+ is one of the children of Li and y
is the root of L1. We say the chain ends at x if x is one of the children of the item Lb.

r

t

C2

FIG. 2. An f-item with two children.

For efficiency considerations, our signature scheme will organize a collection of
a special-type of f-chains in the treelike structure defined below.

DEFINITION. Let be a binary string of length b and f a claw-free pair. An f-i-tree
is a bijection T between DFS (i) and a set of f-items such that:

(1) if string j has length b, then T(j) is an f-item with exactly two children,
exactly one of which is e, the empty string. These f-items are called bridge items.

(2) if string j has length less than b, then T(j) is an f-item with exactly two
children, Co and Cl, both of which are nonempty strings. Moreover, Co, the Oth child,
is the root of T(jO) and Cl, the 1st child, the root of T(jl).

The f-item T(j) is said to be of depth b if string j has length d. (The bridge items
are thus the items of depth b.) The root of T is the root of the f-item T(e). The internal
nodes of T are the root and the children of the f-items of depth less than b. The leaves
of T are the nonempty children of the bridge items. Thus the internal nodes and the
leaves of an f-i-tree are actual values and not f-items. Leaves possess binary names of
length b; leaf j is the nonempty child of bridge item T(j). The path to leafj =jo’"jb
is the f-chain T(e), T(jo), ", T(jo’" "jb).
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FIG. 3. An f- lO0-tree.

Binary f-items

Bridge f-items

g-items

Figure 3 gives our graphic representation of an f-100-tree, as it would be used in
our signature scheme. In this figure we denote by r[ the root of f-item T(i), and by
rg the leaf (nonempty) child of bridge item T(i). (Also present in Fig. 3 are a number
of "g-items," which are not part of the f-100 tree but are attached to it in a manner
to be described.)

There are two reasons for letting the bridge items of an f-i-tree have the empty
string as one of their children. First, it makes them de facto f-items with only one
child, a subtle point in our proof of security that is pointed out in Remark 1. Second,
it makes them distinguishable from items with two children, a simple point used, for
instance, in Lemma 2.

8. Description of our signature scheme.
8.1. Message spaces. The security properties of the new signatures scheme hold

for any nonempty message space M c {0, 1}+.
8.2. How to generate keys. We assume the existence of a claw-free permutation

pair generator G and, without loss of generality, that the bound B on the number of
signatures that can be produced is a power of 2: B 2b.

The key-generation algorithm K runs as follows on inputs 1 k and 2b:
(1) K runs G twice on input 1 k to secretly and randomly select two quintuples

(dr, fo,f’,f,,f?’ and (dg, go, gl,g,,g-(’)6[G(lk)].

(2) K then randomly selects r{ in Dr [dr( )].
(3) K outputs the public key PK =(f, rf, g, 2b) where f is the claw-free pair

(dr, fo,f,) and g is the claw-free pair (dg, go, gl).
(4) K outputs the secret key SK (f-’, g-’).

The PK and SK so produced are said to be (matching) keys of size k.
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8.3. What is a signature? A signature of a message m with respect to a public key
(f, r{, g, 2b) consists of the following:

(1) An f-chain of length b + 1 starting at a string r{ and ending at rg, and
(2) A g-item with rg as its root and m as its only child.

8.4. How to sign. In the remainder of this section we shall presuppose that user
A’s public key is PK (f,, r{, g, 2b) where f= (dy, fo,fl) and g= (dg, go, gl). User A’s
secret key is SK (f-, g-i). We denote by Ds the domain [df( )], and denote by Dg
the domain [dg( )] similarly.

Conceptually, user A creates an f-lb-tree T, which has 2b leaves. The root of T
will be rf. The other internal nodes of T are randomly selected elements of Dy. The
leaves of T are randomly selected elements of Dg.

To sign mi, the ith message in the chronological order, user A computes a g-item
Gi whose root r Dg is the ith leaf of T, and whose only child is the message mi. He
then outputs, as the signature of mi, G and the f-chain in T starting at root ry and
ending at leaf r.

In practice, it will be undesirable for user A to precompute and store all of T. He
will instead "grow" T as needed and try to optimize his use of storage and time. This
is taken into account by our signing procedure. In what follows, we describe a variation
of our signing method that requires the signer to remember just his secret key and his
most recently produced signature, in order to produce his next signature. The reader
may find it helpful to refer to Fig. 3 while reading this description.

The signing procedure (also called ff’9). We presume that the procedure is initial-
ized with the values of the public key PK and the corresponding secret key SK in its
local private storage, that has already signed messages mo, m,..., m_ and kept
track of the number of previous messages signed (i.e., the variable i= io" ib-, which
is a b-long bit string, which may contain leading O’s), and the most recent signature
produced.

To compute a signature for message mi, the ith message, user A performs the
following steps.

(1) Output f-chain.)
(1.1) (Output f-items in common with previous signature.) If 0b this substep is

skipped, and control passes to step (1.2). Otherwise, for each string j which
is a common prefix of and i- 1, he outputs the f-item (tf, rf; rfo, rfl) which
was part of the signature for message mi_, in order of increasing length of j.

(1.2) (Output new f-items in f-tree.) For each string j (if any) which is a proper
prefix of i, but not a prefix of i-1, user A creates and outputs an f-item
T(j), in order of increasing length ofj. The f-item T(j)= (tf, rf; rfo, r) is
created as follows" Ifj e its root rf is the r{ from the public key; otherwise
it is the kth child of the most recently output f-item, where k is the last bit
of the string j. The children rfo and ri of the f-item with root rf are chosen
at random from D-. The tag tf=fio,r>(rf) is computed using f- and f-
from the secret key. Note that the last item output (by either step (1.1) or
(1.2)) has r{ as one of its children.

(1.3) (Output bridge f-item.) User A next outputs a single f-item with root r( and
gwhose children are e and r, a randomly chosen element from Dg. The tag

t{ for this item is again computed using the secret trap-door information
for inverting fo and f.

(2) (Output g-item.) Finally, user A outputs the g-item G (t, r; rn). The tag
t for this item is computed using the g- from the secret key.
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The items output by the above procedure constitute a signature for mi. Notice
that there are many possible signatures (among which A chooses one at random) for
each occurrence of each message, but only one signature is actually output.

The reader may verify that the above procedure for producing a signature will
have a total running time which is bounded by a polynomial in k and b.

Notice that if A has signed messages, the function T mapping each string
j DFS(i) to f-item T(j) is an f-i-tree as defined in 7.

8.5. How to verify a signature. Given A’s public key (f rs, g, 2b), anyone can
easily verify that the first b + 1 elements in the signature of mi are f-items forming an

f-chain starting at r and ending at r, and that the g-item in the signature has r/g as
its root and mi as its only child. If these checks are all satisfied, the given sequence
of items is accepted as an authentic signature by A of the message mi.

It is easy to confirm that these operations take time proportional to b times some
polynomial in k, the size of the public key.

8.6. Efficiency of the proposed signature scheme. Assume that if f (dy, fo, f) is a
claw-free pair of size k, then an element of D/is specified by a k-bit string. Then the
time to compute a signature for a message m of length is O(bk) f-inversions (i.e.,
inversions of fo or f) and O(l) g-inversions.

Another relevant measure of efficiency is "amortized" time. That is, the time used
for producing all possible 2b signatures divided by 2. In our scheme, the amortized

"f-inversion" cost is O(k). The amortized "g-inversion" cost is 0(I) if the average
length of a message is 1.

The length of the signature for rn is O(bk+ 1), where is the length of m, as m
is included in rn’s signature as the child of the g-item. Clearly, if m is known to the
signature recipient, the g-item need not include m: it suffices to give its root and its
tag. This way the length of the signature can be only O(bk) long, which is independent
of the length of m and possibly much shorter.

The memory required by the signing algorithm is O(bk), since it consists of storing
(the f-items in) the most recently produced signature.

9. Proof of security. Let us start by establishing a convenient terminology.
DEFINITION. We call signature corpus the first (for some > 0) signatures output

by our signing procedure 6e. We shall generally use the symbol b to denote a signature
corpus.

We define the following quantities relative to a signature corpus b, consisting of
signatures relative to a public key PK (f, rye, g, 2).

(1) The set of items of S, denoted by (5e), is the set of the items in the signatures
of Ae.

(2) The set of f-items of 6e, denoted by f(b), is the set off-items in (6e).
(3) The set of g-items of 6e, denoted by g(Ae), is the set of g-items in
(4) The set of messages of b, denoted M(6e), is the set of messages signed by

i.e., the set of children of the g-items of
(5) The f-tree of 6e, denoted by -Y(Ae), is the f-i-tree having root ry and, as path

to leaf j (j 0,..., i), the f-chain of the jth signature of
(6) The set of internal nodes of b, denoted by (b), is the set of the internal

nodes of -f(s).
(7) The set of nonroots of , denoted by (ow), is the set of those internal nodes

of 3-f(5e) that are not the root of any f-item of ow. We may think of these nodes as
"hooks" from which additional f-items will be grown as new signatures are created.

(8) The set of leaves of 0, denoted (Sf), is the set of leaves of
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Notice that all the above sets are unambiguously defined. For instance, an item
in f(3) has exactly two children while an item in g(Se) only one, the bridge elements
of (6e) have exactly one empty child and thus are distinguishable from other items
in f(Sf), and so on.

Some of these definitions can be observed in Fig. 3. For example, the leaves of
f rofol rof rofl rlfoo and its nonroots are rlfol and r.the f-100-tree in Fig. 3 are rooo, o, 1,

Let us now see how the signature of a message never signed before relates to a

given signature corpus.
LEMMA 2. Let 3 be a signature corpus relative to a public key PK (f, rye, g, 2b)

and let (r be a signature (relative to the same public key) of a message m not belonging
to M(3). Denote by (tr) the set of items in r. Then (or) (6f) the set ofnew items)
contains either

(1) a g-item with root r (6f), or

(2) an f-item with root r

Proof First notice that (cr)-(3) is not empty as it contains G, the g-item of
o-. In fact, G cannot belong to f(3), as it is a g-item, and cannot belong to g(Se), as
m is its only child and all items in g(Se) have elements of M(3) as their children.
Assume (r)-(Se) also contains an f-item. Then this f-item belongs to F, the f-chain
of o- whose first item has r{ as root, one of the internal nodes of 5f. Thus, for some
item in F, (2) holds. Assume now that (o-)-(Se)--G. Then the root of G is the
nonempty child of B, the bridge f-item of o-. By hypothesis, B is in (Se); thus, the
root of G belongs to (Se) and (1) holds.

Recall Lemma 1 from 6.4:
LEMMA 1. Let f--(d, fo,f) be a claw-free pair, x and y be elements of d and i, j

be two different tuples of binary strings such that there exists a string z such that
z=f(i>(x) =f(>(y). Then there exists an f-claw (x, x2, x3) where x3=fl(z) for some

prefix c of i).
We can now prove Lemma 3:
LEMMA 3. There exists a polynomial-time algorithm A that, on input, a corpus 3

relative to a public key PK (f rYe, g, 2b) and the signature (r of message not belonging
to M 3) finds either

(1) a g-claw, or

(2a) an f-claw, or

(2b) an f-item whose root belongs to f(3).
Proof (The cases are numbered according to the corresponding cases in Lemma

2.) If ease (1) of Lemma 2 holds for 5f and o-, then we have two g-items with the same
root r in (Se). Namely, an i, j, x and y such that g<i>(x)--g<>(y)= r and we get a
g-claw by Lemma 1. Otherwise, if case (2) of Lemma 2 holds, let F be the f-item that
satisfies condition (2) of Lemma 2. If F has the same root as some F’f(Se), then
again by Lemma 1, we get an f-claw; otherwise, we get an f-item whose root belongs
to Af(6e). [3

Remark 1. Notice that if o- is generated by the legal signer (i.e., the 5e procedure)
then, with very high probability, case (2b) will hold in Lemma 3.

In the proof of the main theorem we will assume that there exists a successful
adaptive chosen-message attack, and derive a contradiction by showing that this attack
would enable an enemy to easily create either an f-claw or a g-claw with sufficiently
high probability. Recall that in an adaptive chosen-message attack the enemy can
repeatedly use the real signer as an "oracle" before attempting to forge a new signature.
The next lemma, Lemma 4, essentially states that the signing process can be simulated
perfectly by an efficient algorithm that knows the public key and only half of the secret
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key: the inverses of the first claw-free pair. (That is, in some sense, this algorithm is
a forger.)

To state Lemma 4, additional notation regarding "interactive" probabilistic
algorithms, needs to be introduced. The notion of an adaptive, chosen-message attack
involves the interaction of two algorithms: 5e9 (the signer) and 5e (the signature
requestor). These algorithms "take turns": 5e requests a signature of a given message,
owow signs it, 5e requests a second signature, 5eSe signs it, and so on. We might view
the two routines as "co-routines" that pass control back and forth while preserving
their own state. We formalize this interaction by means of the combining algorithm
that defines a composite algorithm from two auxiliary ones. The combining algorithm
c will invoke repeatedly 5eSe and ow in alternation, corresponding to their taking
turns. The algorithms 5eSe and 9 have private-state variables (denoted V and V)
that are preserved from invocation to invocation. Algorithm Scow (which produces
signatures) takes as input a public key PK, an auxiliary input X (which for the moment
is unspecified but will later denote either the corresponding secret key SK or part of
it), a new message to sign, and its private-state variable. It produces as output a
signature for the new message and an updated version of its private-state variable.
Similarly, 9 is a probabilisitic algorithm which takes as input a public key, a sequence
of previous signatures relative to that public key, and its private-state variable, and
produces as output a message to be signed and an updated version of its private-state
variable.

The following algorithm makes specific the process of combining owSe and
ALGORITHM ((oq)oqa, 5e; PK, X, i)
Set
Set E and E to .
for j--0 to do:

mj, V 9 PK, {9 , 9_}, V (Request signaturefor message
(, Ve) 9(PK, mj, Vze, X). (Produce signature for message
Output .

Here denotes the signature of the jth message.
We extend our notation of probabilistic algorithm in a natural way by letting

c(99, 9; PK, X, i) represent the probability space that assigns the sequence tr the
probability that c outputs tr after invoking alternatively (for times) owow (with initial
input PK and X) and 9 (with initial inputs PK).

We can now state Lemma 4, stating that the signing process can be simulated
effectively if the f/’s inverses are known but the gi inverses are not.

LEMMA 4. There exists an algorithm 4 in4 such thatfor all requestors5 4,
for all public keys PK (f, rf, g, 2b) and for all nonnegative integers < 2b,

c(4, 9; PK, {f-l}, i)= c(9, 9; PK, SK, i)
(where 9 is the legal signing process of 8, and SK is the corresponding secret key to
PK).

Proof. Consider the following algorithm . We inductively assume that

(, 9; PK, {f-l}, i- 1)= c(9, 9; PK, SK, i- 1).
Thus the f-chains in the first i-1 signatures output by c uniquely define an f-
(i-1)-tree T. Algorithm stores i-1 and the f-chain of the last produced signature
and executes the following instructions to sign m, the ith message, where io" lb.

(1) (Authenticate mi with a g-item.) Pick an element t at random in D and
compute r g<mi>(tg) SO as to generate the g-item (t, rg; mi).
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(2) (Build thef-chainfrom r{ to rYi to the extent that it is not already done.) Compute
ioi i, the longest proper prefix of that is also a prefix of i- 1. For x 1
to b-j, generate T(io’’’i/x), an f-item whose root is the ij/xth child of
T(io...i/_), and whose two children are independently and randomly
selected elements of Ds. (Algorithm easily computes the tag of this new

f-item by using f-.)
(3) (Create the bridge item authenticating r;.) Using f-i and f-l, create an f-item

with children e and rg and having as root the ibth child of T(io’’" ib-).
(4) (Outputsignature ofmi) Output T(e), T(io), ", T(io ib-), the newbridge

item T(io,.’’, ib) and the new g-item. [3
-1In Lemma 6 we show a similar result: the signing process can be simulated if g

is known, but f- is not. The proof of Lemma 6 makes essential use of the fact that
there is a known upper bound on the number of signatures to be produced. (The bound
provides a limit on the amount of a preprocessing step that is the subject of Lemma 5.)

There is, however, a very important difference between the signing simulation
procedure described in Lemma 4 (which uses f- but not g-) and that of Lemma 6
(which uses g- but not f-). The proof of Lemma 4 works with any fixed root r,
which can be fixed arbitrarily before the simulation procedure is invoked.

By contrast, the signing simulation procedure of Lemmas 5 and 6 actually produces
the necessary root r{ to be part of the public key in its preprocessing step. The root
produced is uniformly distributed over Ds. Thus, from the point of view of an observer
that monitors the behaviour of the signer when he publishes his public key, the
preprocessing step is indistinguishable from a genuine key generation step. Moreover,
by monitoring the signing process, the observer cannot tell whether the signer really
knowsf- or if he has first applied the preprocessing procedure of Lemma 5 to produce
his public file and only then applied the simulation procedure of Lemma 6.

DEFINITION. For all strings ml,..., mi, let sequence(m,..., mi) denote the
trivial interactive algorithm that, no matter what inputs it gets, when invoked for the
jth time (j 1,..., i) outputs the string m.

Let us define two probability spaces over the f-i-trees which are crucial to our
analysis.

DEFINITION. Let PK (f, r{, g, 2b) and SK (f-, g-) be a pair of matching
public and secret key, where f= (dy, fo,fl). Recall that c is the combining algorithm.
Define two probability spaces, -,p: and -,y,g, as follows:

-i,pl is generated by randomly selecting ow in (5, sequence(ml, , m);
PK, SK, i) and then computing -Y(). (Note that -,p/ does not depend on
the values of the messages m,. ., mi but it does depend on i, the number of
messages.)
-,y,g,2 is generated by randomly selecting in c(, sequence(ml,..., mi);
(f, dy(), g, 2b), SK, i) and then computing -Y().

Informally, -i,pl is the probability space obtained from -,y,g,2 by randomly picking
rY Dy and fixing it in PK.

Notice that both probability spaces are easily generated if the secret key SK
(f-, g-i) is among the available inputs. However, both probability spaces remain
easy to generate on a more restricted set of inputs. It has been implicitly proved in
Lemma 2 that -,p: can be generated in probabilistic polynomial-time on inputs i, PK
and f-1 alone. The following lemma shows that -,.r,g2 is easily generated on inputs
i, f g, 2b alone.
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LEMMA 5. There exists - Rag such that for all claw-free pairs f= (dr, fo, fl) and
g (dg, go, gl) and for all integers < 2b,

-( i, f g, 2b) -i,y,g,2

Proof Consider the following algorithm that constructs an f-i-tree T in "reverse
order"; that is, it constructs f-item T(x) before f-item T(y) if y < x. (This is necessary
since - does not have access to f-1.) The construction goes as follows.

If string j DFS(i) has length b, - selects the nonempty child of T(j) at random
in Dg. Otherwise (if j has length shorter than b), - selects, as 0th child of T(j), the
root of T(jO) and, as 1st child, the root of T(jl). In case jl does not belong to DFS(i),- selects the second child of T(j) at random in Ds.

Having selected the two children Co and c of T(j), - selects its tag at random
in Ds. Then it computes the prefix-free encoding ((Co, c)) and selects as the root of
T(j) the element f<c>(t), which - easily computes using fo and f.

Notice that each T(j) so computed is a proper f-item and that the resulting T is
a proper f-i-tree belonging to -i,y,g,2 ]. Let us now analyze the probability distribution
according to which T has been selected.

First notice that the leaves of T (that is the nonempty children of the items of
depth b) have the same distribution of the leaves of an f-i-tree randomly selected in
-i,,g,2. In fact, in both cases, all leaves are uniformly and independently selected
elements of Dg. Then notice that the roots of the items of T of depth k (that is, the
children of the items of T of depth k-1) are selected uniformly and independently
in Dg. In fact, the root of each item is obtained by applying f<,>, a permutation of D
randomly selected from some probability space, to an element (the tag) independently
and uniformly selected in D. From this it easily follows that - selects T at random
in -,y,g. It is easily seen that -a and thus satisfies all the required properties
of our lemma.

LEMMA 6. There exists an algorithm ag Ygag such that for all signature requestors
5t’Y Rag,for all claw-freepairsf d, fo, f) andg dg, go, gl), andfor all nonnegative
integers < 2b,

cg(sd, 5F; (f ds(), g, 2b), {g-l}, i)= (5, oc’; (f dr(), g, 2b), {f-l, g-l}, i).

Proof Consider the following algorithm ag. In a preprocessing step, a runs
algorithm - of Lemma 5 to randomly select an f-i-tree T from T,,g,2. Let r{ be the
root of T. This root is used to construct the public file PK (f, r{, g, 2b), with respect
to which all subsequent signatures will be produced as follows, ag starts the signature
requestor owS on input PK. Then it simulates the signing procedure with initial inputs
PK and the corresponding secret key SK (f-, g-) without usingf-1 in the following
way. When outputs mj, the jth message to be signed, a retrieves the f-chain T,
the path from the root of T to leaf j. Then a computes the necessary g-item by using
g

Before stating and proving our Main Theorem, let us single out a simple lemma
stating that one cannot invert a claw-free pair on a randomly selected input of its domain.

LEMMA 7. Let G be a claw-free permutation pair generator. Then, for any inverting
algorithm I Rag, any c > 0 and sufficiently large k,

P(h0(z) x or hi(z) xl(d, ho, h’, hi, h-’)+- G(I’);

x -- dh( ); z - I(1 k, d, ho, hi)) % k-c.
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Proof Otherwise the following algorithm would find a claw with too high a
probability: randomly select y in dh, randomly select between 1 and 2, compute
x= hi(y) and run I to get z such that h(z)---x for j

We are now ready to formally state and prove our Main Theorem. We start by
strengthening the definition of existentially forgeable to include probabilistic success
on the part of the forger.

DEFINITION. We say that a signature scheme is e-existentially forgeable if it is
existentially forgeable with probability e where the probability space includes the
random choices of the adaptive chosen-message attack, the random choices made by
the legal signer in the creation of the public key, and the random choice made by the
legal signer in producing signatures.

It is very important to note that the random choices made in creating the public
key are included in the probability space; our proof depends critically on this definition.
The Main Theorem of this paper is the following.

MAIN THEOREM. Assuming that claw-free permutation pair generators exist, the
signature scheme described in 8 is not even 1/Q(k)-existentially forgeable under an
adaptive chosen-message attack, for all polynomials Q and for all sufficiently large k.

Proof of the Main Theorem. The proof proceeds by contradiction. We assume, for
the sake of contradiction, that for some polynomial Q and for infinitely many k our
signature scheme is 1/Q(k)-existentially forgeable under an adaptive chosen-message
attack by an algorithm ff in .

By definition, the forging algorithm ff consists oftwo algorithms in: a signature
requestor ff, which is active in a first phase when it adaptively asks and receives
signatures of messages of its choice, and a signature finder ffff, which is active in a
second phase when it attempts to forge a signature of a message not asked about by ff.

Let PK (f, r(, g, 2b) and SK be a public/secret-key pair of size k, randomly
selected by our key generator using a claw-free permutation pair generator G. In the
first phase a signature corpus b -c(9,; PK, SK, i) is generated, where i< 2b.
Then o%ff is run on input 0 and PK. Let ek denote the probability that o%ff outputs
or, a legal signature, with respect to PK, for a message m M(ow). (This probability is
taken over all the coin tosses of G, ff, o and

What we have assumed is that, for infinitely many k,

1
ek >=

Q( k)"

By Lemma 3, given O and tr, it is now easy to compute either
(1) a g-claw (i.e., a claw for the second claw-free pair in PK), or
(2) an f-claw (i.e., a claw for the first claw-free pair in PK), or
(3) an f-item whose root belongs to
Denote the probability that case (1), (2) or (3) hold, respectively, by 61, t2 and

63. Then, for infinitely many k, we have

tl(k) + t2(k) + 83(k)=> ek>

Thus either
(1’) there is an infinite set K1 so that for k K1
(2’) there is an infinite set K2 so that for k K2
(3’) there is an infinite set K so that for k K3

Q(k)"

6l(k) > 1/3Q(k), or
62(k) > 1/3Q(k), or
33(k) > 1/3Q(k).

We will show that either case leads to a contradiction.
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Assume case (1’) holds. Then consider the following algorithm in that, on
input 1 k and a claw-free pair h (dh, ho, h,) of size k, randomly selected by G, finds
an h-claw with sufficiently high probability.

ALGORITHM 1. Pun G on input 1 k to randomly select a quintuple
(df, fo,fl,fl,f?’). Select rfDf at random and construct the public key PK=
(df, fo,f,, rf, dh, ho, h,, 2b). (Notice that PK is a random public key of size k of our
signature scheme.) Randomly select the signature corpus (6e, o; PK, SK, i).
Though PK’s matching secret key SK is not totally known, this random selection can
be efficiently done as, by Lemma 4, there exists an ss such that
c(b,; PK, SK, i)= c(sd, ; PK, f-’, i). Now run ffff on input b and PK to
sign a new message. From this last signature and 6e, try to compute an h-claw.

Notice that, for k K1, Algorithm 1 will successfully compute an h-claw with
probability 6,(k)> 1/3Q(k). This contradicts the claw-freeness of G.

Assume now that either (2’) or (3’) holds. Consider the following algorithm in
sg, whose input is 1 k and a claw-free pair h (dh, ho, h,) of size k randomly selected
by G.

ALGORITHM 2. Run G on input 1 to randomly select a quintuple
(dg, go, g, g,, gT1) Randomly select the signature corpus

t c(t, t); (h, dh( ), g, 2b), {h -1, g-l}, i),

which can be done as by Lemma 6 there exists an algorithm s such that

cg(Se, g; (h, dh( ), g, 2b), {h-’, g-’t, i)= cg(ag,; (h, dh( ), g, 2b), g-l, i).

Then run oo on input 6e and PK.
Assume that case (2’) holds. Then, for k e K2, from the output of Algorithm 2 an

h-claw can be computed with sufficiently high probability to violate the claw-freeness
of G.

Finally, assume that case (3’) holds and k K3. Then, given a random x dh(),
the following algorithm will invert h on x with nonnegligible probability (contradict-
ing Lemma 7). 5 runs Algorithm 2 except that, when constructing -h (Oo) as in Lemma
5, it makes x the value of a randomly selected nonroot of 5. Notice that this operation
does not change the probability distribution of 5e. (Recall that the preprocessing
procedure of Lemma 5 just picks at random all the internal nodes of ow.) Thus ow is a
random signature corpus with respect to a randomly selected public key of size k.
Thus, from the output of Algorithm 2, 5 computes an h-item with root r

with probability 63(k)> 1/3Q(k). When this happens, with probability 1/IA/’ (Se)l, we
have r= x. Now, given the h-item computed, 5 can easily compute either h’(x) or
h-(’(x), and Lemma 7 is contradicted. This completes the proof of the Main
Theorem.

10. Variations and improvements. In this section we describe ways to improve the
efficiency of the proposed signature scheme without affecting its security.

10.1. Using &’s to sign rather than gT"s. This variation is of interest if it is
substantially easier to compute go or g, than to compute their inverses. In this case
steps (3) and (4) in the signing procedure can be replaced by:

(3) (Output g-item.) User A selects a random tDg, and (using go and
computes the root r of the g-item (t, r; m), and outputs this item.

(4) (Output bridge f-item.) Using his knowledge of f-’ and f-’, user A outputs
an f-item with root r( and an only child rg.
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Now each usage of gff or g-i has been replaced by a usage of go or gl.

Although one might be tempted to use this variation using one-way permutations
instead of trap-door permutations for the gi’s, this temptation should be resisted, since
our proof of security does not hold if this change is made.

10.2. Fast iterated square roots. As we saw in 6.3, if factoring is computationally
hard, a particular family oftrap-door permutations is claw-free. By using these permuta-
tions in a straightforward manner, we obtain a particular instance of our signature
scheme. Let us discuss the efficiency of this instance. The computation of f(x)
consists of computing the square root which has Jacobi symbol 1 and is less than n/2,
modulo a Blum-integer n. We can compute f?(x) as f(x/4). Computing g(x) and
g-((x) is the same, except for using the appropriate n. If n is k-bits long, this can be
done in O(k3) steps. Thus the signature of a k-bit message can be computed in time
O(b" k4), or in O(k4) amortized time.

This particular instance of our scheme can be improved in a manner suggested
in discussions with Oded Goldreich (see [Go86]--we appreciate his permission to
quote these results here). The improvement relates to the computation of f(x) (or

We note first of all that taking square roots modulo n is equivalent to taking uth
powers modulo n, where u. 2-- 1 (mod 4(n)), and where 4(n) is Euler’s phi function.
More generally, to find a 2th root of x modulo n one can raise x to the vth power
modulo n, where v-= u (mod 4(n)). Computing by first computing v and then
raising x to the vth power is substantially faster than repeatedly taking square roots.

To apply this observation, we note that the functions defined in 6.3 satisfy

rrev((y))

where "rev" is the operation which reverses strings and interprets the result as an
integer, where m is the length of (y), where all operations are performed modulo n,
and where the final sign is chosen to make the result less than n/2. The only computa-
tionally difficult portion here is computing a 2"th root. Using the observation of the
previous paragraph, the computation of such an f-inverse can be performed in time
proportional to the cube of the length of n, in the case that messages have the same
length k as n. Using these ideas, the signature of a k-bit message can be computed in
time O(b. k3), or in O(k3) amortized time.

10.3. "Memoryless" version of the proposed signature scheme. The concept of a
random function was introduced by Goldreich, Goldwasser and Micali in [GGM84].

Let Ik denote the set of k-bit integers. Let Wk denote the set of all functions from
I to I, and let F W be a set of functions from Ik to I. We say that F-- t_J F is
a polyrandom collection if:

(1) Each function in F has a unique k-bit index associated with it. Furthermore,
picking such an index at random (thereby picking an f e Fk at random) is easy.

(2) There exists a deterministic polynomial time algorithm that given as input an
index of a function f Fk and an argument x computes f(x).

(3) No probabilistic polynomial in k-time algorithm can "distinguish" between
W and F. Formally, let T be a probabilistic polynomial-time algorithm, that on input
k and access to an oracle Oy for a function f: Ik I outputs 0 or 1. Then, for all T,
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for all polynomials Q, for all sufficiently large k, the difference between the probability
that T outputs 1 on access to an oracle Os when f was randomly picked in Fk and
the probability that T outputs 1 on access to an oracle Oy whenf was randomly picked
in Wk is less than 1/Q(k).

In [GGM84] it was shown how to construct a polyrandom collection assuming
the existence of one-way functions. The existence of claw-free permutation pairs is a
stronger assumption, and thus implies the existence of a polyrandom collection. See
5.4 for an implementation of a claw-free family of functions based on factoring and

[GGM84] for details on how to construct a polyrandom collection.
Leonid Levin suggested the following use of a polyrandom collection in order to

reduce the amount of storage that a signer must keep from O(bk) to O(b) bits. His
suggestion also eliminates the need to generate new random numbers (e.g., rg) during
the signing process.

Let k denote the security parameter. In the secret key generation phase, in addition
to computing the secret trap-door pairs (fl,f?l), (g, g-() user A also picks a random
function h in a polyrandom collection Fk, and keeps h secret. (We assume that k > b.)
During the signing process, A keeps a counter to denote the number of times the
signing algorithm has been invoked. To sign message mi, A signs as before, except
that (using m to denote the length of j)"

Instead of picking values rf at random from D, he computes them as r
h(0-mj).

Instead of picking values rff at random from Dg, he computes them as rf
h(l-mj).

We claim that the "memoryless" version of the signature scheme described above
enjoys the same security properties as our orignal scheme. The proof (which we shall
not give in detail) is based on the observation that if the memoryless scheme was
vulnerable to an adaptive chosen-message attack, then it would be possible to efficiently
distinguish pseudorandom functions from truly random functions.

A further improvement (due to Oded Goldreich Go86)] removes even the necessity
of remembering the number of previous signatures by picking the index for a message
M as a random b-bit string. To make this work, the maximum number of signatures
that can be produced by an instance of this scheme is limited to 2"/g, so that it is
extremely unlikely that two messages would have the same index chosen for them.
The security proof can be modified to accommodate these changes. (Note that in the
preprocessing step that builds an f-tree, we would now only build a portion of it

,/5-
consisting of 2 randomly chosen paths of length b.)

ll. Ope problems.
It is an open question whether the RSA scheme is universally forgeable under

an adaptive chosen-message attack.
Can an encryption scheme be developed for which decryption is provably

equivalent to factoring yet for which an adaptive chosen ciphertext attack is of no
help to the enemy?
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COMPLEXITY MEASURES FOR PUBLIC-KEY CRYPTOSYSTEMS*

JOACHIM GROLLMANNt AND ALAN L. SELMAN$

Abstract. A general theory of public-key cryptography is developed that is based on the mathematical
framework of complexity theory. Two related approaches are taken to the development of this theory, and
these approaches correspond to different but equivalent formulations of the problem of cracking a public-key
cryptosystem (PKCS). The first approach is to model the cracking problem as a partial decision problem
called a "promise problem." Every NP-hard promise problem is shown to be uniformly NP-hard, and a
number of results and a conjecture about promise problems are shown to be equivalent to separability
assertions for sets in NP that are the natural analogues of well-known results in classical recursion theory.
The conjecture, if it is true, implies nonexistence of PKCS having NP-hard cracking problems. The second
approach represents the cracking problem of a PKCS as a partial computational problem directly. Using
this approach, it is shown that one-way functions exist if and only if P UP and that one-way functions
with greater cryptographic significance exist if and only if NP contains disjoint P-inseparable sets. The paper
concludes with a discussion of almost-everywhere security measures for PKCS.

Key words, public-key cryptography, promise problems, one-way function, UP, security, inseparable,
NP-hard, uniformly NP-hard

1. Introduction. Since any public-key cryptosystem (PKCS) can be cracked non-
deterministically in polynomial time, and since, minimally, a PKCS should not be
crackable deterministically in polynomial time, a proof that a given system is secure
would imply P NP. Several concrete systems have been created in recent years, but
none have been proved secure in this weak sense, even if P NP is assumed as a
hypothesis. The reasons for this vary, but some general remarks can be made. The
Merkle-Hellman schemes [MH78] are based on an NP-complete problem (Knapsack),
but the problem of cracking these schemes is not necessarily polynomially equivalent
to the original problem [Sha82]. Similarly, the cracking problem for the Rivest-Shamir-
Adleman scheme [RSA78] is not known to be equivalent to integer factorization. Even
if it were, as is true of the Rabin and Williams variants [Rab79], [Wil80], it is very
unlikely that intractability of integer factorization is equivalent to the P NP problem
itself. (It is known [Bra79] that integer factorization cannot be NP-hard unless NP--
co-NP.) Security of a concrete PKCS depends on intractability of the concrete problem
on which it is based, and, in particular, no concrete PKCS has been designed whose
security is equivalent to any NP-hard problem.

Very informally, the "cracking problem" for a PKCS is the problem of computing
the message M that is encoded by a cryptogram C without knowledge of the current
decryption key. In order to make such a definition precise, it is necessary to determine
appropriate complexity measures according to which the cracking problem is to be
hard. Typically, computational problems (e.g., given a graph, output a hamiltonian if
one exists) are transformed into polynomial time equivalent decision problems (e.g.,
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given a graph, does it have a hamiltonian), and the complexity of the original computa-
tional problem is measured by classifying the associated decision problem. When this
transformation works, as it does for computational problems that are NP-complete, it
is because computing a partial function and accepting membership in its domain are
polynomially equivalent. However, this program does not work in general and does
not work for PKCS. In general, computational problems are not polynomially
equivalent to their corresponding domain recognition problems [Va176], [Mi176],
[Bra79] (and cf. 4 below). Also, we will argue in the course of this paper that it is
more important to know the complexity of the class of extensions of a partial function
than it is to know the complexity of the given function. General studies of public-key
cryptography based on these observations were initiated by Brassard [Bra79], [Bra81],
[Bra83a], [Bra83b] and by Even and Yacobi [EY80a], [EY80b]. In [EYS0a], Even
and Yacobi propose a definition for public-key cryptography, formulate the cracking
problem of a PKCS as a partial decision problem called a "promise problem," and
raise the question of whether there exist NP-hard PKCS. In this approach certain
hardness criteria for cryptosystems (Is a PKCS crackable in polynomial time? Is there
an NP-hard PKCS?) can be translated into properties about the associated promise
problems. In [ESY84], Even, Selman, and Yacobi present a plausible conjecture about
promise problems that implies that no PKCS has an NP-hard cracking problem. A
major component ofthe work in this paper consists of further analysis ofthis conjecture.
The main technical result is that every NP-hard promise problem is uniformly NP-hard.
This result may be a step toward proving the conjecture raised in [ESY84] and
consequently toward proving that PKCS that are NP-hard to crack do not exist.

The broader motivation of the research project described herein is to develop
complexity theory that has cryptographic significance. Our approach is to base the
investigation of questions such as "What is a secure PKCS?" and "Do secure PKCS
exist?" directly on structural properties of complexity classes such as NP and on
separation assertions about complexity classes, rather than on presumed intractability
of individual concrete problems.

Two complexity theoretic hypotheses emerge as most relevant for capturing the
complexity issues that surround public-key cryptography. These hypotheses are that
P UP and that NP contains P-inseparable sets. (Two disjoint sets A and B are
P-inseparable if every set that includes one of them and is disjoint from the other does
not belong to P. UP is the set of problems in NP that are accepted by unambiguous
polynomial time-bounded Turing machines (UTMs) [Va176].) To see the relevance of
these hypotheses, consider, for example, the "one-way function." Informally, a one-way
function is one that is easy to compute but hard to invert. To make this notion precise,
let us define a (partial) function f to be a one-way function iff is one-one, f is honest
(to be defined in 2.2), f can be computed in polynomial time, andf-1 is not computable
in polynomial time. We will prove that one-way functions exist if and only if P UP
and that one-way functions with range in P exist if and only if P UP f3 co-UP.
According to this definition, since a one-way function is polynomial time computable,
its domain belongs to P (this point will be clarified in 2.2), and so a polynomial time
Turing machine that computes a one-way function must behave in a specified manner
on all input instances not in its domain (for example, output a special marker). When
we analyze public-key cryptosystems we will see that one should not care what happens
on inputs that are not in the domain of a proposed one-way function. This defect will
be remedied with a definition of a weak one-way function. With this notion in hand,
we will prove that there exist public-key cryptosystems that cannot be cracked in
polynomial time only if there exist P-inseparable sets in NP, and we will prove that
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the latter property is equivalent to the existence of weak one-way functions. Further-
more, since every one-way function is a weak one-way function, P UP implies all of
these properties.

We cannot say that the complexity class UP forms the exact boundary of interest
with regard to public-key cryptography, but we will show that there exist PKCS that
cannot be cracked in polynomial time and that also satisfy reasonable restrictions only
if P UP, and, as described above, every problem in UP-P yields some PKCS that
does not have a polynomial time solvable cracking problem. To say the least, we would
know a lot more about what kinds of cryptographic systems are possible if we knew
more about the class UP.

A PKCS may be uncrackable in polynomial time and yet there may be exist a
polynomial time algorithm that cracks most messages. (Such a system will be exhibited
in 4.) For this reason it is understood that infinitely often (i.o.) complexity measures
are insufficient for cryptography. Nevertheless, much effort is spent in this paper
studying i.o. measures, and for this we give the following justification. Cryptosystems
that are secure cannot exist unless there exist systems that cannot be cracked in
polynomial time. In this paper we are not interested in the development of secure
systems; our concern is with the development of complexity theoretic underpinnings.
What we see in this paper is that questioning the existence of such intractable systems
already entails difficult structural properties of NP.

We will consider measures that are more appropriate. We will see that the usual
immunity and bi-immunity notions for specifying complexity almost everywhere (a.e.)
do not work, and in particular, we will see that there is no elegant way to formulate
a.e. security for PKCS in terms of promise problems. Primarily for this reason, we
include here a development of complexity classes of functions. Once we relate function
classes with the familiar classes of decision problems, then we will give definitions of
security measures for PKCS directly in terms of function classes. We will demonstrate
that the strongest possible sense in which a PKCS can be secure with respect to message
cracking is that every deterministic, randomized, or probabilistic algorithm computable
in polynomial time cracks at most a sparse subset of the message space. It will be seen
finally that natural PKCS can exist that are secure in this strongest possible sense only
if they are based on problems in NP that possess specific complexity theoretic properties
(no nonsparse subset can be recognized by any probabilistic polynomial time Turing
machine).

The paper is organized as follows. The next section is of a preliminary nature. At
the risk of tediousness, it is rather long; the only way to carefully lay foundations is
to be careful about the foundations. Here we collect various specialized complexity
theoretic notions, present a framework for specifying computational complexity of
functions, and review definitions and results from [ESY84], [EY80b] about promise
problems and their relation to public-key cryptography. This synopsis is needed for
completeness. Also, a number of interesting corollaries will follow from the work in
those papers. Complexity issues concerning promise problems are taken up in 3.
There we focus attention on the i.o. measures "not crackable in polynomial time" and
"NP-hard," and there the proof that every NP-hard promise problem is uniformly
NP-hard can be found. Sections 4 and 5 study the cracking problem directly as a
computational problem, making use of the framework that was developed in 2.
Section 4 contains definitions of one-way functions and weak one-way functions, their
relationships to hypotheses about UP and about P-inseparable sets, and discusses
connections between one-way functions and public-key cryptography. Section 5 dis-
cusses a.e. complexity measures.
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The reader will quickly observe that not every question that will be raised has
been answered. In 6, the last section of this paper, a number of relativization results
are stated that suggest that answers are not readily forthcoming, for they cannot be
obtained by proof techniques that relativize to oracles.

2. Preliminaries. Unless otherwise specified, sets are subsets of X*, 5; {0, 1}, and
predicates vary over X*. The empty word is denoted by A, E*-A is denoted by A,
and <_- denotes lexicographic ordering defined on E*. Let (x, y) be the ordered pair
with components x and y and let (,) be a polynomial time computable pairing function
with polynomial time computable inverses. The reader is assumed to be familiar with
standard concepts and notations of polynomial time-bounded complexity theory
[HU79], [GJ79], but a number of specialized notions are described below. The subsec-
tions on promise problems and public-key cryptosystems comprise a synopsis of the
work by Even, Selman, and Yacobi [ESY84], [EYS0a].

2.1. Complexity theoretic notions. The notations <- and <-rnP denote polynomial
time-bounded Turing and many-one reducibility, respectively. We follow the conven-
tions that a set L is NP-complete if L NP and SAT <=Pm L, and that a set is NP-hard
if SAT _-< L, where SAT denotes the well-known satisfiability problem.

A set A is a.e. complex if for every Turing machine M that accepts A and every
polynomial p, M runs for more than p(Ixl) steps for all but finitely many strings x
[Ber76], [Rab60]. For an arbitrary class of languages , an infinite set A is q-immune

(or immune to ) if no infinite subset of A is in % Immunity, and the special case of
P-immunity, are defined and discussed in [Ber76], [FS74], [KM81]. A is hi-immune
to if A and A are both immune to ; see [BS85], [KMS1]. It is observed in [BS85]
that a set is a.e. complex if and only if it is bi-immune to P.

Two disjoint sets A and B are called P-inseparable if no set L with the property
A
_
L
_
B is in P. Otherwise, A and B are called P-separable.

A nondeterministic Turing machine (NTM) that has at most one accepting compu-
tation for any input is called by Valiant [Va176] an unambiguous Turing machine
(UTM). Let UP denote the set of languages accepted by UTMs in polynomial time.
Obviously, P UP

_
NP, and it is not known whether either inclusion is proper.

Following Papadimitriou and Yannakakis [PY84] define DP-- {L ("IL2[L1 NP
and L2 co-NP}. DP contains interesting combinatorial problems not known to belong
to NP. Trivially, NP__ DP, co-NP__ DP, and DP_ A2P (where A2P is defined to be pNP),
and it is expected that each of these inclusions is proper. Indeed, NP-DP if and only
if NP co-NP.

Let BPP be the class of sets that can be decided by a probabilistic Turing machine
with bounded error probability in polynomial time. The definition is due to Gill [Gi177]
and the reader is referred to [GilT7] for a detailed exposition. For a problem in BPP
any small probability of error can be achieved by running the given machine many
times on the same input and taking the majority result. For this reason, problems in
BPP are tractable in practice. Gacs (see reference in [Sip83]) and Lautemann [Lau83]
showed that BPP__ E2P (= NPNP). The relationship between BPP and NP is not known,
but Ko [Ko82] has shown that the supposition BPP-NP has consequences that are
unlikely to be true. Our work will not directly involve this class, but we must keep in
mind that cryptosystems should not be susceptible to cryptanalyst attack by any
tractable process.

In 4 the reader will need to be familiar with the class R of problems that have
efficient randomized algorithms. The definition of this class is due to Adleman and
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Manders [AM77]. The definition implies that PR NP and it is well known that
R___ BPP [Gi177].

2.2. Complexity classes of functions. We take a look now at some complexity
classes of functions. The development is repeated in part from [SXB83], [BLS84],
[BLS85] and is also in the spirit of [Va176].

Consider nondeterministic transducers with accepting states. A transducer T
computes a value y on an input string x if there is an accepting computation of T on
x for which y is the final contents of T’s output tape. In general, such transducers
compute partial multivalued functions, but we will be concerned only with single-valued
functions.

DEFINITION 1. (i) NPSV is the set of all partial single-valued functions computed
by nondeterministic polynomial time-bounded transducers.

(ii) UPSV is the set of all functionsf in NPSV such that for some nondeterministic
polynomial time-bounded transducer that computes f, for every x dom(f) there is
exactly one accepting computation.

(iii) PSV is the set of all partial single-valued functions computed by deterministic
polynomial time-bounded transducers.

If T is a transducer that computes a partial function f, then the domain of f is
the set of words accepted by T. If, in addition, T is polynomial time-bounded, then
there is a polynomial p such that every word x accepted by T is accepted within
steps. Given a polynomial p-- n there is a Turing machine Mp that on every input of
length n will execute for exactly n steps. It is possible to design a Turing machine
M’ that simulates T and uses the polynomial "clock" Mp to guarantee that T is not
simulated on an input x for more than Ixl steps. Clearly L(M’)= L(T). In the case
that T is deterministic, so is M’, and since M’ halts within nC steps on every input
word of length n, M’ can be designed to enter a reject state for every word that is not
accepted. Hence, the domain of a partial function in PSV is a set in P. Similarly, the
domain of a partial function in NPSV (UPSV) is a set in NP (UP, respectively). In
part, these considerations are in analogy with recursive function theory. If a Turing
machine T computes a partial recursive function f, then the domain off is the set of
words accepted by 7". The analogy breaks down, however, for the domain of a partial
recursive function is not necessarily a recursive set. After all, since the running time
of T is not necessarily recursively bounded, no Turing machine clock can be used to
detect nonacceptance.

A partial function f is honest if there is a polynomial q such that for every
y range (f) there exists x dom (f) such that f(x) y and Ix[-<_ q([Yl). If f is an
honest function in PSV and B 6 NP, then f(B) NP.

For any partial function f, graph (f) { (x, y) Ix dom (f) and y f(x)}. Given
an arbitrary class 0% of partial functions, let o%g {f l graph (f) P}. It is easy to
see that NPSVg UPSVg.

The projection of a function f is the set R.= {(x, y)[x dom (f) and y =<f(x)}.
This construction is defined in [Mi176]. Miller shows for total functions f that are
polynomial length-bounded (i.e., there is a polynomial q such that for all x, ]f(x)]
q(Ixl)), that Rs P if and only iff PSV. The equivalence holds for partial functions
as well without any change of proof. (The proof from right to left is trivial and from
left to right employs a binary search algorithm.)

PROPOSITION 1. (i) [SXB83] P= NP if and only if PSV= NPSV.
(ii) The following are equivalent:

(a) P= UP.
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(b) PSV= UPSV.
(c) PSV= UPSVg.

Proof We prove (ii). Obviously (b) implies (c). To show that (c) implies (a), let
S UP and let M be a UTM that accepts S in polynomial time. For each word x in
S, let comps4 (x) denote the unique accepting computation of M on input x. Then,
the function comps4 belongs to UPSV and dom (comps4)= S. Since compM PSV
follows, we conclude that S P.

To show that (a) implies (b), letfe UPSV. The projection R/is in UP as witnessed
by an unambiguous machine that behaves as follows:

On input (x, y), unambiguously compute f(x). If successful, then determine from
the output tape whether y <_-f(x).

By assumption, R/ P, and so f PSV follows immediately from the above
remarks.

The equivalence of (a) with (c) was first proved in [Va176]. Stronger relations
than given by Proposition 1 will be developed in 4.

If primality testing belongs to UP as some apparently believe (assuming the
extended Riemann hypothesis it belongs to P [Mi176]), then integer factorization
belongs to UPSV. A very reasonable candidate for a function in UPSV-PSV, which
will be discussed in detail in a later section, is the discrete logarithm problem.

A partial function g is an extension of a partial function f if dom (f)__ dom (g)
and f and g coincide on dom (f). Iff has an extension in PSV, then f also has a total
extension in PSV because the domain of a function in PSV belongs to P. A function
f UPSV with dom (f)P and hence fgPSV may have an extension in PSV; for
example, if S UP-P, then the partial function f defined by

1 if x6S,
f(x)=

]’ else

(we use "]’" as an abbreviation for "undefined") belongs to UPSV- PSV and obviously
has a total extension in PSV. The behavior of functions in UPSVg is quite different
than this, because iff UPSVg and dom (f) P, then no extension of f is in PSV.

2.3. Promise problems. A promise problem is a formulation of a partial decision
problem that has the structure

input x;

promise Q(x);

property R (x);

where Q and R are predicates. Formally, a promise problem is a pair of predicates
(Q, R). A deterministic Turing machine M solves (Q, R) if

Vx[Q(x)- [M(x) converges ^ [M(x) "yes" -- R(x)]]].

A promise problem (Q, R) is solvable if there is a Turing machine M that solves it.
If (Q, R) is solved by M, then the language L(M) accepted by M is called a solution
of (Q, R). Note that the behavior of M is of interest only for those input values x for
which the promise Q(x) is true. M need not give the correct answer or even halt, for
instances that do not satisfy the promise.

Our interest is with promise problems (Q, R) such that Q and R are recursive
predicates and the only solutions of interest are recursive sets. We assume these
conditions to hold for all promise problems considered. It is easy to see that every
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recursive solution of (Q, R) is of the form (Q f’)R)kJ X where X is some recursive
subset of Q. We frequently take the liberty of writing predicates as sets and vice versa.

NPP is the class of all promise problems (Q, R) that have a solution in NP.
Co-NPP is the class of all promise problems (Q, R) such that (Q, R) is in NPP;
equivalently, co-NPP is the class of all promise problems (Q, R) that have a solution
in co-NP. This follows from the fact that a recursive set L is a solution in NP of (Q, R)
if and only if L is a solution in co-NP of (Q, R). Every set S in NP (co-NP) may be
thought of as the promise problem (E*, S) with the universal promise Z*, and (Z*, S)
NPP (co-NPP, respectively). From these remarks it follows that NPP co-NPP if and
only if NP co-NP.

DEFINITION 2. (i) A promise problem (Q, R) is Turing reducible in polynomial
PPtime to a promise problem (S, T), in symbols, (Q, R) -<T (S, T), if, for every solution

A of (S, T), there is a deterministic polynomial time-bounded oracle Turing machine
M such that M with oracle A solves (Q, R).

(ii) A promise problem (Q, R) is uniformly Turing reducible in polynomial time
to a promise problem (S, T) in symbols, (Q, R) < PP

tJT (S, T), if there is a deterministic
polynomial time-bounded oracle Turing machine M such that, for every solution A
of (S, T), The language recognized by M with oracle A is a solution of (Q, R).

(iii) A promise problem (Q, R) is NP-hard if every solution is NP-hard, i.e., for
every solution A of (Q, R) there is a deterministic polynomial time-bounded oracle
Turing machine M such that SAT= L(M, A).

(iv) A promise problem (Q, R) is uniformly NP-hard if there exists a deterministic
polynomial time-bounded oracle Turing machine M such that for every solution A of
(Q, R), SAT= L(M, A).

If an NP-hard promise problem could be solved in polynomial time by some
deterministic Turing machine M, then by definition L(M) is an NP-hard set, and
therefore P NP follows. So, assuming P NP, no NP-hard promise problem can be
solved in polynomial time. Obviously, "uniformly NP-hard" implies "NP-hard" and
"uniformly Turing reducible" implies "Turing reducible," and one would guess the
converse to be false, as in fact is conjectured in [ESY84]. We will nevertheless show
in 3 that these notions are equivalent. A set S__ * is NP-hard if and only if the
promise problem (*, S) is NP-hard. A promise problem (S, T) is NP-hard if and only
if every promise problem Q, R) NPP is Turing-reducible to (S, T) in polynomial time.

The next proposition shows that finding an algorithm to compute a function in
NPSV is equivalent in a natural way to finding an algorithm to solve a promise problem.
Given f NPSV define Qy dom (f) * and let Ry be the projection off Let us call
Qy, Ry) the promise problem associated with f

PROPOSITION 2. (i) Iff6 NPSV and A is a solution of (Qy, Ry), then there is a
PA.total function h that extends f such that h

(ii) Iff NPSV and h is a total extension off, then there is a solution A of Qy, Rc)
r’h.such that A T

Proof (i) On an input string x, apply a binary search algorithm to find the largest
y (whose length is within the right polynomial length of x) such that (x, y) A. Let
h(x) y. If no such y exists, then define h(x) to be A. Since A is a solution, y h(x)
f(x) for x dom (f).

(ii) Given h, define A Rh, the only solution of (Qh, Rh). It is easy to see that A
is a solution of (Qf, Rf) and A _-<vP h.

The next observations are most important for what will follow. Given f NPSV,
one can conclude Q,. NP and (Qy, R.) NPPfq co-NPP. Namely, dom (f) NP, Ry
is a solution in NP of (Qy, Ry), and {(x,y)lxdom (f) and y>f(x)} is a solution in
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NP of (Qs, Rs). The cracking problem of a PKCS will be a function in NPS, and so
we will concentrate our efforts on the study of promise problems that satisfy these two
properties.

It is well known that NP co-NP contains an NP-hard set if and only if NP is
closed under complements [Bra79], [Se178]. Hence, the former property is unlikely to
be true. To the extent that one expects complexity classes of promise problems to
behave as do the corresponding classes of decision problems, it is reasonable to
conjecture that no promise problem (Q,R) such that QNP and (Q,R)
NPP co-NPP is also NP-hard. Indeed, this conjecture is made in [ESY84]. Now let
us state it formally.

Conjecture 1. There exists no promise problem (Q, R) such that
(i) Q NP,
(ii) (Q, R) NPP co-NPP, and
(iii) (Q, R)is NP-hard.
As a consequence of this conjecture, iff NPSV, then (Qy, Ry) is not NP-hard;

that is, there must be some total extension h off that cannot be used as an oracle for
deciding satisfiability in polynomial time. Also, the conjecture trivially implies NP
co-NP and it is proved in [ESY84] that the conjecture implies UP NP.

We need to recall the following two main results of [ESY84], which we will state
here as propositions. The first of these results states that a variant of the conjecture is
true, assuming NP co-NP.

PROPOSITION 3. [ESY84] NP # co-NP ifand only if there exists no promise problem
Q, R) such that

(i) Q co-NP,
(ii) (Q, R) NPPCIco-NPP, and
(iii) Q, R) is uniformly NP-hard.
In contrast, the next result states that there do exist promise problems (Q, R) such

that Q DP and conditions (ii) and (iii) of the conjecture hold. Let ( denote the
logical operator "exclusive or." We take the liberty of writing SAT as a predicate so
that SAT(x) asserts that x is the string encoding of a satisfiable formula of propositional
logic. The predicates EX and SAT-1 over E*xE* are defined by EX (x, y) (-> SAT (x)
SAT (y) and SAT-1 (x, y)<---> SAT (x).

PROPOSITION 4. EX is a complete setfor DP and the promise problem (EX, SAT-l)
belongs to NPP co-NPP and is uniformly NP-hard.

2.4. Public-key cryptosystems. A PKCS consists ofthree deterministic and publicly
known algorithms, E, D, and G, that operate in polynomial time. Figure 1 gives the
basic layout. E is the encryption algorithm, D is the decryption algorithm, and G is the

K2

K1

Transrnitter Receiver

FIG. 1. Layout of a public-key cryptosystem.
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key generator. M, C, K1, K2, and X will be binary words, called the message, cryptogram,
encryption key, decryption key, and trapdoor, respectively.

Prior to transmission of messages M of length n, the receiver randomly generates
some X, where IxI is bounded by a polynomial in n, and then uses X to compute the
pair G(X)=(K1, K2). Pairs that can be generated in this way are called legal pairs.
Components, K1, and K2, of legal pairs are called legal encryption keys, decryption
keys, respectively. K and n, which is assumed to be computable in polynomial time
from K, are made publicly known, but X and K2 remain private. Legal pairs may be
used for encoding and decoding purpose for a relatively long time. We also call triples
(n, K, M) legal, if IMI n, and K can be used for encryption of messages of
length n.

When a transmitter wants to send a message M of length n to a receiver who
published key K1, he computes C E(K, M) and sends C on an open channel. The
receiver, knowing K2, reconstructs M by M D(K2, C). It is assumed that, if (K, K)
is a legal pair for messages of length n and if IMI n, then M D(Ka, E(K, M)).
This inverse condition guarantees that the function AM E(K, M) is one-one for each
legal key K1.

2.5. Cracking problems. Informally, the cracking problem is the problem of com-
puting M such that E(K, M)= C if such M exists, and a solution to the cracking
problem is an algorithm that on input (n, K1, C), where K is a legal encryption key
for messages of length n, correctly computes M such that E(K1, M)- C. That is, a
solution of the cracking problem is an algorithm that computes an extension (not
necessarily total) of the following partial function, called "Crack."

Dom (Crack)={(n, K, C)IK is legal for messages of length n and there is a
message M, IMI- n, such that E(K, M) C}. For (n, K, C) dom (Crack),
Crack (n, K1, C)= M,-, IMI- n and E(K1, M)= C.

We assume Crack is polynomial length-bounded (i.e., IMI is bounded by some
polynomial in IKI/ICI), so as to avoid the uninteresting case that Crack has no
solution that is computable in polynomial time simply because MI for which
E (K1, M) C is too long.

Clearly Crack NPSV. Let us define the promise problem version of the cracking
problem to be the promise problem CP (Qcrack, Rcrack) that is associated with Crack.
Explicitly stated, CP is the following promise problem.

input n, K, C, and M’
promise K1 is a legal encryption key for

messages of length n and there exists a message M,
]MI- n, such that E(K1, M)= C.

property M’-< M, where M is the message which satisfies E(K, M)--C.

We conclude immediately that Qcrack NP and CP NPPf3 co-NPP. Recall also
that solving CP is polynomial-time equivalent to computing an extension of Crack.

Attempts to formulate the cracking problem as an ordinary decision problem
would lead to faulty considerations. To see this, tentatively define the conjunction
Qcrack [-)Rcrack to be the cracking decision problem. One might have a PKCS, say S,
such that the cracking decision problem Qcrack Rcrack is difficult to solve. But if there
is an efficient algorithm that solves Crack, i.e., that efficiently finds M when the promise
predicate Qcrack is true and that gives "garbage" output when Qcrack is false, then S
is not a usable system. On the other hand, if Crack has no efficient algorithm, then
the promise problem (Qcrack, Rcrack) has no efficient solution, and so the cracking
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decision problem Qcrack [")Rcrack is difficult to solve also, because any algorithm that
solves Qcrack Rcrack also solves (Qcrack, Rcrack)"

3. Complexity of promise problems. In this section we present new results about
promise problems--all with an eye toward setting the conjecture raised in 2.3. Recall
that the cracking promise problem CP of a PKCS has promise QCrack NP and
CP NPP co-NPP. The conjecture that no such promise problem can be NP-hard
implies that no PKCS can be NP-hard to crack. Analysis of the conjecture will lead
toward development of a theory of disjoint pairs of sets in NP, and this development
in turn will give further justification for its reasonableness. Also, this development will
yield complexity theoretic conditions for the existence of PKCS that have intractable
cracking problems (i.e., such that CP has no solution in P).

3.1. On NP-hard promise problems. A corollary of our first significant result states
that every NP-hard promise problem is uniformly NP-hard.

LEMMA 1. (Q, R) and (Q, R Q) have the same solutions. Thus, (Q, R) is (uni-
formly) NP-hard if and only if (Q, R CI Q) is (uniformly) NP-hard. And, (Q, R) is

(uniformly) Turing reducible to (S, T’) if and only if (Q, R’) is (uniformly) Turing
reducible to (S, T), where R’ {R, R Q} and T’ { T, T S}.

Assume without loss of generality, therefore, that R
_

Q. Then S is a solution of
(Q, R) if and only if S=RkJX, where X is a recursive subset of Q. Also, for
"reducibility" read "polynomial time-bounded reducibility" throughout this section.

LEMMA 2. "Uniform Turing reducibility is closed under finite variations." Q, R)
is uniformly Turing reducible to (S, T) if and only iffor any finite sets Q’, R’, S’, T’
with R’

_
Q’
_
Q and T’

_
S’
_

S, Q Q’, R R’) is uniformly Turing reducible to

(SU S’, TU T’).
Proof First observe that it suffices to show that for any promise problem (X, Y),

(X, Y) is uniformly Turing equivalent to (X U X’, Y U Y’), for any finite sets X’ and
Y’ with Y’ X’ X. To see that (X, Y) is uniformly Turing reducible to (X CJ X’, YU
Y’) is in fact trivial, since every solution of (XU X’, YU Y’) is also a solution of
(X, Y). Hence, we only have to show that (XU X’, YU Y’) is uniformly Turing
reducible to (X, Y). To this end we must construct a polynomial time-bounded
deterministic oracle Turing machine M such that for every solution S of (X, Y), the
set L(M, S) (i.e., the language recognized by M with oracle S) is a solution of
(XU X’, YU Y’). The following is an algorithm describing such a machine.

begin
input x;
if x S U Y’ and x ’X’- Y’

then accept else reject
end.

Since X’ and Y’ are finite sets this algorithm can be executed in polynomial time with
respect to the oracle S. For any solution S of (X, Y), L(M, S)=(SU Y’)-(X’- Y’)
is a solution of (X

THEOREM 1. If (Q, R) is Turing reducible to (S, T), then (Q, R) is uniformly
Turing reducible to (S, T).

Proof Assume that (Q, R) is not uniformly Turing reducible to (S, T). That is,
assume that for every polynomial time-bounded deterministic oracle Turing machine
M there is some solution A of (S, T) such that L(M, A) does not solve (Q, R). Let
us expand this assumption one more time: For every polynomial time-bounded deter-
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ministic oracle Turing machine M there exists a solution A of (S, T) and there exists
a string y Z* such that

yRVIL(M,A) or y(Q-R)f’IL(M,A).

We want to show with this assumption that (Q, R) is not Turing reducible to
(S, T). To do so we will construct one recursive solution A of (S, T) such that for
every polynomial time-bounded deterministic oracle Turing machine M, L(M, A) is not
a solution of (Q, R). Let {Mi}i__> be an effective enumeration of polynomial time-
bounded deterministic oracle Turing machines with associated polynomial time bounds
{Pi}i>=l

We want to show with this assumption that (Q, R) is not Turing reducible to
(S, T). To do so we will construct one recursive solution A of (S, T) such that for
every polynomial time-bounded deterministic oracle Turing machine M, L(M, A) is
not a solution of (Q, R). Let {Mi}__>l be an effective enumeration of polynomial
time-bounded deterministic oracle Turing machines with associated polynomial time
bounds

The solution A of (S, T) will be constructed inductively to be of the form
T(._J{Y[i_-> 1}, where _J{Y/[i_-> 1} is a recursive subset of . At stage of the
construction, i-> 1, finite subset Y/of S will be chosen so that L(Mi, T Yi) is not a
solution of (Q, R).

Stage O. Define Y0 and no 0.
Stage (i -> 1). By induction hypothesis, Y_ is defined, Y_ is a finite set, n_ _-> 0

is defined, and Y/_
Now comes a sequence of claims.
Claim 1. There is a recursive set X(SIJE<=hi-,) and a string yiE* such that

(1) yRUL(M, TU E_IUXi) or y(Q-R)f’IL(M, TU Y_,UXi).

If the claim is correct, then y is a witness to the fact that L(M, T t.J Y/_ U X) is
not a solution of (Q, R). Suppose the claim is false. Then, for every recursive subset
Xof(SUE<-n-,),Rf3L(Mi, TU E_I U X)=fgand (Q-R)VIL(M, TU Y_ U X). Thus, R

_
L(M, TU Y_ U Xi) c__ Q R) and so L(M, TU Y-i U Xi) is a recursive

solution of (Q, R). The set of all languages T U Y/-1U X, where X is a recursive
subset of (SUE=ni-,) is exactly the set of all solutions of the promise problem
(SUE -<"-,, T U Y-I). Thus, (Q, R) is uniformly Turing reducible to this promise
problem. But this promise problem is a finite variation of (S, T), and so, by Lemma
2, (Q, R) must be uniformly Turing reducible to (S, T). This is a contradiction to our
assumption. Hence, the claim is true.

Claim 2. There is a finite set Xic(SUE tli-1 and a string ygE* that satisfy
condition (1).

For the set Xi and a string y whose existence is guaranteed by Claim 1, machine
Mi on input y may query strings of length at most pi(ly[). So, for X Xi fl E --< p, (lyil

and y, assertion (1) is still true.
Claim 3. A finite set X c_ (S U E"’-’) and string yi that satisfy assertion (1) can

be found effectively.
This is trivial. Effectively enumerate all pairs of finite sets and strings until a pair

with the desired properties is found.
At Stage i, apply Claim 3; define Y= Y/_t.JX/ and define n=

max {2";-’, pi(l yil)}nt- 1.
End of Stage i.
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Define A TJ{ Y/li 1}. Since .]{ Yli 1}_ , A is a solution of (S, T). A
is a recursive set because a string w belongs to A if and only if w R or w Y, where

is the least index of an ni such that ni>-[wl. For every i, L(Mi, A) does not solve
(Q,R) because a string y exists such that yRfqL(M, T Y) or yi6

Q R) f3 L(M, T U Y), and therefore Yi R f"l L(M, A) or y Q R) L(M, a).
This holds because (TU Y)fl ---Pi([Yi[)---A E ---p’(Iyi[). Furthermore, strings added

to the solution in future stages cannot disturb this relation because only strings are
added that are too long to be queried on input Yi. Thus, A is a recursive solution of
(S, T) such that L(M, A) is not a solution of (Q, R) for any deterministic polynomial
time-bounded oracle Turing machine M.

Therefore, (Q, R) is not Turing reducible to (S, T).
COROLLARY 1. Apromiseproblem is NP-hard ifand only ifit is uniformly NP-hard.
Proof (Q, R) is NP-hard if and only if (E*, SAT) P (Q,R), and (Q,R) is

uniformly NP-hard if and only if (E*, SAT) <PP=(Q, R).
Corollary 1 suggests a fascinating approach to proving the conjecture. Corollary

1 states that if (Q, R) is NP-hard, then there is one reduction M from SAT to every
solution of (Q, R). Thus, the result of M’s computation on an input string x does not
depend on the answer of the oracle to queries outside of Q. If an oracle responds
correctly to queries in Q and arbitrarily to queries outside of Q, then M accepts an
input string x if and only if x SAT. Queries to strings in Q are "meaningless."

Given a promise problem (Q, R) such that R
_
Q and a language L, say there is

a smart reduction from L to (Q, R) if there is a polynomial time-bounded oracle Turing
machine M that witnesses (Z* L) --va-(Q, R) such that M never queries any word in
Q. (Smart reductions never ask meaningless questions.) The next theorem states that
knowledge about the existence of smart reductions might help to solve the conjecture.
First observe that if NP co-NP, then the promise problem (Q, R), where Q E* and
R SAT satisfies each of the following properties.

(i) Q NP,
(ii) (Q, R) NPPfq co-NPP, and
(iii) there is a smart reduction from SAT to (Q, R).
THEOREM 2. If there is a promise problem Q, R) in NPPf-)co-NPP and there is

a smart reduction from SAT to (Q, R), then NP= co-NP.
If there exists (Q, R) such that Q NP, (Q, R) NPP f) co-NPP, and (Q, R) is

NP-hard, then, by Corollary 1, (Q, R) is uniformly NP-hard. If these three conditions
can be shown to imply existence of a smart reduction from SAT to (Q, R), then, by
Theorem 2, NP co-NP, and so NP co-NP would imply that the conjecture is true.
However, the situation is probably more subtle than this, for in [ESY84] it is shown
that UP= NP implies existence of a promise problem that satisfies the conditions
listed in the conjecture, and intuition does not suggest that NP co-NP implies
UP # NP.

Proof Let (Q, R) be a promise problem in NPPf’)co-NPP for which there is a
smart reduction from SAT to (Q, R). We will show that SATe NP and conclude
therefore that NP=co-NP. Let M be a deterministic oracle Turing machine that
uniformly reduces SAT to solutions of (Q, R) and that never queries any word in Q.
Then, M with its accepting and rejecting states reversed (call this machine M’) reduces
SAT to solutions of (Q, R) and never queries any word in Q. By Lemma 1, assume
without loss of generality that R

_
Q. Let M, i= 1, 2, be NP-acceptors that solve

noneffective version of this result has been obtained independently by Regan [Reg86].
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(Q, R) and (Q, R), respectively. We now describe an NP-acceptor N for SAT. On
input x, N begins a simulation of M’ on x but replaces each query w to the oracle
by simulations of w on the NP-acceptors Mi, i= 1, 2, according to the following
nondeterministic algorithm.

if M1 accepts w- continue simulation of M’ in the YES state

M2 accepts w
--> continue simulation of M’ in the NO state

If the algorithm is executed on a word w and the guard that is chosen does not
evaluate to true, then the simulation by N of M’ on input x is to terminate without
accepting. Since M1 has an accepting computation on a query string w, if w R, M2
has an accepting computation on w, if w Q-R, and every word queried belongs to
either R or Q- R, it follows, for every input word x to N, that the simulation by N
of M’ on x can be completed.

It is obvious that the language accepted by N belongs to NP. To see that this
language is SAT, simply observe for each input word x to N that N simulates M’,
relative to some solution of (Q, R). The latter fact follows readily because for every
solution L of (Q, R), R L and Q-R L. Thus, SAT NP and so NP co-NP. [3

The next corollary follows from Proposition 4 in 2.3.
COROLLARY 2. If there is a smart reduction from SAT to (EX, SAT-l), then

NP= co-NP.
Thus, smart reductions cannot be expected to exist for all NP-hard promise

problems in NPP71 co-NPP.

3.2. P-separability. Recall that a disjoint pair of sets A and B are P-separable if
there exists a set L in P such that A_ L and B g L; they are P-inseparable otherwise.
The following theorem gives a characterization of the conjecture that is strictly in terms
of the fine structure of NP.

THEOREM 3. There exists a promise problem Q, R) satisfying the conditions of the
conjecture if and only if there exist disjoint <--complete sets A and B in NP such that
for every recursive set L, if A L and B L, then L is NP-hard.

Proof Given a promise problem (Q, R) that satisfies the conditions of the conjec-
ture, the sets A Q f)R and B-Q-R are =<vP-complete sets in NP. The sets that
separate A and B are precisely the solutions of (Q, R) so every set that separates A
and B is NP-hard. Conversely, given such A and B, (A [_J B, A) satisfies the conditions
of the conjecture. [3

We will be showing that P-inseparable sets in NP probably do exist. But, the
property given in Theorem 3 is a much stronger constraint than P-inseparability. It is
tempting to compare P-inseparability and "separability by NP-hard sets only" with
the analogous notions from classical recursive function theory (recursive sets and
recursively enumerable sets for P and NP, respectively). It is a fundamental result that
there exist disjoint recursively enumerable sets that are recursively inseparable. On the
other hand, Shoenfield [Sho60] has shown that every disjoint pair of recursively
enumerable sets can be separated by some set whose degree is strictly less than 0’.
Thus, the analogue of our conjecture for the recursively enumerable sets is a theorem.

The following corollaries are reformulations of one of the principal results (Propo-
sition 4) proved in [ESY84]. Let SAT-UNSAT {(x, y)lx encodes a satisfiable formula
of propositional logic while y encodes an unsatisfiable formula} and let UNSAT-SAT
{(x, y)lx is unsatisfiable and y is satisfiable}. It is shown in [PY84] that SAT-UNSAT
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is complete for DP, and trivially UNSAT-SAT is complete for DP also. Now, SAT-
UNSAT EX f) SAT-1 and UNSAT-SAT EX- SAT-1. Thus, from Theorem 3 applied
to Proposition 4 we immediately obtain the following.

COROLLARY 3. DP contains disjoint complete sets SAT-UNSAT and UNSAT-SAT
such that every set that separates them is NP-hard.

Here is a property about DP that very likely does not hold for NP and so Corollary
3 provides structural evidence that DP is not equal to NP. Corollary 3 yields the
following result also.

COROLLARY 4. P= NP if and only if SAT-UNSAT and UNSAT-SAT are P-
separable.

The following corollary to Theorem 3 presents a provocative connection to the
structure of the class of all NP-hard sets in NP.

COROLLARY 5. Statement (a) implies statement (b).
P(a) For all sets A and B, if A and B are disjoint =v-complete sets in NP, then

A B is --T-
P complete in NP.

(b) If there exists a promise problem (Q, R) that satisfies the conditions of the
conjecture, then Q is a =v-< P complete set in NP.

The proof follows from the observation that Q fqR and Q-R are both
<_--complete sets. It is an interesting open question whether statement (a) is true, but
statement (b) would be a surprising consequence. The cracking problem for a PKCS
is formulated as a promise problem specifically (i) so that its complexity is determined
by the effort required to crack cryptograms correctly, and (ii) because we do not want
the complexity to depend on the effort required to determine whether an arbitrary
string is a legitimate cryptogram or a sham. Nevertheless, if statement (b) is true, then
a given PKCS does have an NP-hard cracking problem only if its promise predicate
is NP-hard.

Now we turn our attention to the existence of PKCS with intractable cracking
problems, for surely a PKCS cannot be deemed secure if it can be cracked in polynomial
time. For such a PKCS, CP= (Qcrack, Rcrack) and in addition to the conditions (i)
Qcrack E NP, and (ii) CPE NPP0 co-NPP, the following property holds also" (iii)’ No
solution of CP is in P.

THEOREM 4. There is a promise problem Q, R) satisfying conditions (i), (ii), and
(iii) if and only if NP-P contains disjoint P-inseparable sets.

Thus, PKCS with intractable cracking problems exist only if there exist P-insepar-
able sets. The proof is a straightforward variation of the proof of Theorem 3.

Do there exist P-inseparable sets in NP? There probably do. First of all because
it is essentially trivial that if A (NPf-) co-NP)-P, then A and A are P-inseparable
and, secondly, because of the following theorem.

THEOREM 5. If P UP, then NP contains P-inseparable sets.

Proof Assume P # UP and by Proposition 1, letf NPSVg- PSV. By Theorem 4,
it suffices to show that (Qy, Ry) has no solution in P. By Proposition 2, this is equivalent
to showing that f has no extension in P. Since graph(f) P butf PSV, it follows that
the last assertion is true.

THEOREM 6. If NP contains P-inseparable sets, then there exist NP-complete P-
inseparable sets.

This is a very intriguing result. Theorems 5 and 6 together tell us that information
about a subset of NP that probably does not contain the NP-complete sets, yet
nevertheless influences the structure of the NP-complete sets.

Proof Let {Mi}i>=l be an enumeration of polynomial time-bounded nondeterminis-
tic Turing machines with associated polynomial time bounds {Pi}i->_. It is well known
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that the set K {(i, x, 0n)l some computation of M accepts x in at most n steps} is
NP-complete [BGS75]. For every set A in NP there exists i>_-1 such that A= L(Mi),
and there exists an honest many-one reduction f from A to K defined by f(x)=
(i, x, 0P,lxl)). Let A and B be P-inseparable sets in NP and let f be an honest reduction
from A to K. Our first goal is to show that the sets f(B) and K are P-inseparable sets
in NP. Since B NP and f is honest, f(B) NP. Since f is a reduction from A to K
and A fq B ,f(A) K and f(B) K, and so f(B) and K are disjoint sets. In order
to prove that f(B) and K are P-inseparable, assume that K

_
Lf(B) and L P.

Then, A_f-I(L) . Also, f-(L) P because f-(L) <__r’rn L. Thus, P-inseparability of
A and B are contradicted. Hence, f(B) and K are P-inseparable.

Now we have obtained two disjoint P-inseparable sets in NP and one of them is
NP-complete. To prove the theorem, apply the construction once again, this time with
an honest reduction g from f(B) to K. Namely, g(f(B)) K and g(K)

_
K. Then, K

and g(K) are disjoint NP-complete sets and the argument already given shows that
they are P-inseparable. [3

3.3. Almost-everywhere complexity. If a PKCS cannot be cracked in polynomial
time, then for every polynomial time-bounded algorithm there exist infinitely many
messages whose codes the algorithm cannot crack. This leaves open the possibility
that there exist some algorithm and infinitely many messages whose codes this algorithm
can crack in polynomial time. Indeed, this leaves open the possibility that there exists
some algorithm that can crack codes for most messages in polynomial time. NP-
hardness is not a good measure for the security of a cryptographic system, for it is at
the same time both too strong and too weak. It is too strong because there is no need
to require that every set in NP is reducible to every solution of CP. It is too weak
because it too is an i.o. measure and therefore allows the possibility of cracking nearly
all codes in polynomial time. (An NP-hard classical cryptosystem that exhibits this
feature has been constructed by Even and Yacobi and is described in the survey article
by Lempel [Lem79].) Rather, a PKCS should be difficult to crack on as many instances
of its message space as possible. Therefore, it seems worthwhile to formulate a.e.
complexity measures for promise problems.

Define a promise problem to be immune to a complexity class if every solution
is immune to and to be bi-immune to % if every solution is bi-immune to % Here
we will just consider immunity and bi-immunity to P, but our remarks hold for other
classes as well.

An adversary who has available a P-immune solution S to CP may still be able
to efficiently compute Crack for many input instances by applying a reduction technique
(as indicated in the proof of Proposition 2) that uses easy instances of S. Thus, immunity
to P is not a sufficiently strong measure for public-key cryptography.

Analogous to Theorems 3 and 4, it is easy to show that there exists a bi-immune
to P promise problem (Q, R) such that Q NP and (Q, R) NPP ( co-NPP if and only
if there exist disjoint sets A and B in NP such that every set which separates them is
bi-immune to P. Furthermore, the latter condition is equivalent to the existence of
disjoint sets in NP which are both bi-immune to P. Thus, we state the following
proposition.

PROPOSrVION 5. There exists a bi-immune to P promise problem Q, R) such that
Q NP and (Q, R) NPPf co-NPP if and only if NP contains a disjoint pair of sets
that are both hi-immune to P.

Unfortunately, our interest in bi-immune promise problems is diminished by the
following proposition.
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PROPOSITION 6. For f NPSV, Qs, Rs) is not bi-immune to P. Every solution of
Qr, Rf contains a nonsparse subset in P.

The proof is easy. Given x dom (f), every solution of (Q, R) includes {(x, Y)IY >
f(x)}. But this set is only useful for computing one value of f The moral is this: The
existence of solutions of CP with large easy subsets or with large easy subsets of the
complement does not give information about the density ofthe domain of easy instances
of Crack. Promise problems do not permit elegant ways to characterize almost-every-
where security measures which impart information about the security of the underlying
functions. Primarily for this reason, the complexity of Crack is analyzed in the next
two sections directly as a computational problem.

4. One-way functions. Recall that a function f is honest if there is a polynomial
q such that for every yrange (f) there exists x dom (f) such that f(x)=y and
Ixl <= q(I Yl)- We define a partial function f to be one-way if f is one-one, f is honest,
f PSV, and f-l PSV. This is a common formulation that has been useful in several
complexity theoretic investigations [BL86], [Ko85], [KLD86], [Wat85], [You83].

If f is a one-way function, then f-1 UPSVg- PSV. In fact, no extension off-
is in PSV. Also, f- UPSVg-PSV implies UP P, by Proposition 1. The converse
holds as well.

THEOREM 7. The following are equivalent.2

(a) P UP.
(b) There exists a one-way function.
(c) There exists a total one-way function.
Proof Clearly (c) implies (b), and we just observed that (b) implies (a). Let

L UP-P be witnessed by a UTM M. The total function f defined by

y0 ifx comps4 (y),
f(x)

xl otherwise

is a total one-way function.
In some sense, for the function f just constructed, f- is hard to compute because

one cannot even determine whether a string x belongs to dom (f-). Thus, it is
interesting to know whether there exist one-way functions with range belonging to P.

THEOREM 8. The following are equivalent.
(a) P# UPf3co-UP.
(b) There is a one-way function f such that range (f) P.
(c) There is a one-way function f such that range (f) E*.
(d) There is a total one-way function f such that range (f) P.
Proof The equivalences can be proved from the following three implications.
(b) implies (a)" Let f be a one-way function such that range (f) P, and let (Q, R)

be the promise problem associated withf-1. Then, Q P, because Q dom (f-l) E*
range (f) E*. Since no extension off- belongs to PSV, (Q, R) has no solution in P,
by Proposition 2. Therefore, in particular, Q (3 R P. On the other hand, it is easy to
see that Q f3 R UP. Similarly, Q- R UP- P. Assertion (a) follows directly.

(a) implies (c)" Let L (UPco-UP)-P. Let M and N be UTMs that witness
L UP and L UP, respectively. The function f defined as follows satisfies condition
(c)"

This result has been obtained independently by Ko [Ko85].
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Yf(x)= , if x compa4 (y) or x =compN (y),
otherwise.

(a) implies (d): Let L, N, and M be as in the previous implication. This time
define f as follows:

f(x)= { yOxl if x comps4 (y) or x compN (y),
otherwise.

THEOREM 9. The following are equivalent.
(a) UP= NP,

(b) There exists a one-one, honest function fPSV such that dom (f-l) is NP-
complete.

(c) There exists a function f6 UPSVg such that dom (f) is NP-complete.
Proof To see that (a) implies (b), let L be an NP-complete set. Since L UP is

assumed, it follows that L= dom (f-i), where f is defined by

f(x) { ifx compa4 (y),
otherwise.

We observed previously that (b) implies (c).
Let f UPSVg such that dom (f) is NP-complete. To see that UP NP, observe

first that dom (f) UP and secondly that

(A <---mP B and B UP) --> A UP.

Thus (c) implies (a).
Next we will observe that one of the main results of [ESY84] follows quickly

when Theorem 9 is applied to what we learned in 2 about the promise problem
(R;., Qy) that is associated with a function f

COROLLARY 6 [ESY84]. The conjecture implies UP # NP.
Proof Suppose UP NP and let f UPSVg such that dom (f) is NP-complete.

We know already that Qy NP and (Qy, Ry) NPP (q co-NPP.
To show that (Qy, Ry) is NP-hard, by Proposition 2 it suffices to show that

P h, for every extension h of f. The reduction is given by the followingdom (f)
algorithm:

input x;
if (x, h(x)) graph (f) then accept else reject.

COROLLARY 7. If P NP, then NP- UP if and only if there is a one-way function
f such that dom (f-l) is NP-complete.

Now we concern ourselves with the following important question. Do one-way
functions play a role in public-key cryptography? The answer is not at all obvious.
The function AME(K, M) is not a one-way function because the inverse AC D(K2, C)
is easy to compute, assuming (K, K2) is a legal pair. The encoding function E is not
a one-way function because it is not one-one. Consider the function E’ defined as
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follows:

(n,

KI, E(K1, M)) if K1 isalegal encryptionkeyformessages
E’(n, K, M) oflength n, and ]M n,

otherwise.

E’ is one-one, is honest (by an assumption made in 2.4) and has an extension
in PSV. E’ is a candidate therefore for being a one-way function, but E’ is not necessarily
in PSV, because dom (E’) is not necessarily in P.

The inverse of E’ is the function Crack’ defined as follows:

Crack’ (n, K,, c)= (n, K,, Crack (n, K1, C)) if(n, K,, C) dom (Crack),
otherwise.

Dom (Crack’)= dom (Crack), and it should be obvious that Crack’ is computable
in polynomial time if and only if Crack is computable in polynomial time. Therefore,
if for a given PKCS, Crack PSV, then E’ will be a one-way function if and only if
dom (E’)6 P. In fact, the latter condition holds if and only if Crack UPSVg. We
conclude: If Crack 6 UPSVg- PSV, then E’ is a one-way function and, furthermore,
for this to occur it is necessary that P # UP. Indeed, even if Crack UPSV-PSV, it
must be the case that P # UP.

The following propositions give some equivalent conditions for Crack to belong
to one of the classes UPSV or UPSVg.

PROPOSITION 7. The following are equivalent.
(a) Crack UPSV.
(b) dom (Crack) UP.
(c) dom (E’) UP.
(d) The set of legal encryption keys is in UP.
PROPOSITION 8. The following are equivalent.
(a) Cracke UPSVg.
(b) dom (E’) P.
(c) E’6 PSV.
(d) The set of legal encryption keys is in P.
Reasonable assumptions can be made about a PKCS which guarantee that Crack

UPSV. One constraint to insure this is that the first component of the key generator
be one-one.

4.1. Weak one-way functions. If the conditions listed in Proposition 8 do not hold,
then we cannot conclude that E’ is a one-way function. A PKCS may be intractable
without the conditions listed in Proposition 7 being true. Therefore, existence of a
PKCS that cannot be cracked in polynomial time does not necessarily imply P # UP,
and so does not necessarily imply existence of one-way functions. Public-key crypto-
graphy without one-way functions is possible.

But let us focus attention on the function E’ and its inverse Crack’ once more.
We have seen already that E’ is one-one, is honest, and has an extension in PSV.
Clearly, E’ NPSV. Since a PKCS can be cracked in polynomial time if and only if
some extension of Crack belongs to PSV, and since Crack has an extension in PSV if
and only if Crack’ has an extension in PSV, a necessary and sufficient condition that
a PKCS is intractable is that Crack’ cannot be extended to any function in PSV.

With these properties of E’ and Crack’ in mind we make the following definition.
A functionf NPSV is weak one-way iff is one-one, f is honest, an extension off is
in PSV, and no extension off-1 is in PSV. Every one-way function is a weak one-way
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function. It follows from the discussion that existence of intractable public-key cryp-
tosystems implies the existence of weak one-way functions. In light of the fact that
existence of intractable public-key cryptosystems implies the existence of P-inseparable
sets in NP, the next theorem is particularly interesting.

THEOREM 10. The following are equivalent.
(a) NP contains disjoint P-inseparable sets.

(b) There exist functions in NPSV that have no extension in PSV.
(c) There exist weak one-way functions.
Proof To prove that (a) implies (b), let A and B be disjoint P-inseparable sets

in NP. Define f as follows:

1, x6A,
f(x)=

O, x B.

Clearly f NPSV. If f is any extension of f then {xlf(x)= 1} separates A and B.
Therefore, this set does not belong to P and so f does not belong to PSV.

Now we prove that (b) implies (c). Letf NPSV so that no extension off belongs
to PSV. Define g to be the natural mapping from dom (f) to graph (f). That is,

(x,f(x)), x e dom (f),
g(x)

’ otherwise.

Finally, define h g-1. Then,

x, x dom (f) and y =f(x),
h((x, y))=

q’ otherwise.

We claim that h is a weak one-way function. Clearly h is one-one, is honest, and has
an extension in PSV. If h-l=g has an extension in PSV, then it follows that f has an
extension in PSV. Thus, no extension of h -1 belongs to PSV, and so h is a weak
one-way function.

To prove that (c) implies (a), let f be a weak one-way function and observe that

f-l NPSV and f-1 has no extension in PSV. Therefore, the promise problem
(QF-1, RF_I), by Proposition 2, has no solution in P. So, by Theorem 4, NP contains
disjoint P-inseparable sets. [3

4.2. Summary. It is useful to summarize the results of this and the previous section
in the following manner. Consider the following assertions of existence.

(A) There exist PKCS satisying reasonable conditions (e.g., the set of legal
encryption keys is in UP) that cannot be cracked in polynomial time.

(B) There exist one-way functions. Equivalently, P UP.
(C) There exist PKCS that cannot be cracked in polynomial time.
(D) There exist weak one-way functions. Equivalently, NP contains disjoint

P-inseparable sets.
We proved that (A) implies (B) and that (C) implies (D). Now we will show that

(B) implies (C), thereby completing a sequence of implications. The next result also
helps to explain why none of the converse implications seem to hold.

THEOREM 11. If there exists a function f NPSV such that
(i) f is one-one,
(ii) f is honest,
(iii) there is a one-one extension off in PSV,
(iv) no extension off-l is in PSV,

then there exists a PKCS that cannot be cracked in polynomial time.
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Observe that every one-way function satisfies the hypothesis of Theorem 11 and
every function that satisfies these conditions is a weak one-way function. A function

f may have an extension in PSV but not have any extension in PSV that is one-one,
and so we can prove neither that every weak one-way function satisfies the hypothesis
of Theorem 11 nor that existence of weak one-way functions imply existence of PKCS
that cannot be cracked in polynomial time.

Proof Let f satisfy the conditions listed and let fl be an extension off such that
fl is one-one and f PSV. Since f NPSV, dom (f) NP and so some total function
g e PSV exists such that range (g)= dom (f) [Se178].

Define a key generator G as follows: G(x)=(f(g(x)), g(x)). Since f(g(x))=
f(g(x)) for all x, G is computable in polynomial time. If K1 =f(g(x)) is an enciphering
key, then K2--g(x) is the deciphering key. (Observe that if (K, K2) is a legal pair,
then f(K2) K and hence "key-cracking" is equivalent to inverting f)

As blocklength for an enciphering key K=f(g(x)), IK21=lg(x)l is published.
Encoding and decoding functions are defined as follows, where

# I:,1 if fl (M) K,
E K1, M)

M otherwise,

and

K2 if C
D(K2, C)

C otherwise.

The functions E and D obviously are computable in polynomial time. Since f is
an honest function, it is easy to see that the function Crack for this system is polynomial
length-bounded.

To prove that the system inverse condition holds, let (K1, K2) be a legal pair of
keys and let IM[=[f-(K)I. Consider the case that f(m)=K. Then,
D(K2, E(K, M))= D(K, 4 It,l) K. Since (K, K) is a legal pair, f(K)= K,, and
since fl is one-one, K2 M, and so D(K2, E(K, m))-m. The other case is trivial.
Thus, the system inverse condition holds and therefore G, E, and D form a viable
definition of a PKCS.

Now assume that there is an algorithm to solve Crack in polynomial time, i.e.,
some extension of Crack is in PSV. This algorithm can be used to compute an extension

off- in polynomial time as follows: if y range (f), then (y,f-(y))=(f(x),x), for
some x range (g). Thus (y,f-l(y)) is a legal pair. Thus, Crack (lY[, Y, lyl) is defined
and has value f-l(y).

Condition (iii) is somewhat stronger than needed, for it suffices to assume that
an extension f’ of f exists such that

VxVy[x dom (f) ^ y dom (f’)-dom (f)->if(x) f’(y)]

and such that f’ e PSV.
Consider how this system might be used. Suppose K is the public-key and

n If-l(K)[. A sender who wants to send the message M with IMI n, first checks
whether fl(M)= K. If so, then #lt(,I is the cyphertext transmitted and the receiver
immediately knows that the cleartext is just f-((K) K2. If f(M) K, and this is
the case nearly always, then M itself is transmitted. Thus, this system is not a usable
PKCS, rather, it illustrates by example what was said in 3.3. Namely, intractability
is a necessary component of security, but public-key cryptography requires a.e. security
measures.
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4.3. Discrete logarithms. We provide candidates for weak one-way functions,
one-way functions, and problems in UP-P.

The following partial function f is examined in [Bra79].
Dom (f)= {{p, g, c)lp is a prime number,

8 is a primitive root mod p, and 1-< c <-p- 1}
such that for (p, g, c) dom (f),

f((p, g, c))= (p, g, ge(mod p)).
This partial function is one-one, is honest, and has an extension in PSV (perform

the displayed computation for every p, 8, and c). f is probably not in PSV because
dom (f) is not in P unless both primality and primitive roots can be recognized in
polynomial time.

The discrete losarithm problem is the problem of computing an extension of the
following partial function h, where dom (h) dom (f) and for (p, 8, x) dom (h),

h((p, g, x)) the unique integer c, 1 <_- c <_-p- 1, such that 8 x(mod p).
Equivalently, the discrete logarithm problem is the following promise problem.

input integers p, g, and b
promise p is a prime number, 8 is a primitive root mod p, and 1 <= b _-< p- 1.
output unique e, 1 <- -< p 1, such that 8 b(mod p).
The partial function f-i has no extension in PSV unless there is a polynomial

time algorithm to solve the discrete logarithm problem. Therefore, f is a candidate for
being a weak one-way function.

Feigenbaum [Fei85] has shown that f can be extended to a total function that is
both one-one and computable in polynomial time only if there is a randomized
polynomial time algorithm for testing whether an integer g, 1 _-< g _<- p 1, is a primitive
root for a prime p. Therefore, f probably does not satisfy the conditions of Theorem 11.

Here is Feigenbaum’s argument. Consider the following primitive root problem.

input integers p and g
promise p is a prime, number.
property 8 is a primitive root mod p.

Suppose that f is an extension of f that is total, one-one, and computable in
polynomial time. If 8 is not a primitive root, then the mapping c-gC(mod p) is (at
least two)-to-one, when we restrict both domain and range to the interval [1, p-1].
If, for every c in {1, , p 1}, f((p, g, c)) (p, 8, Y) where y 8C(mod p) and 1 _-< y -<

p- 1, then f cannot be one-one. Thus, for a fixed prime, a fixed nonprimitive root 8,
and a random e[1, p-1], the probability is at least 1/2 that if f((p, g, c))= (a, b, y),
then one of these three conditions holds:

(1) aCp orb#g;
() y>p-1;
(3) y gC(mod p).

Thus, the discrete logarithm problem can be solved as follows: For k independent
iterations, choose a random c [1, p-1] and compute f((p, g, c)). If g passes all k
tests, then, with probability of error at most 1/2k, g is a primitive root mod p. If one
of the results satisfies one of conditions 1, 2, or 3, then g is not a primitive root mod p.

The primitive root problem is not believed to have a solution in R; hence this is
evidence against the existence of f.

Now we will show that a modification of f is a candidate for being a one-way
function. Observe that dora (f) NP by a result of Pratt [Pra75]. Hence, there exists
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a polynomial q and a polynomial time recognizable relation R so that p is a prime
number and g is a primitive root mod pZlyl),l<=q(ipl)R(p g, y).

Johnson [Joh85] suggests that the following partial function is a candidate for
being a one-way function.

f((p,g,y, c))={(P,g,Y, gC(mdp)) ifl<=c<-p-l,[Y[<-q([Pl),andR(p,g,Y),
]’ else.

The partial function fl is in PSV, and, of course, fl is one-one and honest. It is
believed that discrete logarithms remain difficult to compute even given a "short proof"
that g is a primitive root mod p for a prime number p. Thus, f- is not believed to be
computable in polynomial time.

Consider the promise problem (Qs, Rs;,) (except that the output is not padded).
Then, Rf-i, {(p, g, y, b, x) ll <- b _-< p 1, 1 -<_ x _-< p 1, lyl --< q([p]), R(p, g, y), and, the
unique c such that 1 =< c_-< p 1 and g b(mod p) is less than x}. Hence, Ry;, UP.
Therefore, if fl is a one-way function, then, since (Qy-,, Ry-l) has no solution in P,
the set Rye-, UP-P.

5. Almost-everywhere eomllexity measures. Given two partial functions f and g,
g is an approximation of f if for all x dom (g)ffl dom (f), g(x)=f(x). One might
wish to design a PKCS such that every easily computable function g approximates
Crack only for finitely many inputs, i.e., dom (g)f’l dom (Crack) is finite. This is an
unobtainable goal. Namely, for any polynomial q, Crack can be computed in polynomial
time for q(n) many input triples ofthe form (n, K1, C) by the following trivial algorithm.
Sequentially search all strings of length n until either a string M is found such that
E(K1, M)= C or q(n) many strings are searched. For every n, the algorithm solves
the cracking problem in polynomial time for a polynomial number of input triples of
the form (n, K1, C). Therefore, it is not possible to have dom (f)fl dom (Crack) finite
for arbitrary approximations.

On the other hand, observe that the domain of the procedure just described is a
sparse set. We want to consider security measures that reflect the limit of what can be
achieved, and so we are led to the following definitions.

A partial function f is partially immune to a complexity class of functions o% if
dom (f) is not sparse and for every approximation g of f, g implies dom (g)
dom (f) is a sparse set. A set A is partially immune to a complexity class of sets if
A is not sparse and every subset of A in is a sparse set.

If a partial function f is partially immune to PSV, then no extension of f is in
PSV. It is not good enough to consider only approximations g which fulfill dom (g)
dom (Crack). If dom (Crack) is immune to P, then for every approximation g PSV
of Crack such that dom (g) dom (Crack), dom (g) is finite. Nevertheless, Crack might
be extendable to a total function in PSV, and therefore not secure at all.

A partial function f may be partially immune to PSV without dom (f) being
partially immune to P and vice versa. According to the following theorem the implica-
tion in one direction holds for PKCS such that Crack UPSVg (cf. Proposition 8).

THEOREM 12. Iff UPSVg and dom (f) is partially immune to P, thenfis partially
immune to PSV.

Proof Let g e PSV be an approximation to f The following algorithm shows that
dom (f)(’1 dom (g) P: on input x, if (x, g(x)) graph (f) then accept else reject. It
follows that this set is sparse.

Recall that a set A is bi-immune to P if and only if it is a.e. complex. The following
proposition states that partial immunity to PSV enjoys the analogous property.

PROPOSITION 9. The following are equivalent.
(a) f is partially immune to PSV.
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(b) IfM computes an extension off, then M requires more than polynomial time on
dom (f) except on a sparse set.

Now, suppose f is partially immune to PSV, and let g be any approximation of
f. For most input words x in the domain of f, g(x) is undefined, but when g(x) is
defined, the output value is correct, i.e., g(x)=f(x). It may seen that f cannot have
any good heuristics, but this is not in general true. Approximations as we have defined
them satisfy a severe conditionmthey never give the wrong answer. In many applica-
tions, cryptography included, it may be more appropriate to consider polynomial
time-bounded Turing machines that compute the correct answer for some inputs and
that compute wrong answers for other inputs, and to concern oneself with the relative
frequency of these two events. These considerations as applied to languages have led
to a study of polynomial time random languages [Wi183], [Huy85]. Briefly, a language
L is polynomial time random if every polynomial time algorithm is no more successful
at recognizing L than is guessing. Huynh [Huy85] shows that bi-immunity and poly-
nomial time randomness are othogonal properties.

Now we consider public-key cryptosystems for which good heuristics to compute
Crack do not exist. We formulate this for arbitrary f as follows:

(2) For every partial function gPSV {x[g(x)=f(x)} is a sparse set.

Condition (2) is not in general equivalent to partial-immunity to PSV. But,
surprisingly, as a consequence of the next theorem, these two conditions are equivalent
for the cracking problem of public-key cryptosystems. Therefore, we define a PKCS
to be secure with respect to PSV if Crack satisfies condition (2).

THEOREM 13. Iffis a partialfunction such that thepromise problem (dom (f) E*,
graph (f)) has a solution in P, then each of the following is equivalent.

(a) For every total function g, g PSV, {xlg(x)=f(x)} is a sparse set.

(b) For every partial function g, g PSV, {xlg(x)=f(x)} is a sparse set.

(c) f is partially immune to PSV.
Proof To show that (a) implies (b), assume (a) and let g PSV. Define g’(x)=

g(x), if x dom (g), and g’(x)= x, if x dom (g). g’ is defined for all x and, since
dom (g) P, g’ PSV. Thus, by assumption, {x[g’(x)=f(x)} is sparse. Since {x[g(x)=
f(x)} {x[g’(x)=f(x)}, {x[g(x)=f(x)} is sparse as well.

Now assume (b) and let us show that f is partially immune. Let g PSV such that
/x(x dom (f) dom (g)f(x)=g(x)). Then, dom (f) fq dom (g)={x[g(x)=f(x)}
and so, by assumption, dom (f)f3 dom (g) is sparse.

Finally, we use the hypothesis that (dom (f)x E*, graph (f)) has a solution in P
to show that with this assumption (c) implies (a). Let S P be a solution, assume (c),
and let g PSV be a total function. Define g’(x)= g(x), if (x, g(x)) S, and to be
undefined otherwise. Clearly, g’ PSV and we show now that for every word x,
x dom (f) f) dom (g’) implies f(x) g’(x). Given x dom (f) fq dom (g’), (x, g(x))
dora (f) xE* and so the promise is satisfied. Therefore, (x, g(x)) SC:>f(x)= g(x).
Since x dom (g’), g’(x) g(x), and (x, g(x)) S, and therefore g’(x) g(x) =f(x).

It follows that dom (f) fq dom (g’) is sparse, for we are assuming that f is partially
immune. Next we will observe that {xlf(x)= g(x)} dom (f)f’)dom (g’), from which
the claim in assertion (a) follows. Iff(x) g(x), then x dom (f) and so (x, g(x))
f(x) g(x). Then, by definition x dom (g’) and so x dom (f)fqdom (g’), and the
proof is complete.

Observe from the proof of the theorem that condition (2) implies f is partially
immune to PSV for all f To complete the argument that condition (2) is equivalent
to partial immunity for the cracking problem of public-key cryptosystems, recall that
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the encoding algorithm E is computable in polynomial time and observe that the set
S={(n, K1, C, M)[IM n and E(K1, M)= C} is a solution in P of (CrackxE*,
graph (Crack)). Therefore, the following corollary is proved.

COROLLARY 8. A PKCS is secure with respect to PSV if and only if Crack is

partially immune to PSV.
Next we will examine security with respect to functions that are computed prob-

abilistically in polynomial time with bounded error. With that exception, we stress that
the security measure we have been discussing represents a theoretical limit of what
can be achieved and may even be stronger than what a usable system need attain. For
example, Goldwasser and Micali [GM84] permit (when the message space has normal
distribution) a super-polynomial number of messages of size n to be cracked.

5.1. Cryptanalysis by probabilistic algorithms. The informal view does not change.
If a cryptanalyst has available a transducer T that on many inputs to Crack probabilisti-
cally computes Crack with bounded error probability, then the PKCS under attack is
rendered useless, even if T behaves arbitrarily on other inputs, and even if it is not
possible to decide when T is correctly computing Crack. Formally, we make the
following definitions.

Let T be a nondeterministic transducer as described in 2.2 and let p be a
polynomial. A partial function fT,p is defined as follows:

dom (fT,p)= {x[every computation of T on input x halts within p([x[) steps
and there exists a string y such that Pr (T(x)= y)>-_ 3/4}.

For each string x dom (fr,p),
fr,p(X) unique y such that Pr (T(x) y) >- 3/4.

(The choice of 3/4 is somewhat arbitrary and 1/2+ e, for fixed e >0, would suffice
[BG81].)

DEFINITION 3. BPPSV {fT,p[T is a transducer and p is a polynomial}.
A definition for total functions was given in [RZ83] and this definition agrees

with that one for total functions. Also, note that if a language L belongs to BPP, then
the characteristic function of L belongs to BPPSV.

THEOREM 14. If the promise problem (dom (f) x 5:*, graph (f)) has a solution in
P, thenfis partially immune to BPPSV ifand only iffor every partialfunction g BPPSV,
{x[g(x) =f(x)} is a sparse set.

The reader can construct a proof of this theorem easily from the proof of Theorem
13. In Theorem 13, the proof that (a) implies (b) depends on the fact that f PSV
implies dom (f) P. This property does not seem to hold for f BPPSV, and so we
do not include the corresponding assertion in this theorem.

Define a PKCS to be secure with respect to BPPSV if for every partial function
g BPPSV, {(n, K1, C)lg(n, KI, C)= Crack (n, K, C)} is a sparse set.

COROLLARY 9. A PKCS is secure with respect to BPPSV if and only if Crack is
partially immune to BPPSV.

5.2. Discussion. Now that almost everywhere security measures have been studied,
it might be appropriate to revisit the notion of one-way function. Suppose one-way
functions are redefined based on the intuition that they should be difficult to invert
on most inputs. Namely, let us say that a function is one-way if it is one-one, honest,
computable in polynomial time, and its inverse is partially immune to BPPSV. Though
we will not carry out the development here, it is possible to revisit 4 and to obtain
analogous conclusions.

The salient feature of public-key cryptosystems, as studied in this paper, is that
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messages are encrypted deterministically. A number of researchers have been actively
investigating systems that encrypt messages probabilistically [Go184], [GM84], [BG85].
An advantage of this technique is that it makes it possible to send single bits securely
over insecure channels. Improving a result of Shamir [Sha81], Blum and Micali IBM84]
introduced the notion of strong pseudorandom generator. Here we do not need to say
what strong pseudorandom generators are; we mention only that they have known
applications to cryptography, that they have been used to design public-key cryptosys-
tems IBM84], [BG85], but that their exact relationship to public-key cryptosystems
remains unclear. By the latter assertion we mean that there is no theorem known of
the form "strong pseudorandom generators imply secure public-key cryptosystems."
The papers [Yao82], [Lev85] each show that the existence of certain types of one-way
functions imply the existence ofpseudorandom generators. Thus, even though existence
of one-way functions as they are defined in [Lev85] are in fact equivalent to existence
of strong pseudorandom generators, the exact relationship between one-way functions
and public-key cryptosystems remains unclear. It is interesting to observe that Yao’s
notion of one-way function is similar to the one given in the previous paragraph in
that both notions assert that one-way functions are hard to invert on most inputs. The
fractions of inputs for which the inverses are difficult to compute are different.

6. Oracles. The first significant relativization results having to do with cryptogra-
phy are due to Brassard [Bra83b], [Bra81]. In [Bra83b] it is shown that there is a
recursive oracle relative to which there is a public-key cryptosystem that is secure with
respect to PSV, and in [Bra81 this result is extended to security with respect to BPPSV.

We showed in this paper that there exist PKCS such that Crack UPSV-PSV
only if P UP, that there exist PKCS that cannot be cracked in polynomial time only
if NP- P contains a disjoint pair of P-inseparable sets, and that there exist PKCS that
are secure with respect to PSV only if there exist functions that are partially immune
to PSV. Here we state relativization results that establish possibilities of existence and
relationships between the pertinent complexity theoretic necessary conditions.

6.1. The class UP. Rackoff [Rac82] obtained oracles A and B such that pA
UPa-- NPA and pB= UpB# Np. Geske and Grollmann [GG86] obtained a number
of strong relativized separation results for UP, among which we mention only the
following" There exists a recursive oracle C and a nonsparse language L such that
pC Upc Npc and L NPc is partially immune to UPc. (In fact, L Rc, cf. [Gi177]
and [AM77].)

The existence of functions in UPSV that are partially immune to BPPSV is a
necessary condition for there to exist secure PKCS with Crack UPSV. Such functions
exist if UP contains a set which is partially immune to R for it is well known that
R BPP [Gi177].

6.2. Inseparability. Since Theorem 5 holds for all oracles, the oracle C for which
pC upC is also an oracle for which P-inseparable sets in NP exist. We do not believe
that P-inseparable sets can b.e obtained from the hypothesis "P NP." Note that this
conviction is paramount to saying that in order for there to exist PKCS that are secure
in even the weakest sense, PC NP is not a sufficiently strong complexity theoretic
hypothesis. However, we have not been successful at obtaining an oracle relative to
which P NP and P-inseparable sets do not exist. Such an oracle X also must satisfy
pX upX Npx f’l co-NPx and, trivially, EXPx g; NPx, where EXP
U{DTIME(2Cn)I c > 0} (because A EXP- P implies e EXP- P, and A and ft. are
P-inseparable).

The NP-complete set K (cf. Theorem 6) belongs to EXP. Hence K is in EXP and
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K and K can be separated only by K which is NP-hard. Thus, EXP contains disjoint
sets which can be separated only by NP-hard sets. An oracle is constructed in [GH83]
relative to which EXP__ NP. Therefore, relative to this oracle NP contains disjoint sets
that can be separated by NP-hard sets only. We have not been able to construct an
oracle Yrelative to which the conjecture is true. Such an oracle must satisfy UPx NPx

co-NPx and EXP g; NP.
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SOLVING SIMULTANEOUS MODULAR EQUATIONS OF LOW DEGREE*

JOHAN HASTAD?

Abstract. We consider the problem of solving systems of equations P(x) 0 (mod ni) k where

Pi are polynomials of degree d and the ni are distinct relatively prime numbers and x < min (rig). We prove
that if k > d (d + 1)/2 we can recover x in polynomial time provided min (ng) > 2a2. As a consequence the
RSA cryptosystem used with a small exponent is not a good choice to use as a public-key cryptosystem in
a large network. We also show that a protocol by Broder and Dolev [Proceedings on the 25th Annual IEEE
Symposium on the Foundations of Computer Science, 1984] is insecure if RSA with a small exponent is used.

Key words, cryptography, lattice algorithm, RSA, coin flipping, modular equations
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1. Introduction. Let us start with some cryptographic motivation. The RSA func-
tion [10] is defined as f(x)=--x (rood n). Here n is usually taken of the form n=pq
where p and q are two large primes and e is an integer relatively prime to (p- 1)(q- 1).
Using these parameters the function is 1-1 when restricted to 1 =< x=< n, (x, n)--1.
Furthermore the function is widely believed to be a trapdoorfunction, i.e., given n and
e it is easy to compute f(x) and given f(x) it is also easy to recover x provided one
has some secret information but otherwise it is difficult to compute x. In this case the
secret information is the factorization of n.

The RSA function can be used to construct a deterministic Public Key Cryptosys-
tem (PKC) in the following way: Each user B in a communication network chooses
two large primes p and q and multiplies them together and publishes the result nB
together with a number eB which is relatively prime to (p-1)(q-1). He keeps the
factorization of n as his private secret information. If any user A in the system wants
to send a secret message m to another user B she retrieves B’s published information,
computes y-= rn% (mod n) and sends y to B. B now obtains the original message
using his secret information, while somebody who does not know the secret information
presumably faces an intractable computational task.

Public Key Cryptosystems are different and more complex objects than are
trapdoor functions. The reason is that a PKC involves a protocol consisting of several
steps. For example the use of RSA in a PKC may present obstacles that did not occur
when we considered it as a trapdoor function. Several people (including Blum, Lieber-
herr and Williams) have observed the following possible attack. Assume that 3 is
chosen as the exponent and that A wants to send the same message m to users U, U2
and U3. She will compute and send yi m (mod ni), 1, 2, 3. If someone gains access
to y, y2 and Y3 then by using the fact that n,/12 and n3 will be relatively prime he
can combine the messages by Chinese remaindering to get m (mod nn_n3) and since
m3< nnzn3 he can recover m. In general if the exponent is e the number of messages
needed is e.

A natural question is therefore: Is there a better way to send the same message
to many people using this PKC?
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A common heuristic tells us to use a "time stamp." Instead of sending the same
message m to everybody one attaches the time and thus sends the encryption of 21t’lm / ti
where 21tilm is the shifted message and ti is the time when the message is sent to user

Ui. This time will be different for the different receivers. The previous attack then fails.
If we assume that the times ti are known to the cryptanalyst we are led to consider

the following computational problem (for e--3).
Given (aim+ bi) (mod ni) where all the ai and bi are known is it possible to

recover m in polynomial time?
We will prove in 3 that the answer is YES if the number of similar messages is

at least 7. In fact we will prove this as a special case of our main result, which is:
Given a set of k polynomial equations

Pi(x) :-0 (mod hi) i= 1,..., k

each of degree =<d, it is possible to recover all solutions in time polynomial in both k
and log ni if k> d(d + 1)/2 provided min (hi)> 2 d2.

Observe that the described attack does not work if the values of the ti are not
known to the cryptanalyst. Thus if a random padding were used or if the time stamp
were unknown then the present attack would not work. However, this weakness seems
severe enough so that if one uses RSA as a PKC then, as a matter of prudence, one
should use a large exponent or, even better, a probabilistic encryption scheme [3],
[7] based on RSA. By [1], [3] this can be done with as much efficiency as in the
deterministic case.

The outline of the paper is as follows. In 2 we state some results from geometry
of numbers which will be needed in later sections. In 3 we state and prove our main
result and in 4 we derive some cryptographic applications.

2. Background from geometry of numbers. The main tool in our algorithm will be
the use of lattices. In this section we will gather the relevant background information.
A lattice L is defined to be the set of points

L-{yly-
i=1

aii’ aiZ}
where bi are linearly independent vectors in R. The set bi is called a basis for the
lattice and n is the dimension. The determinant of a lattice is defined as the absolute
value of the determinant of the matrix with rows bi. It is not hard to see that the
determinant is independent of the choice of basis. The length of the shortest nonzero
vector in the lattice is denoted by A. Let us recall the following well-known fact"

TIEOREM (Minkowski). A <-3// (det (L))/ where , is Hermite’s constant.
Hermite’s constant is not known exactly for n > 8 but Minkowski’s convex body

theorem [5, ix.7] implies that /-< n. Lenstra et al. showed in [8] that it was possible
to find a vector in L of length at most 2-)/eA in polynomial time. From their proof
we can, however, derive a slightly better bound in the present case.

THEOREM (LLL). Given a lattice L as a basis for integer vectors of length at most
B we canfind a vector in time O(n6(log B)3) which satisfies  711 2(n*1)/4 (det (L)) 1/n.

This gives an effective variant of Minkowski’s theorem. Here I1;11 is the euclidean
length of the vector b. The bound on the running time assumes that multiplication of
r bit numbers is done by classical arithmetic taking O(r2) steps. Using faster multiplica-
tion routines the bounds can be improved by a factor close to n log B. Armed with
this information we return to the original problem.

3. Main theorem. Let us start by fixing some notation. Let N--1-I k
i: ni and

n min ni. Now we can state the problem formally:
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dProblem. Given a set of k equations =o aoM 0 (mod hi), 1,. ., k. Suppose
that the system has a solution x < n and the numbers n are pairwise relatively prime.
Can we find such a solution efficiently?

Before we state our main result let us give the basic ideas. Define u < N to be
the Chinese remaindering coefficients, i.e., uj 6i (mod rti) (ij 1 if =j and 0 other-
wise). We can combine the equations to a single equation using the Chinese Remainder
Theorem.

d k d

0=-- Z M Z u,ai=- Z Mc (mod N).
j=0 i=1 j=0

One of the important parts of the entire paper is the following simple lemma.
LEMMA 1. If levi< N/(d + 1)n and we have at least one nonzero e then we can

find all x satisfying x < n and Y,]-o cjM 0 (mod N) in time O((d log N)3).
Proof If [e] < N(d + 1 n--then

<- 21cjln < N.
j=0 j=0

Thus the condition Yo cM 0 (mod N) implies o cM= O. In other words x
solves the equation over the integers and to prove the lemma we just need the fact
that we can solve polynomial equations over the integers quickly. Since this is a special
case in which we are looking for an integer solution, we can proceed as follows. Find
all linear factors modulo a small prime. Now apply Hensel lifting to obtain these
factors modulo a large power of the prime and finally check if any of the roots is a
root over the integers. The estimate for the running time in the lemma is correct but
not the best possible.

The condition of Lemma 1 is quite unlikely to be fulfilled when we start with a

general set of equations. In spite of this, Lemma 1 will be one of our main tools for
proving our main result, which is as follows.

dTHEOREM. Given a set of equations -o aijxj 0 (mod Mi) 1, 2, , k where
the moduli ni are pairwise relatively prime and gcd ((ai)=o, hi) 1 for all i. Then we can

find all x < n satisfying the equations in time O( d6(log N)3) if
N> nd(d+l)/22(d+2)(d+l)/4(d + 1) (d+l).

AS before, N II k
i=1 ng, n- min ng, d is the degree of the equations and k is the

number of equations. By gcd ((aj)-0, n) we mean the greatest common divisor of all
d / 2 numbers.

Proof The idea is to use Lemma 1, though it is unlikely that it will apply to our
equations directly. However, we have an extra degree of freedom. We can multiply
the equation by an arbitrary constant S and we still get a valid equation. Using this
trick we will be able to make the coefficients small. Thus, we want to make Sci (mod N)
less than N ni(d / 1) in absolute value. Set up the following lattice L of dimension
d+2:

/=(Co, ncl, n2c2, ndcd, 1/(d+ 1)),
b2= (N, 0, 0, , 0, 0),
b3=(O, nN, O, ...,0,0),
b-’4 (0, O, n2N, O, 0),

bd+ (0, O, 0,..., n tiN, 0).
Let us see why this lattice is relevant to our purposes. Look at a generic vector

Sbl/2i=2d+2 Si. Call the ith coordinate di. From the definition, it follows that d is
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divisible by n i--1 and di/ni-l Sci_ (mod N). Thus if we find a vector/ L satisfying
]1/]1 < N/(d + 1) we know that [dil< N/(d + 1) and we get the desired bound for
Sc (mod N). The last coordinate is there to prevent S-- N, which would make d 0
for i--1,...,d+l.

We have only one term in the expansion of the determinant and we get

Fl d(d+l)/2Nd+l
Det (L)

(d+l)

Using the theorem of LLL in 2 we know that we can find a vector b in L that
satisfies

[[ffg[[ <2(d+l)/4 (ld(d+l)/2Nd+) /(d+2)

d+l

As observed above we need [I < N/(d / ) in order to get the desired bound for the
coefficients and thus we need,

2(d+l)/4 (nd(d+l)/2Nd+l) 1/(d+2) N
+1 d+l

Raising both sides to the d + 2 power and rearranging we see that this is equivalent
to the condition in the theorem.

To finish the proof we need to prove that we have at least one nonzero coefficient.
Since II/11 < N/(d +1), we see by looki,g at the last coordinate that the coefficient S
multiplying / satisfies ISI < N. Furthermore we know that S 0 since all nonzero
vectors with S 0 are of length at least N. This means that there is an ni such that

a dS 0 (mod n). Look at the equation modulo this t’/i. Using that gcd (( 0)=o, hi)= 1
we see that the equation is nontrivial. The bottleneck in the computation is the lattice
computation and this gives the running time of the algorithm.

Remark. One interesting open question is whether we can solve the problem with
fewer equations. It does not seem possible to use this line of attack with substantially
fewer equations. To see this one might argue as follows"

The probability that levi< N/(d + 1)n forj 0, 1,..., d for a fixed S is approxi-
mately n-dd+)/2 and this would indicate that we should have ndd+)/ different S to
choose between; we would, therefore, need at least d(d + 1)/2 equations.

4. Cryptographic applications. We get some immediate applications of the main
theorem.

APPLICATION 1. Sending linearly related messages using RSA with low exponent e
is insecure. Sending more than e(e + 1)/2 messages enables an adversary to recover the
messages provided that the moduli n satisfy n > 2(e+2)(e+l)/4(e + 1) (e+l).

Proof Suppose we are given the encryption of k linearly dependent messages.
We expand the eth power and we get k equations of degree e with the different moduli
used n. We now apply the main theorem. We need to verify that the conditions of
the main theorem are satisfied. If one of the gcd conditions is not satisfied we can
obtain the message by factoring one of the n. Finally,

k d(d+l)/2+l

N= ni n H hi> 2(e+1)(e+2)/4( e+ 1) (e+l)Fld(d+l)/2
i=1 i=2

and hence we can apply our main theorem.
If one is prepared to do computation which is exponential in the number of

equations, one can also attack the cryptosystem given exactly e(e + 1)/2 messages. The
way to proceed is to use an almost identical lattice. The only difference is to replace
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the last coordinate of the first vector with 2(e+2)/4. Now the algorithm of LLL finds a
vector in the lattice of length at most N2(e+2)/4. This implies in particular that
ci < N2(e+z)/4n -i. Now it is no longer possible to conclude that x solves the equation
over the integers. We do know, however, that the right-hand side is a multiple of N
not exceeding e2(e+z)/4N and so we try all e2 (e+2)/4 possibilities.

Another way of encrypting messages was proposed by Rabin [9]. He uses f(x)=-
x2 (mod n) where also here n is chosen to be a specific composite number for each
user. Using the same methods we get:

APPLICATION 2. Sending linearly related messages using the Rabin encryption
function is insecure. If three such messages are sent it is possible to retrieve the message
in polynomial time.

Broder and Dolev proposed a protocol for flipping a coin in a distributed system
[4]. Two of their essential ingredients were Shamir’s method of sharing a secret [11]
and the use of a deterministic PKC. The secret they use is the constant coefficient of
a polynomial of degree over a finite field. The secret is distributed by evaluating the
polynomial at a given set of points. It is easy to see that + 1 pieces, each consisting
of the value of the polynomial at a point, are enough to get the secret back while
pieces are not sufficient to determine the polynomial. Broder and Dolev claim that
pieces are insufficient to find the secret, even in the presence of the encryption of other
pieces. This is not correct if the cryptosystem used is RSA with small exponent. This
is because when knowing pieces the secret enters linearly in the remaining pieces
and hence we can use Application 1.

APPLICATION 3. The protocol by Broder and Dolev is insecure if RSA with small
exponent is used.

Of course if other cryptosystems are used then this attack does not work. A different
type of attack on the Broder-Dolev protocol has been proposed by Benny Chor [6].
This attack just relies on the protocol and not on the cryptosystem. A provably secure
protocol has been designed by Awerbuch et al. [2]. For further discussion of coin-
flipping protocols see [2] and [4].

Finally we remark that there does not seem to be any way to extend the above
attack to RSA with large exponent. The reason is that the integers involved are too
big even to write down. There is still a large amount of structure present and it would
be interesting to investigate whether this structure could be exploited to yield a
successful cryptanalytic attack on RSA with large exponent.
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UNIQUE EXTRAPOLATION OF POLYNOMIAL RECURRENCES*

JEFFREY C. LAGARIAS AND JAMES A. REEDS?

Abstract. Let a sequence of k-dimensional vectors Xo,Xl,’’" (over a ring A) be determined by a

polynomial recurrence of form xn T(xn_), where T:A A itself is known to be a polynomial map in
k variables of degree at most d but is otherwise unknown. We show that there is a finite N such that the
entire sequence {x, n-> 0} can be deduced from the first N + terms x0, x,..., XN alone. The number
N 4 (d, k, A) depends on d and k and the ring A but not on T.

Let 4*(d, k) denote the maximum of 4(d, k, A) over all commutative rings with unit. Then we show
that b*(d, k) < c. In particular, h*(d, 1) d + and 4*(1, k) k + 1. In the general case h*(d, k) _-> (k-d)
and equality does not always hold because 4*(2, 2)->-7. In addition, we show that for each k that
max {oh(d, k, F): F a field} is bounded by a polynomial in d.

These results are applied to the problem of correctly extrapolating the values {xi: i_- 0} of an unknown
polynomial recurrence (mod M) in k variables of degree at most d, where d and k are known and M is
not known. A polynomial-time algorithm is given which computes a value ,+1 given the values {xi" 0 _-< _-< n}
of such a recurrence as input, and it is shown that + X,+l for at most

+ b*(d, k) +log (MdNN1/2N)

values of n, where N + k(kd).

Key words, recurrences, pseudorandom numbers, cryptanalysis

AMS(MOS) subject classifications. 11 K45, 11 B37, 11T71

1. Introduction. One of the general methods of pseudorandom number generation
is to iterate a function T starting with a "seed" Xo to obtain the T-orbit of Xo, namely
the sequence x0, Xl, x2," with xn- T(xn_l) for n => 1. For example, the linear con-
gruential generator [K] with modulus m, multiplier a and increment b arises from
iteration of the linear function T(x)= ax + b in the finite ring Z/mZ.

In this paper we study the possibility of correctly predicting (or extrapolating) an
entire orbit {x" n->_ 0} given only a finite segment of initial values Xo, xl,’’", xN and
given only minimal qualitative information about the function T.

Sometimes it is possible to deduce the whole orbit from a finite segment even if
it is not possible to deduce the transformation T. For example, if N 2 and Xo xl
we know the whole orbit but know nothing about T except its value at a single point:
T(xo)=Xo.

The following result, conjectured by J. Boyar [B2], is a special case of those
proved in this paper: Suppose the sequence {x, n => 0} is determined by a polynomial
recurrence modulo m:

x,, =- P(x.-1) (mod m)

where the degree of the polynomial P is d or less. Then the whole sequence {xn" n >_- 0}
is determined by the initial segment Xo, xl," ", Xd+l. In other words, if {y," n >_-0} is
another such sequence, determined by a polynomial recurrence

y.=-Q(y.-1) (mod m)
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? AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
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where the degree of Q is also less than or equal to d, and if for 0_-< n -<_ d + 1

x, y, (mod m),

then x,--Yn (mod m) for all n >_-0.

This work arises from cryptography. A number of simple cryptosystems are based
on masking a plaintext using a sequence of pseudorandom bits. A subproblem in the
cryptana|ysis of such systems is the correct prediction ofthe sequence ofpseudorandom
bits from a short initial segment of bits. Linear congruential generators are one of the
simplest and most well studied pseudorandom number generators, and the problem
of extrapolating the output of such generators was studied by J. Boyar [B1], [B2],
[B3]. She showed that linear congruential generators are cryptographically insecure
in the sense that even without knowledge of a, b, m there are polynomial-time algorithms
which successfully extrapolate Xn/l given {xi: 0 -< <= n} for n 1, 2, 3, and which
make at most 2/log m incorrect extrapolations in the process. In the case that the
modulus m is known but a, b are unknown, knowledge of the first three iterates suffices
to permit correct extrapolation for all n. One might hope that polynomial recurrences
give more cryptographic security than linear recurrences. This paper shows, in a
qualitative sense, that this is not the case.

Motivated by the case of polynomial congruential generators we study the unique
extrapolation properties of the orbits of multivariate polynomial recurrences over
general commutative rings with unit. Throughout this paper "ring" will mean "commu-
tative ring with unit." Let A be a ring and let Ak be the k-tuples of elements of A.
We consider polynomial maps T:Ak-> Ak defined by

T(X .,
where each T(X1,’.., Xk) A[X1,..., Xk] is a polynomial with coefficients in A.
We define the degree of T by

deg (T) max {total degree Ti(X1, ", Xk): <= <-- k}.

A polynomial map T and an initial vector or seed Xo Ak determine a sequence of
elements x, T(x,_l) ofAk, the T-orbit ofxo. We let T (" denote the n-fold composition
of T so that x, T("(Xo). We study conditions which guarantee that two orbits coincide.
We say that a collection E of sequences of elements of Ak is m-prefix distinguishable
if whenever {x, n >= 0} and {y, n >_-0} are two sequences in E for which x, y, for
0_-< n <-m, it follows that x, y, for all n >-_ 0. An arbitrary collection of sequences
need not be m-prefix distinguishable for any finite m.

Let S(d, k, A) denote the set of all orbits of all polynomial maps T:Ak Ak of
degree at most d. Let 4(d, k, A) be the smallest m such that S(d, k, A) is m-prefix
distinguishable and let b*(d, k) be the supremum of 4(d, k, A) over all rings A. If A
is a subring of B, then b(d, k, A) -<_ 4(d, k, B). Our first result is as follows.

THEOREM 1.1.
Note that it is not a priori obvious that b(d, k, A)< ee for any given ring A, let

alone that the S(d, k, A) for different rings A should be m-prefix distinguishable for
the same value of m at once. Our proof of this result is nonconstructive and uses
Hilbert’s basis theorem.

We next obtain explicit bounds for b*(d, k) in special cases. The simplest case
is when the equations are linear, i.e., when d 1.

THEOREM 1.2. For all dimensions k >= 1,

b*(1, k) k+ 1.

In fact, b(1, k, Q) k+ 1.
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The main result of this paper concerns the one-dimensional case.
TIqEOREM 1.3. For all degrees d >-_ 1,

th*(d, 1) d + 1.

In fact, 6(d, 1, Q) d+ 1.
Boyar’s conjecture follows from this result, since

qb(d, 1, Z/mZ) <- c*(d, 1) d+l.

The situation where the dimension k and the degree d are both at least two seems
more complicated. We obtain a lower bound for b(d, k, F) when F is an algebraically
closed field using elementary methods from algebraic geometry.

TEORE 1.4. For any algebraically losed field F, c(d, k, F)-> (-). Hence

ch*(d, k) >-
d

This result holds because a "generic" polynomial map T of degree d is uniquely
determined by its values at (ka) points (Theorem 4.1). Theorems 1.2 and 1.3 show
this inequality is sharp when k 1 or d 1. However, for k_-> 2 and d _-> 2 the quantity
b(d, k, F) is apparently determined by "nongeneric" recurrences, and an example due
to James Butler shows that b(2, 2, Q)_-> 7 (Proposition 4.2). (The "generic" bound is
(2) =6.)

We have not obtained any effective upper bounds for (b*(d, k) when d->2 and
k-2. In 5 we obtain effective upper bounds for b(d, k, F) when F is a field, using
methods from algebraic geometry related to Bezout’s inequality (Theorem 5.7). In
particular, we prove that

(1.1) qb(d, 2, F) <= d4+ d,

and our results imply the asymptotic bound

b(d, k,F)<=d(2-’-l)k+2k-’(l + 0()),
as the degree d --) c with k fixed. By comparison the "generic" lower bound of Theorem
1.4 implies that

1
6(d, k, F) >=-.d + O(d k-’)

as d - c with k fixed. For the case k d 2 we can show that b (2, 2, F) -< 15 by more
detailed arguments. These upper bounds are probably far from the best possible.

To summarize, if either d 1 or k 1 there are two kinds of recurrences: generic
recurrences and exceptionally good recurrences. The generic recurrences can be
uniquely extrapolated from an initial sequence Xo, xl,’" ", x,, with n (k-d), and the
exceptionally good recurrences can be uniquely extrapolated from a shorter initial
segment. If, however, both d > 1 and k > 1 then a new class occurs, the exceptionally
bad recurrences for which initial segments of length more than 1+ (k-d) are needed
for unique extrapolation. Both kinds of exceptional recurrences are sparse: the generic
recurrences form a dense open subset (in the Zariski topology) of the set of all
recurrences of given degree and dimension. But now the worst case for d _-> 2 and k => 2
is not the generic case.
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These results on unique extrapolation of recurrences can be applied to the problem
of extrapolating the value X,+l of an unknown polynomial recurrence (mod M) in k
variables which is known to be of degree at most d, given {xi: 0 <_- _<- n} as data, where
the modulus M is itself unknown. The data {xi; 0-< =< n} are assumed to be given
with integer entries that are least-positive residues (mod M). In 6 we show that there
is a polynomial-time algorithm that produces an extrapolation ,+1 given {xi" 0 _-< _-< n}
as input, and that n+l # x,+l for at most

d dlog2M+log2 l+k
d

values of n. The proofs of this section essentially follow the approach of Boyar [B1],
[B2], [B3].

There remain a number of open problems. The most important is that of finding
an exact formula (or failing that, an effective upper bound) for 4*(d, k) when d->2
and k-> 2. In another direction, Theorems 1.1 and 1.2 are proved by exhibiting certain
"universal" polynomial identities. The identity used to prove th*(1, k)= k + 1 is just
the Cayley-Hamilton identity stating that a matrix M satisfies its characteristic equation
X4(M) 0. Do the identities used to show 4*(d, 1)= d + 1 in Theorem 1.2 also have
an interesting algebraic interpretation? (C. Mallows [Mal] has obtained a nice answer
to this question.) A third problem area concerns the nature of exceptionally bad
recurrences. Can the set of exceptionally bad recurrences be characterized in a simple
way? Do exceptionally bad recurrences have interesting algebraic, combinatorial or
cryptographic properties ?

Other results concerning the cryptographic and pseudorandom properties of linear
recurrences may be found in [K], [Mar], [FHKLS], [FKL], [HS].

2. Unique extrapolation property for polynomial recurrences. We derive Theorem
1.1 as a corollary of the following general result.

TI4EOREM 2.1. For any dimension k and any degree bound d there is a finite integer
f(d, k) with the following property: For any ring A (commutative, with unit), and any
polynomial maps

T Ak--> Ak,

S:Ak-> A

both having degree at most d, and any initial value x0 6 Ak, if

X T(i)(Xo)

and

S(xi) 0 for 0 <- <-_f(d, k),

then

S(xi)=0 forO<-_i<.

Theorem 1.1 is an easy consequence of Theorem 2.1.

Proof of Theorem 1.1. We show that f(d, k) + 1 is an upper bound for 4 (d, k, A)
for all A. Then

(2.1) ck*(d, k) <-f(d, k)+ 1.
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To see this, suppose P" Ak Ak and Q" Ak-- Ak are two polynomial maps of
degree _-<d, and let

xi P(xi_)-- Pti)(xo)

and

and suppose that

Yi Q(yi-,): Q’)(yo)

xi=yi forO<-i<-f(d,k)+l.

It suffices to prove that Xi :Yi for all i->0. Let S(X1, , Xk)
P(XI,’’’,Xk)-Qj(X1,’’’,Xk) be the difference of the jth components of P-
(P,..., Pk) and Q--(Q,. , Q). Then S is a polynomial of degree -<d, and since
Sj(xi) 0 for 0 <= i<-_f(d, k), by Theorem 2.1 applied with T equal to P we know that
S(xi) 0 for all i-> 0. Repeating for all j we see that P(xi)= Q(xi) for all i.

We can in fact derive a stronger result than Theorem 1.1 from Theorem 2.1.
COROLLARY 2.2. Let P(d, k, A) denote the set of all sequences {z,} in A arising

from polynomial maps

T. Ak- Ak,

via

U’AkA

x, T(x,_),

z.= U(x.)

where both T and U have degrees at most d. Then P(d, k, A) is f(d, 2k)-prefix distin-
guishable.

Proofof Corollary 2.2. Suppose T1, T2" A - A and U, U2" A - A are such that

x,- T(x._I), :,-- T2(n_l)

z.- U(x.), z. u(.)

and that

(2.2) zi=3i forO<-i<-f(d, Zk).

We want to show that zi--3i for all i>_-0.

Define mappings

T*" A:k
-* Azk,

S" Ag - Aby T*= T1 T2 so that

T*(X1 ," ", X2k) TI(X1, ", Xk), T2(Xk+I, ", X2k))

and

S(XI, X2k UI(X1,... Xk)- U2(Xk+l, X2k ).

The hypothesis (2.2) asserts that for

x* T*(x,*_I) (x,, ,)
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one has

S(x*) 0 forO<=i<=f(d, 2k).

Hence, by Theorem 2.1,

S(x*) Ul(xi) U2(i) 0 for all i- 0;

then zi i for all i_-> 0 as desired. [3

We note in passing that Corollary 2.2 can be applied to "sliding window" functions
of nonlinear feedback shift registers. Suppose the sequence {y," n >= 0} of elements of
A is determined by a recurrence of form y, (y,_, Yn-2,’’’, Yn-k) where q is a
polynomial of degree -<_d, and that the sequence z, is determined by z,=
U(y,, y,_,...., Y,-k+), where U is another polynomial of degree -<_d. Then {z,} is
a sequence in P(d, k, A) and Corollary 2.2 applies, as can be seen using the standard
"state vector" trick of letting x, (y,, y,_ , Y,-k-).

Now we prove Theorem 2.1 using the Hilbert basis theorem.
Proof of Theorem 2.1. We prove the result first for a specific pair of "universal

maps"

’. Ak- Ak,
;" Ak- A

in a "universal ring" A Adk. The ring Adk is a polynomial ring Z[X, T, S] in (k + 1)
(k-d) + k intermediates over Z. Here (k-d) indeterminates are

S { Si i= il, , ik with il+" "ik <- d and all i; =>0}
and k(k-d) indeterminates are

T { Ti: 1 <-_j <_- k and (il,. , ik) with il +" + ik <- d and all i; _-> 0}
and k more indeterminates are

X= {Xi" l<-i<=k}.

We think ofthe indeterminates X as being symbolic or generic versions ofthe coordinates
of the initial vector Xo of the recurrence, and the T and S indeterminates as generic
versions of the coefficients of the polynomial maps T and S. The universal polynomial
map

’= ’I, ’k) Ak Ak

Of degree d is defined by

i=(i ,--.,ik)
il +...+ikd

for 1-_<j-< k, and the universal polynomial map

S.Ak-> A
by

(2.3)

E s,z’,,
i=(il ,--.,ik)
il+...+ik <:d

Now we define a series {Pi} of elements of A by

Po: ((X1,’’’ ,Xk)),

P, (f(X,,..., X)),
P= (f(i(X,,... ,Xk))),
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Here we use the fact that the functional composition of polynomials is itself a
polynomial in the coefficients of the original polynomials. We use these to define an
ascending chain Io_ I, ... of ideals in A by

Io (Po),

I, (Po, P,),

12=(Po, P1, P2),

By Hilbert’s basis theorem [L, pp. 144-145] the polynomial ring A=Z[X,T,S] is
Noetherian, so this ascending chain of ideals must eventually stabilize: For some finite
n =f(d, k), we have that

I,- I,+,- 1,+2

The relation I, I,+ is equivalent to

P,+, (Po, P,, P,),

which is

(2.4) ;(’(n+l)(x))-- Aj(X, T, S)("(J)(X))
j=o

for some polynomials Aj(X, T, S)6 A. This is a formal identity in the polynomial ring
A. Note that (2.3) gives

P+,(X, T, S) P(’(X), T, S)

so that (2.4) implies that

(n+rn+l(x))-- Aj(’(m)(x), T, S);((’+J)(X)).
j=0

Also, since the Pi(X, T, S) ;(()(X)) are homogeneous of degree one in the variables
{Si} by (2.3), it follows that (2.4) still holds if we drop all terms in A(X, T, S) depending
on the variables {Si}, so that we have the existence of a universal identity of the form

(2.5) ;(’("+l)(x))-- Aj(X, T)g((J)(X))
j=0

valid in the ring Ak Z[X, T, S], where

Aj(X, T) Z[X, T].

Now suppose we are given a ring A and polynomial maps T:Ak-A and
S :A - A of degree <_-d. We apply (2.5) as follows. Define a homomorphism p :Aa -* A
by mapping

p(1) IA the identity element of A,
p(Tji --lji the corresponding coefficient of T where T= (T,,. , T),
p(Si) si the corresponding coefficient of S,
p(X) Xo ith coordinate of initial value Xo.

Under this homomorphism

p(( 2} ()(X)) S(T(J)(Xo)) S(xj).
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Set t={ti: O<-j<-d and i=(il," ’, ik) with i1+" "+ ik--<d and all ik-->0}. Applying
p to (2.5) gives the identity in A that

S(x,+) E A(xo, t)S(x).
j=0

Now since S(x)=0 for O<=j <= n =f(d, k) by hypothesis, this equation implies

S(Xn+I) --0.

By induction on j it follows that

S(x.+) 0, j=1,2,3,.

using the hypothesis that {S(x,+_i_l)=0: 0=< i<-f(d, k)}. Iq

3. Exact bounds for 41*(d, k) in the cases d 1 and k 1. We can obtain upper
bounds for b*(d, k) via upper bounds for f(d, k), from

(3.1) ck*(d, k)<=f(d, k)+ 1

obtained in the course of proving Theorem 1.1. To get upper bounds for f(d, k) we
observe that any identity of the form

(3.2) ((’+’)(X)) A(X, T)g(()(X))
j=0

in the polynomial ring Adk--Z[X, T,S] implies that f(d, k) <- n. Hence finding an
explicit identity of form (3.2) yields an upper bound for f(d, k).

We can obtain lower bounds for b*(d,/) by explicit construction. If we find a
ring A and two orbits in S(d, k, A) that agree for n consecutive values and then disagree,
then we may conclude that b*(d, k) -> th(d, k, A)_-> n.

These methods can determine b*(d, k) exactly only for those values of d and k
for which the equality
(3.3) ch*(d, k)=f(d, k)+ 1

holds. The proof of Theorem 1.1 leaves open the possibility that ch*(d, k)<f(d, k)+ 1
can occur for some values of k and d. This is so because the universal identities found
in Theorem 2.1 actually give the smallest value f(d, k) such that every test polynomial
S of degree of at most d has the property that if S(xi) =0 for 0_-< i<-f(d, k) for the
iterates of a recurrence of degree <_-d, then S(xi)=0 for all i_-> 0, while the bound for
th*(d, k) used in the proof of Theorem 1.1 only requires that this property hold for
those particular test polynomials S of the form S T- T2 where T and T2 produce
the given set of iterates observed. For a particular set of iterates the set of such S will
in general be of much lower dimension than the set of all S.

We prove that (3.3) does hold in the cases d 1 and k 1, and we obtain exact
formulae for b*(d, k) in these cases. We begin with the case d 1, and prove the
following result, which implies Theorem 1.2.

THEOREM 3.1. For all dimensions k >-1,

th*(1, k)=f(1, k)+ 1 k+ 1.

Proof Upper bound. We first show that f(1, k)-<_ k by explicit construction of a
suitable identity (3.2), which turns out to be the Cayley-Hamilton theorem.
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In the case d 1, we have that

T(x) T1 (x), Tk (x))

where
k

T/(Xl," ", Xk) tio + Z tijxj
j=l

for 1 _-< _-< k. We let x (1, xl, , Xk) r and observe that

(3.4) (1, ’(x)) r Lx

where L is the (k + 1) x (k + 1) matrix with rows

Lo= (1, O, ,0),

Li tio, til tik), 1 <-- <- k.

For an arbitrary k + 1 by k 4-1 matrix M over any commutative ring with unit A, the
characteristic polynomial XM(Z) of M is

k+l

(3.5) X4(z)- det (zI- M)-- cj(M)z
j--0

where the c2(M) are polynomial functions of the entries of M, with integer coefficients,
and Ck/l(M)= 1. The Cayley-Hamilton theorem [L, p. 400] asserts that the matrix
X4(M) is the zero matrix, i.e.,

k

(3.6) Mk+l-- c(M)M.
j=0

In particular, we obtain

k

(3.7) Lk+lx c(L)Ux.
j=O

Finally, let

k

(3.8) S(xl, Xk)-- So[- Z SiXi ---SX
i:1

where s (So, sl, , Sk) is a row vector ofindeterminates. Then (3.7) gives the identity
k

(3.9) sLk+lx Y c(L)sUx.
j=O

This is exactly an identity of the form (3.2) that we are looking for in the ring

Al,k Z[xl, ", Xk So, ", Sk to, tk]

since

using (3.4) and (3.8), where

The identity (3.9) implies that

as required.

( ’(i)(x ,. ", Xk) SLix

A(x, T)= A(T)= -ej(L).

f(1, k)<-k,
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tions

and

Lower bound. For the bound b*(1, k) ->_ k + 1 we take A Q and the transforma-

T(xl, x,) (x, + 1, xl, x2, xk-)

U(x,. ., xk) (2x+ 1, xl, x2," ", x_l).

Then for Xo (0, 0, , 0) and 0 _-< =< k, we have that

T(i)(x0)-- u(i)(xo) (1, 1,..., 1, 0,.’’, 0)

with the l’s in the first places. But T(k/)(Xo)=(2, 1, 1,..., 1) and u(k/)(Xo)
(3,1,1," ,l), so that d*(1, k)->k+l. [3

We derive Theorem 1.3 from the following result.
THEOREM 3.2. For all .degrees d >-1,

b*(d, 1)=f(d, 1)+ 1 d + 1.

Proof Upper bound. To obtain the upper bound f(d, 1)-< d we will show that in
the polynomial ring Aa Z[X, To, T, , Ta, So, $1, , Sa there exists an identity
of the form

d

(3.10) ( ’(a+(X)) Y Ai(X, T)( ’i)(x))
i=0

with Ai(X T) Z[X, To, , Td ]. Recall that the universal maps " and are given by

hence,

d d

(x)= y x, 5(x)= 2 sx;
j=o j=o

d

(i"’)(x)) 2 s[ ’)(x)].
j=O

By the Lagrange interpolation formula

d

g(’(d+’)(X)) ’, Ai(X, T)("(i)(x))J
i=o

where

d ( ’(d+l)(x f(J)(x)Ai(X, T)=j--[]o "(i)(X)- "(J)(x) ]"
j#i

To establish the upper bound it suffices to show that the rational functions Ai(X T)
are actually polynomials in the ring Z[X,T]. To prove this we work with certain
non-Archimedean norms on Z[X, T] and on its quotient field F Q(X, T). Since Z is
a unique factorization domain, so is Z[X, T]. Let P be a set of representatives of the
irreducible elements of Z[X, T] modulo the units of Z[X, T]. Then any elementf F
can be written uniquely as f= u I-Ip, p(S) where u is a unit in Z[X, T]. Define the
p-norm of f by [flp e-(f). Then

Z[X, T] {f F: Ifl -< 1 for all p P}.

(See [ZS, Ex. 2, p. 38]). Our method for showing that Aj(X, T) Z[X, T] is to show
that IA(X, T)lp =< 1 for all p P.
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This follows from a general result about non-Archimedean norms, which contains
the main idea of the proof, presented as Proposition 3.3 below. First we show that the
sequence of iterates )(X), I)(X), is a contracting sequence for the norms lip,
where a sequence Xo, xl, is said to be a contracting sequence if Ixi+ xj+l =< Ixi xjl
for all and j. We then apply the following proposition.

PROPOSITION 3.3. Let F be afield with non-Archimedean norm II, and let Xo, x,
be a contracting sequence. Assume that the xi are distinct.

(1) Let

O(xo, ,, xa+) I] _+_ Z
j= \ xi-xj /
j

for 0<= <= d. Then [0(Xo, ", Xd+)I <= 1.
(2) If S F[X] has degree <-d, then

[S(xd+)l <---- max
O<_id

(The proof of Proposition 3.3 is deferred until after Theorem 3.2 is proved.) Since
A.i(X, T) 0( ’)(X),..., d+)(X)) we see that [A(X, T)[p < 1 as desired, and hence
A(X,T)Z[X,T].

So to complete the proof of the upper bound it suffices to check that {)(X)}
is a contracting sequence for each p. To see this we start from the polynomial identity

d d

f(’)(v) E TV E r(U+ (v- U))
=0 =0

(’)(U) + g(T, U, V)( V- U)

where U and V are indeterminates and g is a polynomial with integer coefficients.
Substituting U ’i)(X) and V ’<) (X), we have that

(i+I)(x)- (J+I)(x)-- g(T, (i)(x), "(J)(x))( (i)(X)- (J)(x))
so that

i+’)(X) (+l)(x)lp Ig(T, if’(i)(X), f()(X))[p[ (i)(x) (J)(X)[p.
Since ’()(X) and ’)(X) are in Z[X, T], and since g has integer coefficients, the
norm of the g factor is bounded by 1 and the contracting sequence property is verified.

Then by Proposition 3.3 we know that [Aj(X, T)lp <--1. Repeating this argument
for all irreducibles p, we know that Aj(X, T) is in {fF: Iflp -< 1 for all p} which we
have already seen is Z[X, T]. This establishes the upper bound.

Lower bound. We let A Q. Take T(X)--X + 1 and starting value Xo 0. Let

U(X)=I+X+= d
so that U(1)=I+I for O<=l<=d-1 and U(d)=d+2. Then T()(O) UtJ)(O)=j for
0=<j =< d, but T(d+I)(0) u(d+I)(0). Hence b*(d, 1)

It remains to prove Proposition 3.3.
ProofofProposition 3.3. Statement (2) follows from (1) by the Lagrange Interpola-

tion Theorem and from the ultrametric inequality.
To prove (1), we first note that

(3.11) [xi+t, Xj+k] IXi Xj]
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holds for all i, j, k >-O. Now we write

IOi(xo, Xd/l)l- Adi(Xo, xa+l)Bai(Xo, Xd/l)

where

k Xd/ Xj
Adi(Xo,’’’,Xd+l)= I]

j=i+l X Xj

i-1 Xd+ Xj
Bdi(Xo,’" ", Xd+l) YI

j=o x xj

where in both cases empty products are taken to be one. In fact each of Adi(xo, ,
and Bai(Xo,’’" ,xa+l) are individually less than 1. We show Aai(Xo,’’’ ,xa+l) <- 1
directly, and Bdi(Xo, , xa+l) -<- 1 by induction on d.

First we show that Aai(Xo,’", xa+l)<--1. We have, on multiplying out and on
permuting the factors in the denominator,

d Xd+ Xj
aai(Xo, Xa+l) H

j-= i+1 X Xj

Xd+ Xi+

Xd Xi

Xd+ Xi+2

Xd Xi

Xd+ Xd

Xi+ Xi

<=1,

where each of the d- factors has norm less than or equal to one by (3.11).
Now we go to work on Bdi(xo,’’’, Xd+l). Suppose, as the induction hypothesis,

that for all 0 _-< _<- d 1 and for all contracting sequences of distinct elements Yo, Yl,
we have Bd_l,i(yo,’’’ Yd)<= 1. By the ultrametric inequality either ]Xd+l--Xol is less
than or equal to Ixi- Xol or is less than or equal to IXd+l- Xil or both. In the first case

i-1

Bdi Xo Xd+ <- I-[
j=l

Xd+ Xj

X Xj

Bd_l,i_l(Xl, Xd+l) 1

by the induction hypothesis.
In the second case

Udi(Xo,’’", Xd+l) Xd+ X0

Xi Xo

Xd+ X

Xi Xl

Xd+ Xi_

Xi Xi--

Xd + Xi

Xi Xo

Xd+ X

Xi Xl

Xd+ Xi_

Xi Xi

By cyclicly permuting the factors of the numerator, we obtain

Bdi(XO,’’", Xd+l) -< Xd+ Xl

Xi Xo

Xd+ X2

Xi Xl

Xd+ Xi

Xi Xi

Xd X0 Xd X Xd Xi_

Xi Xo Xi X Xi Xi-1

Bd_l,i(Xo, Xd) 1,

using the contraction property and the induction hypothesis.
It is easy to check that the induction can be started at say, d 0 or at d 1.
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4. Lower bounds for 4*(d, k). Let M(d, k, 1, A) denote the set of all polynomial
maps T" Ak - A of degree at most d. In the case that F is an algebraically closed field,
we will obtain the lower bound 4)(d, k, F) >_- (ak) by showing that most recurrences T
in M(d, k, k,F) are determined uniquely by their iterates {T(i)(Xo)’O<:i<--(a-k)} and
by no fewer than this number of iterates. We do this by relating the extrapolation
problem to the problem of interpolation of polynomials. A polynomial P(X) of degree
_-<d in k variables has (a-k) coefficients, so that at least (a-k) distinct interpolation
points are needed to determine it uniquely. For dimension k 1, unique interpolation
is possible for any set of d + 1 distinct points by Lagrange’s interpolation formula, but
for higher dimensions this is no longer true. We set N (a{k) and call a set

S:{xiEFk" l<:i<-N}

a unique interpolation set for M(d, k, l, F) if for every sequence zi E Fl, 1 _-< _-< N there
is a unique polynomial map P(X) in M(d, k, 1, F) for which

(4.1) P(xi) zi for 1 _-< _<- N.

Note that S is a unique interpolation set for M(d, k, l, F) if and only if it is a unique
interpolation set for M(d, k, 1, F).

TIEOREM 4.1. Let F be an algebraically closed field, and let N=
(1) The set Zdk {S: S is a unique interpolation set for M(d, k, k, F)} is an open

dense subset of Fkrv in the Zariski topology.
(2) The sets of values S= {xi Fk" O<-i <- N} in FkN+k such that there is a unique

recurrence T M(d, k, k, F) with

(4.2) T(x/) Xi+ for 0 <-- <-- N- 1

contains the Zariski open subset Zdk Fk of FkN+k.
(3) b(d, k, F)_-> N.
Proof. (1) A point fails to be in Zdk only if the linear equations (4.1) that the

coefficients of P obey have deficient rank, i.e., a certain determinant vanishes. The
coefficients of the system (4.1) are polynomial functions of the x, and hence Zdk is
the complement of a closed set.

(2) We claim that if S {xi" 0_-< =< N- 1} is a unique interpolation set, then for
each xFk a unique recurrence T in M(d, k, k,F) exists satisfying (4.2). Write
T (T,..., Tk) and observe that (4.2) is equivalent to

(4.3) T(xi, Xki) X,i+, 0 <- <- N- 1,

for 1 _--<j _--< k. If S is a unique interpolation set, then by definition there exists a unique

T satisfying (4.3), for eachj. Hence T exists and is unique, so that Zdk X Fk is contained
in the desired set of values.

(3) Choose a unique interpolation set S (Xo, xa,. , xn_) with N __(d-k). Then
by (2) we may choose two different vectors xu X*N in Fk and find unique recurrences
T, T* in M(d, k, k, F) with

T(xi): T*(xi) xi+ for0=<i=<N-1,

while

T(XN_) XN # X*N T*(XN_).

Hence &(d, k, F) => N (a{k). [3

The problem of unique extrapolation of polynomial recurrences is in fact more
complicated than the "generic" behavior of polynomial recurrences given by Theorem
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4.1 suggests. The worst cases appear to be attained by orbits of recurrences that do
not form unique interpolation sets. We are indebted to Dr. James Butler for the
following example with d 2 and k 2, where the generic bound is (2-2)__ 6.

PROPOSITION 4.2. 4(2, 2, Q) ->_ 7.

Proof We consider the collection of transformations

T;,,(x, y)= (-xy+y2+ x-Zy+ A(x2- 1), -1/2xy+ 1/2y2+ x +/x(x2- 1)),

parametrized by the constants A,/x in Q. All of these transformations agree on the set

V= {(x, y): x= +l}-{(x, y): x2-1:0}.
It is easy to check that

TAtx(Xi)-Xi+ for 0<= i<-5,

with x0-(1,0), xl=(1, 1), x2=(-1, 1), x3=(-1,0), x4= (-1, -1), xs=(1,-1), x6
(5, 2), because the points xi for 0<-i<=5 all lie on the set V. However,

T, (x6) (-5 + 24A, 2 + 24/z

depends on A and /z. Hence the T agree for seven consecutive values and then
disagree. [3

In this case the set {x0, xl,x2,x3,x4, xs} is not a unique interpolation set in
M(2, 2, 1, Q).

5. Upper bounds for 4(d, k,F) for general d and k. We apply methods from
algebraic geometry to obtain upper bounds for b(d, k, F) when F is a field. We assume
without loss of generality that F is algebraically closed. Let Fk be affine k-space over
F, equipped with the Zariski topology. (A collection of basic open sets for the Zariski
topology consists of those sets of points where a polynomial p(x,..., xk) 0.) We
freely use the concepts of dimension and irredundant decomposition into irreducible
closed sets, as expounded by [Fu], [H] and [Sh]. The (Zariski) closure of a set S Fk

is denoted by S. The cardinality of S is denoted by IS[.
The degree deg (W) of a closed set is the sum of the degrees of its irreducible

components, which in turn are defined as follows. If V is irreducible, its degree is the
maximum cardinality of a finite intersection with a linear closed set:

deg (V) max {1V ffl LI" L linear and lV
It can be shown that every closed set has finite degree, and for "most" linear closed
sets L of dimension k-dim (V), IV LI--deg V. The degree of a linear closed set is
one. The degree of a singleton point is one. The degree of a hypersurface defined by
a single polynomial equation of degree d is at most d. See [H, Chap. I, 7] or [S] for
details.

Our main tool is a generalization of Bezout’s theorem.
THEOREM 5.1 (Bezout’s Inequality). Let V, We_ Fk be closed sets. Then

deg V fl W) _-< deg (V) deg (W).

This result is due to Fulton (see [FL]).
Let T" Fk -+ Fk be a polynomial map. We need a series of elementary results relating

the degrees of T, V and T(V) for closed sets V.
LEMMA 5.2. Let the graph of T be

r r { (x, T(x)) F2k" x Fk}
_
F2k.

Then deg (r r) -<_ (deg T) k.



356 JEFFREY C. LAGARIAS AND JAMES A. REEDS

Proof FT-- n/k_ W/where W is the hypersurface in F2k defined by the equation
T(X1, , Xk) Xk+i. So W has degree at most deg (T), and by Bezout’s inequality,
deg ( =1 W) <= (deg (r)) k. [3

LEMMA 5.3. Let S, $2
_
Fk be closed. Then

deg (S x S2) <_- deg (S1) deg ($2).

Proof We may suppose that S2 Fk for S x S2 (S x Fk) (Fk $2) and so by
Bezout’s inequality deg ($1 $2) -<_ deg(S x Fk) deg (Fk $2). Let D deg (S Fk), let
L be a closed linear set such that ]LN(SlxFk)[=D, and for s6S1 let n(s)=
]Ln{s} xFk)] so that D=ss n(s). Since F is algebraically closed it is infinite and,
by linearity, if n (s) > 1, then n (s) c. But D <, so n (s) _<- 1 for all s $1. Then
n(s) [L’ n {s}[ where L’= {x 6 Fk: (x, y) 6 L} is a linear subspace offk, so D ,n(s)
[L’ N SI[ <-- deg (S1). [3

LEMMA 5.4. Let p: F2k - Fk be the projection onto the first k coordinates. If S
_
F2k

is closed, then

deg (p(S)) <= deg (S).

Proof Using irredundant decomposition into irreducibles, it suffices to prove this
for irreducible S. Let V p(S). Let L be a linear closed set such that ILN VI deg (V).
Then by the definition of the projection p

(p-’( N v)) N S (L l) S.

Since LN V is finite, p-(LN V) consists of deg (V) many linear closed sets, each one
of which has nonempty intersection with S. Thus deg ((LxFk)NS) is the sum of
deg (V) positive integers so deg (V) _-< deg ((L x Fk) n S). By Bezout’s inequality
deg ((L x Fk) n S) _-< deg (L x Fk) deg (S) deg (S). Hence deg (V) -< deg (S). []

LEMMA 5.5. deg (T(V)) <- deg (Fr) deg (V) <_- (deg T)k deg (V).
Proof Use T(V) p(W) where W Fr n V x Fk). The result then follows from

Lemmas 5.2, 5.3 and 5.4. []

LEMMA 5.6. Let V be a closed set. If V T(V) then

r(v)=_ v= r(v).

Proof Let d dim (V). We use induction on increasing values of d. The case
d 0 is trivial. For d > 0, let Vd be the union of those irreducible components of V
that have dimension d; let W be the union of the remaining components of V. We
have dim (Wd) < d and dim T(Wd) < d. Since each component of Vd has dimension
d it must be contained in T(Vd), and hence Vd --T(Vd). Indeed, the irreducible
components of T(Vd) are the irreducible components of Vd, in possibly permuted
order, and so V T(V). By irredundance, none of the components of W are
contained in any of the components of Va T(V). Since W __c_ T(Va) U T(W) we
see that Wd T(Wa). But dim (W)< d so the induction hypothesis implies W
T(Wa). Hence

V= V U Wd T( Vd) U T Wd) T V).

With these preliminaries out of the way we derive a bound for 4 (d, k, F) expressed
in terms of g(d, k) defined recursively in terms of a function h(i, d, k) by

h(1, d,k)=d, h(i,d,k)=dk(h(i-l,d,k))2+d
for 1 _-< k, and

g(d,k)=h(k,d,k).
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A computation shows that

g(d, 2)=d4+d,

and that

g(d, 3) d 13 + 2d9 + d + d,

g(d, k)= d2k-’--l)k+2k-’ ( l + O())
as d- with k fixed.

THEOREM 5.7. Let F be an algebraically closed field and let T Fk- Fk be a poly-
nomial map of degree at most d. Let C be a Zariski closed set of degree deg C)<= d. If

T)(x) C forO<-j<=g(d, k),

then

T(x) C for 0 <=j <

Hence, taking C {x: S(x)= 0}, we obtain

th(d, k, F) -<_f(d, k, F)+ 1 <- g(d, k)+ 1.

Proof. We define a descending sequence of closed sets Co
_

C1
_
C2_... by

Co C and

(5.1) C-- Cj_ ("1 T(Cj_I).

C. We have the following claim.Note that rl i=o T i(C)
_

CLAIM 1. If Ti)(x) C for 0 <= =< n, then Ti)(x) C for 0 <= =< n.
In other words, successive iterates are more and more constrained by the condition

that they be in C. The claim is obvious: If O<=i<=n, then T)(x) T)(T-)(x)) for
all O<=j<=i. Since T-J)(x) C for such j, we have Ti(x) T)(C) and indeed

Returning to the sequence Co
_
C1_"’, we observe that because the Zariski

topology is Noetherian this decreasing sequence of closed sets must eventually stabilize,
i.e, C, Cn+ for some n.

CLAIM 2. If Cn Cn+, then T(Cn)_ C,, and in fact T(C,)= C,.
This follows directly from Lemma 5.6: C,+1=C, fq T(C,). If C,=Cn+I, then

Cn_ T(C,), and Lemma 5.6 applies.
An immediate consequence of Claim 2 is that if x C, with C,--C,+1, then

T)(x) C, for all j-> 0. Using Claim 1 we then see that if TJ)(x) C for 0=<j =< n,
where Cn C,+I, then T)(x) C/ C for all j _-< 0. Hence the theorem follows from
an upper bound on how soon the sequence {C} stabilizes.

CLAIM 3. The sequence {C} stabilizes after at most g(d, k) steps, i.e.,

for some n =< g(d, k).
The idea of the proof of Claim 3 is to bound the degrees and dimensions of the

various irreducible components in the closed sets C. If C+I C then, in going from

C to C+I one or more irreducible components V "disappears" and is replaced by
subvarieties of lower dimension, but of possibly higher degree. As a result C+ might
have higher degree than C but only in higher codimension components than the ones
that "disappear." Meanwhile deg (V) of C has "leaked out" from dimension d--
dim (V) and is not in C+.
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Now define D(i, d, k) to be the maximum sum of the degrees of all components
having dimension >_-i that ever occur in any element Cn of the descending sequence
{ C}. Then the sequence { C} must stabilize after at most D(0, d, k) steps, since at each
step a component of degree at least one "disappears." We develop recursive bounds
for D(i, d, k). First

(5.2) D(k-1, d, k) <-deg Co<= d
because this is an upper bound on the degree of all varieties in Co, and because no
new irreducible varieties of dimension k-1 can arise during the intersection process
(5.1). Next we prove inductively that

(5.3) O(i, d, k) <- d + dk(D(i+ 1, d, k))2.

Indeed each variety V of dimension >=i is either in Co or else arises as a component
of an intersection T(V1)fq V2 of two irreducible varieties V1, V2 of dimension _->i + 1
occurring during the intersection process {C}. Hence, using Theorem 5.1 and Lemma
5.5, we obtain

D(i,d,k)<=d+
V V2

dim( V),dim(V2) i+

deg T(V) CI V2),

-<d+( E deg (T(V))) ( E deg(V2)),v v2
dim(V) i+1 dim( V2) i+1

<-d+dk 2 deg (V)
dim( Vl) i+1

which yields (5.3). The recursions (5.2), (5.3) immediately imply by induction on that

D(k-i,d,k)<-h(i,d,k)

for 1 _-< _-< k. In particular,

f(d, k, F) <- D(O, d, k) <- h(k, d, k) g(d, k).

Claim 3 is proved. [3

We remark that the inequality (5.3) for D(i, d, k) is not sharp. In fact with more
care one can show that

(5.4) O(i’d’k)<-d+d( D(i+l’d’k)+l)2
holds. (This bound is essentially the sharpest attainable using Bezout’s inequality
alone.) The recursion (5.4) improves the bound of Theorem 5.5 asymptotically to

f(d, k, F)< 2’-2-’d(2’-’-’)(+2’-’)(1 + O ()).
Also for k 2 the bound (5.4) implies that

6(d, 2, F)<-_f(d, , F)+ <_--(d4+ d3)+ d +
so that 4 (2, 2, F) _-< 15.

6. Extrapolation of modular polynomial recurrences with unknown modulus M. As
an application we consider the problem of predicting the values {x :n 1, 2,.-. }
generated by a polynomial recurrence of degree at most d in k variables defined over
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a ring Z/MZ where d and k are known but the modulus M is unknown. Assume that
the observed values of the xi are given with integer entries which are least positive
residues modulo M. The problem of finding a good extrapolation n+l given Xo, , xn
is a generalization of those studied by Boyar [B1], [B2], [B3]. Our algorithm, which
we call Algorithm Bag, is based on Boyar’s ideas. At stage n it takes as input the vectors
Xo," ", x, and produces output (Tn, rnn, n+l) as its estimate of the unknown transfor-
mation, modulus and next value (T, M, x,+). Here the T, is a set of Z/rn, Z-valued
coefficients for the transformation T, with the property that the equations
hold in Z/tn,Z for 1, 2,..., n, where we adopt the notational convention that
Z/mZ= Q if m +. The prediction n+l at step n is simply ]n+l T,(x,) (modulo
mn).

Let E, denote the system of inhomogeneous linear equations with integer
coefficients that the coefficients of T must satisfy if they are to explain the data
Xo,’’’, x,. That is to say, En is the system of nk equations xi T(xi_) for l_-<i <- n
in the k(k-d) coefficients of T. The general strategy of the algorithm is to keep track
of the set of moduli rn for which it is possible to solve X, modulo m. (Of course
are always solvable modulo M, but not necessarily for other moduli.) For any system
X of linear inhomogeneous equations with integer coefficients let m*(X) denote the
largest modulus m for which E are solvable in Z! mZ, the case m +o not excluded.
(See Lemma 6.3 below for more information about m*(X).)

With this notation we may state our algorithm Balk"

Bag(0)
Bag(l)

Bdg(2)

Start at step n 0.
Attempt to solve E, over Q. If there is no solution go to Bag(2). If
there is no solution call it T,, set m,-+ and set ,+-T,(xn).
Deliver (T,, m,, ,+1) and go on to the next n.
If En has no solution over Q let rn, m*(E,) as described in Lemma
6.3. Let T solve E, modulo rn, and set n+l T(xn) reduced modulo
m,. Deliver (T,, m, ,+) and go on to the next n.

The linear equation solving can be done in polynomial time using standard
algorithms [CC], [KB]. Some shortcuts are possible in the above algorithm. For
example, if m,_ <, then we know En has no solution over Q and that statement
Balk(2) will have to be used. In this case, then, step Balk(l) may safely be omitted. A
less obvious observation is due to Boyar [B1]" if n > b*(d, k) and m,_ < aT, then m,
and T, may be very cheaply computed by using the following fact: m is the greatest
common divisor of m,_ and the entries of xn- ,, and one may take Tn T,_I since
T,_ solves Zn modulo m,. This is proven below as Proposition 6.5.

The correctness of algorithm Balk is summarized in the following theorem, which
depends on the unique extrapolation results of the earlier part of the paper.

THEOREM 6.1. If the sequence Xo, X,’’’ obeys x,--T(x,_l) (modulo M) for
n= l,2, then"

(1) For all l <-i<-n, xi=- T(Xi_l)(mod m,).
(2) Ifm < then M mn
(3) Ifm < c, then m,+ m,.
(4) If n >= ch*(d, k) and fn+ x,+, then m,+l m,.

The performance of the algorithm depends essentially on the magnitude of the
quantities m*(Z) used in calculating m, in Bdk(2)"

THEOREM 6.2. Let N 1 + k(k-cl).
(1) Ifm < o, then m, <-- NN/2MaN.
(2) x, for at most th*(d, k)+ 1 +log2 (NN/2Md) values of n.
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The proofs of Theorems 6.1 and 6.2 are given later in this section. The following
two lemmas give the details of the computation in Balk(2) promised above.

LEMMA 6.3. Let the e by n matrix A and the e vector b have integer entries. Suppose
the system of inhomogeneous linear equations

Ax b

has no solution over Q.
(1) Then there is a unique modulus m*(Z) such that is solvable modulo m if and

only if m divides m*(Y).
(2) If all the entries A and b are bounded by A in absolute value, then

m*(E)<=(n+ 1)("+l)/2A "+1.

(3) ere is a polynomial-time algorithm which solves E over the rationals ifpossible,
and otherwise determines m*(E) and solves E modulo m*(Z).

Proof Claim (1) can be seen by reducing E over Z using the Smith normal form
for A (see [KB]) into a new system of the form

AZl 1,

hrZ r,

0 +,

0 +2,

(Here r is the rank of A.) If r= e or if + + =0, the system has a
solution over the rationals" zi i/Ai. Otherwise only a mod m solution can exist,
where m must divide each of +, +,..., e. Thus the set M={m: is solvable
modulo m} is finite. Ceainly M contains 1. If m is in M and m’ divides m, then m’
is also in M. Suppose m and m are in M, so m/gcd (ml, m) is also in M. By the
Chinese Remainder Theorem the product mm/gcd (m, m) lcm (ml, m) is also in
M. Hence M contains the 1.c.m. of all its elements, which is the promised m*(). The
value of m*() can be computed from the Ai and i by repeated application of the
recipe of Lemma 6.4 below. This value of m*() is used as m in Bd(2) above.

Claim (3), that all the indicated computations can be done in polynomial time
(polynomial in the number of bits to specify A and b in binary), follows when the
algorithms of [KB] and especially [CC] are used in the above sketch.

It remains to prove the bound of claim (2). Suppose that x solves modulo m.
Consider the augmented coefficient matrix A’ obtained by adjoining the column b to
the right of A, and let x’ be obtained by appending the entry -1 to the end of x. Then
there is an integer vector v such that

A’x’ mv

(over the integers). Now reduce A’ to Smith normal form: A’= KSK2 where K is in
SL(e, Z) and K2 is in SL(n, Z), and S has nonzero entries s, s,..., s only on the
main diagonal, all of the si dividing s, where r is the rank of A’. Let y K2x’ and let
w Kv. Then

Sy row,
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so m lsiYi for all i- 1, 2,. ., r, and hence m lsy, for all i. Since the greatest common
divisor of the entries of x’ is one and since K2 6 SL(n, Z), the greatest common divisor

-, n+lof the entries of y is also one and there exist integers ki such that ,i--1 ky 1. Hence
n+ ksry sr. But s in turn is a divisor of the greatest common divisor ofm divides ] i:

all r by r minors of A’, each one of which, by Hadamard’s inequality, is bounded by
r/2Ar <--_(n+ 1)(n+l)/2A n+. [’]

LEMMA 6.4. For given m, a, b) the set of divisors l ofm such that the congruence

ax=- b (mod/)

is solvable is precisely the set of divisors off(m, a, b) where

f(m,a,b)=m/gcd
gcd(a,b) gcd (m, a, b)

where j [log2 m ].
Proof. (This is essentially Lemma 3 of Boyar [B1], who presents a recursive

algorithm for computing f(m, a, b).) For each prime p, if p% m, p% a and pbp b,
then p"p where Xp _-< min (mp, bp) if ap > b and x _-< rn otherwise. By a routine
calculation we check that the maximal such x is f(m, a, b).

Now we proceed to the proofs of Theorems 6.1 and 6.2.

Proof of Theorem 6.1. Claim (1) is obvious from the construction of mn and Tn
in Bek. To see claim (2) note that the true T solves ;n modulo M, so Lemma 6.3 tells
us that Mime. Claim (3) is also easy: the system X is a subset of X/ so m/ <
and T+I solves Z, modulo rn,+. By Lemma 6.3 this means rn+lmn. Finally, to prove
claim (4), suppose at stage n the algorithm produces T, rn, +) satisfying Xn modulo
rn and at stage n+ 1 the algorithm produces (T+I, rnn+) satisfying ;,+ modulo
rn,+. If rn rnn+l, then by the unique extrapolation property for the ring Z/rnZ we
must have T, (x,) T,+(x,), i.e., n+l Xn/l" ["]

Proof of Theorem 6.2. Claim (1) follows directly from claim (2) of Lemma 6.3.
There are k(ke)coefficients in T, and hence that many variables in the equations to
be solved in Be(2). The entries in the coefficient matrix are monomials of total degree
_-<d in the data vector components, and hence are bounded by Me. Claim (2) follows
from this observation and from claims (3) and (4) of Theorem 6.1" the number of
distinct elements in a chain of divisors

is bounded by 1 + log2 m,.
Finally, we show that the "speed up" for Be(2) mentioned above is correct.
PROPOSITION 6.5. Suppose n > 49*(d, k) and m,_ < oo. Let m denote the greatest

common divisor of m,_ and the entries of x,-,. Then m, rn and T,_I solves
modulo

Proof By Theorem 6.1 we know rn, rn,_l and that both T_ and T, solve
modulo m,. Use both T,_ and T, to predict x, modulo m,. By the unique extrapolation
property for the ring Z/m,Z both predictions agree, so that T,_(x,_l)=
modulo m,. This means that , x, modulo m, and hence m, is a divisor of all the
coefficients of, x, as well as of mn-. Since rn is defined as the greatest such divisor,
m, m. On the other hand, T,-1 solves ;, modulo rn so by Lemma 6.3 we know
rn rnn.

Remarks. (1) Theorem 6.2 bounds the number of mistakes that the extrapolation
algorithm may make, but it does not bound the number of values seen before the last
mistake occurs. As an example, Algorithm Bll takes M+ 1 steps to distinguish the
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simple recurrence yo--0 and Yn--Yn-lk-1 over Z from the recurrence yo=0 and
Y,--Y,-1 + 1 (mod M). This number of steps is exponential in log M, which is the
number of bits needed to specify the modulus M.

(2) The extrapolation method of this section does not apply to the more general
problem of extrapolating a sequence {z" i-<0} generated by polynomial maps
T" (Z/MZ)k -> Z/MZ and S’(Z/MZ) k -> Z/MZ, where

Xn T(Xn_l), Zn

even when both the maps T and S and the modulus M are known. In this case the
problem of reconstructing a seed Xo that produces the observed data {z: 0 -< i-< n} is
nonlinear, and we do not know of a polynomial-time algorithm to solve it. The problem
of extrapolating the {zi 0 <= <-_ n} seems equally difficult.

Acknowledgments. We are indebted to J. H. Conway for suggesting that our
preliminary results should hold over arbitrary commutative rings with unit, to C. P.
Schnorr for references to a multidimensional Bezout’s theorem, to J. P. Butler for
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THE DISCRETE LOGARITHM HIDES O(log n) BITS*

DOUGLAS L. LONG’ AND AVI WIGDERSON:

Abstract. The main result of this paper is that obtaining any information about the O(log P "most
significant" bits of x, given gX(mod p), even with a tiny advantage over guessing, is equivalent to computing
discrete logarithms mod p.

Key words, discrete logarithm, one-way functions, secure transactions, bit security, pseudorandom bit
generator, public-key cryptography

AMS(MOS) subject classifications. 68P25, 68Q15

1. Introduction. A function f: [1, N]--> 1, N] is said to be one-way if computing
f(x) from x is easy, but computing x fromf(x) is hard. One-way functions are extremely
attractive in cryptographic applications (see [5], [6], [16], [18], [19]). However, one
should use them with care. The reason is that while x is hard to compute from f(x),
it may be possible to obtain almost all bits of x easily. It is clear, however, that some
bits of x are hard to obtain.

In a key paper, Blum and Micali [5] introduced the notion of hiding a bit in a
one-way function. A Boolean predicate B’[ 1, N]- {0, 1} is said to be hard for f if an
oracle for B(f(x)) allows one to invert f easily. They prove that a certain Boolean
predicate is hard for the discrete logarithm function, and show how to use that to
construct good pseudorandom number generators.

Some natural questions arise in light of their work. Given a one-way function f:
1) What are its hard bits?
2) How many hard bits are there?
3) How many bits are hard simultaneously?
To explain what we mean by the last question, consider B, a hard Boolean predicate

for f, and its complement, B. Clearly, B is also hard for f. However, some information
about the pair of bits (B(f(x)), B(f(x))) is available, namely the information that
they are different. Therefore this two-bit predicate is not hard for f. We say that a k-bit
predicate Bk’[1, N]- {0, 1} k is hard forf if for every Boolean predicate B’{0, 1}->
{0, 1}, an oracle for B(B(f(x))) will allow us to invert f easily. If such a B exists,
we say that f hides k bits.

The fact that hiding only one bit suffices for many applications seems to reduce
the motivation for the questions above. We would like to argue that this is not the
case. From the practical point of view, the ability to hide k bits cuts the computa-
tion/communication per secure bit by a factor of k. One can flip k coins at a time or
generate k bits at a time with a pseudorandom number generator without hurting
security.

But what really motivates us is the theoretic point of view. Very little is known
about one-way functions. In particular, a major open problem is whether they exist.
We believe that discovering and studying the "hard core" (the collection of hard bits)
of functions that are believed to be one-way may shed some light on this problem.
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In this paper we focus our attention on the discrete logarithm function, which is
widely believed to be one-way. Our main result states that the discrete log function
hides e. log Pl bits for any constant c, where p is the modulus and [p[ is the number
of bits in the binary representation of p. This paper subsumes the results of 11 where
we proved the same result using an additional assumption (see 5 for details). Similar
results for the case of the RSA and Rabin encryption functions were subsequently
obtained by Alexi, Chor, Goldreich and Schnorr [3] and by Vazirani and Vazirani 17].

Results similar to those of[ 11 were obtained by Long 12], using similar techniques
but a different set of bits. Recently, using a different technique (similar in spirit to that
used in [17]), Peralta [13] showed that the discrete log function can be used for a
pseudorandom bit generator which outputs O(log Pl) bits at time, a result which is
equivalent to ours.

Section 2 states the main results of the paper. Section 3 contains some technical
lemmas. In 4 we extend the techniques of [5] to prove our main result for the case
where the oracle is always correct. In 5 we extend our results to the case where the
oracle is more correct than incorrect. In 6 we discuss an application of our work to
pseudorandom bit generation. Section 7 concludes with an open problem.

2. Hiding bits. We start with some definitions. From this point on p will represent
an n-bit prime, Zp* the group of units mod p, g a generator of Zp*, and k an integer
such that k_-< n.

DEFINiTiON 2.1. Suppose z 6 Zp*. The index of z, index (z), is the unique x Zp*
such that z-= gX(mod p). x is also known as the discrete logarithm of z.

Blum and Micali [5] showed how to use the discrete logarithm to hide a single
bit. They hide their bit by dividing the range [1, p-1] into two equal-size intervals
called the left and the right. A "0" bit is encoded by choosing x from the left and
computing g’. A "1" bit is encoded by choosing x from the right. They prove that
even a small advantage in determining from g if x is in the left or the right can be
used to solve the discrete logarithm problem. In fact, it is only necessary to be able
to do this for x that are in the beginning of the left or beginning of the right. We can
state this formally as the

t-Left-Right Problem. Given g’Z*p, such that x[1,(p-1)/t]U[(p-1)/2,
(p-1)/2+(p-1)/t], determine if x[1,(p-1)/t] or x[(p-1)/2, (p-l)/2+
(p-1)/t].

Blum and Micali’s result can be stated as the following:
THEOREM 2.1 (Blum and Micali). Suppose p is an n-bit prime and 6 <1/2. Suppose

there exists an oracle which solves the t-left-right problem correctly with probability at
least 1- 6. Then there exists a Las Vegas algorithm for the discrete logarithm which
makes calls to this oracle and has expected running time O(t. ha(l- 6)-n).

We generalize Blum and Micali’s method of hiding 1 bit to k bits by dividing the
interval [1, p 1] into 2k consecutive, roughly equal, intervals Ik [Lk, Uk] for from
0 to 2k- 1, where Lk= [((p- 1)/2k)i] + 1, and Uk= [((p- 1)/2k)(i+ 1)J. We will call
this a partition at the kth level. For x [1, p- 1] let lk(X) be the interval which contains
x, i.e., the integer such that x Ik. Let Rk= [(p-1)/2kJ. The lower indices of Ik
are computed modulo 2k, i.e. k kIr+ means Ir+s(mod2k).

In order to hide the k bits representing the integer i, 0 <- < 2k, choose a random
x Ik and compute g(mod p). An integer z Zp* hides the bits which represent the
interval of its index.

We claim that these bits are securely hidden. In order to justify this claim we must
show that any advantage in determining not only the bits, but any partial information
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about the bits, can be used to solve the discrete logarithm problem. Determining partial
information about the bits means evaluating some nontrivial Boolean predicate on k
bits. We will call such a predicate a decision.

DEFINITION 2.2. A decision on k bits is a nonconstant function d’{0, 1}k {0, 1}.
If we consider d as a function from the integers 0, , 2k 1 into {0, 1} then we can
extend d to all integers by defining d(i)= d(i(mod 2k)).

We claim any advantage in evaluating any decision on k bits can be used to solve
the discrete log problem. First we formalize what we mean by an advantage.

DEFINITION 2.3. Suppose d is a decision on k bits. Let fa the fraction of k-tuples
(bl, b_,..., bk) such that d(bl, be,’", bk)= 1.

Without loss of generality we assume that fa >= .
DEFINITION 2.4. Suppose d is a decision on k bits. A function Oa" 1, p 1 {0, 1}

is an a-oracle for d if Oa(g’) d(Ik(x)) for the fraction c of x [1, p- 1]. A 1-oracle
is known as a perfect oracle (i.e., an oracle that never makes a mistake). An a-oracle
has an e-advantage in evaluating d if a =fa + e.

An oracle with an e-advantage does e better than an oracle that always guesses 1.
We can now state the main result of this paper. Any nontrivial advantage in

evaluting any decision on k bits can be used to solve the discrete log problem. We
state this formally as the following theorem and corollary.

THEOREM 2.2. For any k, let d be a decision on k bits. Let Oa be an e-advantage
oraclefor d. Then, using Oa, it is possible to construct an algorithm that solves the s-left-right
problem correctly with probability 1- 6. The parameter s and the running time of the
conversion algorithm are polynomial in e -, 6 -1, n, and 2k. (Note that e -1 may be
polynomial in n.)

COROLLARY 2.1. Suppose k O(log n). Let d be a decision on k bits. If there exists
an e-advantage oracle for d, then there exists a Las Vegas algorithm for the discrete log
that runs in time polynomial in n and e -1.

Proof Follows from Theorem 2.1 and Theorem 2.2.

3. Properties of partitions. In this section we present a series of technical lemmas
outlining some of the properties of partitions. The reader may wish to skip the proofs
on first reading.

The following lemma shows that the intervals Ik are of roughly the same size.
LEMMA 3.1. For 0 <--_ <--_ 2 k 1, Ilkil R k or Rk + 1.

Proof

2k (i+ 1)

Let 0 _--< r < 1 and 0_-< s < 1 be the fractional parts of the expressions in the floors. Then

-ri- 2k i--si 2k ri+si.

But ]si- ri] < 1 and [(p- 1)/2kJ _--< (p-- 1)/2k < tP-- + so II1 must be either
[(p-1)/2kJ or t(p-1)/2k] +1- [3

The following lemma shows that the partition at the kth level refines the partition
at the (k 1)st level.

LEMMA3.2 Lk-1 L2k, u/k-1 kU2i+l. Consequently//k-1 i2k, U i2k,+l.
Proof Follows immediately from the definition of Ik.
Throughout this paper, given an element z Zp*, we will apply the operations

w zgRk, w v/- (z is a quadratic residue and we pick the root with the smaller index),
and w zg-1 (z is a nonresidue). The effect of these operations on the index of z is
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to shift it by a multiple of R k, to divide it by two (when even), and to subtract one
from it (when odd), respectively. We will call these operations index operations because
they change the index in a specific way. The following lemmas show into which intervals
the new index may fall.

LEMMA 3.3. Let x I. Then for every 1 <= <-_ 2k

(1) x+iRkIki+. or
(2) x + tR k Lk+ for some 0 <--_ i.

Proof By induction on i. If 1 then from Lemma 3.1 x + R k
G I if and only if

III=Rk+I and x=L. If/>1 then let x’=x+(i-1)R k. If X’C:Iki+_l then case (2)
holds for x’ and therefore for x. Otherwise x’ Ik+_ SO X + iRk x’+ Rk(mod p- 1)
and the lemma follows by the same argument as for 1. [-]

LEMMA 3.4. If 2x I-1, then
(1) xI; or XCI.+2k-1 or

or

Proof Suppose x<-(p-1)/2. (The case x>(p-1)/2 is analogous.)
Suppose 2x> L=L-. Then 1+ [((p-1)/2k)2j] <2x. So ((p-1)/2k)2j<2x

and [((p-1)/2k)jJ <=((p-1)/2k)j<x. Therefore L= 1+ [((p-1)/2k)j] <-x.
Now suppose 2x< Uj+= U-. Then 2x< [((p-1)/2k)((2j+l)+l)]_-<

((p-1)/2k)2(j+l). Thus x<-_ [((p-1)/2k)(j+l)] U.
LMMA 3.5. If x I (and x is odd), then either

or

Proof Follows immediately from the definition.
The index operations given above are well behaved (in the sense that they change

the index of z in a specified way) except when z g or z g . We call these points
the boundary points. We can easily determine if z is a boundary point (and thereby
compute index (z)) by maintaining a sorted list of these values. There are O(2k) values
to maintain so sorting will cost O(k2k) time and each query O(k) time. If z is not a
boundary point then the index operations will result in the index of z falling in the
intervals given in case (1) of Lemmas 3.3, 3.4 or 3.5. Henceforth, we will assume that
whenever an index operation is performed on z, a test for case (2) of Lemmas 3.3, 3.4
or 3.5 is performed by checking to see if z is a boundary point.

4. Oracles which are always correct. This section considers the case of a perfect
oracle. In the next section we will consider what happens if the oracle is not perfect.

We will prove the following
THEOnEM 4.1. Let k O(log n). If there exists a decision d on k bits, and a perfect

oracle for d, Oa, then it is possible to solve the 2k-left-right problem. This can be done in
time polynomial in n, including time for the boundary tests.

We first note the following facts about decisions.
Decisions repeat themselves at intervals of 2k. Some decisions repeat themselves

at smaller intervals.
DEFINITION 4.1. Let d be a decision on k bits. The period of d is the smallest r

such that d (i) d (i + r) for all i.
The period of a decision is always a power of two.
LEMMA 4.1. Let d be a decision on k bits and let r be the period of d. Then r 2

where 0 < <= k.
Proof Immediate from the definition of period.
LEMMA 4.2. Let d be a decision on k bits with period 21. Then there exists an j < 21-1

such that d (j) d (j + 2t-l). Moreover, such aj can befound in O(2k) time by linear search.
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Proof Immediate from the definition of period and the fact that a decision is
nonconstant. [3

Theorem 2.1 says that solving the t-left-right problem is as hard as inverting the
discrete log. In the following we will show how to use the information provided by
any decision on k bits to solve the t-left-right problem. For every j, 1 =<j <-k, consider
the partition of the set of intervals {I} into two types, even and odd, depending on
whether is even or odd. The method is based on the following observation. The roots
of quadratic residues in even (odd) intervals at level j fall in even (odd) intervals at
level j + 1 (except at interval boundaries). For example, note that the roots of quadratic
residues in I (the left half) are contained in I and I22, while the roots of quadratic
residues in I (the right-half) are contained in I2 and I.

A decision gives us information about the intervals at some level. To translate
this information to information about the first level we repeatedly take square roots
as shown by procedure REDUCE and the following lemmas.

For z 1, p- 1 and 0-< <- k define the procedure REDUCE (z, 1).

Procedure REDUCE (z, l)
wz
for i=l to k-ldo

--1if w is a nonresidue then w wg
w (either root)

endfor
return (w)

LEMMA 4.3. For any z 1, p- 1 and 0 <= <= k, procedure REDUCE can be evalu-
ated in time polynomial in n.

Proof Since a quadratic nonresidue, g, is known, the extraction of square roots
in the above procedure can be performed in time O(n2) [1], [7]. [3

We proceed by showing how to use an oracle for a decision on k bits, with period
2 l, and REDUCE to solve the 2k-left-right problem. This amounts to deciding, given
gX, if x Iok or x Izkk-1. If the period, 2, is less than 2k then it will always be the case
that d(0)= d(2k-l) so an oracle for such a decision is not of direct use. However, it
is possible to use REDUCE to get around this problem.

LEMMA4.4. Let z[1,p-1] and let w=REDUCE(z,I). Let x=index(z) and
y index (w). If Ik(x) =-- 0(mod 2k) then Ik(y) =-- 0(mod 2/). If Ik(x) 2k-l(mod 2k)
then Ik(y) 2-(mod 21).

Proof Suppose Ik(x)=0(mod 2k). (The other case is similar.)
The case l=k is clear. Assume the lemma is true for /+1. Let w’=

REDUCE(z,/+1) and y’=index(w’). If y’ is odd set w’-w’.g- and y’-y’-l.
(This operation does not change lk(y ’) by Lemma 3.5.) Let w and y index (w).
(For example, w REDUCE (z, l) and y’-= 2y(mod p 1).) Bythe induction hypothesis
Ik(y’)=O(modZl+). Let Ik(y’)=2j. Since 2y I0kjc I-, by Lemma 3.4 y I or

I+2k-,. In other words, Ik(y)=Ik(y’)/2 or (Ik(y’)/2)+2k-. Therefore Ik(y)
0(mod 2t). [3

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Suppose there exists a perfect oracle Od for some decision
d on k bits. Let the period of d be 2 I. Choose a j such that d(j) d(j + 2t-1).

We will construct an algorithm for the 2k-left-right problem. Suppose z Zp* such
that x =index (z) IokU lk-,. Let w= REDUCE (z, l) and y =index (w). By Lemma
4.4 x Io if Ik(y) 0(mod 21). Otherwise, x I2k-’. Let w’= w. gjRk and y’= index (w’).
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Then d(Ik(y’)) d(Ik(y+jRk))= d(Ik(y)+j). If Ik(y)=--O(mod 2’) then d(Ik(y’))
d(j). Otherwise d(Ik(y’))=d(j+21-1). Since d(j) d(j+21-) the query Od(w’) will
determine Ik(y)(mod 2I) and thus Ik(x)(mod 2k).

5. Oracles which make mistakes. We now consider the case of a nonperfect oracle.
For example, there exists an oracle that gives some partial information about the k
bits, but it does not always give the correct answe;.

Blum and Micali handled the case of a nonperfect oracle by using a random
sampling technique which they called "Concentrating the Stochastic Advantage." They
were able to use this technique to correctly determine the value of their predicate with
high probability because they were able to sample over the entire range [1, p- 1]. In
order to extend these results to k bits using an oracle with an e-advantage and the
techniques developed in the previous section, it is necessary to be able to evaluate the
value of the predicate correctly with high probability on a single interval Ik. Unfortu-
nately, within an interval nothing is known about the proportion of x for which Oa(gx)
gives the correct value. In 11 ], we assumed that the error in every interval was bounded.
Here we make no such assumptions. It might be the case that Oa gives the wrong
answer for every x in some interval Ik. However, if this occurs there must be some
other interval (or intervals) that have a higher percentage of correct answers. Many
intervals can be sampled to obtain the necessary information.

As explained below, here we are faced with a continuous analogue of the discrete
problem of 4. In the previous section we used the Boolean values of a decision to
extract information required to solve the left-right problem. We can interpret the values
of a decision as a probability. For example, if d(Ik(x))= 1 then the probability that
Od(gy) --1 for any y Ik(x) is 1 since a perfect oracle always gives the same answer
for all values within an interval. When the oracle makes mistakes the probability that
the oracle answers 1 on a random value in an interval is no longer either 0 or 1, but
could be any value in between. In the following we develop the techniques to extract
the information needed to solve the left-right problem from this sequence of prob-
abilities.

DEFINITION 5.1. For 0 <_-- < 2k, let q(i) the fraction ofy Ik such that Od(gy) 1.
If x is chosen randomly from Ik, then q(i) is the probability that Od(gx) 1. We

will postpone discussion of how to measure the q(i) and assume for the moment that
given gX we can measure q(Ik(x)).

We will also need the following definition.
DEFINITION 5.2. For 0<_-- <2k, let r(i)=the fraction of y I/k such that Od(gy)

d(i).
If x is chosen randomly from l/k, then r(i) is the probability that Od(gx) --d(i).

Note that if d (i) 1 then r(i) q(i) and otherwise r(i) 1 q(i).
We are interested in certain families of subsequences of the q(i). The indices of

these subsequences are given below.
DEFINITION 5.3. Suppose 0_--< m =< k and 0-<_j < 2". Let

Qk(j, m)=(j,j+2",j+2" 2",’’’ ,j+ (2k-"--1) 2").

The sequence Qk(0, 0) is denoted by Qk. Also note that Qk(j, m) if and only
if j i(mod 2").

DEFINITION 5.4. The average value of the probabilities whose indices are given
in each sequence Qk(j, rn) is given by

1 2

EQk(j, m)= q(j + i. 2").
lOb(J, m)l i:O
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The average EQk(O, 0) is denoted by EQk.
In the discrete case a decision had to be nonconstant in order to be able to extract

information from it. In the following recursive definition we formalize the continuous
analogue.

DEFINITION 5.5. Suppose 0--< y_--< 1, 0_--<j < 2k, and 0_-< m <- k. For m k (i.e.,
]Qk(j, m)] 1), then Qk(j, m) is y-constant. For m < k, Qk(j, m) is y-constant if and
only if IEQk(j, m + 1) EQk(j + 2", m + 1)1 <-- Y and Qk(j, m + 1) and Qk(j + 2", m + 1)
are each y-constant.

The following lemma shows that in a y-constant subsequence all values are close
to the average.

LEMMA 5.1. If Qk (j, l) is y-constant then for all Qk(j, l)

k-l
]EQk(j, 1) q(i)] =< -- y.

Proof The proof is by backwards induction on I.
If l= k then Qk(j, k)= (j) and so EQk(j, k)= q(j).
Assume the lemma holds for + 1. Suppose Qk(j, l) is y-constant. Then ]EQk(j, +

1)-EQk(j+21, 1+ 1)1_-< y and Qk(j, l+ 1) and Qk(j+21, l+ 1) are both y-constant. By
the induction hypothesis, for all Qk(j, + 1)

IEQk(j, l+ 1)-- q(i)] <-
k-(/+l)

and for all Qk (j + 21, + 1)

]EQk(j + 21, + 1 q( i)1
k-(l+l)

But

EQk(j, l)=
EQk (j, + 1 + EQk(j + 2l, + 1

Therefore, for all Qk(j, 1)

IEQk(j 1)_q(i)l<+k-(l+ l) k-l
=2 2 Y=- Y"

In 4 we were able to obtain information from a nonconstant decision. In this
section the analogous situation will be that the sequence Qk must be nonconstant in
the following sense.

LEMMA 5.2. If Od is an e-advantage oracle for a decision d then Qk is not (e/k)-
constant.

Proof Suppose Qk is (e/k)-constant. By Lemma 5.1, for 0 <= < 2k, Iq( i) EQkl <-

(e/2). Thus q(i)<=EQk + (e/2) and l- q(/)-< 1--EQk + (e/2). Let t=2k’fd =the num-
ber of k-tuples (bl, b2, bk) such that d(bl, b2,’", bk)= 1. Recall that if d(i)= 1
then r(i) q(i) and if d (i) 0 then r(i) 1 q(i). Hence, there are 2k disjoint pairs
(il, i2) such that r(i) q(il) and r(i2) 1 q(i2). For these pairs r(i) + r(i2) <_-

EQk + (e/ 2) + 1 EQk + (e/2) 1 + e. For each of the other 2. 2k numbers which
are not among these pairs, r(i)-< 1. Since the oracle gives the correct answer for the
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fraction (1/2k) 2 r(i) we have

1 2k-1 1
fd+e - i=oE r(i) <=- [(2k t)(1 + e)+2. t--2k]

1 1

2k te + 2ke ( -- + 2ke --+ e fd + e

which is a contradiction. Therefore, Qk is not (e/k)-constant. [3

Lemma 4.2 showed that a nonconstant decision must have a pair of distinguishable
values, i.e., two values that differ by a power of two where the decision is different.
The following corollary is the analogue of Lemma 4.2. It shows that there exists two
indices that differ by a power of two and distinguish between two subsequences of the
sequence Qk.

COROLLARY 5.1. If 0d is an e-advantage oracle for a decision d then there exists
numbers j and such that 0 < <-_ k, j < 2t-1 and

e
IEQk(j, l) EQk(j + 21-1 l)l > .

Proof Follows immediately from Lemma 5.2 and Definition 5.5. [3

We still must answer the questions: How do we measure q(i) given and how do
we measure q(Ik(x)) given g"? The answer to these questions is that it is not possible
to measure these values exactly. However we can make high precision estimates of the
values by using the technique of "Concentrating the Stochastic Advantage" developed
by Blum and Micali [5].

This technique is based on the weak law of large numbers. We summarize it here
as the

1/2.SAMPLING LEMMA. Suppose 0 <-- 4’ < and 0 <- < Let trials (4,, ) 9/16a42
and M trials (4, 3). Let Y be the outcome of an independent random trial that has
outcome 1 with probability a and 0 otherwise. Suppose M trials are made and the results
are recorded as follows. With probability 1-1/M let Xi Yi and with probability 1/M
let the value of Xi be set by an adversary. This latter ease is known as a defective trial

MLet SM i= Xi. Then with probability at least 1-

S+I
M

Note that if none of the trials are defective then SM/M is an even better estimate of a.
We can use the Sampling Lemma to measure q(i).
LEMMA 5.3. Suppose ch >0 and O >O. Given i, q(i) can be measured in time

polynomial in ch- and - with error at most d? with probability at least 1- O.
Proof Let z gL’ and M trials (th, 0). Choose M random values r, r2," ", r4

with uniform probability such that 0_-< ri <- R k. Let zi- z. gr,. The indices of the zi will
be uniformly distributed in I/k. Let Xi- Od(zi). The probability that Xi 1 is q(i). Let

Mgl(i)=(1/M) Y= Xi. Then by the Sampling Lemma

Iq( i) q( i)l <- p
with probability at least 1- 4’. [3

Unfortunately, if we are given gx and wish to compute q(lk(x)) the above sampling
technique fails. However, under some circumstances the above technique will work.

LEMMA 5.4. Suppose 4’ > 0 and g, > O. Suppose M =trials (4, q,). Given g such
that Lk <-- x <-- Lk + (Rk/ M), q(Ik(x)) can be measured with error at most cb with probabil-
ity at least 1- .
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Proof For any ri such that O<-ri<-_((M-1)/M)R k, x+riIk. If ((M-
1)/M)Rk <r <Rk then x+ r may not be in Ik. In this latter case the trial may be
defective. This occurs with probability 1/M. If we define
then by the Sampling Lemma

I( i) q( i)l cfl
with probability at least 1- q.

We can use the above sampling techniques to distinguish between EQk(j, l) and
EQk (j + 2-l, l) with high probability.

LEMMA 5.5. Suppose j and are as in Corollary 5.1. Suppose 6 > 0 and ch > 0 and
let M =trials (th, 6/2-1). Let m Ik(y). Suppose m j(mod 2
Lk,, + (Rk/M). Then given gY it is possible to distinguish EQk(j, 1) from EQk(j + 2l-, 1)
with probability at least 1- 6.

Proof For each interval m, m + 2l, m + 2 2 l, , m + (2k-l 1)2 use Lemma 5.4
to estimate the corresponding probability q(m+i.2l) and let /=(1/2k-l)

2k-t 2k-t_
i__o

-1 (m+ i. 21). Let E =(1/2k-l) =o q(m+ i. 21). We must compare / with

1 2k-I--1
EQk(j, l)= E gl(j+ i" 2/)

]Qk(j, 1)1 i=o

and EQk(j + 21-1, l) which is defined similarly. These values are estimated using Lemma
5.3. The probability that

IEQk(j, 1) EQk(j, 1)l <---- 2k-lob
is at least (1--(6/2k--l))2k-’> 1--6. Similarly the probability that

is at least 1-6. If Ch=(1/2k-1)(e/Sk) then with probability at least 1-6 either
Q(J, t)l <  /4k or EQk(j + 21-1, 1)[ =< e/4k. By Corollary 5.1 only one of

these will hold with probability at least 1- 6.
We are now ready to prove Theorem 2.2.
Proof of Theorem 2.2. Let s =trials ((1/2k-l)(e/8k), 6/2k-1). We will construct

an oracle for the s-left-right problem. The construction is the same as in the proof of
Theorem 4.1 except that Lemma 5.5 is used to distinguish EQg(j, l) from EQk(j+
21-1, l). The number of samples required to estimate (i) and (i) is polynomial in
6 -1 e -, and 2k. The number of values estimated is O(2k) and all other calculations
are polynomial in n so the time bound follows.

6. Pseudorandom bit generation. We keep this section informal. It can be easily
formalized using the notation of [5] and [17].

It is natural at this point to extend the Blum-Micali pseudorandom bit generator
to output k bits per step. If the current value in the generator is gX, then it will output
the k bits hidden by it, namely Ik(x)= bb2"’" bk. The security of this generator is
ensured if for every i, given bb2"’" bi, guessing bi+ with an e-advantage is as hard
as computing discrete logarithms.

This definition of "hard bits" seems to differ from the one we give in 2. We are
concerned with computing any Boolean function of the b’s. However, a connection
between the two definitions was established in [17], at least when k O(log n). Their
result holds for a wide class of generators, but we state it here only for the one above.

THEOREM 6.1 (Vazirani and Vazirani). Assume k O(log n). The generator above
is secure ifand only iffor every I c { 1, 2, . k}, obtaining any partial information about
the exclusive or of bi, 6 I, is equivalent to computing the discrete log.
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As Theorem 2.2 states that any decision on k bits, including all these exclusive
or’s, are hard, it implies the security of this generator.

7. Beyond O(log n) bits. The problem of showing that the discrete log (or any
other function) hides asymptotically more than O(log n) bits seems to us a fundamental
question. In our proof of Theorem 2.2 the factor 2k comes into the complexity analysis
in three different places, and we have no way of circumventing even one of them. A
similar situation occurs in [3], 13] and 17]. We strongly believe that any improvement
will involve totally new techniques.
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HOW TO CONSTRUCT PSEUDORANDOM PERMUTATIONS
FROM PSEUDORANDOM FUNCTIONS*

MICHAEL LUBYt AND CHARLES RACKOFF$

Abstract. We show how to efficiently construct a pseudorandom invertible permutation generator from
a pseudorandom function generator. Goldreich, Goldwasser and Micali ["How to construct random func-
tions," Proc. 25th Annual Symposium on Foundations of Computer Science, October 24-26, 1984.] introduce
the notion of a pseudorandom function generator and show how to efficiently construct a pseudorandom
function generator from a pseudorandom bit generator. We use some of the ideas behind the design of the
Data Encryption Standard for our construction. A practical implication ofour result is that any pseudorandom
bit generator can be used to construct a block private key cryptosystem which is secure against chosen
plaintext attack, which is one of the strongest known attacks against a cryptosystem.

Key words, cryptography, pseudorandom, Data Encryption Standard, security

AMS(MOS) subject classifications. 68P25, 68Q15, 68Q25

1. Introduction. The main result of this paper is a method for efficiently construct-
ing a pseudorandom invertible permutation generator from a pseudorandom function
generator. The question of whether pseudorandom permutation generators exist was
first posed by Goldreich et al. [GGM]. A practical application of our result is that a
pseudorandom bit generator can be used to efficiently construct a block private key
cryptosystem which is provably secure against chosen plaintext attack, which is one
of the strongest possible attacks known against a cryptosystem. We expect that there
will be other applications of pseudorandom invertible permutation generators in
cryptographic protocols. Before describing in detail our results, we discuss the basic
questions which motivated our work and the partial answers we can give to these
questions.

The field of cryptography has changed dramatically over the past few years. Several
years ago, cryptography was an art more than a science. Cryptosystem design was
based on clever ad hoc ideas. The security of the cryptosystem rested solely on the
cleverness of the designer; a cryptosystem was deemed secure until it was broken (in
many cases the cryptographer only knew it was broken long after the breaker). Certain
design rules were recognized as playing a crucial role in improving security. Eventually,
the apparent increase in security obtained by using these design rules became part of
the folklore, although there were no formal proofs that security was increased. The
foundations of cryptography were not yet established, there was no established formal
framework for talking about a cryptographic protocol, security, etc. Thus, there was
no formal way to either confirm or dispute the folklore.

More recently, researchers have formalized the notions of cryptographic protocols
and security and today cryptography is an integral part of computational complexity.
Many cryptosystems whose security is based on mathematical assumptions have come
out of this research. However, the security of cryptosystems typically used in practice
is still based on the old folklore. This paper uses the new cryptographic rigor to
formalize and to analyze some of the previously unexamined folklore.
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Our primary motivation when we started this work was to investigate the soundness
of some of the design rules used in the development of the Data Encryption Standard
(hereafter called DES). DES, which was designed to be used as a block private key
cryptosystem, was developed by IBM for the U.S. National Bureau of Standards, with
an undisclosed amount of highly classified kibbitzing by the super-secret National
Security Agency. The reader can consult [De] for more information about DES and
[Ba] for more information about the National Security Agency and its role in the
development of DES.

DES has features which make it very practical to use. However, one of the
properties that DES does not have (as far as we know) is that it is provably secure,
even assuming some reasonable mathematical hypothesis. DES certainly has several
very clever features, but there is no formal justification that these features help achieve
security. We abstract and formalize what we think are some of the more interesting
design features of DES to see if they can be used to achieve security or if they are
inherently flawed.

The construction of a pseudorandom invertible permutation generator from a
pseudorandom function generator is based on one of the main design features of DES.
We view this as partial justification for the use of this design rule in DES. What our
result intuitively says is that if DES used pseudorandom function generators in its
construction then it would be secure when used as a block private key cryptosystem.
However, this is a weak justification because the function generators used in DES are
not at all pseudorandom. Our result is more of a justification of the use of the design
rule than it is a statement about the security of the entire DES system.

Section 2 gives terminology used throughout the remainder of the paper. In 3,
we discuss block private key cryptosystems, describe how DES is used as a block
private key cryptosystem, make the connection between secure block private key
cryptosystems and pseudorandom invertible permutation generators, and present the
design rule of DES which we use to construct a pseudorandom invertible permutation
generator from a pseudorandom function generator. In 4, we give formal definitions
of pseudorandom bit generators, pseudorandom function generators and pseudo-
random permutation generators and state our main results. In 5, we give the construc-
tion for an invertible permutation generator from a function generator and prove that
if the function generator is pseudorandom then the invertible permutation generator
is pseudorandom. A preliminary version of these results appears in [LR].

2. Terminology. A string is a bit string. Let {0, 1} be the set of all 2 strings of
length n. Let a and b be two equal length strings. Define ab to be the bit-by-bit
exclusive or of a and b, where the resulting string has the same length as a. Let a b
denote the concatenation of the two strings a and b.

Let F be the set of all 2n2n functions mapping {0, 1} into {0, 1}". Let fl and f2
be functions in Fn. We use fl f2 to denote the function in F which is the composition
of fl and f2. Let P F" be the set of such functions that are permutations, i.e., they
are 1-1 onto functions.

In all cases, a random choice of an object from a set of objects is such that each
object is equally likely to be chosen. For example, a random choice of a string from
{0, 1}" will choose each such string with probability 1/2. As another example, a
random choice of a function from F" will choose each such function with probability
1/2n2".

3. Connections between cryptosystems and invertible permutation generators. Sup-
pose agent A wants to send plaintext to agent B. A wants to do this securely, i.e., in



PSEUDORANDOM PERMUTATION CONSTRUCTION 375

a way such that any agent L, who is able to read all the information sent from A to
B, has no significant idea about the content of the plaintext. A very practical way to
achieve this goal is for A and B to use a secure block private key cryptosystem. Both
A and B, but not L, have the same randomly chosen private key /c. When A sends
plaintext M to B, M is partitioned into equal length plaintext blocks. A encrypts each
plaintext block into a ciphertext block of the same length using/. B, upon receiving
a ciphertext block, decrypts it back into the plaintext block using

There are two very attractive features of block private key cryptosystems. First,
the total number of bits sent from A to B is the minimum number possible, because
the number of encrypted bits sent from A to B is exactly the same as the number of
plaintext bits. Second, since the plaintext is encrypted in blocks, if the encryption of
one block is lost in transmission then the other blocks can still be decrypted by B,
whether or not B knows that a block was lost. Other cryptosystems tend to send many
more encrypted bits than there are plaintext bits and/or are not robust to transmission
losses.

There is one inherent weakness in any block private key cryptosystem, which is
that any listener L can always tell if exactly the same plaintext block is repeated from
the encryption. In our definition of a secure block private key cryptosystem, this is
essentially the only insecurity of the system. There are encryption systems which avoid
this problem, but these systems tend to be less efficient than a block private key
cryptosystem, in certain respects, as explained above.

As far as we know, there is no provably secure block private key cryptosystem.
One of the main implications of the results given in this paper is that, under the
assumption that there is a pseudorandom bit generator, there is a provably secure
block private key cryptosystem.

One of the main motivations of this work is to study the security of DES, when
it is used as a block private key cryptosystem. In this context, DES works as follows.
Both A and B, but not L, have the same 56-bit private key k. Suppose A wants to send
plaintext M to B. A first partitions M into plaintext blocks of 64 bits each. A encrypts
each plaintext block, using the DES encryption algorithm with key /, into a 64-bit
ciphertext block and sends the ciphertext blocks to B. B decrypts the ciphertext blocks,
using the DES decryption algorithm with key /, to recover the plaintext blocks. One
important property of DES is that, given /, it is easy to encrypt and decrypt. An
important implication of this is that, given k, each string of length 64 has a unique
encryption and a unique decryption.

The encryption algorithm for DES can be thought of as a family of 256 permutations
h64-- {h4" k {0, 1}56}, where each permutation is a member of p64 indexed by a key
/. Similarly, the decryption algorithm for DES can be thought of as a family of 256

permutations ]64= {4:/{0, 1}56}, where each permutation is a member of p64
indexed by a key k. Furthermore, h ,4 o/,4 and/,4 h,4 are both the identity permutation.
DES has the property that, given k and c, both h,4(a) and /4(c) can be computed
very efficiently.

One of the strongest attacks known against a cryptosystem is a chosen plaintext
attack. We would deem DES secure if it was secure against chosen plaintext attack
(which is a stronger notion of security than that given in the first paragraph of this
section). Intuitively, in a chosen plaintext attack an agent L, who does not know the
key/, is nevertheless able to trick A into sending to B encryptions of plaintext blocks
chosen by L. L is allowed to choose a "reasonable" number of plaintext blocks
M1,’’ ", Mi, A encrypts these plaintext blocks and L sees the encryptions of these
plaintext blocks h,4(M1), h4(Mi). During this process, L interactively chooses



376 M. LUBY AND C. RACKOFF

the next plaintext block for A to encrypt based on all previous plaintext blocks and
their encryptions. Let Mi+l be a plaintext block chosen by A which is different from
all plaintext blocks chosen by L during the attack. Intuitively, the cryptosystem is
secure against L if L cannot predict Mi+l given the information gained from the attack
and given the encryption h,a(Mi+) of Mi+ (but not Mi+) "significantly" better than
if L had not received the information obtained from the attack and from seeing
h,4(Mi/). The cryptosystem is secure against chosen plaintext attack if it is secure
against all such agents L.

The apparent security of DES when it is used as a block private key cryptosystem
rests on the fact that DES seems to pass the black box test, which was informally
suggested by Turing [Hod]. The black box test is the following:

Say that we have two black boxes, one of which computes a fixed randomly chosen
function from f64 and the other computes h,4 for a fixed randomly chosen k.
Then no algorithm which examines the boxes by feeding inputs to them and
looking at the outputs can obtain, in a "reasonable" time, any "significant" idea
about which box is which.

If DES passes the black box test then it is secure against a chosen plaintext attack
when used as a block private key cryptosystem. We do not give a formal definition of
security for a block private key cryptosystem. A rigorous definition in a somewhat
different setting appears in IRa].

The black box test, and therefore security, is very informally stated, i.e., the terms
"reasonable" and "significant" are not well defined. The tools of mathematics and
computer science are designed to analyze asymptotic behavior; to utilize these tools
we introduce an asymptotic version of DES and define security in terms of asymptotic
security. We introduce a collection of private key block cryptosystems, one for each
possible plaintext block length n. Let h ={h"’n} where, for each n, h is the
generalization of h 64 defined for DES, i.e., h is used to encrypt plaintext blocks of
length n. Similarly, let h {h"’n 6 }, where for each n, h" is the generalization of
]64 defined for DES, i.e.,/" is used to decrypt plaintext blocks of length n. Thus, both
h and h specify for each key k of a given length a permutation, h k P h k P
respectively, where h , h k is the identity permutation. We require that, given a {0, 1}"
and a key k of a given length, both h,(a) and h,(ce) can be computed in time
polynomial in n. In the terminology of 4, both h and h are invertible permutation
generators. A very similar notion, a function generator, was first formally defined in
[GGM]. We give the definition of a function generator in 4, but intuitively it is the
same as the definition of an invertible permutation generator except that each function
specified by n and k is not necessarily 1-1 onto function, i.e., not necessarily a
permutation. Thus, an invertible permutation generator is a special case of a function
generator.

It is enough that h be pseudorandom for h to be secure against chosen plaintext
attack when used as a block private key cryptosystem. The concept of a pseudorandom
function generator was introduced in [GGM]. An invertible permutation generator is
pseudorandom if it is a pseudorandom function generator. Informally, a pseudo-
random function generator is a function generator which passes the black box test for
all sufficiently large n, where n replaces all occurrences of 64 in the description of the
black box test, "reasonable" time corresponds to time polynomial in n and "significant"
corresponds to probability polynomial in 1/n. We give a formal definition of a
pseudorandom function generator in 4.

Goldreich et al. [GGM] show how to construct a pseudorandom function generator
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from a pseudorandom bit generator. Pseudorandom function generators have many
applications in cryptography, but, unless they are also invertible permutation gen-
erators, they cannot be used directly in a block private key cryptosystem as described
above. A natural question to ask is can we construct a pseudorandom invertible
permutation generator from a pseudorandom function generator. In 5, we give an
efficient construction of an invertible permutation generator based on a function
generator and we prove that if the function generator is pseudorandom then so is the
invertible permutation generator. This construction uses some of the ideas behind the
design of DES. Below, we describe the design details ofDES relevant to our construction
together with some comments about DES.

DES begins with f32, where f32 specifies for each key k of length 48 a function

f2 6 F32. Alternatively, f32 can be thought of as an algorithm which, given k and an

input a, computes f2(a). Let L, R {0, 1)32. Define g64 such that for each key k of
length 48, g6k4(L R)= R [Lf3k(R)]. It is easy to see that g4 is 1-1 onto and easy
to invert if k is known. Let h 64 be g64 composed with itself 16 times, so that the key
length function for h64 is 768 48" 16. Given a 768-bit key k, h4 is 1-1 onto and easily
invertible. We refer to h64 as MDES for modified DES. MDES differs from DES in
certain inconsequential ways, but also in one way that might be very important: DES
only has a 56-bit key, which is used to generate (in a very simple way) the 16.48-bit
key to be used in MDES. It is not clear if this makesDES more or less secure than
MDES, but most observers feel that MDES would be much more secure than DES.
In any case, no one has yet succeeded (as far as we know) in breaking DES.

The f32 used in DES is not by any stretch of the imagination pseudorandom. The
creators of DES apparently feel that f32 does enough "mixing up" so that, together
with the rest of the construction, DES as a whole is secure. Our construction replaces
f32 with a pseudorandom function generator f Invertible permutation generator g is
constructed from f as described above. The invertible permutation generator h is
formed by composing g three times with itself (instead of 16 times as in MDES). We
prove in 5 that h formed in this way is a pseudorandom invertible permutation
generator if f is a pseudorandom function generator.

4. Formal definitions and statement of results. In this section we present some
necessary formal definitions and state the main results of the paper.

4.1. Pseudorandom bit generators. The original definitions for pseudorandom bit
generators are due to Blum and Micali IBM] and are generalized to those given here
by Yao [Yao]. A bit generator is a collection of functions f {fn: n N} such that fn
maps {0, 1} into {0, 1}t, where t(n)>= n+ (for example, t(n)= n3) and, given n
and a, f(a) can be computed in time polynomial in n (this implies that t(n) is
polynomial in n). Informally, f is pseudorandom if there is no (probabilistic) poly-
nomial in n time algorithm which, for infinitely many n, can significantly distinguish
a string/ =f(a), where a is a randomly chosen from {0, 1}n, from a string randomly
’chosen from {0, 1}t. Formally, f is pseudorandom if there is no distinguishing circuit
family forf A distinguishing circuit family forf is an infinite family of Boolean circuits
consisting of and/or/not unbounded fan-out gates (for readers unfamiliar with this
model of computation, replace all occurrences of a family of Boolean circuits with a

probabilistic polynomial time algorithm and all the results are the same) C
{Cn, C2,’’’ }, where n < n2..., such that for some pair of constants s and c, for
each n for which there is a circuit C:

(1) The size of C is less than or equal to n . The size of a circuit is the total
number of wires plus the number of gates in the circuit.
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(2) The input to Cn is a string of length t(n) and the output is a single bit.
(3) Let rn be the probability that the output bit of C, is one when the input to

Cn is a string randomly chosen from {0, 1} t(n). Let p, be the probability that the output
bit of Cn is 1 when a string a is randomly chosen from {0, 1}" and the input is f"(a).
Let d, [p- r,[ be the distinguishing probability for C. Then, d => 1/n c.

It is important to note that if f is a pseudorandom bit generator, then f is a
pseudorandom bit generator even if we allow distinguishing circuit families for f to
be probabilistic. A probabilistic circuit Cn, besides the inputs described above, has an
additional number of input bits whose values are randomly chosen. It is not hard to
see that there is some way of fixing these additional bits to C,, forming a deterministic
circuit C’,, such that the distinguishing probability for C’, is at least as great as the
distinguishing probability for C, i.e., d’, _-> dn. Hence, if f has a distinguishing prob-
abilistic circuit family then f has a distinguishing deterministic circuit family, which
implies that if f has no distinguishing deterministic circuit family then f has no
distinguishing probabilistic circuit family.

Whether or not pseudorandom bit generators exist is an open question. Blum and
Micali [BM] introduce conditions which are sufficient for constructing pseudorandom
bit generators. They show how to construct a pseudorandom bit generator based on
the assumption that the Discrete Log problem is hard. Yao [Yao] generalizes these
conditions and shows how to construct a pseudorandom bit generator based on the
assumption that the factoring problem is hard. A series of results has improved the
efficiency of the Yao construction [ACGS], [BCS], [GMT], and [VV]. Levin lEe]
introduces weaker conditions which are sufficient to construct a pseudorandom bit
generator.

4.2. Pseudorandom function generators. The concept of a pseudorandom function
generator is defined in [GGM]. They give a construction for a pseudorandom function
generator using a pseudorandom bit generator. We give the definition of a pseudo-
random function generator in this section. Let l(n) be polynomial in n. A function
generator with key length function l(n) is a collectionf {f: n N}, wheref specifies
for each key k of length l(n) a function f, F". It is required that, given a key
k {0, 1}(n), and a string a {0, 1}, f,(a) can be computed in time polynomial in n.

Informally, f is pseudorandom if there is no polynomial time in n algorithm
which, for infinitely many n, is able to even slightly distinguish whether a function
was randomly chosen from f" or from F" after seeing polynomial in n input/output
pairs of the function, even when the algorithm is allowed to choose the next input
based on all previously seen input/output pairs. Formally, f is pseudorandom if there
is no distinguishing circuit family for f A distinguishing circuit family for f is an
infinite family of circuits { C,,, C,2,. }, where n < n2" , such that for some pair of
constants s and c, for each n for which there is a circuit C,:

(1) C, is an acyclic circuit which contains Boolean gates of type and, or and not
(these gates are interpreted in the usual way, i.e., the and gate computes the "and" of
the two inputs). In addition there are constant gates of type zero and one. Each constant
gate has no inputs, and the output is 0 if it is a zero gate and 1 if it is a one gate. C,
also contains oracle gates. Each oracle gate has an input and an output which are both
strings of length n. Each oracle gate is to be evaluated using some function from F"
which for now is left unspecified and is to be thought of as a variable of the circuit.
All gates can fan-out their output bits to an unbounded number of other gates. The
output of Cn is a single bit. Such a circuit is called an oracle circuit.

(2) The size of C, is less than or equal to n . The size of C, is the total number
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of connections between gates, Boolean gates, constant gates and oracle gates.
(3) We let Pr [C,(F")] be the probability that the output bit of Cn is one when

a function is randomly chosen from F and used to evaluate the oracle gates. We let
Pr C, (f")] be the probability that the output bit of Cn is one when a key k of length
l(n) is randomly chosen and f, is used to evaluate the oracle gates. The distinguishing
probability for Cn, IPr C, (F")] Pr C, (f")]l, is greater than or equal to 1 / n c.

TI-IEOREM [GGM]. If there is a pseudorandom bit generator then there is a pseudo-
random function generator.

In fact, Goldreich et al. [GGM] give an explicit construction for a function
generator f based on a bit generator g and prove that if g is a pseudorandom bit
generator then f is a pseudorandom function generator. The converse of this theorem
is easily seen to be true.

4.3. Pseudorandom invertible permutation generators and block private key cryp-
tosystems. A permutation generator f is a function generator such that each function
f, is 1-1 onto. Let f= {fn" n N}, where f" {f," k {0, 1}<")}, where f, is the inverse
function of f,. We say f is invertible if f is also a permutation generator. In this case,
f is the inverse permutation generator for f (of course, f is the inverse permutation
generator for f also). We say f is pseudorandom if it is pseudorandom as a function
generator as defined in the previous section. (The definition of pseudorandom is
provably no different if we replace F" with P" in part 3 of the definition of an oracle
circuit.) In 5, we give a construction for a pseudorandom invertible permutation
generator based on a pseudorandom function generator.

4.4. Super pseudorandom invertible permutation generators. There is even a
stronger notion of pseudorandom for invertible permutation generators which is very
natural. Let f be an invertible permutation generator. We say that f is a super
pseudorandom if there is no super distinguishing circuit family forf A super distinguish-
ing circuit family for f is an infinite family of circuits C--{Cn,, C2,...} where
nl < n2 , where each circuit is an oracle circuit containing two types of oracle gates,
normal and inverse. For some pair of constants s and c, for each n for which there is
a circuit C,"

(1) The size of C, is less than or equal to n .
(2) We let Pr [C,(Pn)] be the probability that the output bit of C, is one when

a permutation r is randomly chosen from P" and r and are used to evaluate normal
and inverse gates in C,, respectively, where is the inverse permutation of r. We let
Pr C, (fn)] be the probability that the output bit of C, is one when a key k of length
l(n) is randomly chosen and f, and f, are used to evaluate the normal and inverse
oracle gates in C,, respectively. The distinguishing probability for C,, ]Pr [C,(P")]-
Pr C, (fn)][, is greater than or equal to 1/n e.

We state in 5 that there is a super pseudorandom invertible permutation generator
if there is a pseudorandom function generator. Although every super pseudorandom
invertible generator is also a pseudorandom invertible generator, we show in 5 that
the converse is not necessarily true.

Let f be a super pseudorandom invertible permutation generator. We can use f
as described above in a block private key cryptosystem. This cryptosystem is secure
against chosen plaintext/ciphertext attack, which is an even stronger attack than chosen
plaintext attack. In chosen plaintext/ciphertext attack, L can interactively choose
plaintext blocks and see their encryptions and choose encryptions and see their
corresponding plaintext blocks. Thus, L is allowed to attack the cryptosystem from
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"both ends." Let M be a plaintext block which is different than all plaintext blocks
seen in the attack. Intuitively, the cryptosystem is secure against chosen plain-
text/ciphertext attack if for all agents L, given the information L gained from the
attack and given the encryption fT,(M) of M (but not M), L cannot predict the value
of M any better than if L had no information about M. Symmetrically, let E be the
encryption of a plaintext block which is different than all encryptions of plaintext
blocks seen in the attack: The cryptosystem is secure against chosen plaintext! ciphertext
attack if for all agents L, given the information L gained from the attack and given
the decryption f,(E) of E (but not E), L cannot predict the value of E any better
than if L had no information about E.

4.5. Definition of cryptographic composition. In this section, we formally define
the composition of function generators. Let g and h be two function generators, where
ll(n) and 12(n) are the key length functions for g and h, respectively (we allow the
possibility that g h). Then f=g h is a function generator defined as follows.

(1) The key length function for f is /(n)=/l(n)+/2(n).
(2) fc2.kl---h2o gl, where k is of length ll(n) and k2 is of length 12(n).

Note that if both g and h are (invertible) permutation generators then so is f.

5. Generating permutations from functions. In this section we show how to con-
struct a pseudorandom invertible permutation generator from a pseudorandom function
generator (see 4 for definitions). A natural thing to try is an abstraction of MDES.
Let f= {fn} be a pseudorandom function generator where the key length function is
l(n). Define a function generator g= {gn} in terms off as follows. Let k be a string
of length l(n), let k’ be a string of length l(n + 1), let L, R and L’ be strings of length
n and let R’ be a string of length n + 1. Then

g2k(L R)= R [L@f,(R)],

gk,+l(L R’)= R’ [L’0)first n bits off,,+l(R’)].

Note that g is an invertible permutation generator. The inverse permutation generator
for g, g, is computed as follows. Let a,/3 and/3’ be strings of length n and let a’ be
a string of length n + 1. Then

g2k"(Ce fl)=[fl@f,(a)] a,

g,,"+l (a’ /3’) [fl’@ first n bits of f,,+(a’) a’.

Thus,

gk (Lo R))=Lo R,

Y+’(g,+l(L’ R’))= L’o R’.

Let h =g g g. Since g is an invertible permutation generator, h is also an invertible
permutation generator. Theorem 1 shows that h is pseudorandom iff is pseudorandom.
Before proving this theorem, we show that h g g is not at all pseudorandom, and
then we state and prove the main lemma used in the proof of Theorem 1. The proof
of the main lemma, which is a combinatorial lemma not based on any unproven
assumptions, is the interesting and difficult portion of the proof of the theorem.

We show that h g g is not pseudorandom as follows. Let k and k2 be keys of
length l(n). For all strings L1, L2 and R of length n, the @ of the first n bits of
h2-k2- k, (L1 R) and h 2,k2 k, (L2 R) is equal to L1@ L2 Thus, a distinguishing circuit C2n
for h2n can be described as follows. Choose L1 and L2 such that L1 L2 and let R be
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any string of length n, e.g., a string of n zeros. C2n has two oracle gates: the input to
the first oracle gate is L1 R and the input to the second oracle gate is L2 R. Tlle
output of C2, is 1 if[ the ( of the first n bits of the outputs from the two oracle gates
is equal to LI L2. Thus, the output of C2, is always 1 when the oracle gates are
evaluated using a function in h 2n. On the other hand, if the oracle gates are evaluated
using a function randomly chosen from F2", the output of C:, is 1 with probability 1/2".

The following definitions are used in the main lemma and in Theorem 1. We
define the operator H F" x F x F" -> P" as follows. Letfo, fl andf2 be three functions
from F". Let L and R be strings of length n. Define

a=fo(R), fl=f(Lc), y=f2(Rfl),

H(f2,fl,fo)(L R)= [R@fl] [Lay].

H is derived from three applications of the DES design rule described in 3. The
main lemma states that any Boolean circuit with m oracle gates, where each oracle
gate has an input and an output which are both strings of length 2n, can distinguish
with probability at most m2/2 between the case when the oracle gates are evaluated
using a randomly chosen function from Fn and the case when the oracle gates are
evaluated using H(fz,fl,fo) and f, fl and fo are randomly chosen from F". This result
is surprising in the sense that it uses no unproven assumptions and that the number
of distinct permutations generated by H is at most 23n2", which is a very small fraction
of the 22nz2" functions in F2n. On the other hand, it is not so surprising given that we
allow the distinguishing circuit to examine only a very small portion of the domain
of the function (there are only m oracle gates).

PROPOSITION. Let D, be an oracle circuit with m oracle gates and size s, where the
input and output of each oracle gate is a string of length n and where m <-_ 2". Dn can be
easily modified to another circuit D’, which never repeats an input value to an oracle gate
such that: (1) For each function fo F", the output bit of D’, when fo is used to evaluate
the oracle gates is exactly the same as the output bit of D, when fo is used to evaluate
the oracle gates; (2) The number of oracle gates in D’, is m; (3) The size of D’, is at

most 8

Proof Omitted but easy.
MAIN LEMMA. Let C2, be an oracle circuit with rn oracle gates such that no input

value is repeated to an oracle gate as in the above proposition. Then, IPr C2,(F2")]-
Pr C,(H(F", F", F"))]I <_- m2/2".

Proof There are really two experiments occurring in different probability spaces
in the statement of the Main Lemma. For Pr [C2,(F")] the sample space is F2" with
the uniform probability distribution, and for Pr C2,(H(F", F", F"))] the sample space
is F"x F"x F" with the uniform probability distribution. To be able to analyze the
behavior of C2, with respect to these two probability distributions we introduce a new
probability space with sample space 1 {0, 1}3"rn and the uniform probability distribu-
tion, i.e., for all to , Pr [to] n. We define two random variables A, B on the new
probability space with the following properties:

(1) A:-->{0, 1}, B:->{0, 1}.
(2) E[A] Pr [C2.(F2n)]. (The left-hand side is with respect to the new probabil-

ity space, the right-hand side is with respect to the probability space for the original
experiment.)

(3) E[B]= Pr[C2,(H(F", Fn, F"))]. (Same remarks as for (2).)
(4) IE[A] E[B] <-_ rnZ/2".
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Note that ]E[A]-E[B]I ]]oa (A(to)-B(to))l/23"’L Our objective is to define
A and B with properties (1), (2) and (3) such that for most sample points A and B
take on the same value, so that property (4) is also satisfied. A sample point in f is
a string to to, , to3n,. For 1 N <- m we define the random variables Xi :1) -+ {0, 1}",
Y :f-{0, 1}n, Zi :1-* {0, 1} as follows:

Xi(to) to(i-).+

yi(w OOmn+(i_l)n+

Zi((,o O.)2mn+(i_l)n+ OO2mn+(i_l)n+

We define the vector X(w)=(X(w),... ,X,,(to)). Y(to) and Z(to) are defined
similarly.

At sample point to ), B(to) is defined as the output bit of C2,, when the oracle
gates of C2, are computed as described below. This description also defines L(to) and
R(to), where L and R are vectors of m random variables corresponding to the left
half of the inputs to the oracle gates and the right half of the inputs to the oracle gates,
respectively. In addition, a’(to), ’(to) and y’(to) are defined, where a’,/3’ and y’ are
each vectors of m random variables defined by the following circuit. The ith oracle
gate of C2, is computed as follows:

B-gate:
The input is Li(to) Ri(to),- min {j: 1 <=j <- and Ri(w) R(w)},
Ol (.O " Li to ( Xt to ),

’(o)},<-- min {j 1 =<j < and al(w) a

min {j" 1 _<-j =< and/31(o)) =/3j(w)},
")Iti O) <’- Ol O0

The output is fl (to) Y’i(to).

The circuit defining B can be thought of as a circuit with Boolean and, or and not
gates and constant zero and one gates. The input to the entire circuit can be thought
of as X(to), Y(to) and Z(to).

We now describe a random variable B’ which is exactly the same as B except that
it is the output bit of C2. when the ith oracle gate is computed as follows:

B’-gate:
The input is Li(to) Ri(to),

min {j: 1 =<j _-< and Ri(to) R(to)},
.;(,o) - L,()(R) X,(),

<-- min {j: 1 <=j --< and al(to) a.(to)},
Y to Yi to ( R to

t31( ., - R oo (R) Y o- min {j" 1 --<j <= and ’i(to)=/3j(to)},
Z to 4-- Zi to

The output is

B and B’ are exactly the same except that Y’i and Z’i are computed from Y and Zi
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and used in place of Y/ and Zi in the oracle gate computation. The definition of B’
also redefines the vectors of random variables L, R, a’, fl’, y’.

FACT. E[B’]--E[B]. This follows because the random variables
are identically and uniformly distributed and because Ri and cl do not depend on Y/
and Z, respectively. Thus, YI and Z’ are independently and randomly chosen strings
from {0, 1

We now describe the computation of B’ in an equivalent way. This alternative
description is used in all further references to B’. B’ is the output of C2, when the
ith oracle gate in C2, is evaluated as follows:

B’-gate:
The input is Li(to Ri(to),
ui(to) <- min {j: 1 <=j<--i and Ri(w) Rj(to)},
O OO -- L to X., to

Vi((.O <"" min {j" 1 <--j =< and

wi(to)<- min {j’l -<j_-< and ill(to) fl(to)},
v(o) - (o) (R) ’w()(,o) (R) Zw((o),
The output is/3 l(to) y’i(to).

From the above discussion, it is clear that E B’] Pr C2n (H(F", F", F" )) ]. In addition
to defining L, R, a’,/3’ and y’ in terms of X, Y and Z, this also defines the vectors u,
v and w in terms of X, Y and Z.

Let A be the random variable which is defined to be the output of C2, when the
oracle gates are evaluated exactly the same way as in the definition of B’ except that
the output of the ith oracle gate is Y/(to) Zi(to). This defines different vectors of
random variables L, R, a’, fl’, y’, u, v and w in terms of X, Y and Z then those
defined for B’. In the following, the vectors of random variables we are considering
are explicitly mentioned as needed. Because A is determined by C2, when the output
values from each oracle gate are independently and identically distributed random
variables and because C2, never repeats an input value to an oracle gate, E[A]
Pr [C2,(F2")]. Our goal now is to show that IE[A]-E[B’]I<-m2/2".

DEFINITION. to E [’ is preserving if for 1 -<_ _-< m, v(to) and Wi(to) i, where V

and wi are the random variables defined with respect to A.
CLAIM. For all to E , if to is preserving then A(to) B’(to).
Justification. If for 1 -<_ _-< m, v(to) and wi(to) i, then for 1 _-< -< m,/3’i(to)

Y/(to) and y’i(to)=Zi(to), where all these random variables are those defined with
respect to A. Thus, all the outputs of the oracle gates are the same as though they
were calculated as in B’, and thus all the variables defined with respect to A have
exactly the same values as the corresponding variables defined with respect to B’.

For all tofl, if to is preserving then A(to)-B’(to)=O and even if to is not
preserving then [a(to)- B’(to)] <- 1. Thus, [E[A]- E[B’][ <- Pr [to is not preserving]. In
the following discussion, all variables are defined with respect to A.

DEFINITION. For all to D, Y(to) is bad if there is i, j, 1 <-j < <- m, such that
Y(to) Y(to). It is not hard to verify that Pr[Y is bad] <- m2/2"+1.

DEFINITION. For all to 12, X(to) is bad if there is i, j, 1 <=j < i-<_ m, such that

CLAIM. Pr [X is bad] <- m2/2n+l.
Proof For 1 <_- <_- m, let 37i and ffi be strings of length n, let 37 (371, , 37,) and

let (:l, ", if,,). Let ff, {to f" Y(to) 37 and Z(to) if}. We show that for each
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)7, , Pr [X(w) is bad]12,]_-< m2/2"+1 which implies that Pr[X is bad]-< m2/2"+1. Y,
Z, L, R and u are constants 37, , ]’, and ff on 1,, respectively. This is by definition
for Y and Z, and it is true for L and R because the outputs from all oracle gates are
constant on 1,, which implies that the inputs to all oracle gates are also constant, u
is constant because it depends only on R. On the other hand, X is a vector of rn
independently and identically distributed random variables on the probability space
restricted to f;,, and each such variable has uniform distribution on {0, 1}". Let
eqn (i,j) be the equation a(w)= al(w). On 11;,, this equation reduces to

When tj =/i, .Pr e.qn (i, j) is satisfied 11) ;,el 0 because tj gi implies that 6 i which
implies that lj li (because C2n does not repeat an input value to an oracle g.ate)
which implies that eqn (i, j) is not satisfied (because eqn (i, j) simplifies to li in
this case). When t , Pr[eqn (i,j) is satisfied [12;,e] 1/2 because tT g together
with the fact that X is a vector of independent random variables on ;. implies that
for fixed Xa, the probability that a randomly chosen Xa, satisfies the equation is 1!2n.
Thus, summing these probabilities over all m(m-1)/2 equations yields Pr IX(to) is
bad If,]-<_ rn2l 2"+’.

CLAIM. For all o) 11, X(w) is not bad and Y(w) is not bad implies that w is
preserving.

Proof X(w) is not bad implies that for 1 <=j < N m, c(w) a’(w) which implies
that for 1 <= <-_ rn, v(oo) which implies that for 1 _-< _<- rn, ill(w) Y(w). Y(w) is
not bad and for 1 < < m,/31(o9) Y(w) implies that for 1 <--j < < m,/3(w) /3(w)
which implies that for 1 <- -<_ rn, w(o) i.

CLAIM. Pr[w is not preserving]=< Pr [X is bad or Y is bad]_-<rn2/2 ". Thus,
[E[A]-E[B’]I<= m/2" and the Main Lemma follows.

TI-IZORZM 1. h g g g is a pseudorandom invertible permutation generator.
Proof What must be shown is that h is pseudorandom, i.e., there is no distinguish.

ing circuit family for h. The proof is by contradiction. Assume that there is a distinguish-
ing circuit family C {C2,1, Ca,,. .} where n < n , for h. We show this implies
there is a distinguishing circuit family D {D,,: e N} for f, contradicting the fact that
f is a pseudorandom function generator. In particular, for a fixed n we show that if
C, distinguishes h" from F2n with probability at least 1/nC then there is a circuit
D, (where D, is not much bigger than C2,) which distinguishes f" from F" with
probability at least 1 /4n. (The proof for C,+ is similar). Let us first state the definition
of h2n in a different way. If k0, k and k2 are strings of length l(n) then

h2nk k,- ko H(f2’ f,, fo)"

Let pg, p, p, p be Pr[Cz,(H(f",f",f"))], Pr[C,(H(f",f",F"))],
Pr C,(H(f", F", F")) ], Pr C2, (H(F", F", F"))], respectively. Let p
Pr [C2,(F")]. The main lemma shows that Ip -PI <- m/2", where rn is the number
of oracle gates in C,. Since rn is less than or equal to n" for some constant s,
rn/2" <= 1/4n for sufficiently large n. Since

1In <= ]p --ponl = lp -p’l+ [p3n-pUl+ lpn-plnl+ lp-ponl,

there is an i {0, 1 2} such that] H
Pi+l _pH] >= 1/4n The cases when i= 0 and i= 2 are

similar to the case when i= 1 and are omitted. For the case i= 1, we use C2. to
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construct a probabilistic circuit Dn not much larger than C2n which will distinguish
fn from F with probability at least 1/4n c. D, is the same as C2, except that it first
randomly chooses k2{0, 1}(") and foe Fn, and then each oracle gate X in C2, is
replaced with a subcircuit which computes H(fT,2, X’,fo), where X’ is an oracle gate
with an input and output which are both strings of length n. The main problem with
constructing D, is how to randomly choose fo and F". In fact, D, does not specify fo
at all (since a complete description would involve n2" bits). Instead, Dn remembers
all inputs and outputs to fo. When D, is to compute fo(c) for some string a of length
n, if a is the same as a previous input then the same output as before is given, otherwise
c is a new input and then fo(c) is a randomly chosen string from {0, 1}".

When the oracle gates in D, are evaluated using f,l, where kl is a randomly
chosen key of length l(n), then p Pr [The output of D, is 1]. When the oracle gates
in D, are evaluated using fl, where f is randomly chosen from F", then pz" Pr [The
output of D, is 1]. Since Ip2n -PI >- 1/4ne, D, distinguishes F" fromf" with probability
greater than or equal to 1/4nC. [3

TrEOREM 2. Let g be defined in terms of pseudorandom function generator f as
described in the beginning of this section. Then h g g g g is a super pseudorandom
invertible permutation generator.

Proof The proof of this theorem is very similar to the proof of Theorem 1 and
is omitted. [3

It is interesting to note that h =g g g is not super pseudorandom, although
Theorem 1 shows that it is pseudorandom. This can be seen as follows. Let k, k2 and
k3 be keys of length l(n). A distinguishing circuit C, for h" can be described as
follows. Let L, L and R be strings of length n such that L L2. Czn has two normal
oracle gates: the input to the first normal oracle gate is L1 R and the input to the
second normal oracle gate is L2 R. Let S1 T and $2 T be the outputs of these
two normal oracle gates respectively. C2, also has an inverse oracle gate with input
$2 T2(L@ L]. The output of C2, is 1 if and only if the last n bits of the output
from this inverse oracle gate is equal to R S@ $2. It can be verified that the output
of Czn is always 1 when the normal oracle gates and inverse oracle gates are computed
by first choosing a key k at random and then using h" for the normal oracle gates
and/," to compute the inverse oracle gates. On the other hand, if the oracle gates are
computed using a permutation randomly chosen from pZn, the output of C2, is 1 with
probability 1 /2".

6. Conclusions. Assuming the existence of a pseudorandom function generator,
we have proven the existence of a super pseudorandom invertible permutation gen-
erator. This is of interest by itself, but the construction and the proof can be viewed
as a partial justification of some of the methodology used in the design of DES.

Another methodology which is important both in DES and in the cryptographic
literature is using cryptographic composition of permutation generators to increase
security. In [LR] we define a measure of security for permutation generators, and prove
that if one composes two permutation generators which are slightly secure the result
is more secure than either one alone.
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pseudorandom invertible permutation generator. We thank Johan Hastad for simplify-
ing the proof of the Main Lemma. We thank Paul Beame for numerous suggestions
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A PIPELINE ARCHITECTURE FOR FACTORING LARGE INTEGERS
WITH THE QUADRATIC SIEVE ALGORITHM*

CARL POMERANCE?, J. W. SMITHS AND RANDY TULER

Abstract. We describe the quadratic sieve factoring algorithm and a pipeline architecture on which it
could be efficiently implemented. Such a device would be of moderate cost to build and would be able to
factor 100-digit numbers in less than a month. This represents an order of magnitude speed-up over current
implementations on supercomputers. Using a distributed network of many such devices, it is predicted much
larger numbers could be practically factored.

Key words, pipeline architecture, factoring algorithms, quadratic sieve
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1. Introduction. The problem of efficiently factoring large composite numbers has
been of interest for centuries. It shares with many other basic problems in the sciences
the twin attributes of being easy to state, yet (so far) difficult to solve. In recent years,
it has also become an applied science. In fact, several new public-key cryptosystems
and signature schemes, including the RSA public-key cryptosystem [10], base their
security on the supposed intractability of the factoring problem.

Although there is no known polynomial time algorithm for factoring, we do have
subexponential algorithms. Over the last few years there has developed a remarkable
six-way tie for the asymptotically fastest factoring algorithms. These methods all have
the common running time

(1) L(N) exp { (1 + o(1))x/ln N In In N}

to factor N. It might be tempting to conjecture that L(N) is in fact the true complexity
of factoring, but no one seems to have any idea how to obtain even heuristic lower
bounds for factoring. The six methods are as follows:

(i) The elliptic curve algorithm of Lenstra [6];
(ii) The class-group algorithm of Schnorr-Lenstra [11];
(iii) The linear sieve algorithm of Schroeppel (see [1] and [8]);
(iv) The quadratic sieve algorithm of Pomerance [8], [9];
(v) The residue list sieve algorithm of Coppersmith, Odlyzko and Schroeppel 1 ];
(vi) The continued fraction algorithm of Morrison-Brillhart [7].
It might be pointed out that none of these methods have actually been proved to

have the running time L(N), but rather there are heuristic arguments that give this
function as the common running time. The heuristic analyses of the latter four
algorithms use a new (rigorous) elimination algorithm of Wiedemann [13] for sparse
matrices over finite fields. (This method may in fact be a practical tool; this is discussed
further below.)

It should also be pointed out that to achieve the running time L(N), method (vi)
uses a weak form of the elliptic curve method as a subroutine.

As a last comment, the elliptic curve method has L(N) as a worst-case running
time, while the other five methods have L(N) as a typical running time. The worst

* Received by the editors December 1, 1985; accepted for publication March 2, 1987. This research
was partially supported by a National Science Foundation grant.

? Department of Mathematics, University of Georgia, Athens, Georgia 30602.
$ Department of Computer Science, University of Georgia, Athens. Georgia 30602.

387



388 C. POMERANCE, J. W. SMITH AND R. TULER

case for the elliptic curve method is when N is the product of two primes of about
the same length. Of course, this is precisely the case of interest for cryptography.

A proof that L(N) is the correct asymptotic complexity for factoring would of
course be sensational. One corollary would be that P NP. It seems to us, however,
that of equal importance to practicing cryptographers is a complexity bound valid for
finite values of N. Of course, such a bound necessarily enters into the amount of
resources one is willing to invest in the problem.

To be specific, what is the largest number of decimal digits such that any number
with this many or fewer digits can be factored in a year using equipment that would
cost $10,000,000 to replace? The dollar amount is not completely arbitrary; it is the
order of magnitude of the cost of a new supercomputer. An answer to this question
is not a fundamental and frozen constant, but rather a dynamic figure that reflects the
state of the art at a given point in time. Nevertheless, it is an answer to precisely this
kind of question that practicing cryptographers need.

Given an actual experiment where the running time is less than a year, performance
for a full year can be extrapolated using the expression (1) (but ignoring the "o(1)").
The factoring algorithms listed above are all "divide and conquer," that is, with k
identical computers assigned to the problem, the number will be factored about k
times as fast. Thus if an actual experiment involves equipment costing less than
$10,000,000, again one can extrapolate.

Here are two examples. In 1984, the Sandia National Laboratories team of Davis,
Holdridge and Simmons [3] factored a 71-digit number in 9.5 hours on a Cray XMP
computer. Moreover, the algorithm they used, the quadratic sieve, has running time
L(N). Since

1 year L( 1011)
9.5 hours L(1071)

we thus predict that the Sandia group could factor any 101-digit number in a year-long
run on a Cray XMP.

The other example comes from some recent work of Silverman who has imple-
mented the quadratic sieve algorithm on a distributed network of 9 SUN 3 workstations.
Although at retail a SUN 3 is fairly expensive, it may be fairer for these purposes to
use a wholesale price for a stripped down version, say $5000 each. With this system,
which we value at $45,000, Silverman was able to factor an 81-digit number in one
week. Since

1 year 10,000,000 L(10126)
1 week 45,000 L(1081)

we predict that he would be able to factor any 126-digit number in a year-long run
with 2000 SUN 3’s.

In this paper we shall describe a machine which should cost about $50,000 to
build and which should be able to factor 100-digit numbers in two weeks. This
custom-designed processor will implement the quadratic sieve algorithm. Since

1 year 10,000,000 L(10144)
2 weeks 50,000 L(101)

we predict that with $10,000,000 any 144-digit number could be factored in a year.
The cost to factor a 200-digit number in a year with this strategy would be about 1011
dollarsor only 5 percent of the current U.S. national debt!

2. Combination of congruences faetorization algorithms. To properly describe the
factoring project, it is necessary to begin with a description of the quadratic sieve (qs)
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as it will be implemented. This is in fact a fairly complex algorithm with many stages.
Some of these stages are common to other factoring algorithms, other stages are specific
to qs.

The qs algorithm belongs to a family of factoring algorithms known as combination
of congruences. With these, the basic goal in factoring N is to find two squares X2,
y2 with X2= Y2 mod N. If these squares are found in a random or pseudorandom
fashion and if N is composite, then with probability at least , the greatest common
factor (X- Y, N) will give a nontrivial factorization of N. This greatest common factor
can be computed very rapidly using Euclid’s algorithm.

The two congruent squares X2 and y2 are constructed from auxiliary congruences
of the form

(2) u2 2 2 2
I.) Wi mod N, u # V Wi"

If some nonempty set of indices I can be found such that H iI Wi is a square, we can
let

X 1-I ui mod N,
iI

mod N.

This special set of indices I can be found using the techniques of linear algebra.
In fact, if the number wi appearing in (2) has the prime factorization

Wi (--1) %’i H P2J’i,
j=l

where p denotes the jth prime and there are only finitely many j for which ogj, > O,
then let di denote the vector (ao, i, a l,i,"" "). Then the following two statements are
equivalent for finite sets of indices I:

(i) 1-[ wi is a square;
(ii) Yi d 0 mod 2.

Thus the algorithmic problem of finding I (when given a collection of integers w and
their prime factorizations) is reduced to the problem of finding a nontrivial linear
dependency among the vectors d over the finite field with two elements.

For this method to work, we need the prime factorizations of the numbers wi
appearing in (2). It is the difficulty in finding enough completely factored wi so that
a linear dependency may be found among the d that is the major bottleneck in the
combination of congruences family of algorithms.

This bottleneck is ameliorated by discarding those w that do not completely factor
with small primes. This is a good plan for two reasons. First, those W with a large
prime factor probably will not be involved in a dependency. Second, those w that can
be factored completely over the small primes can be seen as having this property with
a not unreasonable amount of work. The set of small primes used is fixed beforehand
and is called the "factor base."

3. The quadratic sieve algorithm. To make the above factoring scheme into an

algorithm, we need a systematic method of generating congruences of the shape (2)
and a systematic method of recognizing which w can be factored completely over the
factor base. In the qs algorithm, we use parametric solutions of (2). That is, we exhibit
three polynomials u(x), v(x), w(x) such that for each integral x we obtain a solution
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of (2) with u(x) ui, v(x) vi, w(x) wi. Moreover, those x for which w(x) completely
factors over the factor base can be quickly found by a sieve procedure described below.

In the original description of the qs algorithm [8], only one triple of polynomials
u(x), v(x), w(x) was used, namely

u(x) [x/] + x, v(x) 1, w(x) ([x/] + x)2- N.

It was later found more advantageous to work with a family of triples of polynomials.
The Sandia implementation of qs used a scheme of Davis and Holdridge [2]: If p is
a large prime and W(Xo) 0 mod p, 0-< Xo < p, then let

u(x) U(Xo + xp), v(x) 1, w(x) W(Xo + xp).

A further refinement of this idea in [9] that has never been implemented is to choose
x. with w(x) =- 0 mod p2, 0 <- x < p2, and

1
up(x) u(x + xp), v(x) p, w(x) =- W(Xl + Xp).

A different and somewhat better scheme for choosing multiple polynomials was
suggested by Peter Montgomery (see [9] and 12]). This method has been implemented
by Silverman and is the method that we too shall use. Suppose we know beforehand
that we will only be dealing with a polynomial w(x) for values of x in [-M, M),
where M is some large, but fixed integer. Then we choose quadratic polynomials w(x)
that "fit" this interval well. That is, w(M) w(-M) -w(O) and these approximately
common values are as small as possible.

This task is done as follows. First choose an integer a with

(3) a2x/N/M
and such that b2=- N mod a2 is solvable. Let b, c be integers with

(4) b2-N=a2c, Ibl<a2/2.
Then we let

(5) u(x) a2x + b, v(x) a, w(x) a2x2 + 2bx + c.

How do we determine which values of x in [-M, M) give a number w(x) that
completely factors over the factor base? Fix the factor base as the primes p _-< B for which

(6) 2 N rood p

is solvable. The parameter B is fixed at the beginning of the program. We shall only
recognize those values of w(x) not divisible by any prime power greater than B.
Presumably, if B is large enough compared with typical values of [w(x)[ (typical values
are about x/ M), most values that factor completely with the primes up to B will,
in fact, not be divisible by any prime power greater than B.

For each prime power q p" _-< B where p is in the factor base, solve the congruence

(7) w(x)=-Omodq
2 Ak(q) The number of solutions k(q) is either 1 2and list the solutions Aq, Aq," q

or 4. (Almost always we have k(q)= 2.)
Next we compute integral approximations to the numbers log ]w(x)] for x

[-M, M). Because of the relationships of a, b, c, M, N to each other given by (3) and
(4), the values of [log [w(x)]] tend to stay constant on long subintervals of [-M, M).
For example, it is about [log (Mx/S/2)] for Ix[ v/-i/4 M and x//4 M Ix] M. It is
about [log (Mv/S/2)]- 1 for x/i/4 M < Ix] < x/-/8 M and v/5/8 M < Ix[ < x//4 M, etc.
Thus not only is this an easy computation for one choice of polynomial, but the results
are virtually the same for each polynomial.
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If q=p <=B where p is a prime in the factor base, let A(q) =logp. We compute
single precision values for the A(q). This computation can be done once; it is indepen-
dent of the polynomial used. For other integers m let A(m)= 0. Then every prime
power factor of w(x) is at most B if and only if log Iw(x)[ ,,Iw(, A(m).

We are now ready to sieve. A memory addressed by integers x in I-M, M) is
initialized to zero. For each power q -< B of a prime in the factor base and each j <- k(q),
we retrieve the numbers in those memory locations addressed by integers x A mod q,
add A(q) to the number there, and put this result back in the same place. This is what
we call sieving and it is of central importance to the qs algorithm. In pseudocode it
may be described as follows:

For each power q-< B of a prime in the factor base and
j.{1,’’’,k(q)}do:

Let A A+ [(-M Aq)/q ]q (thus A is the first number in [-M, M) which
is A mod q)

While A < M do:
DS(A)
S(A) D + A(q); A - A+ q.

After sieving, we scan the 2M memory locations for values near log Iw(x)l. Such
a location x most likely corresponds to a value of w(x), all of whose prime power
factors are at most B. It is possible that there could be some false reports or some
locations that should have been reported that are missed. This error, which is introduced
from our approximate logarithms, should be negligible in practice.

4. Fine points. In 2 and 3 we described the basic qs algorithm using Mont-
gomery’s polynomials. In this section we shall give some adornments to the basic
algorithm which should speed things up.

Use of a multiplier. We may wish to replace N in (3), (4) and (6) with kN where
k is some small, fixed, positive, square-free integer. This trick, which goes back to
Kraitchik [5, p. 208], can sometimes speed up implementation by a factor of 2 or 3.
The idea is to skew the factor base towards smaller primes. However, there is a penalty
in that the values Iw(x)l are larger by a factor of x/-. We balance these opposing forces
with the function

1
f(k, N) - log k + , E(pk),

where the sum is over primes p <= B, E(pk) --0 if 2= kN mod p is not solvable, and

2 log p
p--1

logp

P

log 2,

log2,
log 2,

p odd and p’ k,

p odd and p[k,

p=2and kN= 2 or 3 mod 4,

p=2and kN= 5 mod 8,
p=2and kN= l mod 8,

if 2= kN mod p is solvable (see [9]).
When presented with a number N to factor, we first find the value of k which

maximizes f(k, N). In practice one can assume k< 100. Also in practice, we may
replace B in the definition of f(k, N) with a smaller number, say 1000.
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Small prime variation. If q =< B is a power of a prime in the factor base, then the
time it takes to sieve with one AJq is proportional to M/q. Thus we spend more time
with a smaller q, less with a larger q. However, small q’s do not contribute very much.
For example,

A(q) < 42,
q<30

which is usually small compared to log Iw(x)l. In addition, it is usually not the case
that every prime less than 30 is in the factor base and it usually is the case that a
number which factors over the factor base is not divisible by all the factor base primes
below 30. Thus only a small error is introduced by forgetting to sieve with the prime
powers below 30. By lowering the threshold which causes a value w(x) to be reported,
no fully factored values need be lost. The only penalty is possibly a few more false
reports. In fact, even this should not occur (see [9]). The small prime variation might
save 20 percent of the running time.

Large prime variation. If x is such that

log Iw(x)l- A(m)<2 log B,

then either w(x) completely factors with the primes in the factor base, or there is some
large prime p,

B < p < B2,
such that w(x)/p completely factors with the primes in the factor base. Thus, by again
lowering the threshold for reports, we can catch these values of w(x) as well. For such
a value to be eventually part of a linear dependency (see 2), there must be at least
one other report Wl(Xl) using the same large prime p. The birthday paradox suggests
that duplication of large primes p should not be so uncommon. In practice we shall
probably only try to use those w(x) which factor with a large prime p < 100 B. The
large prime variation (also used by Silverman [12]) speeds up the algorithm by about
a factor of 2 or 3. However, the larger we take B, for a fixed N, the less useful will be
this variation. It should also be noted that the large prime variation has been imple-
mented in other combinations of congruences algorithms as well.

Generation of polynomials and sieve initialization data. Both experience [3], [12]
and theory [9] suggest that it is advantageous to change polynomials fairly often. The
reason for this is as follows. On [-M, M), the largest values of Iw(x)[ are about
Mx/N/2. Moreover, more than half of the values are at least half this big. However,
the larger is w](x)l, the less likely it will factor completely over the factor base. Thus
it would be advantageous to choose a rather small M. But M is directly proportional
to the time spent sieving w(x), so a smaller M translates to less time spent per
polynomial.

Since we will want to change polynomials often, we should learn to do this
efficiently. For each polynomial w(x)= a:x2+2bx+ c given by (5) we shall need to
find a, b, c satisfying (3) and (4) and we shall need to solve all of the congruences (7).
One last criterion is that a should be divisible either by a prime greater than the large
prime bound or by two primes greater than B so that we do not get duplicate solutions
of (2) from different polynomials.

One possibility, suggested in [9] and implemented in [12], is to choose a as a
prime (2x/M)1/2 with 2= N mod a2 solvable. Then we may let the solution for

least in absolute value be b and choose c (b2- N)/a2. Since a is a prime, the
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quadratic congruence is easily solved. This then gives a legal polynomial w(x) and it
remains to solve the congruences (7) for all the powers q-< B of a prime in the factor
base. By the quadratic formula, these roots (for q coprime to 2a) are given by the
expression

(8) (-b + x/-)a -2 mod q,

2where is interpreted as a residue tq mod q with q =-N mod q and where a -2 s
the multiplicative inverse of a2 rood q. The numbers tq may be stored of course, since
they are used in each polynomial. However, since each polynomial uses a new value
of a in this scheme, it appears that an inversion mod q (using the extended g.c.d.
algorithm) is necessary for each q and for each polynomial.

Thanks to a suggestion from Peter Montgomery, sieve initialization can in fact be
accomplished with much less computation. The idea is to choose a as a product of
primes g(x/-/M)1/21 with 2=- N mod g2 _solvable. (The value of here is quite
small, we plan to use 3 or 4.) Say a gl"’’g. Using known solutions +bi of the
congruences 2-= N mod g2 for i= 1,. ., l, we may assemble via the Chinese Remain-
der Theorem 2 different values of b mod a2 which satisfy b2-- N mod a2. Since b and
-b will give essentially the same polynomial w(x), we will get 2-1 different polynomials
for the one value of a.

Suppose now we use r primes gl,"" ", gr and we form different values of a by
choosing of these primes. Thus there are () values of a and thus 2-1() different
polynomials. If a gi,’’’gi,, then

-2 mod q.(9) a -2 mod q =- gi-2

Thus if the numbers g-2 mod q are precomputed and stored for each 1,. , r and
for each q, the computation of a -2 rood q need not require any more inversions. It
appears as if 1-1 multiplications mod q are necessary when (9) is used to compute
a -2 mod q. But if we form a new 1-tuple of g’s by trading just one g for a new one
and saving an intermediate calculation, it takes only one multiplication mod q.

Here is another idea for sieve initialization that might be practical. Let p, ,
be a set of factor base primes with each pi 500 and with as large as possible so that
K pa...p is still small compared with x/N/M. Let f(x)= ax2q 2bx + c be a poly-
nomial with ba-ac N, [b]<a/2, a/KM. Consider the solutions u off(x)=
0 mod K. For each solution u, let

1
g,(x)=f(u+xK).

There are 2 choices of u and for each choice we obtain a polynomial g,(x) which
may be sieved for x in [-M, M). Suppressing the details, it turns out that with a small
amount of precomputation, the sieve initialization data for each polynomial gu may
be computed with 2 additions mod q for each q. For N 10, we may be able to
take as large as 14 or 15, so that 2TM or 215 different polynomials may be generated
in this way for the one value of K.

5. Implementation. Our implementation of the qs algorithm will have 5 stages:
(1) preprocessing, (2) sieve initialization, (3) pipe i/o, (4) pipe, (5) postprocessing.
Stages (2), (3), (4) occur simultaneously on three different devices that interact
frequently. As their names suggest, stage (1) is completed before the other stages are
begun and stage (5) is done only after all other stages have ended their work.
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Stage (1): Preprocessing. This relatively minor stage involves the creation of
various constants that are used in later stages of the algorithm. These include (i) choice
of a multiplier, (ii) creation of the factor base, (iii) solution of the congruences
2-= N mod q for each power q =< B of a prime in the factor base, (iv) construction of
a list of primes g,. , gr and solutions of the congruences 2-= N mod g/2 as discussed
in 4, (v) computation of g-2 mod q for each 1, , r and each power q _-< B of a
prime in the factor base.

The necessary inputs from which all of these numbers are created are N (the
number to be factored), B (the bound on the factor base), M (half the length of the
interval on which a polynomial is sieved), and r (where 4() is a sufficient number of
polynomials to complete the factorization of N).

Preprocessing can be completed on virtually any computer with a large memory.
For example, a SUN 3 workstation would be sufficient, even for very large numbers.

Stage (2): Sieve initialization. In this stage a three-element subset i, j, k is selected
from {1,..., r} and from this triple a polynomial w(x) is constructed together with
sieve initialization data. Indeed, from the preprocessed data, the sieve initializer lets
a gigjgk and chooses b, c to satisfy (4). This then defines a polynomial w(x)=
a2x2 + 2bx + c. Next the sieve initializer computes A for each power q <_- B of a prime
in the factor base via the formulas (8) and (9).

The actual sieving of w(x) is performed in the next two stages. The sieve initializer
has a direct link to the pipe i/o which controls the sieving. As soon as the sieve
initialization data has been prepared, the pipe i/o and pipe cease their work on the
previous polynomial and the pipe i/o receives the data for the next polynomial.

This configuration of tasks shows how the parameters B and M are related. The
time for the sieve initializer to prepare a polynomial and sieve initialization data
depends only on B, while the time for the sieving units to sieve the polynomial on
I-M, M) with the powers q-< B of the primes in the factor base depends on both M
and B. We choose the parameters B, M so that these two times are equal. In practice,
we shall choose B first and then determine empirically the value of M that works.

Since the sieve initializer will be working as long as we are sieving, it would be
desirable for it to be a dedicated piece of hardware. It is also desirable, but not crucial
for the sieve initializer to be fast. A 50 percent speed-up of the sieve initializer may
yield only a 15 percent speed-up in the total factorization time for a 100-digit number.
While not negligible, this shows that resources might be more profitably allocated
elsewhere. We are planning on dedicating a SUN 3 workstation to sieve initialization.
It is likely we could build a custom processor for sieve initialization with the same
performance as the SUN for less than $5000. Although we currently do not anticipate
building this custom processor, we nevertheless use the figure $5000 for the cost of a
sieve initializer in our estimate of the cost of the entire project.

Stages (3) and (4): Pipe i/o and pipe. It makes the best sense to give a joint
overview of these two stages since the two units work in tandem to sieve a polynomial
w(x) on the interval [-M, M) with the powers q-<_ B of the primes in the factor base.
These units form the heart of our factorization project and will be described in detail
in5and6.

Since the number M will be relatively large in our implementation (for example,
we may choose M 108) it would take a large memory to sieve these 2M values all
at once. It would be a more efficient use of resources to use a somewhat smaller
memory; denote its length by I. (In one configuration of our machine we have chosen
I 22.) After the first I values are sieved, we then sieve the next I values and so on.
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Thus the "polynomial interval" [-M, M) is broken into a number of subintervals of
length L

The pipe then is a unit that can sieve I consecutive values of a polynomial w(x).
The pipe i/o is a unit that (i) receives from the sieve initializer the sieving data for a
polynomial, (ii) initializes the pipe, (iii) sends out the sieving data (A mod q, A(q))
one arithmetic progression at a time into one end of the pipe, (iv) receives processed
sieving data from the other end of the pipe and readies it for the next subinterval, (v)
receives reported "successes" (locations x where w(x) has been completely factored)
from the pipe and sends them out to a host computer, probably the sieve initializer.

We will custom build the pipe i/o and pipe units. It is with these units, which
will be specifically designed to sieve quickly, that we hope to achieve gains over
previous implementations of the qs algorithm. The pipeline architecture is particularly
well Suited to sieving with "adjustable stride" which the qs algorithm demands. The
usual problem of pipeline architectures, that of having software that keeps the pipe
filled, is met here by custom tailoring of the hardware and software in the same project.

The pipe i/o and pipe will not need any diagnostic circuitry. Errors caused by
hardware fault will either be detected during reporting of successes (either too few or
too many reports will signal an error) or during post processing (a false report is
detected here). It also should be noted that it is not necessary to design special
checkpoint/restart capability since the operation of the algorithm involves sieving a
new polynomial every five to ten seconds. Unlike primality testing where one glitch
can throw out an entire primality proof, the quadratic sieve is a robust algorithm where
local errors will not propagate.

Stage (5): Post-processing. Each reported success consists of four integers a, b, c, x
such that

(a2x + b)2 a2(a2x2 -k- 2bx + c) mod N

and such that w(x)= aZxZ+2bx+ e completely factors over the factor base except
possibly for one larger prime (see 4 for a description of the large prime variation).
The first step in post-processing is to compute the actual prime factorizations of the
various successful numbers w(x). This can be found by trial division. However, it is
possible for the pipe i/o and pipe to immediately resieve in a special mode any
subinterval in which a success is found. This special mode reports the prime powers
which "hit," that is, divide, the number w(x). If this is done then the prime factorization
of w(x) will be nearly complete and the postprocessor will have little work for this
step. (Thanks are due to R. Schroeppel and S. S. Wagstatt, Jr. for this idea.) Without
this resieving mode, as many as 101 multiprecision divides would be necessary in
post-processing (assuming a factor base of 105 and 106 reports). By resieving, we would
have instead about the same number of low precision additions performed on specially
tailored hardware.

Corresponding to each factorization of a w(x) we have a (sparse) 0, 1 vector of
exponents on the primes in the factor base reduced mod 2 (see 2). The second step
in post-processing is to find several linear dependencies mod 2 among these vectors.
The third step in post-processing is to use a dependency to assemble two integers X,
Y with X2-= y2 mod N, as discussed in 2. The fourth and final step in post-processing
is to compute (X- Y, N) by Euclid’s algorithm. If this gives only a trivial divisor of
N, another dependency is used to assemble another pair X’, Y’, etc.

The most complex of these steps is the linear algebra required to find the dependen-
cies. The length of the vectors depends on how large a value of B is chosen. The
optimal choice of B for sieving may well be larger than 106. This would lead to vectors
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of length about 39,000 or more (even ignoring the problem of encoding a large prime
involved in a factorization in the same 0, format). To factor very large numbers we
may even wish to use vectors of length 100,000. Note that we need about as many
vectors as their length. A 105 square matrix is probably too big to store in virtual
memory on any commercially available compUter (with the possible exception of a
Cray 2), even given that each matrix entry is and will remain a single bit.

Here are several options that are available for the storage and processing of such
a huge matrix. The problem of the large primes, ignored above, can be very easily
solved using a sparse encoding of the vectors and quickly eliminating large primes by
Gaussian elimination. This is quick and there is little fill-in since any factored w(x)
has at most one large prime in the interval (B,

This Gaussian elimination might be continued further, but now fill-in will begin
tO occur. It may be possible to then switch to the 0, 1 encoding and continue with
Gaussian elimination on this smaller, but no longer sparse, problem.

A promising option is to use a sparse encoding and Wiedemann’s elimination
algorithm [13] for sparse matrices over a finite field (after the large primes have been
eliminated as described above).

An unimaginative but possible plan is to use Gaussian elimination and the 0, 1
encoding (after the large primes are eliminated), but process only two slim slices of
the matrix at any given time. This would involve a certain amount of i/o between the
cent’al memory and disc storage.

The matrix portion of post-processing will be performed on a large mainframe
computer, perhaps the Cyber 205 at the University of Georgia. The other stages of
post-processing will be performed on the same computer or perhaps on our SUN 3.
In all, post-processing should not be time-critical for factoring; its difficulties will be
solved in software on conventional computers.

6. The pipe. As mentioned above, the pipe is a unit capable of sieving I consecutive
values of a polynomial w(x) with the powers q =< B of the primes in the factor base.
We now describe details of its organization.

Block processors. The pipe is segmented with each segment consisting of a section
of store and some arithmetic capability used in sieving. We call the section of store a
block, and the arithmetic capability together with the store a block processor (BP). The
size of the storage on each BP is denoted IBPI. It is necessary to choose IBPI a power
of 2; our working figure is IBP]- 216 which we shall assume in the following. The word
length of this store is nominally eight bits, since this will provide the resolution required
for the approximate logarithms in the sieving process. The number of BP’s in the pipe
(#BP) is also a power of 2; our working figure is 16. The total store in the pipe is
#BPx[BP 220= I, the length of a subinterval that we sieve at a given time.

Subinterval processing. First, the pipe must be initialized for the subinterval. This
involves setting the contents of the BP store to a constant (we use 0), and setting the
threshold value T at which each BP will detect a result. The pipe i/o will direct these
operations.

Next, the sieve must be run. The pipe i/o will send out the progression records.
These are entered into the pipe as rapidly as possible. Then when they exit the pipe
they are stored in the pipe i/o for use in successive subintervals. During sieving, the
BP will add A(q) to each location at which the progression A mod q hits. Some locations
may then reach the threshold level T.
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Reports. If a BP detects that a location has exceeded the threshold value, it will
immediately report this to the pipe i/o. At the end of sieving, the address(es) that
exceeded the value is (are) reported for use in post-processing.

One refinement which increases the utility of the reports is to report not only the
address, but each of the prime powers that hit at that location. This will reduce the
work required in post-processing. We can accomplish this goal by running the sieve
"backwards" from the new set of A’s we have calculated, observing those that hit the
marked location. (There is no special need to "mark" locations, however. By setting
each A(q)=0 for the re-sieving, only locations already exceeding the report tolerance
from before cause a report to be made.) The pipe is wired so that information "flows"
only in one direction, so sieving "backwards" must be simulated by reversing the order
of the store in the pipe.

When a reportable result is found, the BP will raise a flag called "report request,"
which activates a daisy chain protocol. This signal will stop all the BP’s simultaneously
in the middle of the next cycle. If the pipe i/o has been in sieve mode, it reads from
the BP the address that caused the threshold to be surpassed and then continues to
sieve normally the rest of the subinterval. The pipe i/o then enters the re-sieve mode.
This begins with reversing the order of the store in the pipe. (In fact, it is only necessary
to reverse the order of the store of the reported address or addresses. In practice it
may be simpler to just re-initialize the key location(s) with some preset value that we
know will be above the threshold.) Next each BP is set to the re-sieve mode; this
entails subtracting, rather than adding in the address register. Recall that each A(q)
has been set to 0. Thus there will be report requests at only those marked locations
that have been preset with above threshold values. Now when there is a report request,
the pipe i/o transfers the prime power from the BP, not the address. When the
subinterval has been completely re-sieved the pipe i/o returns to sieve mode. When
the polynomial has been completely sieved, the reports are transferred to the host.

Pipe arithmetic. The arithmetic capability which is on the BP is concentrated into

address and data arithmetic units which do the following operations"

AA+q,

D-S(A),

S(A)D+A(q).

Since there are two separate arithmetic units for address and data arithmetic, these
arithmetic operations can proceed in parallel. This is an important consideration in
the performance of the BP.

This arithmetic capability, while simple, allows a BP to perform several different
functions:

Initializing: While

Sieving: While

(A < IBPI){
S(A) - 0;
AA+I;

(A< [BP[){
S(A)S(A)+A(q);
If (S(A)> T) {report A}
AA+q;
}
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Reporting: While (A > 0){
S(A)(-S(A)+O;
If (S(A)> T) {report q}
A(-A-q;

Interconnects. Each BP is connected to both of its neighbor BP’s (predecessor
and successor). The predecessor of the first BP and successor of the last BP is the pipe
i/o unit. In addition, each BP has a bus connection to the pipe i/o unit. From the
predecessor, each BP receives the data items A, q, A(q) which are the progression
record for sieving and sends the signal "BUSY," which while on tells the predecessor
not to send anything. To the successor, each BP sends the data items A, q, A(q) and
receives the signal "BUSY."

From the pipe i/o bus, the BP receives initialization instructions and a report
tolerance T (valid for this BP in this subinterval run). To the pipe i/o bus, the BP
sends the signal "SUCCESS" if some S(A) > T. In this case, the A and q report values
are sent to the pipe i/o unit over this bus. The BP control modes are broadcast to the
pipe from the pipe i/o unit over this bus as well.

Performance. The fundamental performance parameter of the BP is the cycle time
of the BP store, C. All the other performance values can be stated in terms of this value.

The time of a prime power q in a BP is at most []BP]/q x 2C. That is, each sieve
step is accomplished in two cycles. To see how this can be done we consider the worst
possible case, namely when several arithmetic progressions each successively hit exactly
once in a particular BP. Thus in two cycles, the BP needs to receive the sieving data,
recognize that there is a hit in this BP, do the sieving, see if there is a SUCCESS,
recognize that the arithmetic progression does not hit a second time, and send out the
altered sieving data. Also we shall see in the next section that the sieving data is not
sent all in one cycle, but the A value is sent in one cycle and the q, A(q) values are
sent in the next cycle. This worst case is outlined in Table 1 which shows what happens
to two consecutive sieving records Ai, qi, A(qi) for i=0, 1.

Thus during an even-numbered cycle in this worst-case scenario, the BP performs
the five operations listed for cycle 2 above. During an odd-numbered cycle, the BP

TABLE

Cycle Progression 0 Progression

0 In [Ao]: BPID [=]
A IN [Ao]
D-S(A)
Ain A + qin; Ain: BPID
q, A(q) IN [qo, A(qo)]

2 OUT A6] Ain
S(A) D+A(q); S(A): T[<]

3 OUT[qo, A( qo)] q, A(q)

IN [A,]: BPID [=]
A(- IN [A1]
D(-S(A)
Ain A+ qin; Ain: BPID
q, A(q) IN [q,, A(q,)]
OUT [A] Ain
S(A)- D+A(q); S(A): T[<]
OUT [q,, A(q,)] q, A(q)
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performs the five operations listed in cycle 3. Although an arithmetic progression
involves the BP for 4 cycles, it can travel down the pipe spending 2 cycles in each BP.

If the first compare with BPID is # ], this means the arithmetic progression does
not hit in this BP and it can be sent on through to the next BP. If there is a hit (as
shown in the pseudocode above) and the second compare with BPID is [=], then this
means that the arithmetic progression hits a second time in this BP in which case it
is, of course, not sent out right away.

Collision avoidance. To avoid collisions a BP will register "BUSY" during the
time a prime power occupies the BP. We classify prime powers q in three categories.
A value q is "small" if q < IBPI, so that q has the potential to hit more than one
location in a BP. It is "moderate" if IBP]-<_ q_-</, so that q hits at most once in any
BP, but will definitely hit at least one BP in the subinterval. Finally, q is "big" if
I < q--< B. Big prime powers hit at most one BP in a subinterval. The progressions are
sent through a subinterval in the following order: (i) big prime powers that actually
hit some BP in the subinterval; (ii) moderate prime powers ordered by decreasing size;
(iii) small prime powers ordered by decreasing size. This organization of the pro-
gressions keeps delays in the sieve caused by "BUSY" signals to a minimum. In fact
there are no delays at all with big and moderate prime powers.

7. The pipe i/o unit. The pipe i/o unit is an interface, storage, and control
mechanism for the sieving process. The pipe i/o unit interfaces to the sieve initializer
to receive progression records for each polynomial, and to send reports of the sieve’s
successes. It stores the progression records, since the length I of the subinterval that
is sieved at one time is considerably less than the length 2M of the polynomial interval.
The pipe i/o sends the progression records in a proper order to the pipe, then receives
the modified records from the pipe and stores them for the next subinterval. The pipe
i/o contains the control and sequencing logic that controls the pipe and its modes of
operation.

Interfaces. The pipe i/o unit has a data path to the sieve initializer (SI). When a
polynomial change is to occur (determined by the SI), the operation of the pipe is
halted. The storage on the pipe i/o unit is then loaded with the progression records
for the next polynomial interval. When this operation is completed, the pipe i/o begins
the sieving sequence for the new polynomial by sending out the progressions in order.
The time required to load the pipe i/o store is a function of the amount of data to be
transferred, the width of the data path between the sieve initializer and the pipe i/o,
and the bandwidth of the respective memories. (We assume that the loading will be a
direct memory-to-memory transfer.)

The other operational use of the data path from SI to pipe i/o is for the reporting
of results. When the sieve has a result to report, it will send polynomial coefficients,
a polynomial argument, and a list of powers of primes from the factor base that divide
the polynomial at the argument. The sieve initializer will receive these reports and
retain them for the post-processing step.

Store. The storage of the pipe i/o must be large enough to accommodate usually
two progression records for each power q-< B of a prime in the factor base. At the
same time, it must be fast enough to feed the pipe at "full guzzle" while sieving by
moderate and big prime powers. This storage unit is one of the major challenges of
the qs processor.
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Each progression record consists of A, q, A(q) for the sieving, and a link field
which is used by the pipe i/o to send out only those progressions which will hit in at
least one BP in the subinterval. The length of a progression record is

max Ial+max Iq[+max [A(q)l + max ILl- 32+24+8+20=84 bits,

nominally. Since the q, A(q) are identical for usually two progressions, these fields
may be shared between the two progressions, reducing the nominal size to 68 bits.
There must be a progression record for every solution of (7) for each power q <-B of
a prime in the factor base. If we choose B 2,750,000, say, there will be about 200,000
progressions requiring 200,000 68 bits 1.7MB store.

Speed. The pipe i/o store must be able to keep up with the pipe. For this reason,
we wish to be able to feed out a progression record in time 2C, since that is the rate
at which the pipe can accept progressions with modulus a moderate or big prime
power. We intend to fetch the progression record in parallel (all 84 bits) from the pipe
i/o store, store it in a buffer register, then send out the A in one cycle, q, A(q) in the
next (recall that the L field is for the use of the pipe i/o only).

This makes it appear that the cycle time of the pipe i/o store can be double that
of the pipe’s store. However, this is not the case. Once the transaction record has made
it through the pipe, it will be received by the pipe i/o and must be stored for use in
the next subinterval. This means that it must be stored in the pipe i/o store. Since
receive transactions are occurring while send transactions are still going on, we must
be able to WRITE the pipe i/o store once and READ it once in the time 2C. This
means that the cycle time of the pipe i/o store must be the same as that of the pipe.

Partitioning. The pipe i/o requires a large, fast store. More than this, since the
pipe i/o store is about twice the size of the factor base, we must partition the store
horizontally if at all possible so that the factor base size is not a hard, "designed in"
limit on the system.

Operation. Once the pipe i/o store is filled with progression records, operation
of the sieve begins. The pipe i/o controls the sieving operation, which consists of a
cycle in which the events:

initialize the pipe
sieve by progressions which hit in subinterval
report any successes in subinterval
ii+l

are repeated until the sieve initializer has the next polynomial ready.

Sending progressions. Since a big prime power may not hit in subinterval i, we
keep a linked list of those we know will hit in the subinterval. Thus we only dispatch
those big prime powers that will hit in the subinterval. The pipe i/o manages the linked
lists on a per-subinterval basis, so that each subinterval has a list of the prime powers
that will hit in that subinterval. This list might have the big prime powers out of
numerical order, but since they hit only once in anyway, it will not result in a pipe
collision. As mentioned before, progressions corresponding to moderate and small
prime powers are sent out in reverse numerical order of modulus. Thus the linked list
mechanism is not necessary for these progressions.

Receiving progressions, When a progression record A, q, A(q) is sent into the pipe,
it is processed there to generate the next progression record by modification of the A
value. The pipe will add q to the A value until the new A no longer falls in the
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subinterval. Then the progression record will exit from the pipe. At the exit from the
pipe is the pipe i/o receiver which will store the record for use in the progression’s
next subinterval.

Recall that IBPI and I are both powers of 2. This means that one field of A can
be regarded as the subinterval number i. This field of A is important in the processing
of the received record upon exit from the pipe; the value of will indicate the next
subinterval in which the progression will fall. For moderate and small prime powers
this is always the next subinterval. For big prime powers, up to n- 1 subintervals can
be skipped over where n [B/1]. There are n linked lists maintained in the pipe i/o,
and the progression will be added to the appropriate list upon exit from the pipe.

Each progression has a home location in pipe i/o store where it resides. When
the progression is sent into the pipe, its home address is entered into a FIFO store.
Since the pipe preserves the time order of progressions, the home address can be
retrieved from this store when the progression is received. The new A will then be
stored at the home address location. Additionally, the progression is added to the
proper interval list by the simple procedure of placing the list pointer in the link field
of the progression, then placing the progression address in the list pointer.

Receiving this progression information must compete for pipe i/o store with the
sending process. Only A and L must be stored, and this will require one cycle of store.
Since the A and L are buffered and since the sending process uses only one cycle from
every two, storing the progression uses the other cycle.

8. Performance on 100 digit numbers. In this section we give some indication how
performance on 100 digit numbers can be estimated. In the sequel, we assume N 101,
where N is the number to be factored.

Factor base. We shall assume the multiplier is one (see 4). We shall consider a
factor base of 100,000 primes so that B, the bound for the largest prime in the factor
base, is about 2,750,000. We estimate that sieve initialization for this choice of B will
take five seconds. The pipe i/o unit will require about 1.TMB of store.

Time to sieve a subinterval. We shall assume that each BP has size 216 and that
the pipe consists of 24 BP’s. This gives the value 220 to I, the subinterval length. We
assume the cycle time in the pipe i/o and pipe is 70 nanoseconds. The time to sieve
a subinterval has several components (measured in milliseconds):

(i) Initialize the pipem4.59;
(ii) Small prime powersmll.30;
(iii) Moderate prime powersml0.51;
(iv) Big prime powers9.87;
(v) Empty the pipe with least progression--l.47.

We shall account for reporting time later. Thus the total time to sieve a subinterval of
length I 220 is 37.74 milliseconds,

With one polynomial, we sieve for 5 seconds, the sieve initialization time. Thus
in this time we shall sieve about 1.38 108 values, so that 2M 1.38 108.

Success rate. The largest values of a polynomial will have size M(N/2. However,
the smaller values will give a disproportionately high success rate. Thus we shall assume
the "typical" valueis

M/N/2 1.63 1057.

The probability that a random number of this size completely factors with the primes
up to 2 x 106 can be estimated from the table for "pl(a)" given in Knuth and Trabb
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Pardo [4]. We take

log (1.63 1 057)
8.8848.

log (2750000)

We geometrically interpolate in the table to get

pl(Ce) 1.513 10-9.

This means that we have to sieve about 1/pl(a)6.61 108 numbers to find one
success. That is, we have one success every 23.9 seconds on average.

Large prime variation. Multiplying 23.9 seconds by 100,000, the nominal number
of successes we shall need, we obtain a sieving time of 27.7 days. However, by also
reporting polynomial values which factor completely over the factor base except for
one large prime in the interval (B, 100 B), we estimate a speed-up factor of 0.415. This
estimate is obtained by splitting (B, 100 B) into smaller intervals, using the Knuth-
Trabb Pardo table to estimate success rates for large primes in the smaller intervals,
and then using a "birthday paradox" analysis to estimate the usefulness of these large
prime factorizations. Thus the 27.7 day sieving time is reduced to 11.5 days.

Enforced sieve down time. The sieve must be down when the pipe i/o is being
loaded from the sieve initializer and when it is in the reporting mode. We assume that
loading time per polynomial is 0.2 seconds. This must be done for every five-second
polynomial run, or for a total of 0.5 days during the factorization.

With the large prime variation, there will be about 700,000 reports during the run.
We shall assume, however, there are 106 reports since some of these will be "false."
We also assume that a report takes 75 milliseconds (about twice the time to sieve a
subinterval) for recall that reporting involves re-sieving a subinterval in a new mode.
Thus total reporting time is about 0.9 days.

Total running time. We shall assume that preprocessing and post-processing
together take at most 0.5 days of computing time. Thus our total running time can
now be estimated from the following:

(i) Sieving time--ll.5 days;
(ii) Loading time--0.5 days;
(iii) Reporting timem0.9 days;
(iv) Pre- and post-processing--0.5 days;

or 13.4 days.

Estimated cost of processor. Pre- and post-processing are performed on conven-
tional hardware. The most critical step is the matrix processing discussed in 5. It is
assumed that this will not be an important bottleneck. We do not include the cost of
buying computer time for these stages since we are considering here only a relatively
insignificant portion of the factoring project. In extrapolations to very large numbers,
it might be fair to set aside 5-10 percent of monetary resources for pre- and post-
processing.

Sieve initialization will be performed on a dedicated SUN 3. It would be possible
to build a dedicated processor with equal performance for sieve initialization tasks for
$5,000. Even though a SUN 3 costs about ten times as much, we nevertheless use the
figure $5,000 for the cost of a sieve initializer.

We estimate the cost of parts for a pipe i/o unit with 1.7MB of store at $10,000.
Finally we estimate the cost of a pipe consisting of 16 BP’s, each of size 64k 8- 64kb,
together with a power supply, at $10,000.
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Thus we estimate a total cost of $25,000 for parts. To figure in development costs,
overhead, and a margin for error, we use a multiplier of 2, thus bringing our estimate
to $50,000.

9. Summary. We have described the quadratic sieve factorization algorithm and
an inexpensive processor on which it can be efficiently run. If it runs as quickly and
is as inexpensive as we think, then 144-digit numbers can be factored in a year with
a budget of $10,000,000.

Acknowledgment. The authors acknowledge the constructive criticisms and helpful
suggestions of Peter Montgomery, Andrew Odlyzko, Richard Schroeppel, Sam Wagstaff
and the referees.

REFERENCES

D. COPPERSMITH, A. M. ODLYZKO AND R. SCHROEPPEL, Discrete logarithms in GF(p), Algorithmica,
(1986), pp. 1-15.

[2] J. A. DAVIS AND D. B. HOLDRIDGE, Factorization using the quadratic sieve algorithm, Tech. Rpt.
SAND 83-1346, Sandia National Laboratories, Albuquerque, NM, December, 1983.

[3] J. A. DAVIS, D. B. HOLDRIDGE AND G. J. SIMMONS, Status report onfactoring (at the Sandia National
Laboratories), in Advances in Cryptology, Lecture Notes in Computer Science 209, 1985, pp.
183-215.

[4] D. E. KNUTH AND L. TRABB PARDO, Analysis of a simple factorization algorithm, Theoret. Comput.
Sci., 3 (1976), pp. 321-348.

[5] M. KRAITCHIK, Thorie des Nombres, Tome II, Gauthier-Villars, Paris, 1926.
[6] H. W. LENSTRA, JR., Factoring integers with elliptic curves, Ann. of Math., to appear.
[7] M.A. MORRISON AND J. BRILLHART, A method offactoring and thefactorization ofF7, Math. Comp.,

29 (1975), pp. 183-205.
[8] C. POMERANCE, Analysis and comparison of some integer factoring algorithms, in Computational

Methods in Number Theory, H. W. Lenstra, Jr. and R. Tijdeman, eds., Math. Centrum Tract 154,
1982, pp. 89-139.

[9] , The quadratic sievefactoring algorithm, in Advances in Cryptology, Lecture Notes in Computer
Science 209, 1985, pp. 169-182.

[10] R. RIVEST, A. SHAMIR AND L. ADLEMAN, A method for obtaining digital signatures and public-key
cryptosystems, Commun. ACM, 21 (1978), pp. 120-126.

[11] C. P. SCHNORR AND H. W. LENSTRA, JR., A Monte Carlo factoring algorithm with linear storage,
Math. Comp., 43 (1984), pp. 289-311.

[12] R. D. SLVERMAN, The multiple polynomial quadratic sieve, Math. Comp., 48 (1987), pp. 329-339.
[13] D. WIEDEMANN, Solving sparse linear equations over finite fields, IEEE Trans. Inform. Theory, 32

(1986), pp. 54-62.



SIAM J. COMPUT.
Vol. 17, No. 2, April 1988

(C) 1988 Society for Industrial and Applied Mathematics
013

EFFICIENT PARALLEL PSEUDORANDOM NUMBER GENERATION*

J. H. REIF? AND J. D. TYGAR:I:

Abstract. We present a parallel algorithm for pseudorandom number generation. Given a seed of n

truly random bits for any e > 0, our algorithm generates n pseudorandom bits for any c > 1. This takes

poly-log time using n ’ processors where e’= ke for some fixed small constant k> 1. We show that the

pseudorandom bits output by our algorithm cannot be distinguished from truly random bits in parallel

poly-log time using a polynomial number of processors with probability 1/2+ 1/nl if the Multiplicative

Inverse Problem almost always cannot be solved in RNC. The proof is interesting and is quite different

from previous proofs for sequential pseudorandom number generators.
Our generator is fast and its output is provably as effective for RNC algorithms as truly random bits.

Our generator passes all the statistical tests in Knuth [14].
Moreover, the existence of our generator has a number of central consequences for complexity theory.

Given a randomized parallel algorithm (over a wide class of machine models such as parallel RAMs and

fixed connection networks) with time bound T(n) and processor bound P(n), we show that can be

simulated by a parallel algorithm with time bound T(n)+ O((log n)(log log n)), processor bound P(n)n’,
and only using n truly random bits for any e > 0.

Also, we show that if the Multiplicative Inverse Problem is almost always not in RNC, the RNC is

within the class of languages accepted by uniform poly-log depth circuits with unbounded fan-in and strictly

subexponential size f)>o 2n’.

Key words, cryptography, parallel algorithms, pseudorandom, number generators

AMS(MOS) subject classifications. 5.24, 5.27.

1. Introduction. A number of parallel randomized algorithms have appeared
recently. These algorithms typically use a large number of random bits which must be
generated in a small amount of time. Nonetheless, the area of parallel random bit
generation remains unexplored.

In reality, our computers are deterministic and unable to generate truly random
values. But we can give algorithms which will give pseudorandom bits on input of a
random seed So. These pseudorandom bits satisfy conditions which suggest that for
algorithmic purposes they are as effective as truly random bits.

What conditions should a pseudorandom bit sequence satisfy?
Improving on an idea by Shamir [16], Blum and Micali [6] argue that the notion

of "cryptographic strength" captures the important facets of random sequences. To
demonstrate cryptographic strength they follow this schema:

(1) Upper bound the computational resources by Resources A.
(2) Assume that Problem B cannot be solved within the limits of Resources A.
(3) Produce a Pseudorandom Bit Generator G.
(4) Argue that if an opponent sees the first mo bits generated by Pseudorandom

Bit Generator G and can utilize Resources A to predict the remaining bits with an
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(m) (where rn is the size of the seed and e is a fixed functionaccuracy rate of + e

satisfying lim,,_ e(m)= 0), then the opponent will be able to solve Problem B limited
to Resources A by consulting the bit-guessing oracle, a contradiction.

Several cryptographically-strong pseudorandom bit generators have been proposed
(Blum, Blum and Shub [5], Blum and Micali [6],) and many applications have been
discussed (Alexi, Chor, Goldreich and Schnorr [3], Goldreich, Goldwasser and Micali
[9] Goldwasser, Micali and Tong [10], Vazirani and Vazirani [19], Yao [21].) These
generators are all inherently sequential, require polynomial time, and their crypto-
graphic strength relies on some unproven cryptographic assumption.

Notation. When we say a class of circuit is uniform, we mean that it is constructible
in logarithmic space by a deterministic Turing Machine.

NC (NCt) is the class of languages accepted by (uniform, respectively) determinis-
tic circuits constructible in log-space with poly-log depth and polynomial size.

RNC (RNCt) is the class of languages accepted by (uniform, respectively) random-
ized circuits constructible in log-space with two-sided error, poly-log depth, polynomial
size, and acceptance probability greater than 1/2.

We give more precise definitions of these terms in 4.
Our result. We present a new cryptographically-strong pseudorandom bit gen-

erator which runs in NCt but which is secure against attacks taking parallel poly-log
time if the Multiplicative Inverse Problem almost always is not in RNC. While we use
the schema described above for demonstrating the cryptographic strength ofour random
number generator, because ofthe inherent parallel nature of our generator, the technical
details of our proof are quite different from those of previous proofs for sequential
pseudorandom number generators. In particular, we prove that if the bits output by
our pseudorandom bit generator can be predicted in RNC, then we can solve the
multiplicative inverse problem in RNC almost always and this requires that we construct
an interesting, nontrivial, parallel algorithm for that problem. (See 3.)

About the assumption. While our assumption has not been proved, it is quite
interesting to observe that it is testable in the following sense" If an RNC algorithm
takes more than poly-log time using our pseudorandom bits instead of truly random
bits then we can observe this event by timing. Thus one of two scenarios is possible:
either every application of our generator to an RNC algorithm yields a poly-log
algorithm using only a small number of random bits, or some application of our
generator is discovered to exceed its poly-log time bounds and we can immediately
derive a NC algorithm for multiplicative inverse.

About the measure of randomness. Valiant, Skyum, Berkowitz and Rackoff [18]
show that an NC-machine can evaluate any straight-line program which computes a
multivariate polynomial which has degree polynomial in the length of the program.
Thus if our assumption is correct, our pseudorandom bit generator is secure against
any statistical test which can be so formulated as a straight-line program. This includes
most standard statistical tests for random number generators (Knuth [14]).

Applications. Our method for parallel pseudorandom bit generation is actually
very practical. It requires, for any e >0, only O(log n(log log(n))) added depth and
a factor of n for a bounded fan-in circuit. Here is an example: Karp and Wigderson
[12] give a deterministic algorithm for the maximal independent set problem in
O((log n)4) time using O(n3/(log n)3) processors. They also give a uniform randomized
algorithm for the same problem running in O((log n)3) expected time with O(rt 2)
processors using O(n) random bits. Our results immediately yield a uniform algorithm
with O((log n)3) running time and O(rl2+’) processors using only n random bits,
where e, e’> 0 can be set arbitrarily small.
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Recently, Karp, Upfal and Wigderson [13] have shown that finding a maximum
graph matching is in RNCt, and Anderson and Mayr [2] have shown that finding a
maximal path is in RNCtj. Our results also immediately yield efficient randomized
uniform algorithms for these problems, using only n bits for any e > 0.

Implications. An interesting theoretical application of our result is that RNCu is
contained within the class of languages recognized by uniform deterministic circuits
of unbounded fan-in with poly-log depth and 2n size for any e > 0. (Adleman [1]
proved RNCu is contained in (nonuniform) NC, but the previous best construction
for bounding RNCtj by deterministic uniform circuits of poly-log depth required 2a(n)

size.) This extends a result of Yao [21] for sequential polynomial time computations
to poly-log time parallel computations.

2. Definitions and results.
Notation. We use the following notation throughout the paper:

N A positive composite integer such that each prime factor of N is greater than
N for a fixed c > 0.

Z* The multiplicative group of positive integers less than and relatively prime
to N. (Note that the fact that N has only large factors implies that a random
positive integer less than N is an element of Z* with high probability.)

We will sometimes use x mod N to indicate the residue of x modulo N.
Definitions. An NC-machine (Cook [8]) is a deterministic parallel algorithm which

runs on n( parallel-RAM (P-RAM) processors in time (log n) (1) for input of size
n. (Note that NCu is the class of languages accepted by NC-machines.)

An RNC-machine is a randomized parallel algorithm which runs on n o() P-RAM
processors in time (log n)( for input of size n. (Note that RNCt is the class of
languages accepted by RNC-machines.)

--1Given so Z*, the multiplicative inverse of So modulo N is the so such that
soso = 1 mod N.

For a fixed N, given an arbitrary k Z*, the Multiplicative Inverse Problem is to
find the multiplicative inverse of k modulo N. Note that the input size to the problem
is n [log N].

The problem of finding multiplicative inverses in poly-log depth has been studied
extensively. (Cook [8], Kannan, Miller and Randolf [11], Reif [15] and von zur Gathen
[20].) Based on the lack of significant positive results obtained so far we conjecture
the following.

Complexity assumption. There exists an infinite sequence of numbers N, N,.
constructible in NCtj such that for each n 1, 2,... we have n [log Nn and that
no RNC-machine can solve the Multiplicative Inverse Problem for arbitrary elements
of Z*, for almost all values of n.

(Actually we could replace this complexity assumption with the weaker assumption
kthat there exists a k such that for almost all n there exists an n’ such that n < n’< n

and no RNC-machine can solve the Multiplicative Inverse Problem for arbitrary
elements of Z*,,. All the theorems in this paper would remain true under that weaker
assumption.)

Definitions. A set S of bit sequences r=(b,...,b) of length J=n(

pseudorandom bits is RNC-cryptographically strong if no RNC-machine can, on a
random input b, , b S (i < J) predict any one bit b, , bj with expected success
of 1/2+ 1/n(. Informally, the bit sequences are RNC-cryptographically strong if no
RNC-machine can predict untransmitted bits with an expected success rate significantly
better than 1/2.
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THEOREM. If no RNC-machine can solve the Multiplicative Inverse Problem for
almost all n, then there exists a deterministic NC-machine c which on an input seed of
n bits outputs an RNC-cryptographically strong sequence ofJ n o1) pseudorandom bits.
c can be computed by a bounded fan-in uniform Boolean circuit of depth O((log n)(log
log n and size n o1.

This theorem is proved in 3.

Definition. An RNC-statistical test is an RNC-machine which attempts to distin-
guish truly random bit sequences from pseudorandom bit sequences. A statistical test
succeeds if it correctly distinguishes the pseudorandom bit sequences from truly random
bit sequences with probability at least 1/n o(1).

By a technique due to Yao [21] we can show that no RNC statistical test can
succeed on RNC-cryptographically strong bit sequences. Hence we have the following.

COROLLARY 1. If nO RNC-machine can solve the Multiplicative Inverse Problem

for almost all n, then no RNC-statistical test can succeed on our pseudorandom bit
generator

COROLLARY 2. If the Nn are constructible in depth h(n), then given a randomized
parallel algorithm g (over a wide class of machine models such as parallel RAMS and

fixed connection networks) with time bound T(n) and processor bound P(n) then can
be simulated by aparallel algorithm with time bound T(n)+ h(n)+ O((log n)(log log n)),
processor bound P(n)n ’, and only using n truly random bits for any e > O, where
e’= O(e).

CIRCUITt (D(n), S(n)) is the class of languages accepted by uniform determinis-
tic circuits with unbounded fan-in, depth D(n), and size S(n). (See 4 for a precise
definition of these complexity classes.)

COROLLARY 3. Iffor almost all n the Multiplicative Inverse Problem is not in RNC
then

RNCt_ [,3 f"l CIRCUIT ((log n),2")
c>0 e>0

This corollary is proved in 4.
COROLLARY 4. There exists a cryptosystem where encryption and decryption can be

done by an NC-machine on n1 bits given a secret shared key exactly n bits long (here
n is a security parameter). If no RNC-machine can solve the Multiplicative Inverse
Problem, then no RNC-machine can decrypt ciphertext exchanged in this cryptosystem.

We use the pseudorandom bits as a "one-time pad"rowe take the sequential
exclusive-or of the plaintext and the pseudorandom bits to produce the ciphertext and
take the sequential exclusive-or of the ciphertext and the pseudorandom bits to obtain
the plaintext again. Encryption and decryption both take parallel poly-log time but an

opponent cannot decrypt the ciphertext with RNC-machine.

3. The proof of the main theorem.
Properties. We recall the following facts which we use implicitly (Beame, Cook

and Hoover [4], Reif [15], and Shonhage and Strassen [17]):
There exists an NC-machine for multiplication of two numbers in Z*.
2 log p multiplications suffice to find the pth power of a number in Z*N.
If p < (log N) there exists an NC-machine for finding the pth power of a

number in Z*N.
Fix m [log N] throughout this section.
Let be the NC-machine which performs the following operations:

Input: random elements So, k Z*N.
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Output: bl, bj where J ml).
mod NMethod" In parallel each processor Pi (i 1, ., J) calculates s kso

and bj_+l B(s) where

B(x) {01 ifx<-N/2’
if x> N/2.

LEMMA. If there exists an RNC-machine which can determine the value of bj with
probability 1 (i.e., no error) on input hi,’", b-l, then there exists an RNC-machine
which can solve the Multiplicative Inverse Problem for Z*..

Proof of the lemma. Suppose that MB (for "magic box") is an oracle which can
determine the value of bj with probability 1. Then given So Z* we can find s-1 mod N.
We can find this by running in parallel the following algorithm on each processor
for (0-< <= m)"

Set k 2 i. In parallel set b B(ks--1) for 1 <-i<-J 1. Note that bj B(2s-l).
Feed the sequence (bl,’", bj_) to MB to get bj. Set the ith most significant bit of
6 to be B(2isl). Define

Then b()= s
TORM. If there exists an RNC-machine which can determine the value ofbj with

probability at least 1/2+ 1/m(1 on input hi,’’’, bj, then there exists an RNC-machine
which can solve the Multiplicative Inverse Problem for Z*. can be computed by a

bounded fan-in Boolean circuit of depth O((log n)(log log n)) and size n o(.

Proof of the theorem. Assume that there exists an RNC-machine MB which can
predict bj with probability 1/2 + 2/m. Let H 2(c + 1)[log m ]. Let and 4 be as in the
proof of the lemma.

Let S {0, 1, , 2-1 1 }. For each 0 _-< y < x _<- m, we will create, by randomized
methods, two functions F.y’S {0, 1}-Y and Gx." S- S. Informally, values in S are
guesses; F,y is a rule for transforming a guess j e S into the xth to yth most significant
bits of ; and Gx.y is a rule for transforming the guess jx S into the guess j-i S.

If an RNC-machine could find for arbitrary so, we could solve the Multiplicative
Inverse Problem. It will turn out that for some j,
We can verify this occurrence simply by checking whether so4()= 1 mod N. If we
do not immediately find s mod N, we simply form a new F,.o by randomized methods
and continue testing until we do find sg mod N.

Suppose we can determine j such that we know (2Xs mod N) belongs to one
of the two intervals

We can pick 2" random values/3 e Z*N and let v be MB’s prediction for

B 2sl+[2j+flmodN
When fl lies in the interval

[0, [(2"-- 1)

mark a vote for v, when/3 lies in the interval
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mark a vote the complement of v, and mark a null vote when/3 lies in other intervals.
By assumption, MB predicts correctly with probability at least 1/2+ 2/m C.

We can assign a processor to calculate MB’s prediction for each ofthe 2H randomly
chosen values of/3 Z*. This computation can be done in poly-log time for each/3.
The expected fraction of null votes is 21-H < 1/m. Thus we have a bias of at least
2/m-l/mC=l/m between 0 and 1 votes. Set Fx,x-l(jx) (our guess for
B(T’slmod N)) to be a value which got the most votes. If our guess for
B(2Xs mod N) is right, this immediately identifies which of the two intervals
(2Xs- mod N) belongs to. By the argument in the Appendix, 2n tests are sufficient to
make our guess correct with probability at least 1-1/2". If our guess is right, that
immediately determines the value ofj-l; that is, we can determine that (2x-s mod N)
lies in one of the two intervals

namely

jx-1 Gx,x-l(jx) [jx/2J + 2"-2(Fx,x_l(jx)).
We can calculate in parallel, for each m >-x 1, the functions F,_I. and

since the domain is finite and of polynomial size. If x-y > 1, then Fx,y and G,y can
be recursively defined as

Fx,y(jx) Fz,y(G,(jx))2 + Fx,z(jx)
and

Gx,y (jx Gz,y Gx, (jx
where z [(x + y)/2 ]. For each x, y pair (0 =< y < x _-< m) and eachj S we repeatedly
calculate the appropriate compositions of these functions for all jx in the domain of
the functions. Thus we can compute F",o in [log m stages.

Some guess jm is correct. Suppose that for all 1-<i-< m, that (1) Gi,i-(ji) is the
correct value of ji-1. Then (2) F",o(j,,) would be the correct value of 6. For each i,
the probability that (1) is true for a particular ji is (1- 2-"), so the probability that
(2) is true is (1-2-")"-1> 1-(m-1)2-m>1/2.

For some j" S, it will be true that F",o(j") 6 with probability 1/2. We can try all
possible j" in parallel, and find out if we have a correct value by checking whether
ch(F",o(jm))So 1 mod N. (Of course, it might happen that an incorrect guess for
might give a correct value for 6 but this can only speed the calculation.) In the event
that we do not get the correct value for s mod N, we simply form new F,y and
functions and continue until we do get the correct value.

4. Randomized and deterministic parallel complexity. Let be a list of circuits
(C1, C2,’’ ") of unbounded fan-in where Cn and n inputs and size S(n). We consider
c to be uniform if there exists a (log S(n)) space deterministic Turing machine which,
given any n, outputs the circuit Cn. Let CIRCUIT (D(n), S(n)) be the class of all
languages accepted by deterministic Boolean circuits with unbounded fan-in, depth
D(n), and size S(n). As usual we define

NC= CIRCUIT ((log n) k,, nk2).
k,>0,k2>0

We allow a randomized Boolean circuit C to have r special nodes, each of which
are assigned independent random bits chosen from {0, 1} with equal probability. C
accepts an input to {0, 1}" if C outputs 1 with probability >1/2; otherwise C rejects the
input. For simplicity, we consider only one-sided error randomized circuits which
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never output a 1 on an input they have rejected. (The construction below can easily
be extended to two-sided error randomized circuits which have an acceptance probabil-

kity of at least + 1/n for some k> 1.) Let RCIRCUIT (D(n), S(n)) be the class of
languages accepted by randomized circuits with unbounded fan-in, depth D(n), and
size S(n). We define

RNC [O RCIRCUIT ((log rt) k’ rt k2)
kl>0,k2>0

We define CIRCUITu, NCv, RCIRCUITu, and RNC analogouslyrestricting
the circuits to be uniform.

Proof of Corollary 3. Let C be a (one-sided error) uniform randomized Boolean
circuit with n inputs, depth D(n)= (log g/) kl, and size S(n)=/ k2o Fix any e > 0.

First suppose we had a source of b In /2] truly random bits. Observe that C
uses at most S(n)= n k2 random bits on each execution. Since S(n) <- b e’ where e’=
e / k2 is constant, we can apply our parallel pseudorandom bit generator to produce

S(n) pseudorandom bits in (log n)(1 parallel time using n processors and using
the b truly random bits as the seed. We can view the execution of C on the given input
to as a statistical test. By Corollary 2, given an input to {0, 1}", we need only execute
C on to for each of the 2b possible pseudorandom bit sequences. We accept to if C
ever outputs 1.

Furthermore, we can avoid the use of a truly random seed by simply (1) enumerat-
ing all b-bit numbers in parallel; (2) executing the parallel pseudorandom bit generator
using each of the b-bit numbers as a seed; and (3) executing C in parallel on to on
each of the resulting pseudorandom bit sequences. If C ever outputs 1 we accept to.

b2 neThe resulting uniform orcmt reqmres size 2 =2 and depth (log n))+ O(D(n))=
(log n)

Note that if we require that our simulation circuit have bounded fan-in, then to
simulate a circuit accepting a language in RNCu, we require n) (rather than
(log n) depth) and 2" size. This is an improvement over previous size bounds for
RNCt.

Appendix. Let X be the binomial variable which is the sum of - independent
Bernoulli trials each of which has a probability p 1/2+ 1/mC of giving a value 1 and
probability 1-p -1/m of giving a value of O. We need to find z large enough so
that

Pr IX < z/2] < 1/2".

Using Chernoff bounds (Chernoff [7]) we recall that

Pr [X < (1 6)’p] < e2p/2.

Substituting p 1/2-1/m and (1 3)p 1/2 we get

Pr [X < ’/2] < e-(1/mz)’r(1/2-1/m’)(1/2) < e -’r/8m2’.

If we set " m2+, our initial condition is satisfied. Since 2H z, setting

H =2(c+ 1)[log m l= O(log m)

will give us conditions sufficient to prove the main theorem.
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THE NOTION OF SECURITY FOR PROBABILISTIC
CRYPTOSYSTEMS*
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Abstract. Three very different formal definitions of security for public-key cryptosystems have
been proposed--two by Goldwasser and Micali and one by Yao. We prove all of them to be equivalent.
This equivalence provides evidence that the right formalization of the notion of security has been
reached.

Key words, cryptosystem, public-key cryptography, probabilistic encryption
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1. Introduction. The key desideratum for any cryptosystem is that encrypted
messages must be secure. Before one can discuss whether a cryptosystem has this
property, however, one must first rigorously define what is meant by security. Three
different rigorous notions of security have been proposed. Goldwasser and Micali [6]
suggested two different definitions, polynomial security and semantic security, and
proved that the first notion implies the second. Yao [11] proposed a third definition,
one inspired by information theory, and suggested that it implies semantic security.

Not completely knowing the relative strength of these definitions is rather unpleas-
ant. For instance, several protocols have been proved correct adopting the notion of
polynomial security. Are these protocols secure with respect to a particular definition
or are they secure protocols in a more general sense? In other words, a natural ques-
tion arises: Which of the definitions is the "correct" one? Even better: How should
we decide the "correctness" of a definition?

The best possible answer to these questions would be to find that the proposed
definitions--each attempting to be as general as possible--are all equivalent. In this
case, one obviously no longer has to decide which definition is best. Moreover, the
equivalence suggests that one has indeed found a strong, natural definition.

In this paper, we show that these notions are essentially equivalent. The three
originally proposed definitions were not equivalent. However, as we point out, this
inequivalence was caused only by some minor technical choices. After rectifying these
marginal choices, we succeed in proving the desired equivalences, keeping the spirit of
the definitions intact. We believe this to be an essential step in developing theory in
the field of cryptography.

2. Public-key scenarios. Let us briefly review what is meant by the notion of
public-key cryptography, first proposed by Diffie and Hellman [4] in 1976. As with all
cryptography, the goal is that A(lice), by using an encryption algorithm E, becomes
able to securely send a message m to B(ob). What is meant by "securely" is that it is
impossible for any party T who has tapped A and B’s line to figure out information
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about rn from E(m). The distinguishing feature of public-key cryptography is that we
require this security property to hold even when T knows the encryption algorithm
E.

We believe that until now, the notion of public-key cryptography has not been fully
understood. In fact, it is crucial to consider exactly how the communication between
A and B establishes the algorithm E. Therefore, we introduce the fundamental notion
of a pass. We will first explain what passes are, and then explain their implications
for security.

2.1. Passes. Within the public-key model, A and B can alternate communicating
back and forth as many times as they feel are necessary to achieve security. Call each
alternation a pass.

Any number of passes are, of course, permissible. We concentrate on what we
believe are the two most interesting and important cases, one anal three passes. We
do not consider more than three passes, because, if trapdoor permutations exist, a well-
designed probabilistic encryption scheme can achieve as much security as is possible
using only three passes.

Three-pass systems. The three-pass case is, perhaps, the most natural to think
about. It corresponds to a telephone conversation. A has a message m that she wants
to securely communicate to B. A calls up B and says, "I have a message I’d like to
send to you." B, so alerted, proceeds to generate an encryption/decryption algorithm
pair, (E, D), and tells A, "Please use E to encrypt your message." A then uses E to
encrypt her message and tells B "E(rn)."

Notice the key property of a three-pass system: The message and the encryption
algorithm are selected independently of one another. We are nevertheless in a public-
key model, since anyone tapping the phone line gets to hear B tell E to A.

One-pass systems. A one-pass system corresponds to what is commonly called
a public file system. In the one-pass model, A simply looks up B’s public encryption
algorithm, E, in a "phone book" and uses it to encrypt her message. (One pass is a
slight misnomer. At some point, in what we may view as a preprocessing stage, B must
have communicated his encryption algorithm, presumably by telling it to whomever
publishes the phone book of encryption algorithms, and thus indirectly to A. "One-
and-a-half passes" might be more accurate. "Half" refers to the preprocessing stage
that needs to be performed only once.) In this case, the choice of message can depend
on E.

2.2. Passes and security. The main result of this paper is:
GM-security, semantic security, and Y-security (all formally defined
in section 3) are equivalent both for one-pass and three-pass cryp-
tosystems.

Interestingly, the equivalence still holds in the one-pass scenario, but the notions of
security vary between the one-pass and three-pass scenarios. This point has not been
given the proper attention, because people frequently confuse the notion of one-pass
public-key cryptography with public-key cryptography in general.

The distinction, however, is crucial for avoiding errors, particularly in crypto-
graphic protocols. Let us informally state the two definitions of security that are
achievable in the two scenarios if trapdoor permutations exist.
A three-pass cryptosystem is secure if, for every message m in the message space, it

is impossible to efficiently distinguish an encryption of rn from random noise.
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A one-pass cryptosystem is secure if, for every message m that is eiciently com-
putable on input the encryption algorithm alone, it is impossible to efficiently
distinguish an encryption of m from random noise.

In other words, in the one-pass scenario one cannot just blithely write, "For all mes-
sages m." For instance, if one closely analyzes all known public-key cryptosystems, it
is conceivable that if (E, D) is an encryption/decryption pair, then D can be easily
computed from E(D). For instance, the constructive reduction of security to quadratic
residuosity given by Goldwasser and Micali [6] for their cryptosystem would vanish if
the encrypted message is allowed to be D itself.

Such problems cannot arise in the three-pass scenario because the encryption
algorithm E is selected after and independently of the message m.

In this paper we concentrate on providing all the details of the proofs for the
three-pass case, and sketch the results for the one-pass case in the final section. The
reason for this choice is that the definitions of security are much more easily stated
for three-pass systems. It is much more convenient to say, "For all messages m," than
"For all messages m that are efficiently computable given the encryption algorithm as
an input."

3. Notions of security for three-pass systems. In this section we will for-
mally specify our cryptographic scenario, and define the three notions of security.
These definitions are the same in spirit as those originally chosen by Goldwasser and
Micali and Yao; therefore, we will use either the names they chose or their initials.
We will point out explicitly at the end of this section the minor changes we needed to
make to reach the right level of generality.

3.1. Notation and conventions for probabilistic algorithms. We introduce
some generally useful notation and conventions for discussing probabilistic algorithms.
(We make the natural assumption that all parties may make use of probabilistic meth-
ods.)

We emphasize the number of inputs received by an algorithm as follows. If al-
gorithm A receives only one input we write "A(.)", if it receives two inputs we write
"A(.,.)" and so on.

"PS" will stand for "probability space"; in this paper we only consider countable
probability spaces. In fac, we deal almost exclusively with probability spaces arising
from probabilistic algorithms.

If A(.) is a probabilistic algorithm, then for any input i, the notation A(i) refers
to the PS which assigns to the string a the probability that A, on input i, outputs a.
Notice the special case where A takes no inputs; in this case the notation A refers to
the algorithm itself, whereas the notation A() refers to the PS defined by running A
with no input. If S is a PS, denote by Prs(e) the probability that S associates with
element e. Also, we denote by IS] the set of elements which S gives positive probability.
In the case that [S] is a singleton set {e} we will use S to denote the value e; this is
in agreement with traditional notation. (For instance, if A(.) is an algorithm that, on
input i, outputs i3, then we may write A(2) 8 instead of [A(2)] {8}.)

Notice that if Bob publishes an encryption algorithm E in the public file while keeping its
associated decryption algorithm D secret, then any other user, being limited to efficient computation
and ignorant of D, necessarily selects her message m efficiently from the input E--maybe without
even looking at E--and perhaps other inputs altogether independent of (E, D). However, in designing
cryptographic protocols, one would often like to be able to transmit things like E(D). For instance,
if that type of message were allowed, one would have a trivial solution to the problem of verifiable
secret sharing [3].
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If f(.) and g(.,...) are probabilistic algorithms then f(g(.,...)) is the probabilistic
algorithm obtained by composing f and g (i.e., running f on g’s output). For any
inputs x,y,.., the associated probability space is denoted f(g(x,y,...)).

If S is any PS, then x - S denotes the algorithm which assigns to x an element
randomly selected according to S; that is, x is assigned the value e with probability
Prs(e). Note that for the sake of compactness, we may write x - S even in cases
where S has several outputs (say x, y, and z), but x is the only output in which we
are interested at the moment. If F is a finite set, then the notation x - F denotes
the algorithm which assigns to x an element randomly selected from the PS which has
sample space F and the uniform probability distribution on the sample points. Thus,
in particular, x .- {0, 1} means x is assigned the result of a coin toss.

The notation Pr(x -- S; y -- T;... :p(x, y,...)) denotes the probability that the
predicate p(x, y,...) will be true, after the ordered execution of the algorithms x -- S,
y *-- T, etc. We use analogous notation for expected value--Ex(x - S; y - T;...
f(x, y,...))--where now f is a function which takes numerical values.

By 1n we denote the unary representation of the integer n, i.e.,

11...1.

We recall that n-w(x) represents any function of n that vanishes faster than n-k

for any constant k.

3.2. Cryptographie scenario. Here we specify those elements that are neces-
sary for all public-key cryptography.

A cryptographic scenario consists of the following components:
A security parameter n which is chosen by the user when he creates his encryp-
tion and decryption algorithms. The parameter n will determine a number of
quantities (length of plaintext messages, overall security, etc.).
A sequence of mesage pace, M {Mn } from which all plaintext messages
will be drawn. Mn consists of all messages allowed to be sent if the security
parameter has been set equal to n. In order to make our notation simpler
(but without loss of generality), we will assume that Mn {0, 1}.
There may also be a probability distribution on each message space, Prn
Mn [0, 1] such that meM Prn(m) 1. It is interesting to note that one
of our definitions, GM-security, makes no mention of the probability distri-
bution, and that definition is nevertheless equivalent to the other two which
explicitly depend on the probability distribution on the messages.
We allow probability distributions over message spaces because we are inter-
ested in defeating the strongest adversaries possible. Some adversaries may
possess a priori knowledge of what plaintext is encrypted by the ciphertext
they have intercepted. For instance, in the case where an embassy is under
attack, somebody tapping the embassy’s encrypted communications will know
that the messages, "Should we burn all the documents?" and "Send in the
Marines!" are both much more probable than "Hello. How are things back
home?"
A public-key cryptosystem is an expected polynomial time algorithm that on
input 1n outputs the description of two polynomial-size circuits E and D such
that:

1. E has n inputs and l(n) outputs, and D has l(n) inputs and n outputs.
(1 is some polynomial that gives the length of the ciphertext.)
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2. E is probabilistic; D may be as well.
3. For all m E {0, 1}n,

Pr((E, D) C(ln); c E(m)’D(c)- m)- 1- n-(1).2

Notice that [E(m)] is a set which is typically quite large. Our notation requires us
to write c E [E(m)] to refer to c, a particular encryption of m. Nevertheless, we will
sometimes sloppily write E(m) for a particular encryption of rn when the meaning is
clear.

Two examples. To illustrate our definition, we now present two examples of a
cryptosystem.

First we show how the quadratic residuosity cryptosystem of Goldwasser and
Micali [6] fits our definition. C(1n) picks two random distinct primes, pl and p, each
of length n, and sets N PIP1, and also picks a random quadratic nonresidue with
Jacobi symbol +1, y mod N.

The encryption algorithm, E, to encrypt b bl... bn is:
for each bi b,

EpicksxZ* at randomN
ifbi=lEsetsei=yxmodN
else E sets ei x mod N

E’s output is the n-tuple (el,... ,en)= E(b).
The decryption algorithm, D, to decrypt e (el,..., en) is

for each ei e,
D sets bi to be 1 if ei is a quadratic residue mod n, and 0 otherwise.
(Note: The whole point of this scheme is that D gets the factorization
of N from C and thus can determine quadratic residuosity.)

D’s output is bl... bn.
Our second example illustrates that C need not be a good cryptosystem merely to

meet the definition of a cryptosystem. In fact, the identity function works: C(1n) can
simply output E D the identity function on {0, 1}n.

3.3. GM-security (three-pass). This definition is essentially what Goldwasser
and Micali [6] called polynomial security.

A line tapper is a family of polynomial-size probabilistic circuits T {Tn}. Each
Tn takes four strings as input and outputs either 0 or 1. However, to make our next
equation more readable, we will treat Tn’s output as being either its second or third
input (representing 0 or 1, respectively).

DEFINITION. Let C be a public-key cryptosystem. C is GM-secure if for all line
tappers T and c > 0, for all sufficiently large n, for every m0, ml {0, 1}n

1
(1)Pr(m -- {too, ?Ttl } ;E - C(ln); a -- E(m)" Tn(E, rno, rnl, a) m) < -t- n-c.

Remark. In reading the above definition, one should pay close attention to our
notation. Upon casual consideration of equation (1), one might conclude that there are

2 We allow probability of error in the decrypting in order to reach a reasonable level of gener-
ality. For instance, before the recent work on primality of Goldwasser and Kilian [5] and Adleman
and Huang [1] if one selected primes, to implement the quadratic residuosity cryptosystem described
below, by a probabilistic algorithm (such as Solovay and Strassen [10] or Rabin [8]), then an expo-
nentially vanishing fraction of the time one might have made a mistake in determining primlity, and
thus produced a bogus decryption algorithm.
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not any GM-secure cryptosystems! After all, the definition says that the encryption
E must be secure for any rno and rnl, both of which are given as inputs to the line
tapper. What happens if we put rno D, a description of the decryption algorithm?
The answer to this question is that our notation specifies that first we choose m
from {rno, rnl } (and thus rno and ml already had been set), and then we choose our
encryption algorithm. If C is GM-secure, then the probability that C(1n) assigns to
any given output is quite small, say O(2-n). Thus there is little worry that C will just
happen to output a decryption algorithm D rno. Notice how the above definition
(via our notation) models the three-pass scenario.

3.4. Semantic security (three-pass). Again, this definition is essentially the
same as in [6]. It can be viewed as a polynomial-time bounded version of Shannon’s
"perfect secrecy" [9]. Informally, let f be any function defined on a message space
sequence, f(rn) constitutes information about the message rn. Intuitively, f should
be thought of as some particular information about the plaintext that the adversary
is going to try to compute from the ciphertext--say the first seventeen bits of the
plaintext. A cryptosystem is semantically secure if no adversary, on input E(rn) can
compute f(rn) more accurately than by random guessing (taking into account the
probability distribution on the message space).

DEFINITION. Let C be a public-key cryptosystem, and let M {Mn} be a
sequence of message spaces. Let Y {fE: Mn * E E [C(ln)], n E N} be any
set of functions on the message spaces. For any value v E*, we denote by f/l (V)
the inverse image of v; that is, the set {rn M fE(rn) v}. Then the probability

of the most probable value for fE(m)is PE max.{’mfl(v)Pro(m)I v E* .
PE is the maximum probability with which one could guess fE(rn) knowing only the
probability distribution from which rn has been drawn.

C is semantically secure if for all message space sequences M, for all families of
functions r, for every family of polynomial-size probabilistic circuits A {An(’, ’)},
for all c > 0, and for all sufficiently large n

1
(2) Pr(m Mn; E C(ln); a *-- E(m): An(E, a) fE(m)) < PE + nc

Notice that PE implicitly depends on n, because E depends on n. Notice also that
we quantify over message spaces in order to take into account all possible probability
distributions on the messages.

3.5. Y-security (three-pass). Yao’s definition [11] is inspired by information
theory, but its context differs from classical information theory in that the communi-
cating agents, A(lice) and B(ob), are limited to probabilistic polynomial-time compu-
tations. Note that the goals and knowledge of A and B in information theory have no
resemblance to those of their cryptographic cousins described above in section 2.

An intuitive explanation of Yao’s definition is the following: A has a series of nk

messages, selected from a probability space known to both A and B, and an encryption
of each message. She wishes to transmit enough bits to B so that he can (in polynomial
time with very high probability) compute all the plaintexts. A cryptosystem is Y-
secure if the average number of bits A must send B is essentially the same regardless
of whether or not B possesses a copy of the ciphertexts.

We now make this notion precise, first by defining "Alice and Bob," and then by
eventually defining Y-security itself.
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Let M {Mn} be a sequence of message spaces. Each Mn is {0, 1}n with a fixed
probability distribution. (Note that an information theorist would consider M to be
a sequence of sources.)

For the sake of compactness of notation, the expression 5 will denote a particular
series of na messages. That is, r5 stands for ml, m2,..., rank.

Let f be any positive function such that f(n) <_ n. Intuitively, f(n) is the number
of bits per message that A must transmit to B in order for B to recover the plaintexts.
Recall that all the messages in Mn have length n.

DEFINITION. An f compressor/decompressor pair (hereinafter c/d pair) for M is
a pair of families of probabilistic polynomial-size circuits, {An } and {Bn }, satisfying
the following three properties for some constant k and all sufficiently large n:

1. "Bn understands An."

(3) Pr(ml -- Mn; ;rank - Mn; - An(r);
y -" Bn()" rt y) 1 n-w(1).

2. "An transmits at most f(n) bits per message."

(4) Ex Ira1 +--Mn; ... rank +--Mn; +-" An(?) -,]
_

f(n).

3. "The output of An can be parsed."
For all polynomials Q there exists a probabilistic polynomial-time Turing
machine SQ such that SQ takes as input n and a concatenated string of
Q(n) ’s, each of which is a good output from An, and separates them. That
is, its input is/2... (n) and its output is #2#... #(n). We require
that

(5) Pr(SQ correctly splits 12... Q(n)) 1 rt-w(1)

Remark. The requirement that SQ exist is a technical requirement. It creates a
finite analogue of classical information theory’s requirement that messages be trans-
mitted one bit at a time, in an infinite sequence of bits.

We say that the cost of communicating M is less than or equal to f(n), in symbols
C(M) <_ f(n), if there exists an f(n) c/d pair for i.

We define C(M) > f(n) to be the negation of C(M)

_
f(n)that is, any circuits

"communicating i" must use at least f(n) bits. The definition of C(M) f(n) is
analogous.

Let .be acryptosystem. WedefineC(ilEc(i)) <_ f(n), and C(MIEc(M)) >
f(n), the coat of communicating M given encryptions from in a manner analogous
to C(M). The only difference is that now both An and Bn also get E and the n
values of some encryption function E E [C(1n)] as inputs. That is, for this definition
we must rewrite equation (3) above to read:

(6) Pr(m Mn; mnk -- Mn; E C(ln);
o1 ---E(ml); ...;OZn *- E(nn);

+- An(E,,); y - Bn(E,,);- y) 1 n-w(1).

An analogous change must also be made to equation (4).
Notice that for this definition, the probabilities involved must be taken over the

different choices of E from C as well as everything else.
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DEFINITION. Let C be a public-key cryptosystem. Fix a sequence of message
spaces M {Mn} (and thus the probability distribution on each Mn). We say that

is Y-secure with respect to M if

(7) C(M Ec(M)) <_ f(n) C(M) <_ f(n) + n-w(1).

We say that C is Y-secure if for all M, C is Y-secure with respect to M.

3.6. The original definitions versus ours. As we pointed out in the Intro-
duction, we made minor changes in cryptographic scenario from [6] and [11]. Here we
will spell out what those changes are and why they were made.

Changes to Goldwasser and Micali’s definition. There are two ways a
cryptosystem (the server that generates encryption/decryption algorithm pairs) can
achieve security:

1. The cryptosystem gets a description of a message space M (and thus its
probability distribution) as one of its inputs and will output an encryp-
tion/decryption algorithm pair to securely encrypt M.

2. The cryptosystem is told nothing about the message space. The encryption
algorithms it outputs are supposed to be secure for every possible message
space.

We will call the former cryptosystems adaptive and the latter oblivious.
Goldwasser and Micali consider adaptive cryptosystems for both of their defini-

tions of security [6]; Yao does not make it clear which type of cryptosystem he is
assuming for his definition of security [11]. We believe it makes more sense to consider
oblivious cryptosystems, for both theoretical and applied reasons.

The theoretical reason for preferring oblivious cryptosystems is that all three
definitions of security are equivalent. (See section 4.) This is a desirable property
that fails to hold for adaptive cryptosystems, as we will show in the next section.

The practical reason for preferring oblivious cryptosystems is that, although it is
certainly conceivable that having knowledge of the message space would allow one to
design a better encryption algorithm, cryptographers have in fact normally tried to
design cryptosystems that are secure for all message spaces. For example, consider
the cryptosystem based on arbitrary trapdoor predicates proposed by Goldwasser and
Micali [6]. Although they only considered security in the adaptive cryptosystem sense,
their cryptosystem is in fact secure in the stronger, oblivious sense.

Changes to Yao’s definition. In [11], Yao assumes deterministic private-key
cryptography, but the definition is immediately extended to probabilistic public-key
cryptography.

Yao defines the compressor A and decompressor B to be Turing machines, not
circuits. We have switched to circuits because it is not clear that there are any secure
cryptosystems with respect to probabilistic Turing machines, it might be that one
can always achieve greater polynomial-time compression given the ciphertext simply
because having a shared pseudorandom string (in this case the ciphertext!) helps.
If it does help, however, having made the compressor and decompressor nonuniform
circuits, we can always hardwire in a shared random string of bits.

3.7. Inequivalence of the original definitions. In this section, we point out
that, for adaptive cryptosystems, GM-security is a notion stronger than either seman-
tic security or Y-security. We do this in the following two claims, each supported by
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an informal argument. These claims can be easily transformed to theorems after for-
malizing the discussed security notions in terms of adaptive cryptosystems, a tedious
effort once we have realized that the adaptive setting is not the "right" one.

CLAIM 1. If any GM-secure adaptive public-key cryptosystem exists, then there
exist adaptive public-key cryptosystems that are semantically secure but not GM-secure.

Let C(., .) be any GM-secure (and thus semantically secure) adaptive cryptosys-
tem. We will construct a CI (., .) that is still semantically secure, but is not GM-secure.

CI behaves identically to C for all message spaces, except for the message space
{0, 1}n with uniform probability distribution. In this case, C runs C to compute an
encryption algorithm E, and then outputs the algorithm E defined by:

On if x--On(8) E’(x) E(x) yOn otherwise.

C is clearly not GM-secure, because, for the special message space described
above, there is a message, On, which is easily distinguished from other messages by its
encryption. However, C is still semantically secure. The message On has such a low
probability weight that it will not give an adversary any significant advantage--on
average--in computing a function of the plaintext on input the ciphertext. []

Note that the above argument would not go through if C were an oblivious cryp-
tosystem. An oblivious C would not receive any description of the probability distri-
bution on the messages, so it would be unable to alter its output depending on what
that probability distribution is.

CLAIM 2. If any GM-secure adaptive public-key cryptosystem exists, then there
exist adaptive public-key cryptosystems that are Y-secure but not GM-secure.

We construct exactly the same C’ as we did for the previous claim. C’ is of
course not GM-secure. However, the "weak message" has such low probability that
it basically does not affect the average number of bits necessary to communicate
messages from the message space. Thus C is Y-secure.

4. Main results, In this section we provide the proof of the equivalence of GM-
security, semantic security, and Y-security. We choose to do these proofs by showing
that GM-security is equivalent to Y-security and that GM-security is equivalent to
semantic security. We present here only three of the four necessary implications. The
proof that GM-security implies semantic security may be found in [6]. We will present
the three proofs in order of increasing difficulty and technical complexity.

4.1. Semantic security implies GM-security. This proof is quite simple. If
a cryptosystem is not GM-secure, then there exist two messages, m and m2, which
we can easily distinguish. If we make a new message space in which these are the
only messages, then given only a ciphertext, one has a better than random chance of
figuring out which of the two plaintext messages this ciphertext represents.

THEOREM 1. Let be a public-key cryptosystem. If C is semantically secure,
then is GM-secure.

Proof. We prove the contrapositive. Let C be a public-key cryptosystem that is
not GM-secure. We will prove that C is not semantically secure.

Formally, C is not GM-secure means that there exist a line tapper T and a c > 0
such that for infinitely many n there are m’,m E Mn for which

1 1
(9) Pr(m .- {m?,m’} ;E -- C(ln); a -- E(m) Tn(E,m’,m,a) m) :> - 4- n--.
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We construct a new message space Mn as follows" For those n for which equa-
tion (9) holds, Prn(m?) 1/2 and Prn(m) 1/2.

We have set up the message space so one can simply guess the plaintext by seeing
the ciphertext. More precisely, a circuit An can compute the function of the plaintext
fE(m) m from the ciphertext by having the values m and m hardwired into it,
and using T as a subroutine. By equation (9), such an An has a polynomial advantage
over random guessing. On the other hand, without seeing the ciphertext, circuits with
no input can only randomly guess the plaintext. [:1

4.2. Y-security implies GM-security. In the proof of the next theorem, we
use a technical lemma, one of Hoeffding’s Inequalities [7], that is a variation of Cher2
noff’s bound [2].

LEMMA 1 (HOEFFDING). Let X be a random variable having binomial distri-
bution, with r trials and probability of success p. For 0 <_ t <_ 1/2 <_ p <_ 1, we have

Pr(X <_ cr) <_ e-2(p-)2r.
THEOREM 2. Let be a cryptosystem. If is Y-secure, then is GM-secure.
Proof. Again we will prove the contrapositive. Let C be a cryptosystem that is

not GM-secure for some message space M. Then there exist a family of line tappers
T {Tn } and an infinite subset N C_ N such that for some constant j, and all n E N’,
there are m’,m Mn such that

1 1
Pr(m -- {m?,m} E -- C(ln); o +--- E(m)’Tn(E,m?,m,) m) >_ - + -.
Consider now a new message space M that, for n N, has Prn(m) 1/2,

Prn(m?) 1/2, and Prn(m) 0 for all other m {0,1}n, and for n g--7 has
Prn(0n) 1/2, Prn(1n) 1/2, and Prn(m) --0 for all other m.

Clearly for all d > 0, C(M) > 1- n-d" Any circuits not sharing ciphertext would
need exactly one bit per message to perfectly communicate outputs from M, and our
definition in equation (3) allows an error of at most n-(1).

On the other hand, we will now show that

< 1-1In ifng’,C(M’ Ec(M)) [ 1 otherwise

where k 2j+ 1. This value is achieved by a shared ciphertext c/d pair that transmits
nk messages at a time.

An gets n messages in both cleartext and ciphertext as its input. Since there are
only two messages in M’, each message can be considered to be a bit b and each cipher-
text the encryption of a bit. That is to say, An’s input is bl, b,..., bn o, o2,..., On
where c E [E(b)]. n now XORs each adjacent pair of messages (bits). That is, put
ci bi @ bi+ for i 1,2,...,n- 1. Put cc ...c_. This is the "hint"
that An sends to B. Obviously, Il/n 1- 1In.

Now, can Bn, given and the ai’s as its input, determine the plaintext with
probability 1 n-w(1) ? Yes. The "hint", , constrains B to only two possible
choices of values for the bi. That is, if Bn decides that b 0, then it knows the value
of all the bits--say VlV v. On the other hand, if B decides that b 1, then the
whole series of messages must of have been vv... (where is the complement of
).

Bn also has a line tapper, T, that it can use to test the ci. B runs T on each
a and obtains Tn’S opinion as to what each bit was. Call this sequence tt ...tn.
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Since is not GM-secure, each ti is correct with probability p- - + 1In3, for some
fixedj. ByLemma 1 (withc- 1/2 andr =nk), if we make k >_ 2j+1, then the
majority of ti’s will be correct with probability 1 -O(e-2n). Bn compares the t to
both the v and the , and decides either bl 0 if the majority of t coincide with
the vi, or bl 1 if the majority of the ti coincide with the i.

Because for infinitely many n, C(M’ Ez(M’)) <_ 1-1/n but for all n, C(M’) >
1- 1/2n, M’ is not Y-secure. v1

4.3. GM-security implies Y-security.
THEOREM 3. Let be a public-key cryptosystem. If is GM-secure, then is

Y-secure.
Proof. We will prove the contrapositive. A bird’s-eye view of our proof is as

follows. Assuming that C is not Y-secure, there exists a good shared ciphertext c/d
pair that manages to communicate using "few" bits. This pair will allow us to test (for
some special pair of messages m and m2) whether a particular a is the encryption of
either ml or m thus violating the GM-security condition. Namely, if the pair works
successfully on inputs c and ml, we declare a to be an encryption of ml; otherwise
we declare ( to be an encryption of m.

Let us proceed formally. Since C is not Y-secure, there is a particular message
space sequence, M {Mn}, such that C is not Y-secure for M. That is to say,
there exist a shared ciphertext c/d pair (A, B) (which we will use as shorthand for
({An}, {Bn})), a positive integer k, and a polynomial P such that
(*) An communicates n messages from Mn to Bn using "few" bits per message--on

top of the ciphertext which they get to share for free.
(**) Furthermore, for every c/d pair (A’, B’), there exists an infinite subset N’ c_ N,

such that for all n E N’, on average (A’, B’) uses at least liP(n) more bits
per message than does (A, B). (Intuitively, the point is that (A’, B’) is not a
shared ciphertext c/d pair; A’ and B’ share nothing except that B’ "knows"

We are now going to run a series of experiments to see how (A, B) behaves on
inputs that it does not "expect." We begin, however, by running a control experiment.

In experiment n-EXPo, we pick na messages mi at random from Mn and an E
at random from [(ln)], and run An on input

m m2 m3 rank
E(ml) E(m2) E(m3) E(mnk)

(The output will be a string such that Bn, on input and E(m),..., E(mn) will
output ml,..., mn with overwhelming probability.)

Now consider the following experiment, n-EXPi: This time we again pick nk

messages and an E at random, but we also pick one more message, r, at random
from Mn, and set p E(r). Now we run An with i copies of p replacing the first i
ciphertexts in its input. A "picture" of An’s input is

ml mi mi+l mn
p p E(mi+l) E(mn)

We then run Bn with An’s output and p, p,..., E(mnk) as its inputs.
DEFINITION. We define the difference between n-EXP and n-EXPj, dn(i, j) to

be the maximum of the average difference between
1. the length of the ’s output by An in the two experiments, and
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2. the frequency with which Bn recovers the correct plaintexts in the two exper-
iments.

(This definition is unusual in that we are comparing a number of bits with a probability.
Nevertheless, both are numbers, so one can indeed take a maximum, and, indeed, both
are handled in a similar manner in this proof.)

CLAIM 3. There exists a polynomial Q such that for an infinite subset N" C_ N
and for all n N" dn(0, nk) > 1/Q(n).

Proof of Claim 3. By contradiction. Assume that for all sufficiently large n, n-

EXPo is indistinguishable from n-EXPn,. Then An and Bn still function successfully
on input

m rt2 m3 rank
P P P p

where mi, r, p, and E are as above. We now construct A’n, B’n to violate (**). We
simply hardwire the encryption of some random string into a pair of circuits which are
identical to An and Bn except that they do not share any ciphertext. By assumption,
these circuits are a c/d pair violating (**). O

CLAIM 4. For all n N’, there is a polynomial Q and an i, 0 <_ i <_ nk 1,
such that dn(i,i + 1) > 1/Q’(n).

Proof of Claim 4. Fix n N". dn (0, nk) >_ 1/Q(n). Therefore, there must be an
i such that dn (i, i + 1) > [::]

nkQ(n)
Let n E N’. We will consider the case where i 0 in Claim 4, and dn (0, 1) is due

to a difference in the length of An’s output, rather than Bn’s success rate. The other
case, where the difference is due to a difference in Bn’s success rate, is similar,
but simpler.

Let us restate Claim 4 in a more convenient form. Consider the following joint
experiment, n-EXPol. Randomly draw r, ml,... ,rank from Mn and set E (ln).
Run both n-EXPo and n-EXP on the same inputs. That is, run n-EXPo on input

ml m2 m3 mnk
E(ml) E(m2)E(m3)... E(mnk

to compute An’s output 0 and run n-EXP on input

ml m2 m3 mnk
E(r) E(m2) E(m3)... E(mn)

to compute An’s output on this input, 1. The output of n-EXP01 is Il- I/2l
Then, by the linearity of the average we get that the expected value of the output of
n-EXPo is at least 1/Q’(n).

From this it immediately follows that
(*, *) there exist , 1, rh,..., rhn in Mn such that the expected value of the output

of n-EXPo is still greater than 1/Q’(n) when the average of the length of/ is
computed only over the choice of E - C(1n) and of encryptions of messages.

Now for all n E N" we can build a tapper Tn that will succeed in distinguishing
two messages m and m, described below.

Fix and 1 to be messages that fit the requirements of (,, *). We set Tn’s
inputs: m? 1 and m e. Tn gets as inputs E [C(ln)], m, m, and a, where
either c [E(m?)] or c [E(m)].
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Unfortunately, merely because the average length of/3 output by An is shorter if
its input includes E(rhx) than if its input includes E() does not imply that a shorter

occurs more frequently with input E(rhl). Indeed, it might be the case that for
most E E [C(ln)], An outputs a longer/3 given E(hl) than given E(), but for a few
E E [C(ln)], An outputs a much shorter 3 given E(rhl).

What we can say for certain is only that

(10) Ex[I/l [E(m)]]- Ex[II [E(m)]] > 1/Q’(n)

where the expectations are computed over the choice of E (ln). Now

(11)
R(n)

Ex[I/[] Z i Pr(An’s output has length i)

where R(n) is a bound on the running time of An. Therefore, there must be some i
such that if [/31 i, then it is at least 1/[Q’ (n)R(n)] more likely that a is an encryption
of m.

Tn sets m m and runs An on input

m ffrt2 ?;123 tnk
a E(rh:) E(rh3)... E(rhnk).

If I1 - i, then Tn simply flips a coin. If I[ i, the Tn guesses m’. Tn is correct at
least polynomially more than half the time.3

Notice that at several points in the proof we took advantage of the fact that Tn
is nonuniform, v is hardwired into Tn, as are r, mx...,rhnk. In fact, most of these
uses of nonuniformity could be replaced by polynomial-size Monte Carlo experiments.
However, Tn must be nonuniform since An and Bn are nonuniform.

5. One-pass scenarios. In this section we present the proper definitions of se-
curity for one-pass cryptography. These definitions are all considerably more compli-
cated than the analogous ones for the three-pass scenario. They are equivalent to one
another but not to the three-pass definitions. Instead of proving all implications, we
only show how to extend the proof that semantic security implies GM-security from
the three-pass to the one-pass scenario. Extending the other implication presents no
additional difficulties.

5.1. GM-security (one-pass). As discussed above in section 2.2, for a one-
pass cryptosystem, we must change from requiring security "for all messages m," to
requiring security for every message m that is efficiently computable on input of the
encryption algorithm alone. In order to do this, we introduce an adversary called a
message finder.

A message finder is a family of polynomial-size probabilistic circuits F {Fn (’)}
each of which takes the description of an encryption algorithm as its input and has
two messages of length n as its output. Intuitively, on input E, Fn tries to find m0 and
m such that it is easy for a fellow adversary (a line tapper) to distinguish encryptions
of m0 from encryptions of

3 Notice that if we were working with a difference in Bn’s success rate instead of a difference in Ifl,
then a much simpler algorithm would work: Tn guesses a m if and only if Bn decodes correctly.
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DEFINITION. Let C be a public-key cryptosystem. C is GM-secure (one-pass) if
for all message finders F, line tappers T, and c > 0, for all sufficiently large n,

(12) Pr(E +--- C(ln); mo, ml +-- Fn(E); m +- {too,m1}

+- E(m)" Tn (E, too, ml, o) m)

_
1

n-c.
2

5.2. Semantic security (one-pass). To change the definition of semantic se-
curity to fit the one-pass scenario, we need to introduce something like the message
finders of the previous section. For semantic security, however, we are concerned not
with finding two "weak" messages, but rather with the probability distribution of the
entire message space. Thus our second adversary will not pick out particular messages,
but instead set the probability distribution of the message space. Furthermore, we
now explicitly give the other adversary a description of that probability distribution.

A message space enemy is a family of polynomial-size probabilistic circuits B
{Bn (’)}. Each Bn takes the description of an encryption algorithm as its input, and
outputs the description of a probabilistic Turing machine N(). N outputs elements of
{0, 1}n with some probability distribution.

As in the three-pass definition, we let V be any set and let jr {fnE Mn V
E E [C(n)]} be any set of functions. Again set p to be the probability of the most
probable value for f(m); set pEn max{-mfE-(v Prn(m) Iv E Y}.

DEFINITION. Let C be a public-key cryptosystem. C is semantically secure if for
every message space enemy B, family of polynomial-size probabilistic circuits A
{An (’, ", ")}, and c > 0, for all sufficiently large n

(13) Pr(E +- C(ln); N +--- Bn(E); m +- N();

a +- E(m)" An (E, N, a) fE (m)) < pEn +--nc

5.3. Y-security (one-pass). The changes that must be made to the definition
of Y-security are completely analogous to the changes we made to the definition of
semantic security.

5.4. Equivalence. The proofs that the three definitions of security are all equiv-
alent are quite similar to the proofs for the three-pass case. Here we will redo only the
proof of the easiest of the four implications, semantic security implies GM-security.
This proof shows the additional details that must be taken into consideration when
working with the one-pass scenario.

THEOREM 4. GM-security (one-pass), semantic security (one-pass), and Y-se-
curity (one-pass) are all equivalent.

Proof that semantic security (one-pass) implies GM-security (one-pass). We will,
as usual, prove the contrapositive. Let C be a public-key cryptosystem that is not
GM-secure. We know that there exist a message finder family of circuits F {Fn}
and a line tapper family of circuits T {Tn}. We will use the Fn as subroutines
(circuit components to be precise) for building our message space enemy circuits and
then use the Tn to do the distinguishing.

Our message space enemy, Bn, on input an encryption algorithm E [C(ln)],
runs Fn with input E. Fn outputs two messages, too, m1 {0, 1}n. Bn outputs the
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design of a Turing machine N() such that

N outputs [ rno with probability 1/2,
rnl with probability 1/2.

An adversary A who uses Tn as a subroutine can distinguish encryptions of rno
from encryptions of rnl. In other words, on the message space defined by the output
of N(), A can compute the function f(rn) rn (with probability greater than at
random) given only an encryption of rn. A gets E and a where either c [E(rno)]
or c [E(rn)]. However, Tn also requires rno and ml as inputs. A can obtain that
information for T simply by running N a few times.

Formally, since C is not GM-secure we know that there exists a c > 0 such that
for infinitely many n

(14) Pr(E - C(ln);mo,ml +- Fn(E); m {m0,?Ttl}
,-- E(m): Tn (E, m0, ml, O/) m)

For those n, equation (14) in fact says that Pr(A computes f(m) rn correctly) >
..._1 n -c. Yl
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A FUNCTIONAL APPROACH TO DATA STRUCTURES AND ITS USE
IN MULTIDIMENSIONAL SEARCHING*

BERNARD CHAZELLE"

Abstract. We establish new upper bounds on the complexity of multidimensional 3earching. Our results
include, in particular, linear-size data structures for range and rectangle counting in two dimensions with
logarithmic query time. More generally, we give improved data structures for rectangle problems in any
dimension, in a static as well as a dynamic setting. Several of the algorithms we give are simple to implement
and might be the solutions of choice in practice. Central to this paper is the nonstandard approach followed
to achieve these results. At its root we find a redefinition of data structures in terms of functional specifications.

Key words, functional programming, data structures, concrete complexity, multidimensional search,
computational geometry, pointer machine, range search, intersection search, rectangle problems

CR Categories. 5.25, 3.74, 5.39

1. Introduction. This paper has two main parts: in 2, we discuss a method for
transforming data structures using functional specifications; in the remaining sections,
we use such transformations to solve a number of problems in multidimensional
searching. To begin with, let us summarize the complexity results of this paper.

The generalization of the notion of rectangle in higher dimensions is called a
d-range: it is defined as the Cartesian product of d closed intervals over the reals. Let
V be a set of n points ,a and let v be a function mapping a point p to an element
v(p) in a commutative semigroup (G, +). Let W be a set of n d-ranges.

(1) Range counting: given a d-range q, compute the size of V c q.
(2) Range reporting: given a d-range q, report each point of V q.
(3) Semigroup range searching: given a d-range q, compute ,pvcq v(p).
(4) Range searching for maximum: semigroup range searching with maximum as

semigroup operation.
(5) Rectangle counting: given a d-range q, compute the size of {r W[qf) r }.
(6) Rectangle reporting: given a d-range q, report each element of {r W]q f’)r

}.
In each case, q represents a query to which we expect a fast response. The idea is to
do some preprocessing to accommodate incoming queries in a repetitive fashion.

Note that range counting (resp., reporting) is a subcase of rectangle counting
(resp. reporting). To clarify the exposition (and keep up with tradition), however, we
prefer to treat these problems separately. Other well-known problems falling under
the umbrella of rectangle searching include point enclosure and orthogonal segment
intersection. The former involves computing the number of d-ranges enclosing a given
query point, while the latter, set in two dimensions, calls for computing how many
horizontal segments from a given collection intersect a query vertical segment. In both
cases, the reduction to rectangle counting is immediate.

The thrust of our results is to demonstrate the existence of efficient solutions to
these problems that use minimum storage. One of the key ideas is to redesign range

* Received by the editors September 23, 1985; accepted for publication (in revised form) March 9,
1987. A preliminary version of this paper has appeared in the Proceedings of the 26th Annual IEEE
Symposium on Foundations of Computer Science, Portland, Oregon, October 1985, pp. 165-174.

t Department of Computer Science, Princeton University, Princeton, New Jersey 08544. This work was

begun when the author was at Brown University, Providence, Rhode Island 02912. This work was supported
in part by National Science Foundation grant MCS 83-03925,
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trees (Bentley [B2]) and segment trees (Bentley [B1], Bentley and Wood [BW]) so as
to require only linear storage. Since improvements in this area typically involve trimming
off logarithmic factors, one must be clear about the models of computation to be used.
It is all too easy to "improve" algorithms by encoding astronomical numbers in one
computer word or allowing arbitrarily complex arithmetic. To guard us from such
dubious tricks, we will assume that the registers and memory cells of our machines
can only hold integers in the range [0, n]. In the following, the sign refers to
multiplication, + to division (truncated to the floor), and shift to the operation
shift (k)=2k, defined for any k (0_-< k=< [log nJ). No operation is allowed if the result
or any of the operands falls outside of the range [0, n]. This will make our model very
weak and thus give all the more significance to our upper bounds.

Remark. As observed in Gabow et al. [GBT] the "orthogonal" nature of the
problems listed above makes it possible to work in rank space, that is, to deal not with
the coordinates themselves but with their ranks. This is precisely what we will be doing
here. The conversion costs logarithmic time per coordinate, but it has the advantage
of replacing real numbers by integers in the range [1, n]. It is important to keep in
mind that although our data structures will use integers over O(log n) bits internally,
no such restriction will be placed on the input and query coordinates. On the contrary
these will be allowed to assume any real values.

The models of computation we will consider include variants of pointer machines
(Tarjan IT]). Recall that the main characteristic of these machines is to forbid any
kind of address calculation. New memory cells can be obtained from a free list and
are delivered along with pointers to them. A pointer is just a symbolic name, that is,
an address whose particular representation is transparent to the machine and on which
no arithmetic operation is defined. Only pointers provided by the free list can be used.
For the time being, let us assume that the only operations allowed are and < along
with the standard Booleans. We introduce our models of computation in order of
increasing power. Of course, we always assume that the semigroup operations which
might be defined (problems 3-4) can be performed in constant time.

(1) An elementary pointer machine (EPM) is a pointer machine endowed with +.
(2) A semi-arithmeticpointer machine (SAPM) is a pointer machine endowed with

q-, --, X, +.
(3) An arithmetic pointer machine (APM) is a pointer machine endowed with +,

-, , +, shift.
(4) A random access machine (RAM) is endowed with comparisons, and +, -,

x, +. See Aho et al. [AHU] for details.
Our motivation for distinguishing between these models is twofold: one reason

is to show that our basic techniques still work even on the barest machines. Another
is to assess the sensitivity of the complexity of query-answering to the model of
computation. Next, we briefly discuss these definitions. First of all, complexity is
measured in all cases under the uniform cost criterion (Aho et al. [AHU]). Note that
subtraction can be simulated in O(logn) time and O(n) space on an EPM by binary
search. Similarly, shift can be simulated on an SAPM in O(log log n) time by binary
search in a tree of size O(log n) (this can also be done with constant extra space by
repeated squaring). For this reason, we will drop the SAPM model from consideration
altogether. Any result mentioned in this paper with regard to an APM also holds on
an SAPM, up to within a multiplicative factor of log log n in the time complexity. All

All logarithms are taken to the base 2. Throughout this paper, we will use the notation log" n to

designate (log n)C
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the operations mentioned above are in the instruction set of any modern computer,
so our models are quite realistic. We have omitted shift from the RAM, because this
operation can be simulated in constant time by table look-up. One final comment
concerns the word-size. Suppose that for some application we need to use integers in
the range [-he, ne], for some constant c > 0. Any of the machines described above
will work just as well. Indeed, we can accommodate any polynomial range by consider-
ing virtual words made of a constant number of actual machine words. The simulation
will degrade the time performance by only a constant factor. See Knuth [K2] for details
on multiple-precision arithmetic.

The complexity results. We have summarized our results for 92 in Tables 1 and
2. The first concerns the static case. Each pair (x, y) indicates the storage O(x) required
by the data structure and the time O(y) to answer a query; we use e to denote an
arbitrary positive real. In the second table one will find our results for the dynamic
case. We give successively the storage requirement, the query time, and the time for
an insertion or a deletion. In both cases, k indicates the number of objects to be
reported plus one (we add a 1 to treat the no-output case uniformly). The time to
construct each of these data structures is O(n log n).

TABLE
The static case.

Problem RAM APM EPM

range/rectangle counting n, log n n, log n n, log n

range/rectangle reporting n log log n, k log log --+ log n

(n log n, k + log n)
(n, klog ( k(log

range search for max
(n, log1+ n)

(n log log n, log n log log n)
(n log n, log n)

(n, log n) (n, log n)

semigroup range search
(n, log2+ n)

(n log log n, log n log log n)
(n log n, log n)

(n, log n) (n, log n)

TABLE 2
The dynamic case on an EPM.

Problem Storage Query time Update time

range/rectangle counting O(n) O(log n) O(log n)

range reporting O(n) O(k(log2n/k)2) O(Iog n)

range search for max O(n) O(log n log log n) O(log n log log n)

semigroup range search O(n) O(log n) O(log4 n)

rectangle reporting O(n) O(k(log 2n/k) +log n) O(log n)
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In the dynamic case, we have restricted ourselves to the EPM model. Our objective
was only to show that the techniques of this paper could be dynamized even in the
weakest model. It is likely that many of these bounds can be significantly lowered if
we are ready to use a more powerful model such as a RAM or an APM. We leave
these improvements as open problems. In the remainder of this paper we will mention
upper bounds only in connection with the weakest models in which they hold. This is
quite harmless as long as the reader keeps in mind that any result relative to an EPM
holds on an APM or a RAM. Similarly, anything one can do on an APM can be done
just as well on a RAM. Also for the sake of exposition, we restrict ourselves to two
dimensions (d 2), but we recall a classical technique (Bentley [B2]) that allows us
to extend all our data structures to ,9l d (d > 2). To obtain the complexity of the resulting
algorithms, just multiply each expression in the original complexity by a factor of
loga-2n (note" the terms involving k remain unchanged, but a term loga-n is to be
included in the query times).

Update times are best thought of as amortized bounds, that is, averaged out over
a sequence of transactions. A general technique can be used in most cases, however,
to turn these bounds into worst-case bounds (Willard and Lueker [WL]). Similarly, a
method described in Overmars [O] can often be invoked to reduce deletion times by
a factor of log n. Finally, we can use a result of Mehlhorn [Me] and Willard [W1] to
show that if we can afford an extra log n factor in query time then the storage can
often be reduced by a factor of log log n with each increment in dimension. We will
not consider these variants here for at least two reasons. The first is that the techniques
have been already thoroughly exposed and it would be tedious but elementary to apply
them to our data structures. The second is that these variants are usually too complex
to be practical. We will strive in this paper to present data structures that are easy to
implement. We have not succeeded in all cases, but in some we believe that we have.
For example, our solutions to range counting are short, simple, and very efficient in
practice. To illustrate this point we have included in the paper the code of a Pascal
implementation of one of the solutions.

Comparison with previous work. Roughly speaking, our results constitute improve-
ments of a logarithmic factor in storage over previous methods. In particular, we
present the first linear-size data structures for range and rectangle counting in two
dimensions with logarithmic query times. For these two problems our data structures
are essentially memory compressed versions of the range tree of Bentley [B2], using
new implementations of the idea of a downpointer introduced by Willard [W2]. As
regards range and rectangle reporting on a RAM, we improve a method in Chazelle
[C1] from (n(log n/log log n), k/log n) to (n log n, k+log n). Interestingly, we have
shown in Chazelle [C2] that the (n (log n/log log n), k/log n) algorithm is optimal
on a pointer machine. This constitutes a rare example (outside of hashing), where a
pointer machine is provably less powerful than a RAM. Concerning range search for
maximum, we improve over a data structure of Gabow et al. [GBT] from (n log n, log n)
to (n log n, log n). As regards semigroup range searching we present an improvement
of a factor log1- n space (again for any e > 0) over the algorithm for the same problem
in Willard [W1]. In the group model (the special case of semigroup range searching
where an inverse operation exists) we could not find any obvious way of taking
advantage of the inverse operation to improve on the results in the table (except, of
course, for the case of range counting). As a result, our (n log n, log2 n) algorithm
may compare favorably with Willard’s (n log n, log n) [W2] in storage requirement,
but it is superseded in query time efficiency. Our other results for the static case
represent tradeoffs and cannot be compared with previous work. In the dynamic case,
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our upper bounds improve previous results by a factor of log n space but, except for
range and rectangle counting, they also entail extra polylogarithmic costs in query and
update times. Also, what makes comparisons even more difficult is that in order to
prove the generality of our space-reduction techniques we have purposely chosen a
very weak model of computation, i.e., the EPM.

2. Functional data structures. In trying to assess whether a particular data structure
is optimal or not, it is natural to ask oneself: why is the data stored where it is and
not elsewhere? The answer is usually "to facilitate the computation of some functions
implicitly associated with the records of the data structure." For example, one will
store keys in the nodes of a binary search tree to be able to branch left or right
depending on the outcome of a comparison. An important observation is that nothing
demands that a node should store its own key explicitly. All that is required is that
whenever the function associated with that node is called, the node had better allow
for its prompt evaluation. Having the key stored at the node at all times might be
handy but it certainly is more than is strictly needed. There is a classical example of
this fact: in their well-known data structure for planar point location [LP1], Lee and
Preparata start out with a balanced tree whose nodes are associated with various lists.
Then they make the key remark that many elements in these lists can be removed
because whenever they are needed by the algorithm they will always have been
encountered in other lists before. This simple transformation brings down the amount
of storage required from quadratic to linear. However different from the previous one
the resulting data structure might be (being much smaller, for one thing), it still has
the same functional structure as before. In other words, the functions and arguments
associated with each node, as well as their interconnections, have gone unchanged
through the transformation. Only the assignment of data has been altered. This is no
isolated case. Actually, many data structures have been discovered through a similar
process. We propose to examine this phenomenon in all generality and see if some
useful methodology can be derived from it.

There are several ways of looking at data structures from a design point of view.
One might choose to treat them as structured mappings of data into memory. This
compiler-level view addresses implementation issues and thus tends to be rigid and
overspecifying in the early stage of the design process. Instead, one can take data
structures a bit closer to the notation of abstract data type, and think of them as
combinatorial structures that can be used and manipulated. For example, a data
structure can be modeled as a graph with data stored at the nodes (Earley [Ea]).
Semantic rules can be added to specify how the structure can be modified and
constraints can be placed to enforce certain "shape" criteria (e.g., balance or degree
conditions). If needed, formal definitions of data structures can be provided by means
of grammars or operational specifications (Gonnet and Tompa [GOT]). Note that
despite the added abstraction of this setting, a data structure is still far removed from
an abstract data type (Guttag [G]). In particular, unlike the latter, the former specifies
an architecture for communicating data and operating on it.

The framework above favors the treatment of data structures as combinatorial
objects. It emphasizes how they are made and used rather than why they are the way
they are. This is to be expected, of course, since a data structure may be used for many
different purposes, and part of its interpretation is thus best left to the user. Balanced
binary trees are a case in point: they can be used as search structures, priority queues,
models of parallel architecture, etc. It is thus only natural to delay their interpretation
so one can appreciate their versatility. This approach is sound, for it allows us to map
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rich combinatorial constructions into useful data structures. It has one negative side-
effect, however. Too much concern with the definition and construction aspects of a
data structure makes one forget about why it is being used in the first place. What
makes the problem all the more troublesome is that algorithms often run two distinct
processes: one to build data structures, and another to use them. Whether these
processes be distinct in time (e.g., as in a static search tree) or interleaved (e.g., as in
dynamic or self-adjusting structures), they can most often be distinguished. Surpris-
ingly, these processes often bear little relation to each other. Building or updating a
range tree (Bentley [B2]), for example, and using it to answer a query are only remotely
connected tasks. This makes our earlier question all the more difficult to answer: why
is a particular structuring of data preferable to another?

This question goes to the heart of our discussion. Data structures are implementa-
tions of paradigms. The latter, unlike the former, tend to be few and far between, so
most data structures appear as variants around certain themes. It is therefore important
to facilitate the task of data structure transformation, since this is perhaps the most
common method for discovering new data structures. To do so, it is useful to think of
a data structure not only in terms of its own operational semantics but also of the
semantics of the algorithms that use it, the clients. Unfortunately, the "combinatorial"
view of data structures often lacks this flexibility. Their semantics often do reflect the
clients’ needs, but too indirectly to be readily modified around them. This is not to
say that modeling data structures after nice, elegant combinatorial objects is not the
best route to good design: we believe that it is. Occasionally, however, useful trans-
formations will be obscured or discouraged, because they seemingly get in the way of
the combinatorial identity of the objects in question.

We propose a design discipline that involves looking at the functionality of data
structures from a client’s viewpoint. Informally, we extend the notion of a data structure
by associating with each node v of a graph, not a piece of data as is usually the case,
but a function f (or several if needed) as well as a collection of data S(v). To evaluate
f, it is sufficient, yet not always necessary, to have available S(v) and some values of
the functions associated with nodes adjacent to v. For expressiveness, we allow f to
be a higher-order function (i.e., a function that includes other functions among its
arguments). This definition is incomplete but gives the gist of what we will call a

functional data structure (FDS). In essence, it is a communication scheme for routing
transfers of information among a collection of functions. Allowing stepwise refinement
is an essential feature of an FDS. Refining an FDS is to replace nodes by other FDS’.s
iteratively, and in the process, get closer and closer to a data structure in the traditional
sense.

An important consequence of this setting is to release the data from memory
assignment. Indeed, the pairing (v, S(v)) is virtual and need not correspond to any
physical reality. This should not be equated with, say, the independence of linked lists
with regard to memory allocation. The abstraction provided by a functional data
structure is much stronger. Indeed, it will not even be required that values be physically
stored in the records with which they are associated. The only requirement is that these
values should be available somehow whenever needed; in particular when the functions
to which they are arguments must be evaluated. Whereas a data structure emphasizes
data and communication between data, an FDS emphasizes functions and communica-
tion between parameters of these functions. It can be argued, of course, that an FDS
can be emulated by almost any data structure, so of what good can it be? What makes
the consideration of FDS’s worthwhile is that they hint at data structures without
imposing them. They key benefit of this setting is to allow the designer to bring upon
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storage the same effect that call by need and lazy evaluation are known to have on
execution time (Henderson [H]); namely to ensure that only the minimum amount of
information needed to evaluate a function in some given amount of time be provided.
This leads to a useful folding transformation, which we will .describe shortly. Before
going any further, let us take a simple example to illustrate our discussion. Let f be
a search function mapping a key q to some element f(S, q) of a set S:

f(S, q)=-if t(S) then r(S, q)
else if g(S, q) then f(p(S), q) else f(S\p(S), q).

If S is too small, i.e., t(S) is true, then r(S, q) provides the answer directly. Otherwise
the function recurs with respect to either a subset p(S) of S or its complement S\p(S),
depending on the outcome of the predicate g(S, q). This definition suggests an infinite
binary tree F(S) as an appropriate FDS for f Each node v is associated with some
set S(v) obtained by applying to S compositions of A(s)p(s) and A(s){s\p(s)}
intermixed in the obvious way.2 For example, the root is associated with S, its left
child to p(S), and its right child to S\p(S). The tree can be made finite by ignoring
all nodes associated with empty subsets. Next, one associates an FDS for A (q)g(S(v), q)
with each node v of the tree. As is often the case in multidimensional searching, g
may have a definition similar to f, e.g.,

g V, q) if t’(V) then r’( V, q)
else if h V, q) then g(p’(V), q) else g V\p’(V), q).

This leads to an FDS, G(V), defined for V_ S with respect to g similarly to F(S).
Putting things together, we refine F(S) by associating G(S(v)) with each node v of
F(S). If p and p’ are very different functions then it is not clear what benefits might
be gained from this formalism. But suppose that it is possible to choose h so that p
and p’ are the same. Then f and g have identical "communication schemes." This
allows us to perform a so-called folding transformation: the idea is to use the same
FDS’s for both f and g by taking each tree G(S(v)) and folding it over the subtree
of F(S) rooted at v. In effect, this is replacing G(S(v)) by an FDS for A(q)h(S(v), q).
Once F(S) has been refined in this manner, one will see a data structure with several
layers of functional data structures superimposed on it. As a result, the storage used
might be greatly inferior to what it would have been without folding the FDS. Indeed,
each node v will thus only need an FDS for A(q)h(S(v), q) as opposed to an FDS
for each A(q)h(V, q), where V is obtained by applying to S(v) mixed compositions
of A (s)p’(s) and A (s){s\p’(s)}. To put things in perspective, we must recall that folding
might entail redefining h" all benefits will be lost if the new implementation of g
becomes much more complicated as a result. Although functional data structures have
no complexity per se, they hint at the ultimate complexity of the data structure. Suppose
that g(S, q) can be evaluated very fast but at great cost in storage. Then folding offers
the possibility of trade-off between space and time.

Searching in the past ofmergesort. Here is a problem which, although a bit esoteric
at first, is nevertheless fundamental. Run mergesort on a set of n distinct keys S
{y, , y,} and record the list produced after each merge. The resulting data structure
can be modeled as a balanced binary tree T: the leaves are assigned the keys y, , y,
from left to right, and each node v is associated with the sorted list R(v) consisting

We will use A-expressions in the following either for sheer convenience as above or in order to
distinguish between multivariate functions, such as A(x, y)f(x, y), and restrictions to univariate functions
with constants, as in A (x)f(x, y).
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of the keys at the leaves descending from v. For any q, define s(v,q)=
min {x R(v) {+o}lq_-< x}. What is an efficient data structure for computing s(v, q),
assuming that v is given by its inorder rank in the tree and that we are in a pointer
machine model? Consider the data structure obtained by storing at v its inorder rank
as well as a pointer to the root of a complete binary tree on R(v). This is essentially
Bentley’s range tree [B2]: it allows us to compute s(v, q) in O(log n) time and
O(n log n) space (search for v in T, and then search for q in R(v)). Whether the
storage can be reduced to linear and the query time kept polylogarithmic has been a
long-standing open problem (Lee and Preparata [LP2]).

We settle this question by interpreting the range tree in functional terms. We have
s(v, q)=- f(v, root, q), with

f( v, z, q) if v z then g R(v), q)
else if z < v then f(v, z.r, q) else f(v, z.1, q);

z is an ancestor of v or v itself, and z.l (resp., z.r) denotes the left (resp., right) child
of z. A natural FDS for f involves taking T and associating with each node v the
function h(q)g(R(v), q) and the set R(v). Since g is a search function it can be
decomposed as follows (ignoring termination for simplicity):

g( V, q) --if h( V, q) then g(p(V), q) else g( V\p(V), q).

We can now refine the FDS for f by replacing each node v by an FDS for
A(q)g(R(v), q). It is natural to think of p as a halving function taking a sorted set of
numbers { p,. , pt} as input and returning {p, , Ptt+)/2a} as output. This makes
the implementation of h quite simple (one comparison), but unfortunately gives two
widely different partitioning functions for f and g: one is based on the indices of the
y’s, the other on their values. So, one can try to make the two partitionings identical
to allow folding, hoping that h will not become too complex as a result. To do that,
we write p(R(v)) =- R(v.1) (the function p becomes partial as a result, but it is all
right). Instead of an FDS for A(q)g(R(v), q) at v, an FDS for h(q)h(R(v), q) now
suffices.

Although by doing so, h increases in complexity, we must hope that h remains
simpler to compute than g, otherwise the transformation would be useless. Since h is
a predicate, it can be succinctly encoded as a bit vector B(v). We have B(v)=
[bo," ", blR(v)l-1], where bi =0 (resp., 1) if the element at position #i in R(v) comes
from the left (resp., right) child of v. Interestingly, B(v) represents the transcript of
pointer motions during the merge at node v. Note that if v is a leaf then B(v) is not
defined since that node, being associated with a single key, does not witness any merge.
To compute h(R(v), q) we proceed by binary search in B(v). Unfortunately, we cannot
do so with the bits of B(v) alone, so we must find a wayto produce the key yO(i) R(v)
corresponding to a given bit position in B(v). This crucial operation is called identifying
the bit b. Note that each bit of B(v) has a distinct identifier in R(v).

We can assume that v is not a leaf. If b 0 (resp., b 1) then we have y (i) y .l (j)
(resp., y(i)=y’(k)), for some j (resp., k). In other words, the key corresponding to

b can be traced either at v.1 or v.r, depending on the value of b. We easily see that j
(resp., k) is the number of O’s (resp., l’s) in [bo,’" ", b_]. Suppose that

R(v.l) [2, 3, 5, 7, 11, 13, 17, 19, 23, 27, 29, 31, 37, 41]

and

R(v.r) [1, 6, 12, 14, 15, 20, 21, 24, 25, 26, 32, 33, 44, 46].
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We have

R(v) [1, 2, 3, 5, 6, 7, 11, 12, 13, 14, 15, 17, 19,20,21,23,

24, 25, 26, 27, 29, 31, 32, 33, 37, 41, 44, 46]

and

B(v)=[1,0,0,0, 1,0,0, 1,0, 1, 1,0,0, 1, 1,0, 1, 1, 1,0,0,0, 1, 1,0,0, 1, 1]

so, for example, 23 is the identifier of bit #15 in B(v). Since this bit is 0, the key 23
can be found in R(v.l). Its position is #8, which is also the number of O’s among the
first 15 bits of B(v), 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1 ].

Iterating on this process until we reach a leaf of T allows us to identify any bit
of B(v). For this we assume that each leaf keeps its corresponding identifier alongside.
Once identification is possible, we can compute h(R(v), q) by binary search in B(v).
This will take O(t(n)log2 n) time, where t(n) is the time to find bi and the sum

Ci--’O<=k<i bk, given i. Computing g(R(v), q) can then be done by binary search in T
(following the definition of g and the fact that its FDS has been folded). We can take
a shortcut, however, by observing that the value of h(R(v), q) is given by a bit of B(v)
whose identifier, g(R(v), q), is explicitly determined in the course of evaluating h. The
computation of g will then also take O(t(n)log2 n) operations.

Let us examine t(n). To compute bi and ci, given and v, we break up B(v) into
computer words/3o," , m-1 (filling each word up to [log n bits) and we make the
sequence/30, ’,/3,-1 the leaves of a complete binary tree. At each internal node of
the tree we indicate the number of O’s and the number of l’s among the bits of B(v)
stored at the leaves descending from its left child. With this data structure, it is easy
to find in O(log n) time the word flj that contains the bit b as well as the number of
l’s or O’s among the bits of/3o,’’ ",/3j-l. At that point, it remains to examine each
bit of/3 to complete the task. Bit enumeration on an EPM can be done very simply
by searching for the number/3j in a perfectly balanced binary search tree of 2 tlog,j

leaves and associating left turns with 0 and right turns with 1.
To conclude, O(log n) time suffices to compute s(v, q). To see that only linear

storage is required, we remark that besides the input the number of bits used is
proportional to the number of steps taken by running mergesort on n keys. This quantity
is also proportional to the number of bits needed to store the input. Therefore, without
any reference to the size of a computer word, we .can conclude to the linearity of the
data structure (in the sense that a data structure for a Turing machine is linear). This
result holds on a pointer machine whose only operations are comparisons and additions.
Note that whether the keys in S are integers or real numbers is irrelevant to our
analysis. Also, one should observe that the use of bits need not be explicit in the
algorithm. It will actually not appear at all in the implementation which we give in
the next section.

It is easy to modify the data structure to produce an O(n) space, O(log4 n) time
solution for range counting in two dimensions. But one can do much better. We must
stop at this point to notice that the transformations which we have used so far are
quite crude. They treat the recursive steps of the query-answering process as a sequence
of independent computations. To enable the algorithm to use at any time information
gathered at previous steps we must modify the refinement of the underlying functional
data structure. The idea is to exploit the fact that the operations performed in the four
nested loops of an O(log4 n) time algorithm are unlikely to be independent. We feel
that our point concerning the fruitfulness of functional data structures has been made,
however, so we will not use the previous formalism any further. Rather, we will rely
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on the intuition that it allowed us to develop and, in particular, we will keep the idea
of folding in the back of our mind.

3. Range counting.
3.1. Range counting on a random access machine. We will describe a linear-size

solution to range counting in two dimensions on a RAM with logarithmic query time.
Although this result is not the strongest (the same holds on an APM as shown in the
first table), it is very efficient in practice and illustrates most of the new ideas in simple
terms. We have implemented the algorithm in Pascal (aiming for clarity rather than
efficiency). The code is quite short, so we will give it in its entirety. For convenience,
we assume that n >= 2 and that a word can store numbers not just in [0, n] as we said
earlier but in the range [0, 4n log2 n]. Then, rather amazingly, the data structure consists
solely of four arrays X, Y, B, C: array [0..n-1]. The arrays X and Y contain,
respectively, the x and y coordinates of the points in increasing order; B and C are
a bit more mysterious. Here is an example. If the input is

{(34, 3), (12, 1), (28, 23), (63, 15), (2, 35), (5, 17), (52, 43), (22, 13)},

then we have

B [64, 97, 81, 66, 33, 82, 34, 83]

and

C [17, 35, 69, 6, 7,9, 10, 12].

How do these numbers come about? We begin with an informal description of the
algorithm.

To shorten the code given in this paper we make a number of simplifying
assumptions, every one of which can be easily satisfied with a bit of care" (1) n is a
power of two (pad with points at infinity, if needed); (2) all coordinates are distinct
(go into rank space using presorting, if needed); (3) the query does not share coordinates
with the point set and falls inside the smallest 2-range containing the input points.

It is convenient to leave aside the function s(v, q) and use the related ranking
function r(v, q)= I{y R(v)ly < q}l. To compute this function, we keep a similar data
structure: each internal node v of T stores the bit vector B(v), broken up into words
/30, ,/3,,-1, as usual. We also have an array C(v), whose cell 4/contains the number
of l’s in/3o,"" ",/3i. The problem is now to find the rank r of q in R(w), assuming
that we know its rank r’ in R(v) (without loss of generality, w is the right child of v).
This rank is the number of l’s in B(v) at positions [0..r’- 1]. To find it, we must locate
the corresponding bit in B(v): first we find the word/3j that contains it, which is done
in O(1) time on a RAM, then we compute its relative position k in/3. We also set r
to the approximate count given by cell 4(j-1) in C(v). There now remains to shift
/3j by k bits (done by division) and find the number of l’s in the remaining word by
table look-up. Adding this number to r produces the desired result. So, after an initial
binary search in the array Y R(root), we find the rank of q in R(root), and percolate
down to v. To carry out these computations, we need powers of two and tallies of
ones for each integer in [0, n- 1]. We will store all the B(v)’s and tallies in one array
B[O..n- 1], and all the partial counts and powers of two in another array C[O..n- 1].

The data structure. The arrays X[O..n-1] and Y[0..n-1] give the x and y
coordinates of the n points in increasing order. Let A log n,/x 2(1 + [log A ), and
M 2". In the code below, n, M, and A (denoted lambda) will be global variables.
Note that the word size w has been assumed to be at least as large as
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[log n + 2 log log n + 2J + 1 _-> A + k. Let P.Ai.Mi be the sequence of bits in B[i], from
left to right.

(1) P is a sequence of w-A- zeros (padding).
(2) Ai is a sequence of A bits, called the A-part of B[i]. Since n is a power of

two, we can nicely characterize each node of T by a pair (a, b), where a is
its height (0 for a leaf, A for the root) and b is its rank at height a, counted
from left to right starting at 0. Sort all the nodes in lexicographic order and
concatenate into one string b[0../], in this order, all the bit vectors B(v) (recall
that these vectors are defined only from height 1 up). The string of bits

Ao.A1 An-1 is set to b[0../]. Note that the count of bits is the same in both
cases (l An- 1) but that the boundaries of B(v)’s might not coincide at all
with those of A-parts. In the following, we will use the notation b[ i] to indicate
the (i + 1)st bit of b[0../].

(3) M, called the -part of B[i], contains the number of l’s in the binary
representation of (note that bits are ample for that purpose).

(4) The A-part of C[i] is equal to 2 for [0, A 1]. For each [0, A 1], let
us (only in thought) turn to 0 each bit of the A-part of C[i]. Then for each

[0, n 1], C[i] is the total number of bits equal to 1 among the A-parts of
B[0..i]. Note that the powers of two stored in the A-parts never conflict with
the tallies of ones because the number of l’s among the first A A-parts of
B[0..A 1] can be encoded over [log(A 2)] + 1 =< k bits.

We will illustrate these definitions with the first cells of B and C. The mergesort
starts with the sequence of points x-sorted (2, 35), (5, 17), (12, 1), (22, 13),. ., and
merges {35}, {17} (which gives b[0]-1 and b[1]=0) and then {1}, {13} (which gives
b[2]-0 and b[3]-1). As a result, the A-part of B[0] is 100. Since/ =4, the/-part
of B[0] is expressed over 4 bits. It is equal to the number of l’s in 0, that is, 0000.
This gives B[0] 1000000 in binary, i.e., 64 in decimal. The A-part of C[0] is equal
to 1. This number, shifted by bits, becomes 16,,to which the number of l’s in B[0]
(= 1)must now be added. This gives the final value C[0]- 17.

The preprocessing. We use a nonrecursive mergesort to fill the A-parts of B. To
do so, we declare a temporary array T[0..n]. Variables step and form the lexicographic
pair in the sort. A counter index maintains the current position in B. A bit is inserted
to the right after multiplying the current word by two to make room for it. When a
A-part is full ("if lambda fill then begin") it is shifted by/. bits to its final position,
and the -part is computed by enumerating the bits of index. The powers of two,
{20,21, ,2-1} stored in the A-parts of C are computed in an extra pass ("for
index:= 0 to lambda-1 do"). Initially, X contains the x-coordinates in increasing
order and Y[i] is the y-coordinate corresponding to X[i]; B and C are set to 0, and
maxint stands for any integer larger than the coordinates. At the end Y contains the
y-coordinates in increasing order.

procedure Preprocessing;
var fill, index, i, j, k, l, r, u, cur, tmp, step: integer;

begin
fill :- 0; index := 0; step := 2;
while step< n do begin

/:=0;
while < n do begin

r:=l+step-1; u:=(l+r) div 2;
for k:=lto rdo T[k]:= Y[k];
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T[r+l]:=maxint; i:= l; j:= u+ l; k:= 1-1;
while (i< u) or (j< r) do begin

B[index] := 2 B[index]; k := k + 1;
if (T[j] < T[ i]) or (i > u) then

begin
Y[k] := T[j]; j :=j + 1;
B[index] := B[index] + 1;
C[index] := C[index] + 1

end
else begin Y[k] := T[ i]; := + 1 end;
fill := fill + 1;
if lambda fill then begin

cur := index; B[index] := B[index] M;
while cur > 0 do begin

tmp := cur; cur := cur div 2;
B[index] := B[index] + tmp 2 cur

end;
index := index + 1; fill := 0;
if index < n then C[index] := C[index- 1]

end
end;
:= + step

end;
step := 2 step
end;
fill := M;
for index := 0 to lamda- 1 do

begin C[index] := C[index] + fill;
fill := 2 fill end

end;

The query-answering algorithm. Let [x,x2][yl, Y2] be the query range. The
function RangeCount (query) decomposes [x,x2] into O(log n) canonical pieces,
each represented by a node of T. The count of points inside the query is obtained by
summing up the values r(v, y2)-r(v, yl) for each v in the decomposition. Since we
add up differences, we may redefine the function r(v, q) as follows. Let be the number
of elements in R(v) strictly less than q. By construction, the (i+ 1)st bit in the vector
B(v) (if defined) appears somewhere in b[0../], say as b[j]; then set p(v, q)=j.
Consistently, all the bits of the B(v)’s will be addressed from now on by their position
in b[0../].

Next, we describe the functions needed in a bottom-up fashion. The function One
(pos) returns the number of l’s in b[0, pos-1]. First, we find the index such that
B[i] contains the bit b[pos]. To compute the number of l’s in B[i] left of the bit
b[pos], we shift and truncate B[i] accordingly to obtain the integer j (we use a little
trick to avoid shifts by A). Then we use the/x-parts of B to find z, the number of l’s
in j. This number is added to C[i-1] in order to get the final result. We need a
corrective term if i-1 is less than or equal to ,- (because of the powers of two
stored in the first cells of C).

function One (pos’integer) "integer;
var i, j, z :integer;
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begin
i:= pos div lambda;
j:= B[i]div(2, M (C[laznbda, (1 + i)-pos-1]div M));
z := B[j]- M (B[j] div M);
if 0< then z:= z+ C[i- 1];
if (0<i) and (i<=lambda) then z:= z-M, (C[i-1]div M);
One := z

end;

The function Newpos (dir, block, pos, width) allows us to trace the position of a
bit b[pos] from a node v to a child w. In other words, it computes the values p(w, q),
given p(v, q). (The reader familiar with Willard [W2] might guess rightly that we are
trying here to simulate the effect of downpointers). We allow the value of p(w, q) to
be negative. Why is that so? The first cells of B store the history of the first pass of
mergesort. Therefore, these do not correspond to leaves of T but to parents of leaves.
From the lexicographic ordering in B, we can see that the leaves of T, if they were to
be stored in B, would appear in positions -n, -n + 1, , -1. We do not need to store
these leaves because no identification is required for range counting. The arguments
of Newpos (dir, block, pos, width) denote, respectively,

(1) dir: which child of v is being considered (0 if left, 1 if right); we use an integer
instead of a Boolean only for brevity.

(2) block: the position in b[0../] of the first bit of B(v),
(3) pos: the position in b[0../] of the bit of interest in B(v),
(4) width: the number of leaves in the subtree rooted at v.

Because of the lexicographic ordering of the nodes of T, the starting position of B(w)
in b[0../] is "block-n" (left child) or "block -n +width/2" (right child).

function Newpos (dir, block, pos, width:integer) :integer;
begin

if dir= 0 then Newpos := pos- n +One(block)- One(pos)
else Newpos := block- n + One(pos)-One(block)+ (width div 2)

end;

The function Path (A, q) searches for q in the array A of type "Tableau=
array [0..n-1] of integer", and returns min ({ilq<-<_A[i]}t.J{n 1}). It will be used for
two purposes: first to locate Yl and Y2 in Y, and then xl and x2 in X.

function Path (A: Tableau; q integer) integer;
var l, k, r:integer;

begin
/:=0; r:=n-1;
while < r do begin

k:= (l+ r) div 2;
if q< A[k] then r := k end
else := k + 1 end;

Path :=
end;

Let 11 and 12 be the two leaves of T returned by Path when applied, respectively,
to Xl and x2 in X. Let lo be the leaf preceding 11 in inorder (such a leaf is guaranteed
to exist because of our assumption that the query falls entirely within the smallest box
containing the input points). The nodes of the decomposition of Ix1, x2] are precisely
those adjacent to the path from lo to 12, but not on it, whose inorder ranks fall in
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between the ranks of these two leaves. To find them, it suffices to determine the least
common ancestor w of lo and 12, and then collect the nodes N (resp., N2) hanging
off the right (resp., left) of the path from lo (resp., 12) to w. The number of points
inside the query range is

E p(v, y) + E p(v, y)- E p(v, y,)- E p(v, y,).
N N N N

All four computations are carried out by calling the function Cum (cut, init, path, dir).
Let us take the case of Yv N, p(v, Y2), for example. Then "cut" is the number of leaves
descending from w, "init" is equal to p(root, Y2), "path" to lo, and "dir" to 0 (it is 1
for N2). The bits of "path" indicate the sequence of turns from the root to lo. Along
with "cut," this allows us to determine w and, hence, the nodes of N.

function Cum (cut, init, path, dir" integer) "integer;
vat pos, z, bit, block, cur" integer;

begin
pos := init; z := 0; block := (lambda- 1) n; cut :-- n;
while cur> 2 do begin

bit := (2 path) div cur-2 (path div cur);
if (cur < cut) and (bit dir) then

z := z + Newpos(1-dir, block, pos, cur);
pos := Newpos(bit, block, pos, cur);
cur := cur div 2; block := block- n + bit cur

end;
Cum := z

end;
For completeness, we also give the code of the mainline, which is quite straightforward.

function RangeCount (xl, x2, yl, y2 integer) :integer;
vat left, right, low, high, cut, z’integer;

begin
low := Path( Y, y 1 + (lambda 1) n;
high := Path( Y, y2) + (lambda- 1) n;
left:= Path(X, xl)- 1; right:= Path(X, x2); cut:= n;
while (2 left) div cut (2 right) div cut do cut := cut div 2;
z := Cum (cut, high, left, 0) + Cum (cut, high, right, 1);
RangeCount := z-Cum (cut, low, left, 0)- Cum (cut, low, right, 1)

end;
The description of the algorithm is now complete. Again, observe that the coordin-

ates can be assumed to be arbitrary reals, if needed. Note that the ratio between the
storage needed and the input size is only 2. In the context of this algorithm, the ,-parts
of B cannot be compressed. This is not true of C, however: this array can indeed be
shrunken arbitrarily by skipping chunks at regular intervals. The blanks can be made
up by further work in B at query-answering time. This simple remark shows that the ratio
can be brought arbitrarily close to 1.5, while increasing the query time only by a
constant factor.

One might wonder how much dependent on the RAM model the algorithm really
is. We will see that, although it loses some of its simplicity in the process, the algorithm
can still be ported to a pointer machine.

3.2. Range counting on a pointer machine. To avoid the need for address calcula-
tions, we implement the tree T with pointers. Each node v is associated with a list
W(v) (assumed to be doubly-linked for convenience). Aside from pointers for the list
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itself, each record of W(v) has eight fields, B, C, C’, D, E, F, G, H, made of one
word each. The key specification is that, concatenated together, the B-fields of W(v)
form the bit vector B(v). This statement must be clarified and refined a little. First of
all, only the A [log nJ least significant bits of a B-field will contain bits of B(v).
These are called the meaningful bits of the B-field. We will ignore the others. With
this scheme each B-field, except possibly the last one, has precisely A meaningful bits.
As regards the last one, we may assume that its meaningful bits are right-justified, and
that an extra record is added to indicate how many bits of the B-field are indeed
meaningful. Let the subscript k refer to the kth record of W(v). Then,

(1) Ck stores the number of l’s in Bo,’’’, Bk and C, the number of 0’s.
(2) Dk stores the identifier of the least significant bit of Bk. Recall that this is the

value of R(v) in one-to-one correspondence with that bit.
(3) Consider the smallest value of R(v) greater than or equal to integer q that

appears as a D-field of W(v); we define n(v, q) as the address of the record
containing this D-field if it exists, or as a null pointer if it does not. Let w
(resp., w’) be the left (resp., right) child of v; then Ek (resp., Fk) contains the
address n(w, Dk) (resp., n(w’, Dk)), or more precisely a pointer to the relevant
record. These fields are left blank if v is a leaf.

(4) Gk and Hk are not immediately needed and, for the sake of clarity, will be
introduced later on.

The root of the tree receives a special treatment: we augment W(root) with a
balanced search tree for R(root). This will allow us to compute the rank of a y-
coordinate and thus get the query-answering process started. All the fields should be
well motivated from the previous discussion, except perhaps for E and F. These fields
play a role somewhat similar to Willard’s downpointers [W2]. They provide a mechanism
to avoid repeated binary searches when examining sequences of lists W(v). Unlike
downpointers, however, they do not span the whole range of values in R(v), but an
evenly distributed sample. Before proceeding with a description of the query algorithm,
we should make the obvious observation that, as before, the data structure is linear
in size. Furthermore, it can be constructed in O(n) space and O(n log n) time, using
mergesort as a basis for the algorithm.

To answer a query, we simulate the process described in the previous section. We
start with a binary search in R(root) with respect to yl and Y2 and follow E- and/or
F-fields appropriately. Let v be an internal node of T and w be one of its children
(say, the left one, without loss of generality). We need to compute r(w, q), given r(v, q).
We will show how to find the pair (n(w, q), r(w, q)), given (n(v, q), r(v, q)). This is
called computing a transition. Let Bk be the B-field of the record at address n(v, q).
We assume for now the availability of a primitive operation tally (k, t) which takes
the number Bk--0""" O.Xo’’’X;t_. in binary and an index (0< < A), and returns
Xo+X+...+x,_. By definition, the first r(v,q) bits of B(v) are contained in the
B-fields of W(v) preceding n(v, q), and perhaps in a prefix of Bk. Using Cg and C,
we can find the length of this prefix using +,-. Next, we call the tally function to
compute the number of l’s in the prefix, which gives us in turn the number of O’s
among the first r(v, q) bits of B(v), that is, r(w, q). To compute n(w, q), we just follow
the pointer in Ek. Since each B-field has at most A bits, n(w, q) will be either the
address of the record where we land, or it will be the address of its predecessor in the
list W(w). To find out we can use q and D-fields, or if we prefer, we can use r(w, q)
and C, C’-fields. We mention the latter method for the following reason: it is possible
to compute a transition from n v, q), r( v, q)) to n w, q), r( w, q)) without prior knowl-
edge of q. This will be used in the next section.
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To implement tally(k, t), we use the fields Gk and Hk as well as the primitive shift
available on an APM. This, we should recall, takes i<_-[log n as input and returns
10 (1 followed by O’s). It is needed to simulate a RAM at the word level in constant
time. To do so, let a [log h + 1,/3 [log a + 1 and 3/= [log/3 + 1 (these quantities
are computed by binary search in preprocessing). For any integer u (0 u < n), we
define the function h(u, i,j) [u/2-JJ -2- [u/2-iJ if 0-< <j -<_ h, and 0 otherwise:
if u Uo" U_l in binary, then h(u, i,j) uiu+ u_zUi_. Next, we define a word
O to"" t_ as follows" for i=0,...,2, let tv.., t(+)v_ be the number of l’s in
the binary representation of i. To set up the fields Gk go" g- and Hk ho ha_
let Po’"P-I be the h meaningful bits of Bk (Fig. 1). Recall that the last B-field of
W(v) might be short of h meaningful bits; this special case can be treated easily,
however, and will be omitted here.

(1) For each i=0,..., [h/aJ-1, we have g... g(+-i =po+" "+p(+_.
(2) For each i=0,..., [A/aJ-1 and each j=0,..., [a//3J-1, we have

hia+j’" hia+(j+l)-i-’Pia +’’’+Pia+(j+l)13-1. Since an integer x can be rep-
resented on [log(x / 1)] bits, one will easily check that the space provided
for (R) and the various blocks of Gk and Hk is sufficient, for n large enough.

We can now implement tally(k, t). To do so, we evaluate in sequence

p h(Bk, l, t),

0 h-1

(R)[ in0 in n,2 I,in3 [--,,,, l,
3’

FIG.
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then

tally(k, t)= h(Gk,j, i)+ h(Hk, m, l)+ h((R), py, (p+ 1)y).
The algorithm computes successive approximations ofthe answer. The vector Po P,-
is broken up into three blocks Po"’Pi-, Pi’"P-, and P’"Pt-. The number of
l’s in the first and second blocks are given directly by reading off one of the elementary
pieces of G and H. For the last block, one turns to O for the answer.

To summarize, range counting can be done in O(n) space and O(log n) query
time on an APM. What happens if we only have an EPM? In that case, we may ignore
the fields H and G altogether. Given any prefix of a B-field, we can count its number
of O’s or l’s by examining each of its bits. To do so, we set up a binary search tree on
the keys {0, , 2 1 } so as to identify the turns of a search with the binary representa-
tion of the search key. At most a constant number of subtractions might be needed
for each node of T visited. These can be simulated in O(log n) time on an EPM. The
query time will be O(log2 n). This completes our discussion of the static case. The
data structures described above for the various models form the skeleton of the
remaining algorithms. We refer to them as M-structures (M for mergesort). They can
all be built in O(n log n) time.

The dynamic case. We begin with a number of remarks which apply to all our
subsequent treatments of dynamic problems. As we said earlier on, we will always
assume that in the dynamic case the underlying model of computation is an EPM.
One difficulty in dynamizing the previous data structure is trying to assign a value to. Since n changes constantly in a dynamic environment, so will if we set its value
to [log n J, as in the static case. This may imply that the entire data structure will need
to be reconfigured at all times. To overcome this problem we relax the assignment of
) and only require that its value should lie between log n and log n (for n larger
than some appropriate constant). This is called the compaction invariant. The idea is
that as soon as the compaction invariant ceases to be satisfied the entire data structure
is to be rebuilt from scratch for a value of equal to [log n J. Clearly, no such
reconstruction will be needed until after gl(n) updates. Looking at a reconstruction
as a sequence of insertions (at a polylogarithmic cost each), we will easily argue that
the amortized cost of maintaining the compaction invariant is absorbed by the cost of
individual updates. We now return to the specific problem of range counting in two
dimensions.
A number of modifications to the M-structure are in order. To begin with, we replace

fields C and C’ by a dynamic search tree C(v), e.g., a 2-3 tree (Aho et al. [AHU]),
whose leaves are associated with the B-fields of W(v). Each node (including the leaves)
stores the number of meaningful O’s and the number of meaningful l’s in the B-fields
of the leaves descending from it. This will essentially replace the use of C-fields while
granting dynamic capabilities to the structure. Fields C, C’, D, /, F, G, H are no
longer needed. The most important modification is the emulation of a variable word-
size. In general, B-fields will not be filled entirely with meaningful bits. A B-field/3
will have only a suffix of meaningful bits, that is, a contiguous sequence in right-justified
position. The length of this suffix varies between 0 and A. It can be determined by
adding the counts of O’s and l’s associated with the leaf/3 in C(v).

Invariant: If/3 is not the only B-field at node v, then it must have between [/2J
and meaningful bits.

Without loss of generality, let w be the left child of v. We describe the computation
of r(w, q), given r(v, q). Let/3 be the B-field that contains the bit of B(v) at position
r(v, q). We can find/3 by using the counts of O’s and l’s stored at each node of C(v)
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as partial ranks, and performing a simple binary search. This is similar to finding a
key in a search tree, given its rank. Once /3 has been found, the position p of the
desired bit in the B-field follows immediately. Note that this may require a subtraction,
which we can afford since it takes only O(log n) time on an EPM. As is often the case,
however, p will only be used for comparisons, so it can be represented as a pair
(r(v, q), p’), where p’= r(v, q)-p is the rank determined by the binary search. In this
way, no subtraction is needed. While doing the search, we will collect partial counts
of O’s: this is a special case of one-dimensional range search. If we visit a node z and
branch to its right child, we update the partial count by adding to it the number of
O’s provided with the left child of z. This is straightforward, so we omit the details.
Finally, at the end of the search, we add up to this partial count the number of O’s
among the first p bits of/3. To enumerate these p bits we use binary search. Note that
it is important to know the number of meaningful bits in /3; also the compaction
invariant ensures that the tree needed for the enumeration remains of linear size. This
gives us exactly r(w, q). Clearly, a single transition takes O(log n) steps. Answering a
query can then be done in O(log2 n) time.

Next, we look at the problem of inserting or deleting a bit in a B-field /3. We
insert a new bit by locating its position in the B-field. To make room for the newcomer,
we shift to the left the prefix of/3 ending at that position. Conversely, deleting a bit
causes a right shift of a prefix of/3. Every node of C(v) on the path from the current
leaf to the root must have its partial counts updated, that is, incremented by -1, 0, or
1. Although an EPM does not allow subtraction in constant time, we can get around
this difficulty by maintaining a doubly-linked list of length n dynamically, each record
storing its rank in the list. Instead of storing counts in C(v), we store pointers to the
record with the appropriate rank, which can always be done since no count can exceed
n. This allows us to update counts in constant time while adding only a linear term
to the size of the data structure.

What happens if the shift causes an overflow or an underflow? In the first case,
we insert a new record in W(v) and use the B-field of that record to absorb the
overflow. Since we then have A + 1 bits at our disposal, we clear the old B-field and
allocate [A/2] of these bits to it, the remaining A + 1 [A/2J going into the new B-field.
This causes the insertion of one node in C(v). In case of underflow, we pick any
adjacent B-field (one is always to be found since, by definition, no underflow can
occur if W(v) has a single record) and evaluate their combined number of bits. If it
exceeds A, then we reassign the two B-fields with each at least [A/2J bits. Otherwise,
we use a single B-field and discard the other one. If the tree C(v) falls out of balance,
we apply the necessary rotations to reconfigure it into an acceptable shape. Rather
than going into details, let us give a general argument, to be used again later on,
showing why all counts can be updated in O(log n) time. The main observation is that
the Steiner minimal tree of all nodes whose counts need to be updated has size O(log n).
We can then (conceptually) orient the edges of this subtree upwards and update every
count by pebbling the resulting dag. Indeed, the counts at a node can be obtained
from the counts of its children. See Knuth [K1] for variants.

Let us recap the sequence of operations for inserting a new point (x, y) into the
structure. We start with a binary search in T with respect to x. This gives us the
root-to-leaf path Vl,’" ", Vl at whose nodes an insertion must take place. At the root
of T we perform a binary search in R(root) to compute r(root, y), and then descend
in each of the relevant nodes by successive transitions. We are then ready to insert a
new bit in each of the selected lists B(vi). Note that the value of this bit is determined
by whether vi+l is the right or left child of vi. Deletions are handled in a similar fashion.
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Of course, we must deal with the possibility of the tree T falling out of balance.
For this purpose, we use a weight-balanced tree, also known as a BB[a] tree. The
idea, due to Lueker and Willard [L], [WL], [W2], is to rebuild the entire subtree rooted
at the highest node going out of balance. This rebuilding is only expensive high up in
the tree, but by chance weight-balanced trees go out of balance mostly at lower levels.
With a proper choice of a, it can be shown (Willard and Lueker [WL]) that a node v
cannot go out of balance twice before a number of updates at least proportional to
the size of the subtree rooted at v has taken place among its leaves.

A simple counting argument reveals the performance of this scheme. We create
on the order of log2 n credits for every update, which we distribute evenly to each
node vi visited during the update. This should be enough to pay for the updates in
each C (vi) and still leave on the order of log n credits to each node v. These remaining
credits are stored in the node-bank of v. Suppose now that v falls out of balance. As
we said earlier, after v last fell out of balance, at least fl(IHI) updates must have
occurred at the leaves of the subtree H rooted at vi. For this reason, the node-bank
of v will have available at least on the order IHI log n credits. Since constructing a
data structure of size p takes O(p log p) time, these credits can pay for the entire
rebuilding of H and of all the structures in {C(v)lv H}. The node-bank at v is thus
emptied, but ready to be refilled with future updates taking place below it. This proves
that insertions and deletions can be performed in O(log2 n) amortized time. A more
complex strategy (Willard and Lueker [WL]) can be invoked to spread the rebalancing
over all the updates in an even manner and obtain an O (log2 n) worst-case update time.

We close this section with the problem of maintaining the compaction invariant.
Our discussion will apply to range counting as well as to all the other dynamic problems
considered later on. For this reason, we make the general assumption that any update
among n active input elements requires O(log n) amortized time (c is an arbitrary
nonnegative constant). Between two consecutive reconstructions, assume that each
update generates a number of credits equal to log n, where n is the input size at the
time of the update. We will show that these credits can cover the cost of the second
reconstruction (up to within a constant factor). Let p (resp., n) be the size of the input
during the first (resp., second) reconstruction. We have either [ logpJ <3 log n or
[ logpJ > log n. In the former case, we derive that n > p2/8, therefore at least n -p
12(n) insertions must have taken place between the two reconstructions. The credits
generated thus amount to 12(n log n), which covers the cost of the second reconstruc-
tion. In the latter case, [ log pJ > log n, we have p > n3/2, which implies that at least
p-n--D.,(n 3/2) deletions occurred. The credits released by these deletions trivially
cover the O(n logC n) cost of reconstruction. Note that in both cases the credits released
also cover the cost of maintaining auxiliary structures, such as the tree of size O(2a)
used for bit enumeration.

THEOREM 1. Range counting in two dimensions can be done in O(n) space and
O(n log n) preprocessing time. In the static case, the query time is O(log n) on an APM.
On a RAM the storage used is at most twice the number of words required to store the
input. In the dynamic case, query and update times are O(log n) on an EPM.

4. On the process of identification. As we will quickly find out, identifying the
point associated with a given bit in B(v) is the computational bottleneck of most of
the problems to be considered later on. For this reason, let us look at this process
in some detail. Recall that computing a transition from (n(v,y),r(v,y)) to
(n(w, y), r(w, y)) can be done without knowledge of y. This is convenient because it
allows us to characterize any bit of B(v) by a pair (nv, r), knowing that the correspond-
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ing bit in B(w), denoted (nw, rw), can be computed directly from (nv, rv). This is the
essential step for identification on a pointer machine.

LEMMA 1. Let v be a node of T and let b denote an arbitrary bit of B(v), specified
by a pair of the form (n, r). Computing a transition from b can be done in constant
time on an APM. In the dynamic case, it can be done in O(log n) time on an EPM.

Proof We review the basic steps of the algorithms, most of which we have already
seen. To begin with, we determine the value of the bit b of B(v) corresponding to
(n, r). On an APM, we can find the position of the bit in the appropriate B-field in
constant time, using C, C’-fields. Then we call on shift and / to find b. Recall that
the ith most significant bit of a ,-bit word x is h(x, i- 1, i)= Ix/2-] -2 [x/2-+].
Next, we set w to be the left child of v if b 0, or the right child if b 1. We are now
ready to compute the transition from b, which is done exactly as described in the
previous section. In the dynamic case, we use the tree C(v) to locate b in B(v) and
then compute its location in B(w). A single transition takes O(log n) steps, lq

The power or random access allows us to do much better on a RAM. The idea is
to store a little more information at scattered nodes of T in order to compute repeated
transitions in one fell swoop.

LEMMA 2. Let v be a node of T and b denote an arbitrary bit of B(v) (at a known
location), and let e be any positive real It is possible to modify an M-structure on a RAM
so that identifying b can be accomplished in (1) O(n) space and O(log n) time; or (2)
O(n log log n) space and O(log log n) time; or (3) O(n log n) space and constant time.
In all cases, the transformation ofthe M-structure can be accomplished in O( n log n) time.

Proof As usual in the static case we set A [log n]. We define the level of a node
of T as its number of ancestors. Let w be a descendent of v, and let b denote the bit
of B(v) corresponding to (nv, r). How can we compute (nw, rw) from (n, r) in
constant time? First note that w cannot be just any descendent of v, if B(w) is to have
a bit in correspondence with b. At a given level in T, there is a unique node w that
satisfies the criterion. Furthermore, recall that on a RAM the consideration of nv and
nw is redundant, since rv and rw supply all the needed information in useful and
efficient form. We can fully characterize the bit b by a pair of the form (v, r). In
practice, such a pair can be readily translated into an absolute address by adding r to
the starting position of B(v). Recall that this addressing at the bit level is virtual, but
that it can be emulated in constant time on a RAM. By abuse of language, we will
refer to b as "bit (v, r)." The problem at hand is that of computing a batch of consecutive
transitions, and more precisely, the function O(v, r, l)= (w, s), where (w, s) is the bit
at level in correspondence with (v, r). Whenever is understood, we will say that bit
0(v, r, l) is the companion of bit (v, r).

We show how to compute 0(v, r, l) in constant time, adding only a small amount
of storage to the M-structure. We consider that and v are both fixed and we assume
that is larger than the level of v. Let h be the difference between and the level of
v, and let the sequence w0," ", w2,,_ denote the descendents of v at level (without
loss of generality, we will assume that n is a power of two, so that v has exactly 2h

descendents at level 1). As usual, B(v) is broken up into words/30,"" ",/3,,_, each
made of , meaningful bits (except possibly for/3,,_1, a special case that we will ignore
in the remainder of this discussion). We cannot afford to attach with each bit of B(v)
the address of its companion, but we might still want to do so for a sample of B(v);
for example, to follow a known pattern, for the least significant bit of each/3i. There
is a catch, however. Indeed, this could lead to a situation where, say, all the companions
land in the same node at level l, thus providing useless information for most of the
other bits of B(v). To circumvent this difficulty, we do not link the bits to their
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companions but to neighboring bits chosen in a round-robin fashion among the nodes
at level/. We augment each/3i with a pointer yi and a bit vector Fi, defined as follows:

(1) The pointers yi allow us to jump from selected places in B(v) to related places
at level/. For anyj such that 0 _-< j < 2h, we say that bit (wj, s) is the j-companion
of bit (v, r) if its identifier is the smallest value in R(wj) that is at least as
large as the identifier of (v, r). Note that there is a unique j for which the
j-companion of (v, r) is also its companion. For each such that 0<-i< m,
we define y as the address of the word in B(wi mod h) that contains the
(i mod 2h)-companion of the least significant bit in . If there is no such
companion, y need not be defined.

(2) The bit vectors F allow us to correct the errors introduced by the y’s. Let
(v, r) be as usual an arbitrary bit of i. Let O(v, r, l)= (w, s), and let k be the
largest integer less than such that Yk points to a word of B(w). Suppose
for the time being that k is well defined. Then it cannot be too far away from
because of the round-robin scheme. We easily verify that k is always at least

as large as i-2h. The address in Yk allows us to jump from v to w./ within
some reasonable accuracy. To complete the computation, we need information
to (1) compute k, given (v, r), and (2) go from Yk to the actual companion
of (v, r). If (v, r) is the dth most significant bit of fli, we define Pd as an
(h + 1)-long bit vector containing the binary representation of i-k in right-
justified position. This allows us to complete the first task. For the second
one, we define Qd as a ([log A] + h + 3)-bit vector. Let do, d, d2’’" be the
bits of B(w), broken down into words, go, , 82, etc. Let ga be the word
pointed to by Yk, let db be the most significant meaningful bit of 6a, and let
de. be the bit 0(v, r,/); we define Qd as the [log A + h + 3)-bit vector contain-
ing the binary representation of c-b in right-justified position (note that
c _-> b). We can verify that the number of bits provided by Qd is sufficient for
that purpose ( bits needed= ]log (c b + 1) < [log A + h + 3). If k is not
defined then Pd and Qd store the values of j and c, respectively, with a flag
to indicate so; again [log A + 2h + 4 are more than sufficient for that purpose.
Finally, we define F as the concatenated string P1.Q .P2.Q2’’" P,x.Q;. Note
that F is A [log A + 2h + 4) bits long.

Computing 0(v, r, l) is now straightforward. To begin with, we find the index of the
word/3i that contains bit (v, r). This gives us the position d of (v, r) in/3, which in
turn leads to the two bit vectors Pd and Qd. Note that both vectors can always be read
in constant time. With Pd in hand, we can retrieve k as well as the address stored in

Yk. Using now Qd as a relative address, we automatically gain access to O(v, r, l). All
these operations take constant time on a RAM. So, we have devised a technique for
computing repeated transitions in constant time. But at what cost in storage? With the
notation used above, the overhead amounts to one word y and one bit vector F for
each word/3i of B(v). This gives an average of O((h+log A)/A) extra words per bit
of B(v), hence a grand total of O(((h+logA)/A)n+21-’) space, summing up over
every node v at level l- h. Recall that there are exactly n bits in all the B(v)’s combined,
at any given level. Of course, F will be organized as an array of words. Because each
F is of the same length, these can be packed into one large array in order to simulate
a two-dimensional matrix. To summarize, we have a scheme for computing h consecu-
tive transitions in constant time from level j, using O(((h+logA)/A)n+2j) added
space.

What is the time needed to construct the set of y and F ? With the random access
features of a RAM, it is not difficult to carry out the preprocessing in O(n) time. We



448 BERNARD CHAZELLE

briefly describe the procedure. Assuming that for each v at level l-h the array R(v)
is available, we can compute the companion of each bit of B(v) in constant amortized
time. To do so, we compute R(wo),’.’, R(w2,,_), using bucket sort to place each
element in its right set. This is possible because, if we work in rank space, the points
of R(v) can be partitioned by vertical slabs of the same width, each corresponding to
a distinct R(wj). Knowing the companions of the bits of B(v) serves two purposes:
one is to provide the position of each companion in its list R(wj), and the other is to
reveal the name of the node in question. With the first piece of information we compute
Q, and with the latter we derive P. To do so, we compute the round-robin assignment
of the bits of B(v) and form O(2h) sorted lists of y-values, which we merge with
R(wo),’’’, R(w2"_), in turn. This gives us all the yi’s in linear time. To compute the
Pa’s, it suffices to scan B(v) and for each bit deduce P from the index j of the node

w associated with its companion. Finally, Q can be found by simulating the computa-
tion of O(v, r, l) for each bit of B(v). We can obtain Q as soon as it is needed in the
computation, since we already know the value of O(v, r, l). These explanations are
more intuitive than formal, but we do not judge it necessary to dwell on this technical
but simple aspect of the algorithm. For convenience, we denote the data structure
which we have just described, (R)(l-h, 1). In general, (R)(a, b) is a structure that allows
us to compute transitions from level a to level b in constant time, using O(((b-a +
log A)/A)n + 2a) extra space. Incidentally, there is an obvious discrepancy with regard
to this bound. If we set b-a 1, then we have just described a method for computing
constant time transitions, while using an extra log log n bits for each bit of B(v)! Of
course, this result is useless since we already know how to compute constant time
transitions with only constant overhead in space. We will therefore save the more
complex method only as a way to batch many consecutive transitions together.

We are now ready to attack the main question: how to identify (v, r)? Let m be
the level of v (m < A 1); the idea is to express m in some appropriate number system.
We will build several data structures on the same model. Let D(x, y) denote a data
structure for jumping from any level l to any level 12, with A-y-<_ l < 12-<_ A-x.
Identification can be done by using D(0, A). We define D(x, y) in a recursive manner
(for notational convenience we assume, without loss of generality, that x 0). Let c(y)
be an integer function of y such that O<=a(y)<=y/2. The data structure D(0, y) is
made of

(R)(h-y, ) (_J I D(O’ a(y)- 1),..., D(ja(y), (j+ 1)a(y)- 1),-..,

Y

We stop the recursion at some threshold ,, which is to say that D(a, b) is null for
b a _- ,. How do we physically store these structures ? We want to emulate a situation
where each (R)(i, j) is accessible as defined earlier, that is, as though it were the only
one attached to level i. Unfortunately, many (R)(i,j)’s are bound to be assigned to the
same level i. We solve this difficulty by storing the (R)(i, j)’s as two-dimensional matrices
(as before), and keeping an entry table E[0..A + 1, 0..A + 1] defined as follows: Eli, j]
stores the address of the first entry in (R)(i,j), if (R)(i,j) appears in the full expansion
of D(0, I); it stores 0 otherwise. The storage S(n, y) occupied by D(0, y) follows the
recurrence

S(n, y): (y) a(y
a(y) +0

A
n

and S(n,y)=O, for y_-< , (threshold below which we stop the recursion). We have
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omitted the term 2;-y to be able to treat the recurrence uniformly. We will see later
on the effect ofthis omission. Let a()(y) y and, for any > 0, let a(i)(y) a (a(i-l(y)).
Finally, let a*(y) max {ilc()(y)-> u}. We derive the relation

(1) S(n,h)=O a*(h)+l+ n

We can easily show that taking into account the terms of the form 2x-y adds
another term O((a*(h)+ 1)n), which asymptotically is immaterial. We briefly describe
the preprocessing. We define the first recursive layer L as the construction of O(0, ).
The second recursive layer L2 involves building in this order

a(A)
a(A) ,...,O(A-(j+I)a(A)+I,A-ja(A)),...,

o(-()+, x),

and so forth, every time expanding each term with its recursive definition. If we look
at the definition of D(0, , as inducing a tree of height roughly a*(, ), then L represents
the work to be accomplished to build each node of the tree at level i. Starting with
R(root), we can construct each layer in time O<nlL, l), where IL,[ is the number of
terms involved in the expression of L. This derives from our previous observation on
the preprocessing of (R)(a, b). Note that when computing a t0-structure the set of lists
R(v) needed for the computation can be obtained from the previous one in linear
time. Since a(y)<= y/2, the sum Y nlL, is a geometric series whose value is on the
order of (A/v)n. This gives a preprocessing time of O(n log n).

To identify (v, r), we begin by checking to see if m, the level of v, is equal to 0.
If this is the case, we can then use to(0, A) and conclude in constant time. If m > 0,
we compute the starting interval of the form [ja(A ), (j + l)a(A )- l] (or
[[A/a(A)Ja(A),A]) that contains ,-m. We leap from v to the companion of (v, r)
at level A-ja(A) (with j=< [A/a(A)J) by calling the algorithm recursively, using
D(ja(A), (j+l)a(A)-l) (or D( [A / a(A )J a(A ), A )). When the recursion passes the
cutoff point (i.e., is about to jump across fewer than v levels) we complete the
computation by taking transitions one level at a time. Of course, we assume that we
have the appropriate data structure for doing so. When this is done, we jump from
level A -fie(A) to level A by taking intermediate steps. Let k be initially set to j.

(1) Take a regular transition from A-ka(A) to A-(ka(A)-l);
(2) Jump from A-(ka(A)-l) to A-(k-1)a(A), using D((k-1)a(A), ka(,)-

1);
(3) Decrement k by 1. If k > 0 then go to step (1), else stop.
Let Q(n, m) be the time to identify (v, r), that is, to jump across A rn levels. We

immediately find that

(2) Q(n,m)=O(v+ a((h) )
I.,__o(i)(A)_A o(i+1)(/)

Setting a (y) [y/2J and v 1, from 1 and (2) we obtain S n, h O n log log n)
and Q(n, m) O(log A) O(log log n). This completes the proof of the second part
of Lemma 2. Let us now set a(y)= [y/hl and v=logh. We derive S(n,h)=O(n)
and Q(n, m)= O(log n), which gives us the first part of Lemma 2.

To prove the last part of Lemma 2, we must modify the overall design of the data
structure: D(0, y) will now be made not only of

{D(O’a(Y)-I)"’’ D(ja(Y) (J+I)a(Y)-I)’’’ D([ Y a(y), y)},
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but also of

a(y),A ,@(A-y,A)

As usual, D(a, b) is null if b-a <= ,. We assume that c(y)= [y/A/2J and ,= 1. The
storage needed follows the relation

[a y ’JS(n,a(Y))+S(n,y+I-[ Y ] ) (y(y+IgA) )S(n, y): (Yi o(y) a(y) + O
a(y)A

n

and S(n,y)=O, for y<_-,. This gives S(n,A)=O(n log/2n loglogn)=O(n log n).
Once again, it is easily verified that the extra terms 2 omitted from the recurrence are
absorbed asymptotically. The construction time is O(n log n) since there are only a
constant number of layers. To identify (v, r), we proceed recursively within the starting
interval. The key difference now is that at a given recursion level, only a single
O-structure need be used. The time thus becomes proportional to the number of
recursive calls, which is constant. The proof of Lemma 2 is now complete.

5. Range reporting. For this problem we use an M-structure with the various
modifications described in the previous section. It is clear that to start out we might
as well mimic the algorithm for range counting until all the bits in the appropriate
B(v)’s have been located. These are the bits whose identifiers fall in the query range.
They appear as O(log n) sequences of consecutive bits, each sequence being associated
with a distinct node of T. We call these sequences the decomposition vectors of the
query. To complete the computation, it suffices to identify each bit ofthe decomposition
vectors. This can be done by applying the techniques of the previous section to each
bit individually.

How do we dynamize the data structure ? On an EPM, there is no difficulty adapting
to the problem at hand our solution to range counting. Identification proceeds by
applying repeated transitions, using the methods of Lemma 1.

This technique leads to the results stated in the tables of 1, except for one minor
difference" we have just proven a slightly weaker set of results obtained by replacing
each occurrence of n/k by n in the tables. Obviously, to obtain the results claimed it
suffices to treat, say, the case k >-_ n :/3 separately. Indeed, if k < n:V3 then log n and
log (n/k) are within constant factors of each other. We will describe a dynamic
algorithm on an EPM with a complexity of O(n) space, O(n log n) preprocessing
time, O(log n) update time, and for k => rt :V3, O(k) query time. Since k is not known
beforehand the idea will be to dovetail between this method and the others (i.e., run
the two competing algorithms in parallel). The first process to terminate will thus
guarantee the upper bounds claimed in the tables. We define the alternative algorithm
by combining standard data structuring techniques. Assuming for simplicity that all
x-coordinates are distinct, we partition the set of n points by means of vertical slabs
into groups of size between p(n) and 4p(n), where p(n) [22Llg nj/3j. For each group
of points we maintain a dynamic list containing the indices of the points sorted by
y-coordinates. Given two query values y and y’ we will use the list to report all the
points in the group with y-coordinates between y and y’. Using, say, a 2-3 tree, it is
easy to guarantee O(k+log n) query time (where k is the number of points to be
reported) and O(log n) update time. The storage requirement is trivially linear. The
utility of this data structure for the previous problem should be obvious. Given a query
rectangle, our first task is to use the slabs to partition it into subrectangles, which is
easily done in O(log n) time. If the query rectangle falls entirely within a single slab,
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then we naively check each point in the slab. If the partition is effective, however, then
each subrectangle can be handled by using the appropriate list (checking each element
in the list in the case of the leftmost and rightmost subrectangles, and using the tree
structures for the other subrectangles, if any).

The query time is easily shown to be O(k+n/310gn+n:Z/3), which is O(k) if
k >--n 2/3. Insertions and deletions are performed in logarithmic time by updating the
relevant lists. To handle overflows and underftows we will assume for the time being
that although n varies, [log nJ and hence p(n) remain the same. Let m be the size of
a group where an insertion has just taken place. If m > 4p(n) then break up the group
into two subgroups of size [m/2J and [m/2]. If a deletion has taken place and
m < p(n) then let m’ be the size of one of its adjacent groups (guaranteed to exist if
n is larger than some constant). If m + m’ -<_ 3p(n) then merge the two groups into one,
otherwise form two groups of size [(m+ m’)/2J and [(m+ m’)/2], respectively. In all
cases the relevant lists are reconstructed from scratch. We easily check that each new
group has its size f(p(n)) away from the two limits p(n) and 4p(n). A simple accounting
argument can then be used to prove that an insertion/deletion has an O(log n)
amortized complexity. Note that once p(n) is known the only arithmetic needed is
addition and subtraction by 1, which can be implemented in O(log n) time on an
EPM. (Or even in O(1), if we maintain a linked list from to n and pointers to the
values of the various group sizes). If now [log n increases or decreases by 1, we
simply rebuild the entire data structure from scratch, which is easily done in O(n log n)
time (or even O(n) using presorting). Note that to update the value of p(n) at each
update can be easily done in constant amortized time (on an EPM). When it is decided
that a reconstruction is needed, prior to it we replace p(n) by q(n)= [22tlg 3n)J/3J,
and always alternate back and forth between p(n) and q(n). In this way, we are
guaranteed to have O(n) updates between two consecutive reconstructions. Obviously,
everything we said earlier about p(n) applies to q(n) just as well. Since p(n) and q(n)
can be computed in O(n) time, using only additions, reconstructions still preserve the
logarithmic amortized complexity of an update.

THEOREM 2. Data structuresfor range reporting in two dimensions can be constructed
in O(n log n) time in all cases. Let k-1 be the number ofpoints to be reported, and let
e be any real > O. On a RAM, a tradeoff is possible: in particular, we can achieve (1)
O(k(log (2n/k)) +log n) query time and O(n) space; (2) O(k loglog(4n/k)+log n)
query time and O(n log log n) space; (3) O(k + log n) query time and O(n log n) space.
On an APM, it is possible to achieve a query time of O(k log (2n/k)), using O(n) space.
In the dynamic case on an EPM, it ispossible to achieve a query time ofO(k(log (2n/ k))2)
and an update time of O(log2 n) time, using O(n) space.

6. Range searching for maximum. As usual, we will make use of an M-structure,
and we will start the algorithm by computing the decomposition vectors of the query.
In general, these vectors will fail to fill whole sequences of B-fields. However, they
can be broken up into three (or fewer) blocks, one of which corresponds to a sequence
of B-fields, and the others to subparts. Discovering the identifier with maximum value
in each block will readily lead to the final answer. Let v be an arbitrary node of T. To
handle the first case, we add an M-field to each record of W(v) to indicate the
maximum value attained by the identifiers of bits in the corresponding B-field. Then
we set up a data structure M for doing one-dimensional range search for maximum
with respect to the M-fields of W(v). For the other blocks we need a data structure

M2 for computing maxval (/3, k, 1), a function that takes as input a B-field /3
Xo’"xa_ and two bit positions 0 <= k <_-1 < A, and returns the position of the bit xi
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whose identifier has maximum value among {xk, Xk+l,’’’, Xl}. We next show how to
implement M and M2 in our various models of computation.

Implementation of M.
(1) On a RAM. We use a technique of Gabow, Bentley, and Tarjan [GBT] to

reduce one-dimensional range search for maximum to the computation of
nearest common ancestors in some special tree. To begin with, we construct
a Cartesian tree with respect to the M-fields of each W(v). This tree, discovered
by Vuillemin [V], is defined as follows: pick the maximum M-field and store
it in the root of the tree. Remove this maximum from the sequence of M-fields,
and define the left (resp., right) subtree recursively with respect to the left
(resp., right) remaining subsequence. Two important facts about Cartesian
trees state that: (a) they can be built in linear time; (b) one-dimensional range
search for maximum is reducible to the computation of the nearest common
ancestor (nca) of two nodes in a Cartesian tree. Harel and Tarjan [HT] have
given an efficient method for computing nca’s. Their method allows us to
implement M in linear space and time, and obtain any answer in constant time.

(2) On an APM or an EPM. More simply, we use a complete binary tree with
each node v holding the maximum value in the range spanned by the subtree
rooted at v. This heap structure is of standard use for one-dimensional range
search, so we need not elaborate on it. Query time is O(log n) in both models.

Implementation of M2.
(1) On a RAM. We still use Cartesian trees, but in an indirect manner. The key

observation is that for our purposes Cartesian trees do not need to be labelled.
Therefore they can be represented by a canonical index over a number of
bits O(log Cartesian trees of size A). We can get a rough estimate on this
number by representing a p-node Cartesian tree as a string of matching
parentheses for internal nodes, 1 for leaves and 0 for missing leaves, as in
(((10)((01)0))((01)1)), for example. Missing leaves are the nonexistent
brothers of single children (poor things!). There are p nodes and at most p- 1
missing leaves, so 6p bits are sufficient for the encoding. Since the number of
nodes we are dealing with is quite small, we can precompute all possible
Cartesian trees and preprocess them for efficient nca computation. It will then
suffice to store a pointer from each record in W(v) to the appropriate Cartesian
tree. Let ap be the number of words required to store a p-node tree prepro-
cessed for constant time nca computation (Harel and Tarjan [HT]). Storing
all Cartesian trees of size , will thus require 43aA (R)(n6 log n) words This
is a bit too much, so we must resize the B-fields. We divide each B-field into
subwords of at most [A/7J bits each, and for each piece we keep a pointer
to its appropriate [A/7J-node Cartesian tree. This will multiply the query
time by a constant factor, but it will also bring down the space requirement
to a more acceptable O(n6/71ogn)--O(n) bound. The time to compute
maxval (/3, k, 1) is constant. But to identify the corresponding bit, we must
resort to the techniques of Lemma 2. Since there are O(log n) decomposition
vectors, we can achieve a query time of O(log+ n) with O(n) space; a query
time of O(log n log log n) with O(n log log n) space; or a query time of
O(log n) with O(n log n) space.

(2) On an APM or an EPM. We use the same technique, except for the preprocess-
ing of Cartesian trees, now no longer needed. We compute an nca naively by
examining the entire tree. This allows us to compute maxval (/3, k, l) in
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O(1og n) time. The total cost of the computation will be O(log2 n) on an APM
and O(log n) on an EPM.

In all cases (including on a RAM with constant-time nca computation), the
preprocessing can be done in linear time per level of T, that is, in a total of O(n log n)
steps. This concludes our treatment of the static case.

The dynamic case. How can we dynamize these data structures on a pointer
machine? The problem is quite similar to range counting, after all, so the proof of
Theorem can serve us as a guide. Certainly, the treatment of B-fields and the
management of the structures M1 can follow the same lines used for range counting.
Difficulties arise with M2, however. Consider the insertion or deletion of a bit in some
B-field/3. What is wrong with the following scheme? Find which subpart of/3 houses
the bit in question and follow its pointer to the appropriate Cartesian tree. Then update
the tree naively by considering each of its nodes. There are two basic problems: one
is to update a Cartesian tree without knowing the values of the keys. Another problem,
though less serious, is that these trees are shared among many pointers, so pleasing
one pointer with an update would most likely upset many others. Once again, a
functional approach will take us out of this dilemma.

Instead of a Cartesian tree, we use a dynamic one-dimensional range tree (similar
to M1); for example a 2-3 tree (Aho et al. [AHU]). Ideally, each node would store
the maximum value associated with its leaves below (Fig. 2(a)). But this is as costly
as having labelled trees, so we must seek a different solution. The key remark is that
we need not store values in the nodes, but simply bits indicating where these values
come from. These are called the direction flags of the tree. If the value at node z
originates from a leaf of its leftmost subtree, the direction flag of z is 0; if it comes
from the second subtree from the left, it is 1; else the direction flag is 2 (Fig. 2(b)).
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We can represent such a tree by means of balanced parentheses. Each leaf is a 1 and
each internal node is a pair (...) immediately followed by its direction flag. For
example, the tree of Fig. 2(b) is encoded as

(((111)1(11)0)0((11)1(11)1(111)2)2)0.

We represent each character on two bits: 0, 1, 2 as they are, "(" as 2, and ")" as 3,
for example. Note that although 2 is used for different purposes there is no source of
ambiguity, since 2 is always preceded by ")" and ")(" can never occur. Encoding and
decoding any such tree can easily be done in time linear in its size. A leaf takes up 1
character and an internal node 3, so the tree associated with a B-field of A meaningful
bits can be encoded over 8A -6 bits. Since every description starts with 10 there is no
need for a boundary delimiter if the bits are right-justified. We will therefore assign 8
additional words for each B-field.

How can we use these trees to compute maxval (/3, k, l)? To begin with, we decode
the tree T associated with ft. For (conceptual) simplicity, we might want to request
O(A) temporary storage to construct a "useful" copy of T, that is, using pointers,
one-word fields for direction flags, etc. We can now compute maxval (/3, k, l) by
performing one-dimensional range search in Tt. The canonical decomposition of [k, l]
can be computed in O(log A) operations. This reduces the investigation to O(log A)
nodes of T. For each such node, we determine the leaf from which its associated
value originates, and we identify the corresponding bit. This will take a total of
O(log A log2 n) time on an EPM.

Let us now look at insertions and deletions. We proceed as in the proof of Theorem
1. Suppose that no underflow or overflow occurs within the B-field/3. In that case, we
carry out the update in T alone. Intuitively, we can look at the tree in its entirety,
but we should to try to minimize the number of bits that must be identified since these
are the costly operations. The advantage of using a balanced tree is to limit the number
of necessary identifications to O(log A) (as opposed to O(A)). For each update, we
apply the standard insert or delete procedure for 2-3 trees. This can only upset the
direction flags of the nodes that are effectively manipulated by the update as well as
the direction flags of their ancestors. We promptly repair the damage caused to the
direction flags by identifying the bits associated with the children of each of these
nodes. This will take time O(log A log n) on an EPM.

How do we deal with overflow or underflow? Following the proof of Theorem 1,
the reconfiguration of the B-fields necessitates splitting or concatenating one or two
trees. This can be done in O(log A) steps [AHU]. Again we must ask: how many
direction flags must be recomputed ? A careful examination of the split and concatenate
procedures on a 2-3 tree shows that after each application of these operations the
number of nodes that either have been manipulated or are ancestors of nodes that
have been manipulated is at most logarithmic in the size of the tree. Since these are
the only ones whose direction flags might need updating, we conclude that the time
spent to handle underftow and overflow is asymptotically the same as the time to insert
or delete a new element.

As soon as a tree has been updated, we re-encode it as a bit vector and re-attach
the result to the relevant B-field, discarding the old tree. Once M2 has been computed,
updating M can be done in O(log n) operations on all models, assuming that it is
implemented as a dynamic one-dimensional range search tree. The procedure is similar
to the updating of C(v) in the case of range counting ( 3.2). It is also possible to
unify the treatment of M and M2 and consider a single master tree with two modes
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of representation: with pointers for M1 (the top part) and with bit vectors for M,_ (the
lower levels).

To summarize, it takes O(log2 n log log n) time to carry an update with respect
to a given node of T. Reconfiguring a subtree of T of size p can easily be done in
O(p log p) steps: play a knock-out tournament at each level of T being reconstructed.
The usual counting argument shows that the amortized cost of rebuilding T when it
goes out of balance is O(log2 n). Unfortunately this is largely dominated by the
O(log n log log n) steps incurred at the time of insertion or deletion.

THEOREM 3. The data structuresfor range searchingfor maximum in two dimensions
can be constructed in O(n log n) time in all cases. On a RAM, a tradeoff is possible: in
particular, we can achieve (1) O(log1+ n) query time and O(n) space; (2) O(log n log
log n) query time and O(n log log n) space; (3) O(log n) query time and O(n log n)
space. On an APM (resp., EPM) it is possible to achieve a query time of O(log2 n)
(resp., O(log n)), using O(n) space. In the dynamic case on an EPM, it is possible to
achieve query and update times of O(log n log log n), using O( n) space.

7. Semigroup range searching. Of course, we assume that any value in the semi-
group can be stored within one or, say, a constant number of computer words. We
modify the M-structures by providing each node v with a complete binary tree whose
leaves are associated with the B-fields of W(v). Each leaf stores the semigroup sum
of the values associated with the bits of its corresponding B-field. Similarly each
internal node stores the sum of the values stored in its descending leaves. As in the
case of range searching for maximum the algorithm computes the decomposition
vectors of the query in a first stage. As usual, these are broken up into three (or fewer)
blocks, one of which corresponds to sequences of B-fields, and the others to subparts.
The semigroup sum associated with the identifiers of the first block can be readily
obtained with two binary searches in the relevant auxiliary tree (this is a standard
one-dimensional range search). For the other blocks, one must identify each of their
bits to complete the computation, which will take a total of O(t(n) log2 n), where t(n)
is the time taken to identify one bit. We can then use Lemmas 1 and 2 to derive the
performance of the algorithms.

Executing updates is similar to the dynamic treatment of range search for
maximum, so no further elaboration is necessary. The M2-structures can be eliminated
altogether, therefore updating the data structure will require O(log n) identifications.
Note that as usual the preprocessing requires O(n log n) time.

THEOREM 4. The data structures for semigroup range searching in two dimensions
can be constructed in O(n log n) time in all cases. On a RAM, a tradeoff is possible: in
particular, we can achieve (1) O(log+ n) query time and O(n) space; (2) O(log n log
log n) query time and O(n log log n) space; (3) O(log n) query time and O(n log n)
space. On an APM it is possible to achieve a query time of O(log n), using O(n) space.
In the dynamic case on an EPM, it is possible to achieve query and update times of
O(log4 n), using O(n) space.

8. Rectangle searching: counting and reporting. Using an equivalence result of
Edelsbrunner and Overmars lEO], rectangle counting can be reduced to range counting.
The basic idea is to subtract the number of rectangles which do not intersect the query
from the total number of rectangles. Using inclusion-exclusion relations the problem
reduces to a constant number of range counting problems. We immediately derive a
result similar to Theorem 1. Note that the extra subtractions needed are inconsequential
in the asymptotic complexity of the algorithms on an EPM.
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THEOREM 5. Rectangle counting in two dimensions can be done in O( n space and
O(n log n) preprocessing time. In the static case, the query time is O(log n) on an APM.
In the dynamic case, query and update times are O(log2 n) on an EPM.

As is well known (Edelsbrunner [Ed]), rectangle reporting in two dimensions can
be reduced to three subproblems:

Range reporting. See above.
(2) Orthogonal segment intersection. Given a set of horizontal segments in the

plane and a (query) vertical segment q, report all intersections between q and
the horizontal segments.

(3) Point enclosure. Given a set of 2-ranges in the plane and a query point q,
report all the 2-ranges that contain q.

Given a set V of 2-ranges and a query rectangle q, rectangle reporting can be
performed by doing (1) range reporting with respect to the lower left corners of the
rectangles in V andthe query q, (2) orthogonal segment intersection with respect to
the bottom (resp., left) sides of the rectangles and the left (resp., bottom) side of q;
(3) point enclosure with respect to the rectangles of V and the lower left corner of q.

Multiple reports caused by singular cases can be easily avoided using extra care.
To complete our treatment of the static case, we simply observe that optimal data
structures already exist for both the orthogonal segment intersection and the point
enclosure problem (Chazelle [C1]). The size of these data structures is O(n) and their
construction takes O(n log n) time on an EPM. Queries can be answered in time
O(k / log n), where k is the size of the output. Using our previous solutions to range
reporting, we are then equipped to solve the problem at hand. The complexity is
dominated by the cost of range reporting.

To deal with the dynamic version of rectangle reporting, we use a different
approach. The previous sections involved a redesign of the range tree in linear space.
We will now undertake a similar transformation with respect to the segment tree, a
data structure due to Bentley [B1]. The idea again is to identify the functional
components of the data structure and, on that basis, re-implement it completely
differently.

The dynamic case. (1) Orthogonal segment intersection. For explanatory purposes,
we make various simplifying assumptions. To remove them is tedious but does not
affect the validity of our results. Our main assumption is that the coordinates of the
segments, including the query, are all distinct. The problem to solve can be formulated
as follows: let V be a set of n horizontal segments, each of the form (xi, xl, yi), with

Given a vertical segment q compute all intersections between q and theX X
horizontal segments.

We begin with the static version of the problem, and as a starter we introduce a
little notation. The integer is called the index of segment (xi, x, Yi). For any j
(1 _<-j =< 2n) let mi denote the unique x-coordinate of rank j among the 2n endpoints.
We are now ready to define the segment tree of V. For convenience, we use a declarative
definition, as opposed to a more standard procedural definition (Bentley and Wood
[BW]). Let T be a (4n + 1)-node complete binary tree. For i--2,..., 2n, we put the
ith leaf from the left in correspondence with both the endpoint mi and the interval
(mi-1, mi]. The leftmost leaf is in correspondence with m. Each internal node is
associated with the union of the intervals at the leaves descending from it. We label
each node v of T as follows: if v is the root, b(v) is the null string; else b(v) is the
string of O’s and l’s given by the left (0) and right (1) turns of the path from the root
to v.

Each node v is associated with a node-set L(v). The segment (xi, xl, Yi) is represen-
ted in the tree T by including the index into the node-sets of a collection of nodes
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with label-set Ci. The set of indices associated with node v constitutes L(v). Let li and
r be, respectively, the leaf corresponding to xi and the leaf immediately to the right
of the one associated with xl. Let p be the longest common prefix of b(l) and b(ri).
We can always write b(l) as a string pOa...a of l’s and O’s, and b(r) as a string
p 1 b hr. We define

Ci={pOa,... aj_,lla=O}LJ{plb,.., b_O]b= 1}.

Each interval (xi, x’i] is in this way canonically partitioned into intervals associated
with nodes of T. Where our data structures for rectangle searching, which we call
S-structures, differ from segment trees is in the encoding of node-sets. To begin with,
we construct an M-structure (EPM version) with respect to the 2n endpoints ofsegments
in V: to break ties between the y-coordinates of the endpoints of a segment, we may
agree for consistency that the left endpoint precedes its right counterpart along the
y-axis. We use T as the underlying tree of the M-structure.

Let us examine the relationship between B(v) and L(v). Recall that each bit of
B(v) is associated with a unique endpoint x or x.. In either case we say that the bit
has indexj. Without loss of generality, assume that v is the right child of node z. Then,
by construction, for each in L(v) the endpoint x is associated with a leaf descending
from z and therefore has a trace in B(z). This allows us to encode L(v) as a bit vector
A(v) of the same length as B(z). The kth bit of A(v) is 1 if and only if the index of
the kth bit of B(z) appears in L(v). In this manner for every index in L(v) there is a

unique 1 in A(v). All the other bits of A(v) are set to 0.
Recall that B(z) appears in compact form in W(z) as a list of B-fields. We

represent A(v) exactly like B(z) (A(v) and B(z) are isomorphic). Furthermore, we
add pointers between the two lists to make it possible to jump directly between any
B-field in B(z) into its associated A-field in A(v). To answer a query (x, y, y’) is now
straightforward. We perform a binary search to identify the leaf of T whose associated
interval contains x (if any). Next, we search for y and y’ in the virtual list R(z) of
each ancestor z of the leaf. Proceeding down from the root to the leaf, this can be
readily done with the M-structure. After these preliminaries, we can locate both y and
y’ in each virtual list L(v) by jumping directly from its virtual counterpart R(z) (z is
the parent of v). Let ao, aa," be the A-fields of A(v). The previous search leads to
two bits, one in a and the other in aj (i <_-j). The problem is now to identify all the
bits equal to 1 in each field of L= {ai+l, +2, ", a-}, as well as in a certain suffix
of a and prefix aj. The latter part of the computation can be accomplished in O(log2 n)
time per report with O(log n) overhead. Assuming that L is not empty, retrieving the
l’s among the fields of L is more difficult. We will say that c1 is vacuous if each of its
bits is set to 0. We cannot just examine the fields a+,. ., a_, in search of all the
l’s, since we would run the risk of visiting many vacuous fields. Instead, we link
together the nonvacuous A-fields. For each relevant bit found we can return to its
companion in B(z) in O(log n) time, and then proceed to identify it, which takes
another O(log2 n) time.

We must now dynamize this static data structure. First, we describe the data
structure and its invariants, and then we give an overview of the method used to insert
a new horizontal segment (the case of a deletion is similar, so it will be omitted). The
data structure is built from a dynamic M-structure (as in range reporting) augmented
with the A-fields defined above. Recall that for each internal node z of T, we have a

search tree C(z), whose leaves are associated with the B-fields of W(z). Let v be a

child of z; we define 3-(v) to be a tree isomorphic to C(z). The leaves of 3-(v) are in
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one-to-one correspondence with the A-fields of A(v) and, as before, these A-fields
are isomorphic to the B-fields of B(z) and connected to them via pointers. Instead of
linking together nonvacuous A-fields, it suffices to keep flags at each node of -(v)
which is the ancestor of at least one leaf corresponding to a nonvacuous A-field. With
this scheme the position of each relevant bit in the nonvacuous fields at node v can
be found in O(log n) time. As before, the identification of these bits will dominate the
query time, bringing it up to O(k log n).

How do we insert a new segment? To begin with, we take the two endpoints of
the segment and insert them in the underlying M-structure. This involves the addition
of two new leaves in T and the updating of C(v) for each node v on the path from
these leaves to the root. Note that for each such internal node and their left (v.1) and
right (v.r) children we must update 9-(v.l) and -(v.r) to maintain the invariant of
isomorphism with C(v). Of course, the update of the flags and the A-fields will be
different depending on whether v.l or v.r are nodes of the canonical decomposition
of the new segment. It is a simple exercise to show that the updating can be performed
in O(log n) time per node v. Thus updating includes checking with neighboring nodes
of the new leaves if previously inserted segments may have to undergo changes in their
canonical decomposition because of the new insertion. Deletions are symmetric to
insertions and therefore quite similar. For details on dynamic operations on segment
trees, consult Edelsbrunner [Ed] and Mehlhorn [Me].

The last part of any dynamic operation is to check whether the tree T has fallen
out of balance. If that is the case, we apply the method used for the M-structure. This
implies finding the highest node v of T that falls out of balance and reconstructing
the entire subtree below v. The key remark is that all the segments involved in the
updating must have at least one endpoint identified by a leaf descending from the
parent of v. Therefore the cost of rebuilding the structure is once again O(IHI log n),
where H is the subtree of T rooted at v. The usual counting argument shows that
O(log2 n) is an amortized upper bound on the update time.

As in the case of range reporting, we can cut down the query time to
O( k(log (2n/k))2) by dovetailing between the method above and a slab-based technique
( 5). Instead of a dynamic list one will now use a dynamic interval tree (Edelsbrunner
[Ed])--see also Mehlhorn [Me]. This data structure stores n intervals on the real axis
in linear storage, so that all k intervals containing an arbitrary query value can be
reported in O(k + log n) time. Edelsbrunner has shown, moreover, that insertions and
deletions can be executed in O(log n) amortized time. Using the technique of slabs
developed in 5 we immediately obtain a dynamic algorithm for orthogonal segment
intersection with a complexity of O(n) space, O(n log n) preprocessing time, O(log n)
update time and, for k_>-/12/3, O(k) query time.

The dynamic case. (2) Point enclosure. This section will not make use of the
compaction technique described earlier. The basic approach will be mostly borrowed
from McCreight [Mc] and Edelsbrunner [Ed]. For this reason, we will only sketch
the data structures, and refer to the aforementioned sources the reader who wishes to
reconstruct all the proofs in full detail.

McCreight [Mc] has given a dynamic algorithm for point enclosure with the
following performance: the storage needed is O(n) and the query time is O(k + log n),
where k is the size of the output. We must extend his algorithm a little, however,
because it handles only updates over a fixed universe. We assume that the reader is
familiar with the concept of a priority search tree (McCreight [Mc]). For this reason
we only briefly sketch the main features of this data structure. Given a set of n points
in the plane and a fixed line L, a priority search tree allows us to report all the points
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inside a query rectangle constrained to have one of its sides collinear with L. The
complexity of the data structure is O(n) space, O(n log n) preprocessing time and
O(k + log n) query time, where k is the number of points to be reported. Furthermore
any point can be inserted or deleted in O(log n) time.

Let V be a set of n 2-ranges in 2. Consider a vertical line L that separates the
collection of 2n vertical sides into two equal-size sets. We associate with the root of
a binary tree the set of 2-ranges that intersect L, and to create the two subtrees below
the root we iterate on this process with respect to the 2-ranges falling strictly to the
left and strictly to the right of L. This defines a binary tree T of height O(log n). The
reader familiar with Edelsbrunner [Ed] will recognize in T the interval tree of the
projection of V on the horizontal axis. For each node v of T, clip the 2-ranges associated
with v, using the dividing line at that node. This gives us a set of left ranges R(v) and
a set of right ranges Rr(v). We construct two similar structures with respect to these
collections. We restrict our description to Rl(V). Apply exactly the procedure just
described to Rl(V) with respect to the horizontal (and not the vertical) direction. This
leads to another interval tree-like structure, T/(v), whose nodes store lists of 2-ranges
that are adjacent to both a horizontal and a vertical line. Given any point, finding the
2-ranges that contain it is equivalent to domination searching (Fig. 3). This problem
involves preprocessing a set of points in the plane so that, for any query point q,
finding which of the given points are dominated by q in both x and y coordinates can
be done efficiently. But this is right up the alley of McCreight’s priority search tree
[Mc]. Putting all these simple observations together leads to a data structure of linear
size for solving point enclosure reporting in time O(k+log n), where k is the size of
the output. Note that the cubic term comes from the fact that McCreight’s structure
is called upon on the order of log n times for each level of T.

FIG. 3

Edelsbrunner [Ed] has shown that interval trees can be updated in O(log n)
amortized time. Using the fact that a priority search tree on presorted points can be
computed in linear time, we can use Edelsbrunner’s method almost verbatim and derive
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an algorithm for updating each Tl(V) and Tr(v) in O(log n) amortized time. A similar
argument applied to T leads to an overall O(log2 n) update time. We omit the details.
Putting all these results together we have a linear-size data structure for dynamic
reporting on an EPM with O(log n) update time and O(k log2 n) query time. Dovetail-
ing with the alternative algorithms will cut down this query time to the minimum of
O(k log n q-log n) and O(k+ n2/3), which gives O(k log (2n/k)+log n). Note that
a similar observation can be made in the static case. Theorem 6 summarizes our results
on rectangle reporting.

THEOREM 6. Data structures for rectangle reporting in two dimensions can be
constructed in O( n log n) time in all cases. Let k 1 be the number ofpoints to be reported,
and let e be any real > O. On a RAM, a tradeoff is possible: in particular, we can achieve
(1) O(k(log (2n/k)) +log n) query time and O(n) space; (2) O(k loglog (4n/k)+
log n) query time and O(n log log n) space; (3) O(k+log n) query time and O(n log n)
space. On an APM (resp., EPM), it ispossible to achieve a query time ofO(k log (2n/ k))
(resp., O(k(log(2n/k))2)), using O(n) space, in the dynamic case on an EPM, it is
possible to achieve a query time of O(k(log(2n/k))2+log n) and an update time of
O(log2 n) time, using O( n space.

9. Going into higher dimensions. Generalizing our result to any fixed dimension
is straightforward. For range problems we use a classical technique of Bentley [B2].
Let (x,..., xa) be a system of Cartesian coordinates in a. We build a complete
binary tree with respect to the xa-coordinates of the points. Each query range is thus
decomposed into O(log n) canonical ranges, each of which can be handled by solving
a range problem in a-1. The technique generalizes readily for the dynamic case (see
Lueker [L], Willard [W2], Willard and Lueker [WL], for example).

As regards rectangle searching, we also follow a standard technique (Edelsbrunner
and Maurer [EM]). See also Mehlhorn [Me]. The left coordinate of a d-range refers
to its smaller coordinate in dimension xa; its xa-interval denotes the interval formed
by projecting the d-range on the xa-axis. Let R be a d-range and let x be its left
coordinate. We define the left face of R to be the (d- 1)-range obtained by projecting
R on the hyperplane xa x. A d-range intersects another if and only if one intersects
the other’s left face. Since the two conditions are mutually exclusive, barring equalities
among coordinates, we can use this criterion for both reporting and counting purposes.
The data structure consists of a range tree and segment tree built respectively with
respect to the left coordinates and xa-intervals of the input. Each node has a pointer
to a (d- 1)-dimensional structure defined recursively. Once again, this generalization
is sufficiently well known to avoid further elaboration.

Note that a problem in dimension d is in this way reduced to O(loga-2 n) problems
in two dimensions. Analyzing the complexity in the nonreporting cases is straightfor-
ward. In the reporting problems considered earlier we obtained query times of the
form O(kf(n, k)+ log n), wheref(n, k) is decreasing in k and asymptotically equivalent
to f(n, 1) for k O(t13/4). TO be more accurate, the query times could be expressed as
the minimum of O(kf(n, 1)+ log n) and O(k + 1/2/3). This implies that in dimension d
the query times Q(n, k) are of the form

O(loga-2n + min (kif(n, 1) +log n, ki+ n/3)),
where <=i<__, ki--k and m= O(logd-: n). Let k=A+ B, where A=k;<n2/_ ki and
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B k,__>,2/- ki. We have

Q(n,k)=O(logd- n+Af(n, 1)+ B).

Note that A < mn:’/3. If B >-/I 3/4, then since m and f(n, 1) are at most polylogarithmic
we have Q(n, k) O(B) O(k). If now B < n3/4 we have k O(t13/4), and therefore
Q(n,k)=O(logd- n+kf(n,k)). In all cases, we have shown that Q(n, k)=
O(kf(n, k)+log-’ n).

THEOREM 7. Each of the previous data structures (Theorems 1-6) can be extended
to a (d > 2). The complexity ofthe resulting data structures can be obtained by multiplying
each expression in the complexity for two dimensions by a factor of logd-2 n. (Note" the
terms involving k remain unchanged, but an extra term loga- n must be included in the
query time).

10. Discussion. We conclude with a few remarks and open problems.
The M-structures are essentially transcripts of sorting runs. We have used mergesort

as our base sort but we could have turned to other methods as well. If we visualize
the preprocessing played backwards and rotate the point set by 90 degrees, what we
will see in action is no longer mergesort but quicksort (with median splitting). If we
use radix-sort, we will see appear the possibility of tradeoffs between space and query
time in higher dimensions, depending on the size ofthe radix. These simple observations
show that the relationship between range search and sorting is rich, indeed, and deserves
further investigation. An interesting open question is to determine whether there exist
linear-size data structures with polylogarithmic response-time for solving range search-
ing in any fixed dimension.

Our data structure for range counting in two dimensions is quite simple. It is very
fast and surprisingly economical in its use of storage. Last but not least, it can be
implemented with little effort. Unfortunately, this cannot be said of all the data
structures in this paper. Some of our upper bounds are obtained at the price of a fairly
heavy machinery. Can the algorithms be significantly simplified while keeping the same
asymptotic complexity? Can their asymptotic performance be improved?

We believe that many of our bounds for dynamic multidimensional searching can
be lowered if one has access to a more powerful machine than an EPM. For example,
what improvements can the added power of a RAM buy us?

All the data structures in this paper rely crucially on the use of bit vectors. These
have sometimes been used in previous data structures to encode sets--often as addresses
in a RAM, like in (Gabow and Tarjan [GT]). Our use of bit vectors is quite different.
The nodes of the M-structures, for example, store bit vectors that encode the history
of a computation. This scheme is a departure from previous solutions and raises
interesting questions concerning models of computation. It is evident from this work
that even seemingly minimal models such as pointer machines with only comparison
and addition can’t avoid but allow exotic encodings of the sort. Indeed, it seems that
only by placing very strong semantic limitations on the models of computation one
might manage to invalidate these data structures. Let us observe that with a few notable
exceptions (Tarjan IT], Chazelle [C2], for example) little is known on the computational
power of pointer machines. Our results suggest that these might be, indeed, more
powerful than expected.
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this manuscript.
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PARALLEL TIME O(log n) ACCEPTANCE OF DETERMINISTIC
CFLs ON AN EXCLUSIVE-WRITE P-RAM*

PHILIP N. KLEIN" AND JOHN H. REIF:I:

Abstract. We give an algorithm for accepting a deterministic context-free language on the P-RAM, an
exclusive-write, concurrent-read model of parallel computation. Whereas on inputs oflength n, a deterministic
push-down automaton will use time linear in n, our algorithm runs in time O(log n) on n processors. The
algorithm is easily generalized to permit parallel simulation of any deterministic auxiliary pushdown
automaton that uses space s(n)=>log n and time 2 <n)). The simulation runs in time O(s(n)) on 2
processors, and is nearly optimal, since we observe that any language accepted by a P-RAM in time T(n)
is accepted by a deterministic auxiliary pushdown automaton in space T(n) and time 2

Key words, parallel algorithms, parallel computation, formal language theory, context-free language
recognition

AMS(MOS) subject classification. 68Q20

1. Introduction. In this paper, we address the parallel complexity of parsing. The
study of algorithms for parsing has a long history (see, e.g., [4]), but it is only fairly
recently that parallel algorithms for parsing began to be investigated. Previous papers
([8], [10]) have contained parallel algorithms for recognition of general context-free
languages. We give a faster parallel algorithm for recognition of deterministic context-
free languages on an exclusive-write model of parallel computation. An algorithm for
parsing such languages may be readily derived from our algorithm.

Parsing of deterministic context-free languages arises in program compilation.
Deterministic context-free languages can be used to capture the syntax of many of the
commonly used programming languages. The LR(k) grammars of [7], for example,
generate exactly the deterministic context-free languages, so our algorithm may be
applied to the parsing of programming languages generated by such grammars.

The deterministic context-free languages are exactly those accepted by determinis-
tic pushdown automata, so our algorithm can effectively simulate any deterministic
pushdown automaton. More generally, our algorithm can be used to simulate a
deterministic auxiliary pushdown automaton, i.e., a deterministic pushdown automaton
with a bounded worktape.

The model of parallel computation we use in this paper is the concurrent-read,
exclusive-write P-RAM. The P-RAM is a parallel random access machine model defined
by Fortune and Wyllie in [3]. It consists of a collection of synchronous deterministic
unit-cost RAMs with shared memory locations indexed by the natural numbers. The
P-RAM disallows concurrent writes. That is, no two processors can attempt to write
into the same memory location on the same step. Concurrent reads, however, are
permitted. During each step, any memory location may be read simultaneously by any
number of processors.
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Previously Fortune and Wyllie showed that any language accepted by a determinis-
tic Turing machine with space bound s(n)>=log n is accepted in time O(s(n)) by a
P-RAM. Also, Ruzzo showed in [10] that any language accepted by a nondeterministic
auxiliary pushdown machine with space s(n)>= log n and time 2 sCn)) can be accepted
in time O(s(n)’) by an apparently weaker parallel machine model, the uniform circuit
family. In particular, he gave a parallel algorithm for recognition of general context-free
languages that requires O(log2 n) time and /,/6 processors on a uniform circuit family.
Although Ruzzo’s algorithm requires only O(log n) time on a more powerful parallel
model in which concurrent writes are permitted, there seems no way to take advantage
of the more limited power of the exclusive-write P-RAM to achieve O(log n) time for
recognition of an arbitrary context-free language.

Our contribution is to show that, if a context-free language is in fact deterministic,
then O(log n) time recognition is indeed possible on a P-RAM. We give a very simple
algorithm to solve this problemmso simple, it might be practical to implement. Its
proof, however, is rather complicated. This is perhaps understandable in view of the
fact that our result implies Cook’s result [2] that a deterministic context-free language
can be recognized in O(log2 n) space and polynomial time on a Turing machine. We
also show as a corollary to our main result that a P-RAM can simulate a deterministic
s(n) space-bounded, 2n)) time-bounded auxiliary pushdown automaton in parallel
time O(s(n)) with 2 (s(")) processors.

One further difference between Ruzzo’s algorithm and ours may be of greater
practical significance: the processor bounds. Ruzzo’s algorithm for context-free
language recognition seems to require rt

6 processors to achieve O(log2 n) parallel time
on a uniform circuit family. However, if the language is deterministic context-free, our
algorithm can recognize it in O(log n) time on only n processors of a P-RAM.
Moreover, our algorithm can be modified [6] to run on only n log n processors (but
in O(log n) time).

The form of the paper is as follows" in 2, we describe a well-known parallel
algorithm for simulating a deterministic space-bounded Turing machine; the algorithm
and its proof serve to prepare the ground for our algorithm for simulating a deterministic
push-down automaton (DPDA). In 3, we describe some assumptions we make of
the simulated DPDA in order to simplify the presentation of the algorithm. In 4, we
introduce the notion of a surface configuration, and define some notation that will be
useful in the algorithm’s proof of correctness. In 5, we present the parallel algorithm
itself, and in 6, we explain the algorithm and prove its correctness. In 7, we remark
on improving the processor bound of our algorithm. In 8, we observe that the P-RAM
algorithm may be generalized to simulate any deterministic auxiliary pushdown
automaton. Finally, in 9, we observe that our simulation of 8 is almost optimal,
since there is a comparable simulation of P-RAMs by deterministic auxiliary pushdown
automata.

2. Simulating a deterministic space-bounded Turing machine. To motivate the
algorithm for simulating a deterministic pushdown automaton, we first discuss the
algorithm for a simpler related case, in which the simulated automaton does not possess
a stack. A careful reading of the proof of correctness for this latter algorithm will aid
the reader in understanding the proof of correctness for the former algorithm.

Let M be an S(n) space-bounded deterministic Turing machine, where S(n)=
12(log n). We may assume that M is T(n) time-bounded, where T(n)=2s)). We
give an algorithm for simulating M that takes O(log T(n)) time on 2 (s(")) processors
of a P-RAM. This is a well-known simulation due to Fortune and Wyllie [3].
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We will call an encoding of the Turing machine’s finite state, worktape contents,
and tape head positions a configuration. Let ,o denote the set of configurations of the
Turing machine on input to. It is easy to see that the number of configurations ],o1 is
2(s(n. Let Co, Caccept ,o be the initial and accepting configurations. Let -c o ,o
be the next move relation, and let / and -* be its transitive and reflexive-transitive
closures, respectively. For any nonnegative integer i, let i be the /-fold composition
of (reachability in exactly steps). We assume that there is no next move from the
unique accepting configuration Caccept.

We shall simulate the Turing machine M in O(log T(n)) steps, using one processor
for each configuration. The algorithm consists of [log2 T(n)] + 1 stages. At each stage,
every processor inspects the values of a constant number of memory locations (each
containing a configuration) and stores a configuration into another memory location.
The memory is represented by a collection of arrays FARk (k 0, 1, , [log2 T(n) ])
of configurations, indexed by configurations. The kth stage of the algorithm (k=
O, 1,..., [log T(n)])computes, for each configuration c, the configuration FARk[C]
such that c2kFARk[C]. (If there is no configuration 2k steps from c, then FARk[C] is
the configuration that is as many steps from c as possible.) After the last stage, we
can examine the configuration c’= FARrogT-(nl[Co to determine if c’= Caccept. If in fact
c’ is the accepting configuration, we may conclude that the automaton M accepted its
input. Conversely, if M eventually enters the accepting configuration Caccept when
started in the initial configuration Co, then it does so in at most T(n) steps. Hence
FARk[Co] Caccept.

The algorithm for computing FARk[C] for each configuration c and each k
0, 1,..., [log2 T(n)] is as follows:

ALGORITHM: TM-SIM(M).
Input" a string to E"
Output: YES if M accepts to, NO otherwise.
1 To initialize (stage 0),
2 for all configurations c in parallel,

c’ if c-c’,
3 set FARo[ c] :=

c else.

4 For each subsequent stage k+ 1 (k 0, 1,
5 for all configurations c in parallel,
6 set FARk+I[C] := FARk[FARk[C]].
7 Finally, output YES if FARk[Co] Caccept,
8 NO otherwise.

[log2 T(n) ]),

Intuitively, the algorithm works by composing two computations of length 2k to get
a single computation of length 2k+l. Figure 1 illustrates this process.

FAR2

x FARo[x FAR1[x FAR2[x

FIG. 1. Three stages of the Turing machine simulation.
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The proof of correctness is a simple induction; we give it in detail in order to
prepare the ground for similar proofs that are to come.

DEFINITION. Let c be a configuration, and suppose another configuration c’
reachable from c is either

at least 2k steps from c, or
the last configuration reachable from c.

Then we say that c’ is k-far from c.
THEOREM 1. For each configuration e, for each k =0, 1,. ., [log2 T(n) ], FARk[e]

is k-far from c (correctness of FARk).
Proof of Theorem 1 by induction on k. The basis k 0 is easy to check. Suppose

the theorem holds for k, and let c be any configuration. In line 6, the algorithm sets
FARk+I[C] FARk[FARk[C]]. Let c’= FARk[C], so FARk+I[c] FARk[C’]. By the
induction hypothesis, c’ is k-far from c and FARk[’] is k-far from c’. We have
immediately that c-*c’ and c’-*FARk[c’], hence ct-*FARk[C’].

If c’ is the last configuration reachable from c, then FARk[c’] c’, so FARk[C’]
is also the last configuration reachable from c. In this case, certainly FARk[C’] is
(k+ 1)-far from c, and we are done. Therefore, assume that FARk[C’] is not the last
configuration reachable from c. It follows that FARk[’] is also not the last configuration
reachable from c’.

Because c’ is k-far from c (but not the last configuration reachable from c), we
must conclude that c’ is .at least 2k steps from c. Similarly, FARk[ c’] is at least 2k steps
from c’, so FARk[c’] is at least 2k+ 2k= 2k+l steps from c, and we are done.

3. A normal form for deterministic pushdown automata. This section defines a
normal form for deterministic pushdown automata, and proves that every deterministic
context-free language is accepted by some pushdown automaton in normal form. In

5, we will give an algorithm for simulating any pushdown automaton in normal form.
Throughout this paper, we will denote the length of a string s by Isl, and the empty
string by e. We denote the concatenation of strings s and s2 by s s2. A prefix of a
string s is an initial substring of s.

We say a deterministic pushdown automaton is in normal form if it satisfies the
following assumptions:

Assumptions.
(1) All pushes and advances of the input head occur together; a step of M involves

a push if and only if the head advances on that step.
(2) M accepts by a unique final state, and M has no move from a configuration

with a final state.
(3) The only stack operations are to push one symbol or to erase the top element

(pop).
(4) Whether M’s move from a configuration involves a push or pop does not

depend on the current stack contents; it depends only on the current state and the
input symbol currently being scanned.

(5) If M’s move from a configuration does not involve a pop, then the new state
also does not depend on the stack contents.

(6) M’s initial configuration has an empty stack.
There is an apparent paradox. Let c be any configuration of M with a nonempty

stack, and let c’ be the corresponding configuration with an empty stack (i.e., same
state, same input head position). By our assumption (4), if M’s move from c involves
a pop, then M’s move from c’ involves a pop--but c’ has an empty stack, so a pop is
impossible! We resolve this conflict by requiring that if M’s move from c involves a
pop, then M has no move from c’, and we say that M is stuck at c’. Intuitively, M
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"tried" to pop at c’, but discovered that its stack was empty, forcing M to freeze. This
situation will arise in our algorithm to simulate M.

Note that assumption ensures that the stack height never grows by more than
n, the size of the input.

The following lemma ensures that we can make the above assumptions of M
without loss of generality.

LEMMA 1. For any deterministic context-free language L, there is a deterministic
pushdown automaton M satisfying assumptions (1), (2), (3), (4), (5), and (6) that accepts
the language L$ L$ { w$ w L}, where $ is a special symbol).

Proof For any DCFL L, there is an LR(O) grammar G generating L$. Construct
a DPDA M1 that accepts L$ as described in Theorem 10.10 of [5]; the automaton M1
is a shift-reduce parser for L$, and can be constructed so as to push a single symbol
onto the stack for each input symbol it consumes--and never push otherwise. Thus
M satisfies assumption (1). Moreover, M is constructed so as to pop at most one
symbol from the stack in a single move. Also, M can be made to accept by a unique
final state, and we can easily ensure that M has no transitions from its final state.
Thus M satisfies assumption (2). Next, construct a DPDA M2 that simulates M1 but
keeps the top symbol of M’s stack in its finite control. The DPDA M2 need never
look at its stack except to update the stored stack symbol in the event that it pops.
Thus M2 satisfies assumptions (3), (4), and (5). Because the initial configuration of
MI had a stack of one symbol, and Me stores one stack symbol in its finite control,
the initial configuration of M2 has an empty stack. Thus M2 satisfies assumption (6).

4. Surface configurations. The technique of 2 could be directly applied to the
simulation of deterministic pushdown automata. A configuration of a pushdown
automaton includes the contents of its stack, however, and the stack may be n symbols
high. This means that the number of configurations of a PDA could be exponential.
Recall that in the algorithm of 2, there is a processor for each configuration. In order
to obtain even a subexponential processor bound for simulating a PDA, let alone a
polynomial bound, we must therefore take a somewhat different approach. The question
therefore arises" can we do without stack information? Surprisingly, the answer is yes.
Through a more sophisticated approach to computing the FARk values, we can in fact
make do with impoverished configurations that contain only stack height information,
rather than the entire stack contents. The reason for this is the limited way in which
a pushdown automaton accesses its stack. Suppose that our pushdown automaton
enters the configuration c at some point during its computation, and consider the
subcomputation starting from c and continuing until the stack height first goes below
its height at c. We can simulate this subcomputation without knowing the stack at c,
and we need only keep track of those stack symbols in excess of the stack at c to carry
out this simulation. (We call c the base of the subcomputation.) Note, moreover, that
we can apply the same technique to the subcomputation. By repeatedly applying this
technique to simulate subcomputations, we can simulate the entire computation in
such a way that we never need to associate with a given configuration more than one
symbol of its stack. Our algorithm is in fact a dynamic-programming approach to
carrying out such a simulation.

Our algorithm manipulates surface configurations instead of full configurations.
A surface configuration is like a full configuration, but lacks information about stack
contents.

Let M be a deterministic pushdown automaton in normal form with input alphabet, state set Q, and stack alphabet F. Fix an input to1 ton Z n. For our purposes, a
surface configuration x will include M’s current state q(x) Q, the current position



468 P.N. KLEIN AND J. H. REIF

of the input head p(x) {1,..., n/ 1}, and a stack height parameter h(x), a value
between 0 and n. (By assumptions (1) and (6), the stack of M never exceeds n in
height.) Let Xn Q {1,. ., n / 1} {0,. -, n} be the set of surface configurations
associated with an input of length n. The number of such surface configurations is
Ql(n + 1)2, which is O(n2) for a fixed pushdown automaton. A full configuration is
obtained from a surface configuration by appending the stack contents. For s F*, the
pair (x, s) represents the configuration of M when it is in state q(x), with input head
position p(x), and stack s (where the last symbol of s is the top of the stack).

We let denote the next-move relation: (x, s)-(x’, s’) holds if M moves from state
q(x) with input head position p(x) and stack s to state q(x’) with input head position
p(x’) and stack s’, and the following technical condition is satisfied:

(1) h(x’)- h(x) I ’l-lsi.

Condition (1) guarantees that changes in the stack height parameter h(-) reflect
changes in stack height. Note that we do not require of a configuration (x, s) that h(x)
be the actual height of the stack s. Indeed, in simulating the subcomputations out of
which we shall construct the full computation, we find it useful to associate with a
single surface configuration x a (possibly) different stack for each subcomputation in
which x occurs. For example, suppose (x, s) is the base of a subcomputation in our
simulation, it suffices to carry out the simulation of the subcomputation from the
configuration (x, e). Condition 1 is a compromise that allows us this flexibility, while
still enabling us to track the stack height over the course of a single subcomputation.

By a simple induction, we obtain:
LEMMA 2 (Stack Height Lemma). For any x, x’ X and s, s’ F*, /f

(x, s)t--* (x’, s’) then Is’ -Is] h(x’)- h(x). 1-1
Because the input head is one-way, we have

(2) if (x, s)>-* (y, s’) then p(y) >- p(x).

Because we assumed that each push is accompanied by an advance of the input head
(assumption (1)), we have

(3) if(x, s)-*(y, s’) and Is’] > Is], thenp(y) >p(x).

One might well ask: given that surface configurations lack stack contents informa-
tion, what use are they? We would like to define a next-move relation, analogous to, between surface configurations, but without the addition of stack contents, such a
relation would not be well defined. However, there is a way to finesse this difficulty.
We will define a separate next-move relation -u for each surface configuration u.
Before defining this notation, we must prove a lemma which ensures its well definedness.

LEMMA 3 (Uniqueness Lemma). If(u, s)*(x, s) and (u, s)-*(x, s2) thens s2
(i.e., Sl is uniquely determined by u, s, and x).

Proof Either (x, sl) -* (x, s2) or (x, s2) -* (x, Sl). Suppose without loss ofgenerality
that (x, s)* (x, s2). Bythe Stack Height Lemma, ist isz]. If any intermediate configur-
ation (y, s3) had ls31> ISll then, by (2) and (3), we would have p(x)>=p(y)> p(x), a
contradiction. Similarly ls31 < Is,I leads to a contradiction. Hence Is31 Isll, i.e., every
intermediate configuration has stack height equal to ]sl. But since M never changes
the stack without pushing or popping, we may conclude sl s2. 1-1
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DEFINITION. For any surface configuration u, we define the relation -, on surface
configurations as follows:

x-,y if for some s, s’ F*, (u, e)*(x, s)-(y, s’).

By the Uniqueness Lemma, u and x together determine s; similarly, u and y
determine s’. Thus when we write x r--,y, the stack contents associated with x and y
are implicit. We call u the base of the computation x-.y, and say that, relative to the
base u, M moves from x to y. The relations ,*, ,+, and t--, for i_-> 0 are defined
analogously.

Intuitively, x*y is an assertion that there is a computation passing through u,
x, and y, in that order, in which the stack height never goes below the stack height
at u.

We illustrate a possible computation x-*y in Fig. 2. This diagram charts the
changes in stack height of the automaton M as it proceeds through the computation
from (u, e) to (x, s) to (y, s’). We use such diagrams throughout this paper. They may
be viewed as plots of stack height versus number of steps taken, with the base appearing
as the origin in the bottom left corner of the diagram. Figures 2 and 3 also show the
stack contents associated with the labelled surface configurations.

For any surface configuration u, we define the predicate LAST,(. on surface
configurations as follows"

LAST,(x) holds if[ u-* x but there is no surface configuration, y satisfying x,y.
That is, LAST,(x) holds if x is the last surface configuration reachable from (u, e).

Remarks.
(1) x-* y means simply that (x, e) -* (y, s) for some s (determined, of course,

by x and y).
(2) xt--,y implies that h(x)>-h(u) (by the Stack Height Lemma, since

( u, e t--* (x, s) for some s). Similarly, h (y) _>- h (u).

Y

FIG. 2. x-y.

FIG. 3. x-vy implies x-,,y.
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(3) Suppose that (u, e)-*(v, s). Then, as illustrated in Fig. 3, we have that xy
implies x-uy as follows (note the change in base): x-y means that (v, e)-*
(x, s’)-(y, s") for some s’, s" F*. But then, by the definition of a pushdown automaton,
(v, s)-*(x, s s’)-(y, s s"). By combining the computations (u, e)*(v, s) and
(v, s)-*(x, s s’)-(y, s s"), we obtain (u, e)-*(x, s s’)(y, s s"), which is to say
xuy.

We strengthen and generalize these remarks in the following lemma and its
corollary.

LEMMA 4 (Stack Lemma). Suppose u-* v and v-* x. Then for any surface
configuration y and nonnegative integer a, x - y if and only if

x-y, and
h (w) h (v) for each w such that x -* w - y.

Proof The only-if direction is a straightforward application of the definitions and
the Stack Height Lemma. The argument follows the reasoning of remarks (2) and (3)
above. The if direction is proved by induction on a. The case a 0 is trivial. Assume
that x-y-uz, so x-+1 z, and that h(w)>=h(v) for each w such that x* w-* y.

By the induction hypothesis, we have x- y. We need only show that yz follows
from y -z. We know that for some stack Sy, (v, e)* (y, Sy), and that for some stack
s, (u, e)*(v, s). Hence (u,e)*(v,s)*(y, SoSy) by definition of a pushdown
automaton.

Now, y-uz means that (y, s Sy)-(z, s’). Recall that our pushdown automaton
M never looks at its stack unless it is about to pop a symbol. Moreover, even if M is
about to pop, it only looks at the top symbol of its stack. Thus the configurations
(y, s Sy) and (y, sy) look the same to M unless M is about to pop and sy e.

It follows that either (y, Sy)-(z, s") for some stack s", or M’s move from (y, s sy)
is a pop and sy e. In the first case, y-z, and we are done. In the second case,
h(z) < h(y) (because the move from y to z involves a pop), and h(y)= h(v) (because
(v, e)*(y, e)). We must conclude that h(z)< h(v), which is a contradiction. [-I

COROLLARY. Suppose u-*v--* x and x-* y. Then the surface configurations
making up the computation x-* y are exactly the surface configurations making up the
computation x-* Formally, any w satisfying x-*y. w -* y also satisfies x - * w -* y.

Proof Suppose w satisfies x -f w -* y. By the Stack Lemma, since x -* y, we have
h( w’) >- h( v) for every w’ such that x-*w’*y. This includes all w’ such that
x - * w’- * w, so we have x -* w by the if direction of the Stack Lemma. We can similarly
obtain w -* * *y, so x- w-y, and we are done. E]

5. An algorithm for simulating a deterministic PDA. In this section, we give the
algorithm for simulating a deterministic pushdown automaton M that is in normal form.

Let M be a deterministic pushdown automaton in normal form with input alphabet, state set Q, start state qo, accepting state qaccept, and stack alphabet F. Let Xo be the
surface configuration with q(xo)=qo, p(xo)--1, and h(xo)=0. Thus (xo, e) is the
starting configuration. Let Xn Q {1, , n + 1} {0, , n} be the set of surface
configurations for an input of length n.

Let T(n)= 2[Ql(n + 1). We claim that if M accepts an input of length n, it does
so in at most T(n) steps. The automaton M cannot go more than QI steps without
pushing, popping, or looping. Moreover, M cannot push more than n times, because
each push is accompanied by an advance of the input head. Finally, M cannot pop
more times than it pushes, so the claim follows.

Our algorithm will simulate T(n) steps of M in [log T(n)] + 1 O(log n) stages.
It makes use of the arrays FAR, HOP, and LOW for k--0, 1,. -, [log T(n)].
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In direct analogy with the algorithm of 2 for simulating an arbitrary deterministic
automaton, the algorithm for simulating a pushdown automaton consists of stages
k 0, 1, , [log2 T(n) ]. At stage k, for each surface configuration x, the array element
FARk[X] is a surface configuration such that xt-* FAR,[x]. After stage [log T(n)],
in lines 21-22 the algorithm inspects FARIIog -(n)-i[Xo] and determines whether it is an
accepting configuration. If so, the algorithm concludes that the pushdown automaton
M accepts its input, and outputs YES. Otherwise, it outputs NO.

ALGORITHM: DPDA-SIM(M).
Input: a string w
Output: YES if M accepts w, NO otherwise.

1 To initialize (stage 0),
2 for all surface configurations x X, in parallel,

set FARo[x] := { xy if (x, e)t-(y, or),
if LASZ, (x),

set HOPo[x := { xFAR[x if h(FARo[x])= h(x),
else.

Note that h(x) <- h(FARo[x]) <- h(x) + 1.

for all x, y X, such that h(x) h(y) <-_ h(FARo[x]) in parallel,
if M is stuck at (x, e) then set LOWo[x, y]:= x
else let cr satisfy (x, e)t-(FARo[x],

or if h(y)= h(FARo[x])
and let s

e if h(y) < h(FARo[x])
9
10

If M is stuck at (y, s) then set LOWo[x, y]:=y
else let z, s’ satisfy (y, s)t-(z, s’)

11
f

set LOWo[x, y] :=
Y

ifh(z)<=h(y),
else.

(See Figs. 4 and 5 for examples.)

11
12
13
14

15

For each subsequent stage k + (k 0, 1, , [log2 T(n) ]),
for all configurations x X, in parallel,

let denote LOWk[x, FARk[x]]
set FAR+[x]:= FAR[2].

ifh()=h(x),
set HOPk+[x] :=

HOPk[x] else

16 For all x, y X,,

FARo[x y

FIG. 4. LOWo[x y] z in case h(z) <-- h(y).

FARo[x z

FIG. 5. LOWo[x y] y in case h(z) > h(y).
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17
18

19

20

21
22

let LHLk+[x, y] denote LOWk[X, HOPk+[LOWk[X, y]]]
For all x, y e X, such that h(x)<= h(y)<= h(FARk+[x]) in parallel,

LHLk+[x, y] if h(y)<- h(),
set LOW,+[x,y]:= LHLk+[x, z] if h(y)> h() and h(z)= h(),

z else

where z LHLk+[:, y].
Finally, output YES if q(FARrog T(,)I[Xo]) qaccept
NO otherwise.

Note that in lines 5-10 and lines 18-20, not all locations in the arrays LOWk are
assigned values. Specifically, LOWk[X, y] is only assigned a value if h(x)<= h(y)<=
h(FARk[X]). The other locations in these arrays need not be assigned values, as they
have no effect on the eventual output.

6. Proof of correctness of the algorithm. We now proceed to explain and prove
the algorithm.

There are two fundamental ideas that make the algorithm work. One idea we have
already seen in action: that of composing two computations to obtain a computation
of twice the length. This was the fundamental idea in the algorithm of 2 for simulating
a deterministic automaton, and it recurs several times in the algorithm for simulating
a pushdown automaton. It is by no means a new idea; it has played a role in many
proofs, e.g., that of Savitch’s theorem. The second idea, introduced in 4, is that of
considering computations between surface configurations relative to a base surface
configuration.

To show that the algorithm is correct, we prove that the arrays FARk, HOPk, and
LOW satisfy certain correctness conditions for k =0, 1,.--, I-log2 T(n)]. Then the
correctness ofthe algorithm will follow from the fact that the array FAR,log Tn) satisfies
its. correctness condition. The proof is by induction on k: assuming that FAR, HOP,
and LOW satisfy their correctness conditions, we show that FARk+, HOP+, and
LOWk+ satisfy their correctness conditions. The algorithm and proof also make use
at each stage k of a temporary array, LHLk+. The complicated dependencies in the
algorithm are reflected in a complicated proof. To aid the reader in following the
proof, we provide in Fig. 6 a diagram illustrating the dependencies between the
correctness conditions for the various arrays.

DEFrroN. Let x be a surface configuration. We say that another surface
configuration y reachable from (x, e) is k-far from x if

either y is at least 2k steps from (x, e) (i.e., x- y for some > 2)
or y is the last surface configuration reachable from (x, e) (i.e., LASTs(y) holds).

The correctness condition for FAR is:

for all x X,,, FARk[X] is k-far from x.

The essential idea in computing FARk+ from FARk is combining two k-far
computations to obtain a (k + 1 )- far computation. There is a subtlety involved, however.
Suppose that, as illustrated in Fig. 7, x, y and LASTy(z), but z is fewer than 2k

steps from y. It happens in this case that y is k-far from x and z is k-far from y, but
z is not k-far from x. The reason that LASTy(z) holds is that the computation from
(y, e) reached the configuration (z, e), from which the next move involved popping a
symbol from the stack. The stack is empty, however---there is nothing to pop! As
pointed out in 3, the pushdown automaton M is stuck at. such a configuration. We
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FARk

LHLk

LOW

LHLk+

LOWk+t

FIG. 6. Dependencies between correctness conditions for the arrays.

2 steps 2 steps

FIG. 7. y is k-far from x, and z is k-far from y, but z is not k + 1)-far from x.

see that from the perspective of the base y, the surface configuration z is an impassable
barrier. Viewed from the perspective of the base x, however, z is not a barrier. When
the automaton M starts at (x, e) it arrives at z with a nonempty stack, it can then pop
a symbol without any fuss, and continue with the computation. Thus z is a discriminat-
ing barrier. It obstructs the computation from (y, e) but permits the computation from
(x, e) to continue unimpeded.

Such discriminating barriers can only arise when the pushdown automaton M
has a disposition to pop a symbol but is prevented from doing so by an empty stack.
This is the idea underlying the following lemma.

LEMMA 5 (Barrier Lemma). Suppose x*y and y*y z. If LASTy(z) but not

LASTx(z) then h(z)= h(y).
Proof. Since x* z and not LASTx(z), there is a surface configuration v such that

* (so h(z) >h(y)) but not zzv, by the Stack Lemma we obtainzwxv. Since yy Z

h(v) < h(y). But stack height can change by at most one in a single move, so h(v)>=
h(z)-l. It follows that h(z)<=h(v)+l<=h(y). We must conclude that h(z)=
h(y). 51

The Barrier Lemma enables us to render barriers innocuous, by a careful choice
of the surface configuration y.
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DEFINIrION. Let x, x’, y e Xn. We say that y is k-low from x’ with respect to the
base x if

1. x’*y, and
+

X2. for any w satisfying y -x w, if x w for some _-< 2 k, then h (w) > h (y).
We may at times leave the base unspecified if it is clear from the context which base
is intended.

Figure 8 depicts a computation in which y is k-low from x’ with respect to x. The
intuition is that the stack height of y is as low as is possible within 2k steps of x’.
Note, however, that y may in fact be 2k or more steps from x’, in which case (2) is
trivially satisfied. Note, moreover, that (2) is again trivially satisfied if y is the last
surface configuration reachable from x. For example, in Fig. 9, the automaton M is
stuck at (y, e), so y is k-low from x’ with respect to x.

The following lemma will show how we can achieve our aim of combining two
k-far computations to obtain a computation that is (k + 1)-far.

LEMMA 6 (Correctness of FAR,+l). Suppose that for the surface configuration x,
(1) FARk x is k-far from x;
(2)) is k-low from FARk[x] with respect to x;
(3) FARI,[2] is k-far from .
As in line 14 of the algorithm, let FAR+[x]= FARk[]. Then FARk+[x] is

k + 1 -far from x. See Fig. 10.)

2 steps

FG. 8. y is k-low fi’om x’ with respect to x.

FIG. 9. y is k-low from x’ with respect to x because M is stuck at (y, e ).

FAR,[x]
FAR,[]

Fc;. 10. x-* FARk[x]--- FAR<[] FAR.+,[x].
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Proof It follows from (2) by definition that x-2. It follows from (3) that
FAR,[], so -FARk[] FAR,+[x] by the Stack Lemma. Combining these

two computations yields x FARg.+[x].
Now if both the computations x* FAR[x] and .- FAR,[] are at least 2

steps in length, then certainly the computation x-* FAR[] is at least 2k+ steps, and
hence FAR,[] is (k+ 1)-far from x. Therefore, we can assume that one of these
computations is fewer than 2

g
steps in length.

If the computation x FARg[x] is fewer than 2 steps in length, then by (1) it
must be that LASTx(FARk[x]) holds. That is, FAR,Ix] is the last surface configuration
reachable from (x, e). But and FARk[] are also reachable from (x, e), so it must
be that .= FARg[]= FARk[X]. Then LASTx(FARg[]), so FARk[] is (k+ 1)-far
from x.

Now assume that the computation x-* FARg[x] is at least 2k steps in length, and
the computation *FARk[] is fewer than 2

g
steps. By (3), it must be that

LAST(FAR[]) holds. If in addition .LAST(FAR,[]) holds, then FARk[] is
(k + 1)-far from x, and we are done. If LAST(FARI,[]) does not hold, then FAR,[:]
must be a barrier. Bythe Barrier Lemma, h(FAR,[]) h(). But then, by (2), FARt,[]
must be more than 2

g
steps from FAR,Ix], hence more than 2k+ steps from x, and

we are done.
Lemma 6 shows that if we can compute a k-low surface configuration . for each

surface configuration x at each stage k, we can then compute the FARk+ values and
thereby carry out the DPDA simulation. The remaining problem, then, is to compute. We find it necessary to solve a more general problem in order to make possible the
computation of a new value of at each stage. We first introduce yet another new term.

DEFINITION. We say that y is k-valid with respect to x if
FAR,[x]-*y, and
For each w satisfying FARI,[x]-* w-*y, we have h(w)>= h(y).

That is, as Fig. 11 illustrates, there is a computation from FAR,[x] to y, and no
configuration in this computation has stack height below that at y.

FARk x

FIG. 11. y is k-valid with respect to x

The point of this definition is that if y is k-valid with respect to x, then the stack
at y is a prefixof the stack at each previous configuration, all the way back to FAR,[x].
In the course of the computation from FAR,[x] to y, the stack height never went
below its height at y, and so the pushdown automaton M never had an opportunity
to modify these lowest symbols of the stack. This is a consequence of our assumption
that the automaton M does not change the top element of the stack.

Recall that we represent a stack as a string with the top element of the stack being the last symbol of
the string.
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The choice of the term "k-valid" is motivated by the following: for any surface
configuration x, the y’s that are "valid" second indices in LOWk[X,-] are those y’s
that are k-valid; if y is not k-valid, then LOWk[X, y] is meaningless.

The following lemma shows that k-validity is preserved under computations
starting and ending with empty stacks.

LEMMA 7. Ify is k-valid with respect to x, and (y, e)*(y’, e), then y’ is also k-valid
with respect to x.

This is most easily seen by inspecting Fig. 12 and applying the definitions. A
rather detailed proof follows:

Proof By definition of k-validity, FARk[X]*y and for any w such that
FARk[x * w*y, w satisfies h (w) >_- h (y). We have that (y, e) v-* (y’, e), so by the
Stack Lemma:

(a) y-*y’, and
(b) h(w)>-h(y) for each w such that y*w-*y’.
By combining the computations FARk[X]*y and y*y’, we obtain

FARk[y]*y’. Now suppose w satisfies FARk[y]-*w*xy’. There are two
possibilities: either FARk[y]w*xy or y*wy’. In the first case, h(w)_h(y)
by the k-validity of y. In the second case, h(w)>-_ h(y) by (b). In either case, since
h(y’)=h(y) by the Stack Height Lemma, we have h( w) >-_ h(y’), so we may conclude
that y’ is k-valid with respect to x.

To make it possible to compute for each x e X,, we compute a surface configur-
ation LOWk[X, y] for pairs x, y X,. We will inductively prove the following correctness
condition for LOWk

For all x, y X,,
if (?) y is k-valid with respect to x,
then LOWg[x, y] is

(A) k-valid with respect to x, and
(B) k-low from y with respect to x.

This means that if (f) holds, then, as Fig. 13 illustrates, LOWk[X, y] has stack height
so low that (A) there is no configuration between FARk[X] and y having stack height

FIG. 12. Ify is k-valid with respect to x and (y, e)r--*(y’, e), then y’ is also k-valid with respect to x.

k steps

FIG. 13. LOWk[x, y] is k-valid and k.low from y with respect to x.
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lower, and (B) there is no configuration after LOWk[X, y] and within 2k steps of y
having stack height even as low as that at LOWk[X, y].

In particular, consider LOWk[X, FARk[X]]. Noting that FARk[X] itself is certainly
k-valid with respect to x, we see that LOWk[X, FARk[x]] is k-low from FARk[X] with
respect to x. This condition is exactly what Lemma 6 requires of 9, suggesting that we
let 9 be LOWk[X, FARk[X]]. This is, in fact, how 9 is obtained, as the reader can check
by inspecting line 13 of the algorithm. As a consequence, it turns out that 9 is k-valid
in addition to being k-low from FARk[X]. In what follows, as a notational convenience,
we assume for all x Xn that : denotes a surface configuration such that

(I) x -*x FARk[X]* ;
(II)) is k-valid and k-low from FARk[X] with respect to x;

(III) FAgk+l[x] FARk[2].
Note that a consequence of (I) is that 9- FARk[].

LEMMA 8. Any w Xn satisfying FARk[X]-*x w-* FARk+I[x] also satisfies h(w) >=
h(;).

Proof. There are two possibilities for w. Either (1) FARk[X]*w* or (2)
-*w*FARk+l[X]. In case (1), h()<=h(w) follows from (II). In case (2), using
(III), (I), and the corollary to the Stack Lemma, we see that wFARk/1[x]
(note the change in base). But then h(w)>-h() by the Stack Height Lemma. [3

The computation of the LOWk/[x, y] values makes use of an array HOPk. For
each surface configuration x, HOPk[X] is a surface configuration such that
(x, e)-* (HOPk[X], e). The reason for the name "HOP" should be evident from Fig.
14.

The array HOPk satisfies the following correctness condition:

For all x X,,
Either HOPk[X] is some surface configuration w such that
x,,+ w*x FaRk[X] and h(w) h(x),

or, if there is no such w, then HOPk[X] x.

In either case, we have that (x, e)-*(HOPk[X], e). Lemma 7 shows that con-
sequently HOPk[X] preserves the k’-validity of x, for any k’. That is, if x is k’-valid
with respect to some surface configuration u, then HOPk[X] is also k’-valid with respect
to u.

Ix]

FIG. 14. HOPk[x].

The next lemma shows that the algorithm inductively ensures the correctness of
HOPk

LEMMA 9 (Correctness of HOPk). Suppose that HOPk satisfies its correctness
condition. As in line 15 of the algorithm, let

HOP,+,[x]:=
H OP,[x]

ifh(,)=h(x),
else.

Then HOP+I satisfies its correctness condition.
Figures 15 and 16 illustrate the two cases in the definition of HOPk+[x].
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FARk+[x] FARk[X]

FARk[x]

FIG. 15. HOPk+[x] HOPk[x] in case h() > h(x).

FARk+[x] FARk[]....FARk x]

FIG. 16. HOP,+[x] in case h()= h(x).

Proof We must show that either HOPk+[x] is some surface configuration w such
that X-x/ w-*x FARk+[x] and h(w) h(x), or, if there is no such w, HOPk+[x] x.
If h())= h(x), then by (II), 9 is such a w, so setting HOPk+[X]= satisfies the
correctness condition for HOPk/[x]. Suppose therefore, that h()) > h(x). In this case
HOPk/[x] is defined to be HOPk[X]. Now, by our assumption of the correctness of
HOPk, either HOPk[X] is some surface configuration w such that X-x/ w* FARk[X]
and h(w) h(x), or, if there is no such w, HOPk[X] x. In the former case, w certainly
satisfies x+ w* FARk+I[x], because FARk[X]* FARk+I[x]. Consider therefore the
latter case: HOPk[X] x because there is no w satisfying both x* w* FARk[X] and
h(w)=h(x). Note that by Lemma 8 there is also no w satisfying both
FARk[X]* w* FARk+1[x] and h(w)= h(x), so setting HOPk+[x]= x satisfies the
correctness condition for HOPk+I[X].

We now consider how the algorithm computes the LOWk+ values from the LOWk
values. The computation of the LOWk+I values makes frequent use of the expression
LOWk[X, HOPk/[LOWk[X,y]]]. For the sake of brevity, therefore, we denote this
expression by LHLk+[x,y]. Here the name "LHL" is intended to signify that
LHLk/[x,y] represents a composition of LOWk, HOPk/I, and again LOWk. The
reason that this expression is so useful in deriving the LOWk/ values from the LOWk
values is that it satisfies a condition "halfway" between the condition on LOWk[X, y]
and the condition on LOWk/[x, y]. Recall the correctness condition for LOWk:

For all x, y X,,
if y is k-valid with respect to x,
then LOWk[x, y] is

(A) k-valid with respect to x, and
(B) k-low from y with respect to x.

The correctness condition for LHLk+I is:

For all x, y X,,
if y is k-valid with respect to x,
then LHLk+[x, y] is

(A) k-valid with respect to x, and
(B) (k+ 1)-low from y with respect to x.
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Notice that the only difference between the condition on LOWk[X, y] and that on
LHLk+[x, y] is that the latter promises (k + 1)-lowness, while the former can promise
only k-lowness.

LEMMA 10 (Correctness of LHLk+). As in line 17 of the algorithm, let
LHLk+[x, y]= LOWk[x HOPk+[LOWk[X, y]]]. Then the correctness conditions for
LOWk, FARk+, and HOPk+ imply the correctness condition for LHLk+.

Proof Let y’= LOWk[X, y] and z LOWk[X, HOPk+[y’]], so LHLk+[x, y] z.
Assume that y is k-valid with respect to x. By the correctness of LOWk[X, y], it follows
that y’ is k-low from y and k-valid with respect to x. By Lemma 7 and the correctness
of HOPk+, it follows from the latter that HOPk+[y’] is also k-valid. Then, by the
correctness of LOWk, z= LOWk[X, HOPk+([y’]] is also k-valid. It remains only to
show that z is (k + 1)-low from y.

We distinguish two cases, corresponding to the two cases in the correctness
condition for HOPk+[y’].

Case 1. HOPk+I[y’] is some surface configuration w such that h(w)= h(y’) and
y’y,W. (This case is illustrated in Fig. 17.) We know that y is k-low from y, so
h(HOPk+[y’])= h(y’) implies that HOPk+[y’] must be more than 2k steps from y.
Now, consider z= LOWk[X, HOPk+[y’]]. Since z is k-low from HOPk+[y’], and
HOPk+[y’] is at least 2k steps after y, it follows that z is (k+ 1)-low from y, and we
are done.

+ * FARk+[y’].Case 2. There is no w satisfying both h(w)= h(y’) and y -y,Wy,
(In this case, HOPk+[y’]=y ’, and so z= LOWk[X, y’]. See Fig. 18.) There are two
possibilities: either FARk+[y’] y’ (i.e., LASTy,(y) holds), or h(FARk+l[y’]) > h(y’).
We consider these two cases separately.

Subcase A. LASTy,(y’) holds. If in addition LASTx(y’) holds, then z=
LOWk[X, y’] y’, and z is trivially k-low, since there is no w such that Z-x+ w. Assume
therefore that LAST,(y’) does not hold, and let y" be the surface configuration such

FARk x

** y

+I[Y’]

0Pk+,[Y ]]

2 steps
’z;

+. HOPk ,[y’]FIG. 17. LHLk+[x, y]= LOWk[x HOPk+[y’]] in the case where y’-,.,

FARk[x]

y,
FIG. 18. LHL+[x, y] LOW[x, y’], in the case where HOPk+[y’] y’.
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that y’-,y". By the Stack Lemma, h(y")< h(y’). But then by the k-lowness of y’, y"
is more than 2k steps after y. Hence y’ is at least 2k steps after y. As in Case 1, since
z is k-low from y’ and y’ is at least 2k steps after y, it follows that z is (k/ 1)-low
from y.

Subcase B. h(FARk+[y’])>h(y’). By the Barrier Lemma, it follows that
LASTy,(FARk+[y’]) implies LAST,,(FARk+[y’]). (Note change in base.) But then by
correctness of FARk+[y’] (Lemma 6), either FARk+[y’] is at least 2k+ steps from y’,
or LAST,,(FARk+[y’]). In either case it follows that every surface configuration w

d-within 2k+ steps of y satisfies y y,W*y, FARk+[y’] and hence h(w)> h(y’). Since
z LOWk[X, y’] is k-low from y’, certainly h(z) <= h(y’). It follows that z is (k + 1)-low
from y’, so z is certainly (k + 1)-low from y, and the proof is complete. [3

We finally show how to compute the LOWk+I values. The correctness condition
for LOWk+ is:

Foi all x, y Xn,
if y is (k + 1)-valid with respect to x
then LOWk+[x, y] is

(A) (k + 1)-valid with respect to x, and
(B) (k+ 1)-low from y with respect to x.

Note that the only difference between the condition on LOWk+[x, y] and that
on LHLk+[x, y] is that LOWk+[x, y] assumes (and delivers) (k+ 1)-validity, whereas
LHLk+[x, y] assumes (and delivers) k-validity.

We can make use of k-validity by noting special circumstances under which
(k + 1)-validity implies k-validity, and vice versa.

LEMMA 11. Suppose that y is (k + 1)-valid with respect to x, and h(y) <- h(). Then
y is k-valid with respect to x.

Proof See Fig. 19. Since FARk[X]-*FARk+[x], and FARk+[x]*y by the
(k+ 1)-validity of y, it follows that FARk[X]-*xy. It remains to be shown that for any
w Xn such that FARk[X]*x W* y, w satisfies h(w) >= h(y).

ARk[X]

Rk+[x]

FG. 19. y is k-valid with respect to x.

There are two cases: either FARk[X]-* w-* FARk+I[X] or FARk+[x]-* w-*y.
In the former case, h(w)>-h() by Lemma 8, so h(w)>-h(y) by our assumption that
h(y)<-h(). In the latter case, h(w)>-h(y) follows directly from the (k+ 1)-validity
of y. [3

LEMMA 12. Suppose that y is (k + 1)-valid with respect to x and h(y)>= h(). Then
y is k-valid with respect to .

Proof See Fig. 20. Consider the computation FARk+[x]*y. By the (k+
1)-validity of y, this computation consists only of surface configurations w such that
h(w) >= h(y) >- h(). Moreover, recall that )- FARk[] FARk+[x] (note that the
base is :). It follows by the Stack Lemma that FARk[]y. It remains to show that
any surface configuration w satisfying FARk[]-w-y has h(w)>-_h(y). But any
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FARk+[x] FARk[]

FARk[X] ",,

FIG. 20. y is k-valid with respect to .
such w must also satisfy FARk[]-*x w*y by the corollary to the Stack Lemma, and
hence h(w) >- h(y) by the (k+ 1)-validity of y.

LEMMA 13. Suppose that y is k-valid with respect to x, and FARk+I[X]-*y. Then
y is (k + 1)-valid with respect to x.

Proof All we need to show is that for any surface configuration w such that
FARk+l[x]*w-*y, we have h(w)>-h(y). But this follows immediately from the
k-validity of y, because any such w also satisfies FARk[X]-* w*y.

LEMMA 14. Suppose y is k-valid with respect to . Then y is k + 1)-valid with respect
to x.

Proof. By definition of k-validity, FARk[]y, so FARk[]-*y by the Stack
Lemma. Recalling that FARk+I[X] FARk[], we have FARk+I[x]-*y. Suppose the
surface configuration w satisfies FARk+I[x]-* w-* y. We must show that h(w) >- h(y).
But by the corollary to the Stack Lemma, w satisfies FARk[]- w-y, so h(w) >-_ h(y)
by definition of k-validity.

LEMMA 15 (Correctness of LOWk+). Assume that LHLk+ satisfies its correctness
condition. As in lines 18-19 of the algorithm, for each x, y Xn such that h(x)
h(FARk+I[X]), let

LHLk+[x, y]
LOWk+l[X y] LHLk+[x, z]

ifh(y)<=h(),
ifh(y) > h() and h(z)-" h(),
else,

where z LHLk+1[:, Y ]. Then LOWk+l satisfies its correctness condition.
Proof Assume that y is (k + 1)-valid with respect to x. We consider the following

two cases:
Case 1. h(y) < h(). In this case, LOWk+I[x, y] is defined to be LHLg+[x, y].

See Fig. 21. By Lemma 11, y is k-valid with respect to x. Hence by the correctness of

FARk+[x] FARk[]
FAgk[x]

2...

FIG. 21. LOWk+[x,y]=LHLk+[x,y] in case h(y)<=h().
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LHLk/I, LHLk+I[X, y] is k-valid with respect to x and (k+ 1)-low from y with respect
to x. By Lemma 13, LHLk+I[x, y] is also (k+ 1)-valid with respect to x, so we are done.

Case 2. h(y)> h(). We assumed that y is (k + 1)-valid with respect to x, so by
Lemma 12, y is k-valid with respect to :. Now consider z= LHLk+1[x, y]. By the
correctness of LHLk+, z is k-valid with respect to and (k+ 1)-low from y with
respect to . By Lemma 14, z is (k + 1)-valid with respect to x. We must again distinguish
two cases:

Case a. h(z)= h(). In this case, LOWk/I[X, y] is defined to be LHLk/I[X, z].
See Fig. 22. As noted above, z is (k + 1)-valid with respect to x, and we assume that
h(z) h(:), so by Lemma 11, z is k-valid with respect to x. Then by the correctness
of LHLk+I, LHLk+[x, z] is k-valid with respect to x, and (k+ 1)-low from z with
respect to x. Since LHLk+I[X, z] is k-valid with respect to x and occurs after FARk+I[X],
it follows by Lemma 13 that LHLk+[x, z] is (k-F-1)-valid with respect to x. Since
LHLk+[x, z] is (k+ 1)-low from z, and z occurs after y, it follows that LHLk+[x, z]
is certainly (k + 1)-low from y, so we are done.

Case b. h(z)> h(). In this case, LOWk+[x, y] is defined to be z. See Fig. 23.
We already know that z is (k + 1)-valid with respect to x. It remains to show that z is
(k + 1)-low from y with respect to x. We prove this by contradiction. We will start by
assuming the existence of a counterexample w, and show that w must also be a
counterexample to z’s being (k+ 1)-low from y with respect to :. We know, however,
that z is (k + 1)-low from y with respect to , so there can be no such counterexample.

Let w be the first surface configuration such that zF-+Wx and h(w)<h(z),= and
assume w is within 2k+ steps of y. (If there is no such surface configuration w, or if
the first such w is more than 2k/ steps from y, then there is no counterexample to z’s
being (k+ 1)-low from y with respect to x.) We first show that z w (note that the
base is ).

FARk+ [x] FARk[
FARk[X] . y

FIG. 22. LOWk+I[x y] LHLk+l[X z] in case h(y) > h() and h(z) h().

.ARk+l[x] FARk[]

ARk[X] / "%.
Y

FIG. 23. LOW+[x,y]=z in case h(y)> h(:) and h(z)> h(:).
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Consider the surface configuration u immediately following z. That is, zxu. Since
h(z) > h(:) and the stack height can change by at most one in a single move, we have
h(u)>=h() and hence z-u bythe Stack Lemma. Now if h(u)<=h(z), then u is our
counterexample w, and we are done. If, on the other hand, h(u)> h(z), we consider
the surface configuration u’ immediately following u, and repeat the argument. Continu-
ing in this way, we discover that z-u...-w. Since h(w)<-<_h(z) and w was
assumed to be within 2 k+l steps of y, we see that w is a counterexample to z’s being
(k + 1)-low from y with respect to . But no such counterexample can exist, for in fact
z is (k + 1)-low from y with respect to by the correctness of LHLk/I[x, y]. Hence
we must conclude that z is also (k + 1)-low from y with respect to x. l-I

The following theorem asserts the correctness of our algorithm for simulating a
deterministic pushdown automaton.

THEOREM 2. The arrays FARk, HOPk, and LOWk satisfy their correctness conditions

for all k O, 1,..., [log2 T(n)].
For convenience, we reproduce the correctness conditions for FARk, HOPk, and

LOWk.

FARk
For all x Xn, FARk[X] is k-far from x.

HOPk
For all x Xn,

Either HOPk[X] is some surface configuration w such that
+x-x w* FARk[X] and h(w)= h(x),

or, if there is no such w, then HOPk[X] x.

LOWk
For all x, y X,,

if y is k-valid with respect to x,
then LOWk[X, y] is

(A) k-valid with respect to x, and
(B) k-low from y with respect to x.

Proof by induction on k. The reader can check that the correctness conditions are
satisfied for k 0 by the initialization stage, lines 1-10 of the algorithm. The induction
step from k to k+ follows from Lemmas 6-15. [3

We now state the main theorem of this paper.
THEOREM 3. Let L be a deterministic context-free language. Then L is accepted by

a P-RAM with O(n4) processors in time O(log n).
In 3, we saw that there is a deterministic pushdown automaton M in normal

form that accepts L$. Use the algorithm of 5 to simulate M. Each of the [log T(n)]
stages of the algorithm can be implemented in constant time on a P-RAM with one
processor for each pair of surface configurations x, y X,. Thus the algorithm runs in
time O(log T(n)) O(log n). Since the number of surface configurations IX, is O(n2),
we obtain a processor bound of O(n4)o [3

Rytter shows in [11] how the algorithm of Theorem 3 may be interpreted as a
recursive procedure to recognize a deterministic context-free language in O(log2 n)
space and polynomial time, thus giving an alternative proof that DCFL recognition is
in SC, a result due to Cook [2].

7. Improvement of the processor bounds. The following observation leads to an
easy improvement of the processor bound from O(n4) to O(n3). It is sufficient for the
algorithm to compute LOWk[X,y] for the O(n3) pairs x,yX such that h(x)=0.



This is because, as noted in 4, the stack height parameter reflects only relative stack
height. All that matters is the difference between h(y) and h(x). The value of
LOWk[x, y] for an arbitrary pair x, y Xn can be computed on demand from the value
of LOWk[x’, y’] for a corresponding pair x’, y’ Xn with h(x’)=0 by adding h(x) to
the stack height parameter of LOW[x’, y,].2 This does not increase the asymptotic
running time of the algorithm. We therefore have:

THEOREM 4. Let L be a deterministic context-free language. Then L is accepted by
a P-RAM with O(n 3) processors in time O(log n).

A more drastic reduction of the processor bound to O(n log n) can be obtained
at the expense of an increase in running time to O(log n). The essential idea is similar
to the previous reduction. The algorithm computes LOWk[X, y] only for those pairs
x,y Xn such that h(x) is 0 and h(y) is a power of two. It is shown in [6] how the
algorithm may be modified so that the value of LOWk[X,y] for an arbitrary pair
x, y Xn can be computed in O(log n) time by a single processor from the values for
these special pairs.

8. Simulation of a deterministic auxiliary pushdown automaton. We now consider
the simulation by a P-RAM of a space- and time-bounded deterministic auxiliary
pushdown automaton. An auxiliary pushdown automaton is a Turing machine with a
work tape and a stack. Let dAPDA(S(n)) denote the class of languages accepted by
S(n) space-bounded, 2(s)) time-bounded deterministic auxiliary pushdown
automata. Sudborough has exhibited 12] a deterministic context-free language L that
is log-space complete for the class dAPDA(log n). That is, for any L’ dAPDA(log n),
there is a function f from L’ to L, computable in O(log n) space, such that x L’ if
and only iff(x) L, for all strings x over the alphabet of L’. This suggests a two-stage
algorithm for recognizing L" for any string x over the alphabet of L’, first compute
f(x) and then determine iff(x) L. A log n space-bounded Turing machine can only
run for 2 (lgn) n (l) steps, so the length off(x) is polynomial in the length of x. It
is shown in [3] that a P-RAM can simulate any deterministic S(n) space-bounded
Turing machine in parallel time O(S(n)) on 2 (s(")) processors. Thus the first stage
of our proposed two-stage algorithm can be carried out in O(log n) time on n(1)
processors. By our Theorem 3, the second stage can be carried out in time
O(loglf(x)l)=O(log n) time on If(x)l3= n) processors. We conclude that any
language in dAPDA(log n) can be recognized by a P-RAM in O(log n) time on a
polynomial number of processors. By a standard "padding" argument, Theorem 5
follows.

THEOREM 5. For any fully space-eonstructible S(n)=l)(log n), a language in
dAPDA(S(n)) can be recognized by a P-RAM in O(S(n)) time on 2 (s(")) processors.

Sudborough conjectures in [12] that DSPACE(Iog n) is strictly contained in
dAPDA(Iog n), i.e., that adding a stack to a log n space-bounded, poly-time-bounded
Turing machine gives it additional power. By our Theorem 5, Sudborough’s conjecture
implies that S(n) time-bounded P-RAM’s are strictly more powerful that S(n) space-
bounded Turing machines.

9. Simulation of P-RAMs by deterministic auxiliary pushdown automata. We
observe in this section that our P-RAM algorithm for simulating any deterministic
auxiliary pushdown automaton is nearly optimal, since there is a complementary
simulation of P-RAMs by deterministic auxiliary pushdown automata.

2That is, q(x’)=q(x) and q(y’)=q(y), p(x’)=p(x’) and p(y’)=p(y), but h(x’)=0 and h(y’)=
h(y)-h(x).



PARALLEL TIME O(log n) ACCEPTANCE OF DCFLs 485

THEOREM 6. Let L be accepted by a P-RAM in time T( n). 7hen L is accepted by
a deterministic auxiliary pushdown automaton with space T(n) and time 2o -n)2).

This theorem is a fairly easy consequence of some known relations between various
computational models. Here we give a more direct proof:

Proof. Fortune and Wyllie prove in Lemma b of [3] that L is accepted by a
deterministic Turing machine with space T(n) and time 2 r’)2). We observe that
their algorithm may be implemented on a deterministic auxiliary pushdown automaton.
Their algorithm is recursive and requires a pushdown stack of size at most T(n), where
each element on the stack can be represented by a bit sequence of length O(T(n)).
Thus only T(n) space is required by our simulating deterministic auxiliary pushdown
automaton.

Acknowledgments. Thanks to Charles Leiserson and David Shmoys for their help-
ful comments. Many thanks also to the referee for extremely conscientious and careful
reading of drafts of this article.
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A NEARLY OPTIMAL PARALLEL ALGORITHM FOR
CONSTRUCTING DEPTH FIRST SPANNING TREES

IN PLANAR GRAPHS*

XIN HE AND YAACOV YESHA:

Abstract. This paper presents a parallel algorithm for constructing depth first spanning trees in planar
graphs. The algorithm takes O(log n) time with O(n) processors on a concurrent read concurrent write
parallel random access machine (PRAM). The best previously known algorithm for the problem takes
O(log n) time with O(n4) processors on a PRAM. Our algorithm is within an O(log n) factor of optimality.

Key words, parallel algorithms, planar graphs, depth first spanning trees, graph algorithms
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1. Introduction. The depth first spanning trees of graphs have been used as a basis
for many graph algorithms (Tarjan [11]). It has been conjectured, however, that the
construction of a depth first spanning tree of a graph is inherently sequential (Reif [8]
and Smith [9]). In spite of many attempts, the depth first spanning tree problem for
general graphs is still not known to be in the NC class. (The NC class is the class of
problems solvable in (log n) 1) time by using n)processors. The NC class is widely
accepted as the class of problems which can be solved fast in parallel with reasonably
many processors [2].)

Recently, Smith discovered a nice parallel algorithm which finds a depth first
spanning tree in a planar graph in O(log n) time with O(n4) processors [9]. This
work is important since it is the first which shows that the depth first spanning tree
problem for planar graphs is in the NC class. However, due to the importance of the
depth first spanning trees in designing graph algorithms, it is very desirable to have a
more efficient parallel algorithm.

In this paper we develop such an algorithm. Our algorithm takes only O(log n)
time with O(n) processors. It is within an O(log2 n) factor of optimal and is a substantial
improvement over Smith’s algorithm.

The computation model used in this paper is a concurrent read concurrent write

parallel random access machine (CRCW PRAM). The model consists of a number of
identical processors and a common memory. In each time unit, a processor can read
from a memory cell, perform an arithmetic or a logical computation, and write into a
memory cell. Both concurrent read from and write into the same memory cell by
different processors are permitted. If a write conflict occurs, an arbitrary processor
succeeds.

The model we use is slightly stronger than the concurrent read exclusive write

(CREW) PRAM model used in [9] where the concurrent writes are disallowed. One
step of our model can be simulated by the weaker CREW PRAM model in O(log n)
steps. (Vishkin [13] showed that this simulation can be performed in O(log2 n) steps
by using parallel sorting. Later, Cole [1] showed that the sorting can be done in
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O(1og n) time with O(n) processors on a CREW PRAM. Hence by combining the
algorithms in [13] and [1], this simulation can be performed in O(logn) time with
O(n) processors.) Therefore our algorithm can be implemented on the CREW PRAM
model in O(log n) time with O(n) processors, still much better than Smith’s algorithm.

In 2, we review the basic strategy of Smith’s algorithm. The implementation and
analysis of our algorithm is presented in 3.

2. Preliminary. Throughout this paper, G (V, E) denotes a connected planar
graph with vertex set V and edge set E. n VI denotes the number of vertices of G.

A depth first spanning tree T of G rooted at a specified vertex r V is constructed
as follows: Starting from r, successively add edges into T until a vertex is reached all
of whose exit edges (i.e., incident edges other than the one used to arrive at the vertex)
are incident upon T. At this point, backtrack a minimum distance until a vertex is
reached that has exit edges not incident upon T and continue. Repeat this process
until all vertices of G are exhausted [11]. The problem considered in this paper is
how to construct a depth first spanning tree for a given planar graph G with a specified
root r.

A plane embedding of a planar graph G is a drawing of G in the plane such that
no two edges of G intersect with each other in the drawing.

Suppose G is embedded in the plane. Let C be a (simple) cycle of G. The vertices
of G are partitioned into three parts: the vertices on C, the vertices in the interior of
C and the vertices in the exterior of C. If both the interior and the exterior of C
contain no more than 2n/3 vertices, C is called a separating cycle of G.

Let T be any spanning tree of G rooted at a vertex V. T induces a partial
order on V: vl < v2 if and only if v2 is an ancestor of vl in T. In general, if vl and v2
are two arbitrary vertices they may be noncomparable in the partial order induced by
T. A depth first spanning tree T can be characterized by the following well-known fact"

LEMMA 1 [9]. A spanning tree T of G is a depth first spanning tree if and only if
for any edge e E the end vertices ofe are comparable in the partial order induced by T.

Let Pr be a (simple) path in G with r as one of its end vertices. Suppose G-Pr
is the union of connected components {Gi}<_i<=k for some k. Let e be an edge of G.
Define e to be [9]:

(a) A touching edge of Gi if one end vertex of e is in G and another end vertex
of e is in Pr--call this vertex the point where e touches P.

(b) An inessential touching edge of Gi if it is a touching edge of G and there
exists another touching edge e’ of G which touches P at a point further (in P) from
r than the point at which e touches Pr.

(C) An essential touching edge of G if it is a touching edge of G and the conditions
in statement (b) are not satisfied.

Let ei be an essential touching edge of G (1-<i<= k) and let x be the end vertex
in e in G. Suppose T is a depth first spanning tree of G rooted at xi (1 <=i -< k).
From Lemma 1, it is easy to show the following.

LEMMA 2 [9]. Let Tbe the union Of Pr, {ei} (1--<i--<k) and {T}(1-<_ i<_-k). Then
T is a depth first spanning tree of G rooted at r.

Figure shows an example of Lemma 2. The planar graph shown in Fig. is
divided by the path Pr into two connected components G and G2. The edges e and
e2 are two touching edges of G, where e2 is the essential touching edge of G. The
edges e3 and e4 are two touching edges of G2, where e4 is the essential toughing edge
of G2. T and T2 are the depth first spanning trees of G and G2, respectively. The
union of P, e2, e4, T, and T is a depth first spanning tree of G rooted at r.
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FIG. 1. An example of Lemma 2.

The basic idea of Smith’s algorithm is as follows; Find a path Pr in G, with r as
one end vertex such that G-Pr is a union of connected components {Gi}(1 <= -< k)
and IGil<-2n/3 for each l---i_-< k. Then find an essential touching edge e for each
G(1 _-< k) and let x be the end vertex of e in Gi. Next recursively call the algorithm
on each Gi (1 <- -< k) in parallel to construct a depth first spanning tree T of G rooted
at xi. Finally construct a depth first spanning tree T for G rooted at r as in Lemma 2.

In order to find the separating path Pr described above, Smith uses the following
method: First find a separating cycle C in G. Then find a path P from the root r to
an arbitrary vertex x on C such that no other vertex of C is on P1. Let e be an edge
on C incident to x. Define Pr PI LJ C-{e}. Each connected component G of G-P
is contained either in the interior or in the exterior of C. Thus each G contains at
most 2n/3 vertices. Therefore Pr is the required separating path.

3. implementation and analysis. We discuss the implementation and analyze the
resource bounds of the parallel depth first spanning tree algorithm in this section.

Our algorithm works for any planar graph G V, E) given by the edge list form.
(Namely, the edge set of G is given as a list in arbitrary order.) In order to make fast
parallel computation possible, we will preprocess G to construct a more suitable
representation, the combinatorial representation, defined as follows.

Suppose G (V, E) is embedded in the plane. G partitions the plane into a
number of connected regions. Each connected region is called aface. The combinatorial
representation of the plane embedded graph G is defined as follows" Each edge
e (x, y) E is represented by two directed darts (x, y) and (y, x). The combinatorial
representation of G consists of two lists of these darts. The first list Li is arranged in
the order such that for each vertex v V the darts "leaving v" are consecutive in L
and are in the order they appear in the embedding in the counterclockwise direction.
The second list L2 is arranged in the order such that for each face f of G the darts
on the boundary of f are consecutive in L2 and are in the order they appear in the
embedding in the clockwise direction. Given a planar graph G, the combinatorial
representation of a plane embedding of G can be found in O(log n) time with O(n)
processors (Klein and Reif [3]). We will use this representation in our algorithm.

The algorithm is as follows. (It is different from Smith’s algorithm in that the
resources are allocated more carefully and each step is implemented more efficiently
in order to achieve the O(log n) time and O(n) processor bounds.)
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DFST ALGORITHM.
Input: A connected planar graph G (V, E) with a specified root r V given by edge

list form;
Initialization: Find a plane embedding and a combinatorial representation for (3;

(1) Find the biconnected components {G/}(1 <=j =< q for some q) of G. Let xj(1 _-<j _-<

q) be the vertex in Gj which is closest to the root r. Perform the following
steps on each G simultaneously to construct a depth first spanning tree
rooted at x./for each G/(1 =<j =< q). The union of T./(1 _-<j <_-q) will be a depth
first spanning tree of (3 rooted at r (Smith [9]). (In order to avoid double
subscripts, we still use symbols (3 and r for G and x./ in the following
statements.)

(2) Find a separating cycle C in G. (Since (3 is a biconnected planar graph, such
a separating cycle exists; see Smith [9] and Miller [6].)

(3) Find a path P from the root r to any vertex x on C such that no other vertex
of C is on P. Let e be an edge of C incident to x. Define Pr P t_J C-{e}.

(4) Find the connected components {Gi}(1-<i=< k for some k) of G-
(5) For each Gi(1-<_i<-_ k) find an essential touching edge e. Let x be the end

vertex of e in
(6) Construct the combinatorial representation of the subgraphs Gi(1 <- =< k)

from the combinatorial representation of (3.

(7) Recursively call the DFST algorithm on each G in parallel to construct a
depth first spanning tree T for Gg rooted at x(1-<i-<_ k).

(8) Let T U (T/t_J ei) t_J Pr. T is a depth first spanning tree of G rooted at r.
End DFST.

We next discuss the implementation and analyze the resource bounds of the DFST
algorithm.

The initialization step can be performed in O(log2 n) time with O(n) processors
on a CRCW PRAM [3]. This step is performed only once. When the DFST algorithm
is recursively called on a subgraph Gi of G at step (7), the combinatorial representation
of G is obtained from the combinatorial representation of G in a more efficient way
(details are discussed later).

Step (1) can be implemented by using the algorithm of Tarjan and Vishkin [12]
in O(log n) time with O(n) processors on a CRCW PRAM.

Step (2) is the most resource-consuming part ofthe algorithm, in Smith’s algorithm,
this step takes O(log n) time with O(n4) processors. Miller [6] developed a parallel
algorithm which finds a separating cycle in a biconnected planar graph with size at
most O(n/2). If the input is given by the combinatorial representation form (Miller
uses a slightly different variation of this representation in [6]), this algorithm takes
O(log n) time with O(n3) processors. However, since we do not have to restrict the
size of the separating cycle in the DFST algorithm, this step can be implemented much
more efficiently. Actually, one subroutine in Miller’s algorithm finds a separating cycle
C of G in O(log n) time with O(n) processors on a CRCW PRAM, (although the size
of C might be large). Thus step (2) can be implemented by using this subroutine in
O(log n) time with O(n) processors.

Step (3) can be performed as follows: by using the algorithm of Shiloach and
Vishkin [10], we first construct an arbitrary spanning tree T of G rooted at r. This can
be done in O(log n) time with O(n) processors. Next pick up an arbitrary vertex Xo
on C and identify the path Po in T from Xo to r. This can be done by using standard
pointer jump technique in O(log n) time with O(n) processors. Let x be the vertex
on Po which is on C and is closest to r. Let P be the portion of Po from x to r. Then
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x and P1 is what we want to find in step (3). Thus step (3) totally takes O(log n) time
with O(n) processors.

Step (4) can be performed by using the algorithm of Shiloach and Vishkin [10]
in O(log n) time with O(n) processors on a CRCW PRAM.

In order to implement step (5), we first compute the index number of the vertices
on the path Pr (i.e., r has index number 1, the vertex on Pr adjacent to r has index
number 2 and so on). The set Ei(1 <= -< k) of touching edges for each connected
component Gi can be identified in constant time. Next we sort each Ei(1
according to the index number of the end vertex of each e E that is on P. This
sorting can be done in O(log n) time with O(n) processors 1]. The essential touching
edge of G is the last edge in the sorted list of E;. Thus step (5) takes O(log n) time
with O(n) processors.

Step (6) can be implemented as follows: Each subgraph Gi(1-<i=< k) of G has a
natural plane embedding inherited from the embedding of G. The combinatorial
representation for G is computed from the lists (L1, L2) of the combinatorial rep-
resentation of G as follows; In the list L, delete all darts that have at least one end
vertex in P. Then perform a parallel sort on the remaining darts of L such that the
darts belonging to the same connected component G are consecutive in the resulting
list. Perform a similar operation for the list L2. This gives the combinatorial representa-
tion for each Gi. Since the sorting can be done in O(log n) time with O(n) processors
(Cole [1]), step (6) can be performed within the same time and processor bounds.

Step (7) is the recursive call. Step (8) clearly takes constant time.
Since one application of the DFST algorithm on G reduces the problem to the

subgraphs of size at most 2n/3, the depth of recursive calls is at most log3/ n. Since
each step takes at most O(log n) time with O(n) processors, the entire algorithm takes
O(logz n) time with O(n) processors as claimed. In summary we have Theorem 3.

THEOREM 3. Let G be a planar graph given by edge list form and let r be a specified
vertex of G. A depth first spanning tree of G rooted at r can be constructed in O(log n)
time with O( n) processors on a CRCW PRAM.

Acknowledgments. The authors are grateful to an anonymous referee who pointed
out Miller’s paper [6] to us. This helped to substantially simplify and shorten the
presentation of the our paper.
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Abstract. The distributions of the search times for an early-insertion form of coalesced hashing (first
proposed by Vitter [11], [12]) are studied. It is demonstrated, in particular, that the largest search time is

very close, in probability, to the one for the late-insertion coalesced hashing [8]. In addition, a formula for
the expected successful search time obtained by Chen and Vitter [1] and, independently, by Knott [7] is
shown to follow directly from the presented analysis.

Key words, search algorithm, hashing, largest search time, probabilistic analysis

AMS(MOS) subject classifications, primary 68P10, 68Q25, 68R05" secondary 60C05, 05C99

1. Introduction. Results. Coalesced hashing is a hashing algorithm in which
collisions are resolved by forming chains of occupied locations (cells) of the table;
ordering in each chain is conveniently specified by the consecutive chain references
associated with every cell of the chain. To have a complete description of coalescing,
one has to decide how a chain grows in cases when the next key is hashed to one of
its cells. In the most well-known version [4], [6] a cell which accommodates such a
key becomes the last cell of the corresponding chain. For the sake of references below,
let us call it the late-insertion coalesced hashing method, or lich. In contrast, an
early-insertion coalesced hashing method (eich) suggested by Vitter 11 and indepen-
dently by Knott [7] is specified by the following agreement. Suppose that a key is
hashed to an already occupied cell, say i. Then a cell which admits this key, that is
its eventual location, is inserted into the chain passing through the cell right between
the cell and its immediate successor. (Thus, only when cell is the last in its chain,
will the new cell be the last one of the enlarged chain.) As for the actual location of
the key in case of collision, in the simplest case, it is found--in both lich and eich--via
the sequential search of the table from, say, left to right (see, however, Knott [7]). It
should be clear therefore that, for a given set of keys, the two algorithms lead to the
same partition of the set of occupied cells into chains. It is the ordering in the chains
where the algorithms differ from each other.

Let m be the size of the table, and let the n keys be x,x2,..., xn, indexed
according to the order of insertion. Naturally, n-< rn. As usual, we assume that the
hashing function h which maps the universe of keys into S {1,..., m} is such that
h(x), h(x2),’", h(xn) are independent random variables uniformly distributed over
$. The central characteristics of either of the algorithms are the random search times
T (i, n), T2(i, n), =< _-< n. Formally, they are defined as follows: T (i, n) is the number
of cells of the subchain which originates at the cell h(xi) and ends at the actual location
of the key xi after n keys have been inserted; T2(i, n) is the number of extra cells
searched sequentially when xi is inserted to find a vacant cell for the key xi when the
cell h(xi) is already occupied, and 0 when h(xi) is not already occupied. The random
variables T(i, n) and T2(i, n) depend formally on the random keys x, x:,..., x..
Clearly, the sequences { T(i, n): 1-<_i-< n} are the same for both algorithms. Besides,
T:(i, n) is completely determined by the values of {h(xj): l<--j<=i}, thus does not
depend on those n- keys inserted after the ith key. The same is true for Tl(i, n) in

*Received by the editors May 27, 1986; accepted for publication (in revised form) June 11, 1987.
t Department of Mathematics, Ohio State University, Columbus, Ohio 43210.
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the case of the lich algorithm, since then every chain grows only at its end. For the
eich algorithm, however, T(i, n) does depend on those n-i keys inserted after
the ith key since the keys arriving after x, may push a cell with the key xi in it
(along the corresponding chain) farther away from the cell h (xi).

Exact and asymptotic moment-type formulae for (i, n), j 1, 2, were obtained
by Knuth [6] (lich), by Chen and Vitter [1], and Knott [7] (eich) (see [2] for the mean
values analysis of other versions of coalesced hashing). A central observation is that
the average search times remain bounded by a constant even when the load factor
n/m-lo

The distributions of T(i, n), and T2(i, n), 1 =< i-<_ n for lich were studied by the
first author in [8]. It was shown, in particular, that when n, m --> 0o, such that nm a
(0, 1] and is fixed,

U(n) max { TI( i, n ): 1 =< _-__ n } 1Ogb n 2 1Ogb 1ogb n + Op 1 ),
(1.1)

U2(n) max { T2( i, n): 1 -< <_- n } log n log log n + Op 1 ),

where b (1- e-)-, and O,(1) stands for random terms bounded in probability as
n, m-0o. Formally, a random variable A,,, is bounded in probability if P(IA.]_->
W.m) - 0 for w, --> 0O however slowly as n, m - 0o. U(n) represents the largest success-
ful search time. U2(n) represents the largest number of the left-to-right probes needed
to find a vacant cell in case of an unsuccessful earch.)

Our goal in this paper is to study the sequence {T(i, n): 1 =<i<_-n} for the eich
algorithm. It turns out to be possible to derive the exact formula for the distribution
of T(i, n). Namely, we prove the following theorem.

THEOREM 1.

p(T(i,n)>=l)=(i_l)/m (_ 1).j
1-2

2:o J
(1 -j/m)"-’,

=1, I=1.

2<=1<=n-i+2,

Comment. The factors in the formula above have a transparent probabilistic
interpretation. Namely, (i-1)/m is the probability that the key x, is hashed to a
nonempty location; the sum equals the probability that in the classical allocation model
(with (n- i) balls and m cells) some specified (1-2) cells are nonempty. In a striking
contrast, our derivation of the formula is quite analytic, involving contour integration
and residues.

COROLLARY.

P( T( i, n) >= l) 1)/m[1-exp (-a+ i/ m)] t-2,
if n --> c and o(n i). Here and below, the relation f(n) g(n) means that
f(n)/g(n)--> 1 as

This corollary contains a very simple approximate formula for the distribution of
T (i, n) in cases when the index of a key is considerably smaller than n. Furthermore,
let n, be the successful search time of a key chosen at random among all n keys. The
above results will enable us to prove the following theorem.

THEOREM 2. As n, m -> 0o, with nm a, , converges in distribution, and in terms

of all moments, to a random variable g such that

(1.2)
P(: l)= l-a/2 ifl: l,

a-(1- 1)-1 1 -exp (-a + y)],-1 dy ifl>=2.
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In particular,

(1.3) lim E(,,) E(CC)-(e"-a)/a,

(1.4) limvar(n)=var()=(e2a/2+e"-a-3/2)/a-(e"-l)2/a 2.

The formula (1.3) was derived differently in 1 ], [7].
We will also study the asymptotic behavior of Ul(n) max { Tl(i, n): 1 <_- <_- n},

which represents the largest successful search time for eich.
THEOREM 3. Let to(n)->oo however slowly. Then

P(IU(n)-logbn/2 logb logb hi_-< to(n))- 1,

or in short

(1.5) U n logb n 2 1ogb 1ogb n + Op (1),

where Op(1) represents a random term bounded in probability.
Comments. Comparing (1.1) and (1.5) shows that the asymptotic behavior of

U(n) is very similar for both versions of coalesced hashing. This is quite surprising
since there are no close relations between these two random variables. To see it, and
to better understand the difference between algorithms, let us look at a couple of
examples.

Example 1. n 7, m 10, {h(xi): 1 <-_ <= 7} {10, 8, 10, 7, 8, 1, 10}.
(a) lich. Since a chain grows at its end, it can be easily seen that the chains of

occupied cells are {10, 1, 3, 4}, {8, 2} and {7}. Also Tl(i, 7): 1 _-< <_- 7} {1, 1, 2, 1, 2, 2, 4}
and U(7) 4 (Fig. 1).

(b) eich. Up until the key x7, the algorithms do not differ. The key x7 is hashed
to the cell 10, which is already occupied by the key xl. So, x7 goes into the cell 4
which is the left-most empty cell at this moment. Now, the cell 4 is to be absorbed by
the (sub)chain {10, 1, 3}; unlike the lich version, it is inserted between the cells 10 and
1 which results in a larger chain {10, 4, 1,3}. (Two other chains are {8,2} and {7}.)
Compared with the lich scheme, T(3, 7) is increased by 1, and T(7, 7) is reduced by
2. Hence ({T(i, 7): 1<_-i_<-7}={1, 1,3, 1,2,2,2} and U(7) =3 as opposed to 4 in the
lich case Fig. 2).

Example 2. n 6, m 9, { h(xi): 1 <- <= 6} 1, 1, 1, 3, 4, 5}. Here, in both schemes,
there is only one chain comprised by the cells 1, 2,..., 6. However, in lich case,
{T(i, 6): 1<_-i-<_6}={1,2,3,2,2,2} and Ul(6)=3, while, foreich,{T(i, 6): 1<_-i_<-6}=
{1,6,2,2,2,2} and U(6)=6. (See Figs. 3 and 4.)

FIG. 1. lich, m 10, n 7.

FiG. 2. eich, m=10, n=7.
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FIG. 4. eich, m 9, n 6.

The reader interested in the results regarding the expected largest search times
for other hashing techniques is referred to [3], [5], [9].

2. Distribution of T(i, n). Recall that T(i, n) is the length of the subchain from
the cell h(xi) to the cell which actually contains the key xi after all n keys are inserted,
1 <-iN n. Denote the index of this actual location by h(x). Clearly,

T(i,n)=l and l<-T(i,n)<=n-i+2 for2-<i<-n.

Suppose that 2 <- =< n + 2. By the definition of the eich algorithm, T (i, n) -> if and
only if in the subchain which connects the cells h(x) and h(xi) there are j >_- l-2 cells
occupied by some j keys inserted after xi. Let A {x, < x <. < xi,_2} be a set of 2
keys inserted after x. Denote by EA the event that, when the subchain from h(xi) to
h(xi) is of length for the first time, it is the keys from the set A which occupy l-2
intermediate cells. (In other words, Ea means that insertion of the key xi,_ results in
a subchain {h(x), h(y),. ., h(yl-e), h(xi)}, where {y,. ", Y1-2} is a permutation of
A.) Then obviously

(2.1) P( T,(i, n) >= /) 2 P(EA),
A

where summation is taken over all (/-2)-element subsets A of {x+,..., x,}. Let us

compute I’(EA). According to the definition of the eich algorithm, the probability of
the event Ea is the product of the probability of the following 1-1 independent events"

B {the key x is hashed to a nonempty cell}, with

P(B,)=(i-1)/m;

Be {for every key y from xi+l to x,-1, h(y) h(x) and h(xi,)= h(x)}, with

P(B)z=(1-1/m)i,--’(1/m);.

B,_,= {for every k.ey y from .xi,_3+, to xi,__,, h(y): {h(x), (xi,),’", kT(x,_3)} and
h(x(_2)) {h(xi), h(x,),. ., h(x,_.,)}}, with

P(B,_,) (1 (1- 2)/m) ’---’-3-1 (I 2)/m.

Hence

(2.2)

P(Ea) (i- 1)/m(1- 1/m)’,-’-’(1/m)...

[1-(l-2)/m]%-2-’,---’(l-2)/m
!--2

=[(i-1)/m][(l-2)!/m’-e] H (1-j/m)j"

j=l
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where

s=iJ-ij_-I (j=>2), s=i-i-1, s,_,=n-i,_2.

Then, by (2.1) and (2.2),
1--2

P(T(i,n)>-l)=[(i-1)/m][(l-Z)!/ml-2]Y H (1-j/m)5.1 s,-,,

where the summation is over all tuples s (Sl,’’ ", sl_) such that s. =>0, _-<j =< l-1
and Y.j s n i- + 2.

Let us simplify the last formula (as in [8]). To this end, notice first that the sequence

{P[T,(i, u+(i+l-2))>-l] [(i-1)m-l(1-2)!m-(’-2)]-’’ u-->0}

is an (/-- 1)-fold convolution of the (1-2) sequences {(1-j/m) u" u->0}, l<-_j<-l-2,
and the sequence {lU’u-> 0}. Since the generating function of a convolution is the
product of individual generating functions, we obtain

P(T,(i, n)>-l)=(i-1)m-’(l-2)!m -’-2) coeffz,,-,-,+2 F(z, I),

where

i-2

F(z,l)= H [1-z(1-j/m)]-,
j=O

Applying the Cauchy integral formula so as to select coett,,-,-,*2 F(z, l) from F(z, l),
we have

P(Tl(i’ n)>--l)=[(i-1)/m][(1-2)!/m’-2](2ri)-’ I G(z) dz,

where

G(z)=F(z,l)/z"-i-!+3 and C={rei’-r<O<=r}, r<l.

Outside the contour C, the function G(z) has simple poles at z=(1-j/m)-l,
0<_-j_<-l-2. A direct computation shows that

res G(z) (-1)i+’m’-2(1-j/ rn)"-’/[j!(l-2-j)!],
Zi

Also, the residue at z oo equals 0 since

d. max {[G(z)l" [zl d}-*0

According to the residue theorem, we then have

(2.3)

when d .
I-2

P(Tl(i,n)>-l)=-[(i-1)/m][(l-2)!/m !-2] Y res G(z)
j=O z=z.i

( )=[(i- 1)/m] (_1)
1--2

)n--i
=o J

(1-jim

O<=j<--l-2.

2<__I<__n-i+2.

Therefore, Theorem is proven.
The last formula is most convenient when is not large. In fact, if l_>-2 is fixed

and n oo, we get from (2.3)"

p(T(i,n)>_l)..[(i_l)/m (_ 1). I-2
j=o J

exp [-j(n- i)/rn]
(2.4)

=[(i-1)/m][1-exp(-a+i/m)]‘-2, n,moo.
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It is remarkable that this simple formula holds true even when 1- o together with n
and m, slowly enough such that

(2.5) 12/(n-i)=o(1).

This result follows from the proof of Lemma 2 in [8]. For the sake of completeness,
let us give a sketch of the necessary argument. Denote the sum appearing in (2.3) by
p(n- i, l-2). Because of the alternating signs in the sum, a direct asymptotic analysis
appears impossible. Fortunately, we can get around this obstacle. Suppose that (n- i)
distinguishable balls are allocated independently and uniformly among m cells. Accord-
ing to the inclusion-exclusion formula, p(n-i,/-2) happens to be the probability
that the first (l-2) cells are all nonempty. Subsequently,

p(n i, l-2) ( (n i),/[sl s, ,]) m -’-i,

where the summation is taken over all nonnegative integer tuples s (sl,...,
such that

si:n--i, si>=l,
i:1

A little reflection shows then that

(2.6) p(n i, 1- 2) (n i)! coeffz,,-, [(ez/’ 1 )/-2(ez/m)m-l+2].
Applying the Cauchy integral formula and the saddle-point method, we obtain (via
more or less standard arguments) that under the condition (2.5)"

p(n i, l- 2) 1 exp (-a + i m)]l-2.
This, of course, leads again to (2.4).

Finally in this section, consider c, the successful search time of a key chosen
uniformly at random among n keys. Clearly,

(2.7) P(%,>=l)=n- P(Tl(i,n)>=l).
i=1

Let be fixed. Set nl [n-log n]. Then according to (2.4), we have

(2.8)

P(C,>=l):n- P(Tl(i,n)>=l)+O(logn/n)
i=1

=(l+o(1))a-’m-’ 2 (i/m)[1-exp(-a+i/m)]’-2+o(1)
i=1

- a- u[1-exp (-a+u)]- du, n, m-oe.

Since P(Cn => 1) 1, the relations show that cn __> c where

P(->_l)=l forl=l,

(2.9) P(>-_l)=a- u[1-exp(-a+u)]- du

Let us demonstrate that, in fact, for every integer k_-> 1,

(2.10) E(C) -- E(C), n, m,oo.

for 1>_-2.
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It is easy to see that (2.10) takes place provided that

(2.11) lim S,,(k)= S(k) k- 1 2,...

where

S,(k)= lkp(%,>=l), S(k)= E Ikp(>--l)
/=1 /=1

To prove (2.11), set u [(k + 2) log n], (b (1 e-a)-1) and break the sum as follows"

S.(k) 1 + S.,(k)+ S.2(k)+ S.3(k),

where

t(i)

Snl(k) n-’ E E IP(T,( i, n) >= l),
i=2 /=2

t(i)=[(n-i)’/3],

n--i+2

S,2(k) n -1 2 2 lkp(TI( i, n) >- 1),
i=2 l=t(i)+l

n--i+2

S.3(k)= n -1 ., lkp(T,(i, n)>= l).
i=n--u+l /----2

Consider S,(k). By the definition of u and t(i), the range of and in S,(k) is
such that

12/(n i) <= I2( i)/ n i) <-_ n i) -’/3 <= -,/3
_

O,

Hence, by (2.4) and (2.5),

,(,

[ )]’-l+S.,(k)=l+[l+o(1)]a-’m-’ (i/m) E 1-exp(-a+i/m
=2 /=2

(2.12) l+a -1 u E lk[ 1-exp (-a+u)]’-2 du
1=2

=S(k),

where S(k) =t=11kp(c>= l) (see (2.9) for p(c>_ l)). Further, the range of in S,,(k)
is the same as in S,,(k). Since P( T( i, n) >- l) is a decreasing function of and
t(i) >- 1/ 1 for <- n v, we obtain

(2.13)

S.2(k)<=n-’ Y. (n-i)nkP(T(i,n)>=t(i))
i=2

=< cn k+l(1 e ’/3! cr/
k+l b-(k+2) Igb

O(n-’), m,n.

Also

(2.14) S,,3(k)<-n -’ (n--i+2)a+’=o(vk+Z/n)=o(1), m,n.
i=n--u+l

The relations (2.12)-(2.14) imply (2.11). Theorem 2 is proved.
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3. The asymptotic behavior of the largest successful search time. Recall that
Ul(n) max { T1 (i, n)" 1 <- _<- n}. Our goal here is to prove that the largest successful
search time for n stored random items is

U1 (n) logb n 2 1ogb 1ogb n / Op 1 ),

where b- (1- e-a) -1. It is plausible to conjecture that

E U1( n )) lOgb n 2 1ogb 1Ogb n / O( 1 ),

but we do not propose to prove it here.
(a) Upper estimate of U(n). Introduce an integer

(3.1) IOgb n 2 1Ogb logb n + to n ),

where to(n)= o(log n) as to(n)oo. Let us show that

(3.2) lim P U1 n > 1) 0.

To this end, write first an obvious inequality

n--l+l

P(U,(n)>I)<= P(T,(i,n)>l)= Y. P(T,(i,n)>l)=2,
i=1 i=1

where 1, Y2 correspond, respectively, to sums for _-< _-< s, s < _<- t, with

s=[n-log3n] and t=n-l+l.

We will prove that Y.,Y20. Begin with Y, which actually dominates Y2. Since
12/(n i) 0 uniformly for 1 _-< -< s, by (2.4) we have

(3.3) 1 =<c (i/m)[1-exp(-a+i/m)]’-’ c F(i/m)’,
i=1 i=1

where F(y)=y[1-exp (-a+y)]l-, and c is a constant. It turns out (as shown in the
Appendix) that, on the interval [0, a], F(y) achieves its maximum at

(3.4) yo---(ea-1)/l,

and

(3.5) F(yo)<=c/(lbt), with b=(1-e-)-, anda=n/m.
Now, let Y1 =i= F(i/m), Y2 =Yi=r+l F(i/m), with r=[2yom] so that yom<r<s.
Then

F(i/m)=Y1+Y.
i----1

Clearly (see (3.4)),

(3.6)

On the other hand,

< rF(yo)= O(F(yo)m/l).

F((i+ 1)/m)/F(i/m)<=exp (-cl/m),

for r < i_-< n (see the Appendix). Hence,

(3.7)
Y12<- F(yo) [exp (-cI/m)]= F(yo)[1-exp (-czl/m)]-’

j.>_-0

O(F(yo)m/l).
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Combining (3.3) and (3.5)-(3.7) yields

(3.8) =O(F(yo)m/l)=O(mb-’l-2)=O(b-(n))=o(1), nc.

Turn now to 2. Observe that, by (2.3) and (2.6),

P(TI(i, n)> l)< (n-i)! coeffz,.-, [(ez/m- 1)t-(eZ/’) m-t+]
< (n i)t coeffz,,-, [(ez/m- 1)l-e]
<(n-i)![(eZ/"-l)t-eZ]/zn-’, z>0.

Select z n- i. Since n- i= O(log n) for i> s In-log hi,

(eZ/"-l)’-=(z/m)l-l[1 +O(log4 n/m)]<-2(log n/m) ’-1.

So, by Stirling’s formula applied to (n-i)!,

P(T(i, n)> l)<-2(n-i)!(e/n-i)n-i(log n/m) 1-’

<= C2 log3/ n(log n/m)I-,
and

(3.9) 2 c3 log9/2 n(log n/m)l-O, m,n.

The relations (3.8), (3.9) imply (3.2).
(b) Lower estimate of U(n). Introduce an integer

logb n 2 1Ogb Iogb n to(n),

where to(n) o(log n) as to(n) cx. Let us show that

(3.10) lim P(U(n) > l)= 1.

(1) introduce an auxiliary random variable X(n, l), which is the total number of
chains induced by insertion of all n keys, whose lengths exceed/. Since both versions
of coalesced hashing yield the samemthough differently orderedmchains, we can use
the results obtained in [8] for the lich algorithm. First of all,

X(n,l)=En(B),

where the sum is taken over all (l + 1)-element subsets B {x, <. < xi,/,} of the set
of n keys {x,.. x}, and (B) {0, 1} is defined as follows: (B) 1 if and only if,
after the key xi,/ is inserted, the cells occupied by the keys xi,,’", x,/, constitute a
subchain which originates at the cell occupied by the key x, (and then, of course,
h(x,) h(xi,) for either of the algorithms). Hence

(3.11) E(X(n,/)) =E E((B)) Y P((B) 1),

where, similarly to (2.2),

P((B) 1) [1 -(i,- 1)/m][(1 1/m)’-’,-l/m]... [(1 l/m)’/,-’-’l/m]

(3.12) =(l[/mt)(1-So/m) 1-I (1-j/m)’ withs=!’+l-i-I (io=0).
j=l

Also, by Lemma 2 in [8],

(3.13) E(X(n,l))=(l+o(1))cm/(lb’), b (l-e-")-
where c is a positive constant. The relations (3.11)-(3.13) will be needed shortly.
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(2) To proceed we need a notion of a special chain. Consider a chain of length
->_l+ 1, and let xi,<’’’ < xi,+, be the first (l+ 1) keys whose locations are absorbed by
this chain. According to the rule, it means that h(x,) ft(x,)= h(xi2) # f(x2), h(xj) #
h(x,) for il <j < i2, or that insertion of xi, starts a new chain, while xi is the first key
whose insertion results in collision with x and forms a chain of length 2. We call such
a chain special if insertions of all the subsequent keys xi3,..., x,+, have resulted in
pushing the cell h(x) along the chain farther and farther from the cell h(x), so that
once the key xi,+, has been inserted the length of the subchain connecting the
cells h(x,)(= h(x)) and h(x) becomes, for the first time, equal to (l+ 1).

Denote the total number of special chains by Y(n, l). It should be clear from the
definition above that

{ U, (n) > 1} { Y(n, l) > 0}.

Thus, the relation (3.10) will be proved if we can show that

lim P( Y(n, l) > 0) 1.

But, by a corollary of Chebyshev’s inequality,

P( Y(n, 1) > 0)_-> E2( V(n, I))/E( y2(n,/));

so, it remains to prove that

(3.14) E( YZ(n, l))-<[1 + o(1)]E2( Y(n, l)),

To evaluate the first two moments of Y(n,/), write first

Y(n,l)=Ee(B);

here the summation is taken over all (l+ 1)-element subsets B {x,<... < xi,+,} of
{x,... ,Xn}, e(B) e {0, 1} and e(B)= 1 if and only if x,,...,x,+ are the first (1+ 1)
keys whose locations are absorbed by a special chain. Similarly to (2.2) and (3.12),
we have

P(e(B) 1)=[1-(i,-1)/m][(1-1/m)2-q-’l/m]

[(l_2/m)3--’l/m] [(l_l/m),+,-i,-’(l_l)/m]

P(6(B) 1)/l= E(6(B))/1.

By (3.11) and (3.13), it follows then that

E(Y(n, 1)) =E E(e(B))= 1-1Yt E((B))
l-’E(X(n, 1))= [1 + o(1)]cm/(12b ’)

=[1 +o(1)]ca-’b.
Turn now to the second-order moment. First observe that

8(B1) 8(32) 0 if B, # B2 and B, B2 # &.
Subsequently,

E( Y(n, 1))= E( Y(n, /))+E,, P(e(B,)= 1, e(B)= 1),
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where the summation is taken over all ordered pairs of disjoint subsets B1, B2 of
{xl,..., x,} with I1 Inl- / 1.

To estimate the sum in (3.15) we need the following lemma.
LEMMA. For every pair of disjoint + 1)-element subsets B, B2,

P(e(B,)= 1, e(B2) 1)-< c(l, m)P(e(B,)= 1)P(e(B2) 1),

where

c(1, m) [1-2(/+ 1)/m] -2/+’).

(This inequality is similar to Lemma 3, for the lich algorithm, proven in [8] and
we omit its proof.)

By (3.15) and the lemma,

E(Y2(n, I))<=E(Y(n, I))+c(I, m) YBI,n2P(e(B1)= I) P(e(B2) 1)
<- E( Y(n, 1))+ c(l, m)E2( Y(n, l))

E2( Y(n, l))[O(b-’")+ 1 + O(12/m)]
(1 + o(1))EZ( Y(n, 1)),

as to(n)oo. Thus, the relation (3.14) is proven, and it implies the relation (3.10).
Combination of (3.2) and (3.10) enables us to conclude that, for every to(n):

P(IU(n)-logbn+21ogblogbnl<--to(n))l as w(n) oo

which proves Theorem 3.

Appendix. Consider a function F(y)=y[1-exp(-a+y)]I-, ye(O, a). Denote
log F(y) by h(y).

(i) Since

oe ifyO,
h’(y) y--(l- 1)[exp (a -y)- 1]

-oe if y a,

there must exist yoe (0, a), where F(y) achieves its maximum and

yg-(l- 1)[exp (a-Yo)- 1]- =0.

(This point is unique since h"(y) < O, ye (0, a).) Let loe; it follows then that yo-yO so

yo=[l+o(1)](e-l)/l, m,n-oe.

Furthermore,

h(yo) log Yo + (1-1 log -exp (-a +
=-log/+log (e"- 1)+o(1)+(/- 1) log (1-e-) +o(1),

SO

F(yo)=(l+o(1))c/(lbl), (b=(1-e-a)- c=e-’)

(ii) Note that h’(y) is a decreasing function, since h"(y)<0. So, for
[2yom] + 1 <= <_- n,

hi(i+ 1)/m]-h(i/m)<=h’(2yo)/m

{(2yo)- (/- 1)[exp (a 2yo)- 1]-}/m
[(2yo) -1 -yl(1 + o(1))]/m

<-_-(3yom)-<-_-cl/m, c>0,
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whence

F[(i+ 1)/m]/F(i/m)<-_exp (-Cll/m).
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LOWNESS PROPERTIES OF SETS IN THE EXPONENTIAL-TIME
HIERARCHY*

R. BOOK?, P. ORPONEN:, D. RUSSO, AND O. WATANABE

Abstract. The notion of "lowness" was introduced in computational complexity theory by Sch6ning
[J, Comput. Systems Sci., 27 (1983), pp. 14-28] who studied sets in the class NP. This notion may be
interpreted as setting an upper bound on the amount of information that can be encoded by a set. Here
ideas from previous studies are incorporated in order to capture the notion of a set being exponentially low.

The main result asserts the existence of a sparse set E such that DEXT (E)= DEXT, i.e., E is

"exponentially low," but E is not in the class P. In contrast, any set with small generalized Kolmogorov
complexity that is exponentially low must be in the class P. In addition, we show that for each k => 2, any
sparse set S that is low with respect to the class E E E(S)of the exponential-time hierarchy (i.e., Z k)

P of the polynomial-time hierarchy. Similarly, for each k = 4, any set with polynomial-must be in the class E
E P

size circuits that is low with respect to the class must be in the class

Key words, exponential lowness, polynomial lowness, small generalized Kolmogorov complexity, sparse
sets

AMS(MOS) subject classifications. 68Q15, 68Q30, 03D15

1. Introduction. How does one measure the complexity of a set of strings? The
most common approach is, of course, to study the inherent computational complexity
of the characteristic function of the set; for example, a set that can be recognized in
exponential time but not in polynomial time is considered to be more complex than
a set that can be recognized in polynomial time. A different idea is to consider a
function that bounds the Kolmogorov complexity.of the strings in the set. Then a set
with large Kolmogorov complexity is considered to be more complex than a set with
small Kolmogorov complexity. A third method is to consider how much the set, when

P
used as an oracle, "helps" different types of computations; for example, if NP (A) E2

but NP (B)= E3, then B is considei-ed to be more complex than A.
The purpose of this paper is to consider a specific case of the third method and

to compare that with the first. More specifically, we consider the following question:
if a set A has the property that DEXT (A)= DEXT, does this mean that A is in P?
Here, DEXT(A) denotes the class of sets reducible to A by means of Turing
reducibilities that are computed deterministically in exponential time. Any set A with
the property that DEXT (A) DEXT is called DEXT-Iow (informally, "exponentially
low"). Not every set in DEXT is exponentially low since DEXT (DEXT)# DEXT.
Being exponentially low means that the set in question cannot encode a great deal of
information since applying the DEXT )-operator to that set does not produce sets
not already in DEXT. Every set in P is already exponentially low, so the question of
whether every exponentially low set is in P is equivalent to asking whether the property
of being exponentially low characterizes the sets in P. We will show that the answer
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to the question is "no," that is, there exist sets A such that A is exponentially low but
A DEXT-P" we will exhibit a sparse set A with this property. To accomplish this
we consider sets whose generalized Kolmogorov complexity is bounded by certain
functions, so that the second method of characterizing the information encoded by a
set of strings is also considered.

The notion of "lowness" was introduced in computational complexity theory by
Sch/Sning [14] who called a set A in NP "low" if for some i, x/P(A) =xei. Ko and

’(A) X "Sch6ning [12] showed that if A NP is sparse, then 2 2, and if A NP has
p

polynomial-size circuits, then x3P(A) X3. Balcizar, Book, and Sch6ning [2] introduced
a more general type of lowness in the context of sets in the union of the polynomial-time
hierarchy. In general, the notion of lowness with respect to the classes "i, > 0, may
be interpreted as setting an upper bound on the amount of information that can be
encoded in the set, that is, the power of a low set in the polynomial-time hierarchy is
subsumed by a bounded number of alternating quantifiers or, equivalently, a bounded

Pnumber of applications of the NP )-operator. More formally, if A e EP-En_, and
Pfor every i, E P(A)

_
E i+j where j < + n, then A can encode information equivalent to

at most j alternating quantifiers. Here we incorporate ideas from the previous studies
in order to capture the notion of a set being exponentially low.

Other types of lowness can be studied in the context of classes in the exponential
hierarchy. In this direction we have several results about sets with "compact descrip-
tions." (The notion of a set having a "compact description" is similar to notions of
"language compression by machine" which extend the classical data compression
problem (see [6]).) We show that if a set with a compact description is low with respect
to certain classes in the exponential-time hierarchy, then it is also low with respect to
the corresponding classes in the polynomial-time hierarchy.

We establish the following results.
THEOREM 3.3. A set with small generalized Kolmogorov complexity (this includes

the tally sets) is DEXT-low if and only if it is in P.
THEOREM 4.5. There is a sparse set E DEXT-P that is DEXT-low.

E P-low.THEOREM 5.5. For k >-2, a sparse set is ’k-low if and only if it is ’k
ETHEOREM 5.6. For k >-4, a set with polynomial-size circuits is Z k -low if and only

P
if it is k -low.

Recall that there is a fundamental difference between the relativizations of poly-
nomial-time classes and the relativizations of exponential-time classes (at least if the
standard model with unrestricted access to the oracle is used). For example, while
P(P)=P and NP(P)=NP, it is the case that DEXT(DEXT)#DEXT and

P ENEXT (DEXT) # NEXT; also, while NP (NP) X2, NEXT (NEXT) # Z Because of
this difference, strange anomalies arise: exponential time Turing reducibility is not a
transitive relation; it is possible for the exponential-time hierarchy to collapse at some

E Co_E Elevel (i.e., X but be proper at a higher level (i.e. X #co-X for somej>i)
[17], [9]; and it is possible to construct an oracle set such that relative to that set the
exponential-time hierarchy and the alternating space classes are different [13], in
contrast to the unrelativized case [4].

Basically, all of these difficulties arise from the fact that the class of single
exponential functions is not closed under composition. Hence, when an oracle machine
makes a query of exponential length to an exponentially complex oracle set, the amount
of information it obtains is in a sense double exponential. However, this explanation
is not helpful in increasing our understanding of exponential relativizations. We would
like to know how this basic arithmetical fact is reflected in the structure of the sets
causing the anomalous behavior, that is, in the sets in DEXT which are not DEXT-low.
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This paper is organized in the following way. Section 2 contains notation and
some facts about sets with small generalized Kolmogorov complexity. In 3, exponen-
tially low oracle sets are discussed. The main result is contained in 4. A set E is
defined and shown to be in DEXT-P; in Theorem 4.4 it is shown that the set E is
DEXT-Iow. In 5, we consider lowness with respect to levels of the polynomial-time
hierarchy and of the exponential-time hierarchy. Section 6 is devoted to remarks and
open questions.

2. Preliminaries and generalized Kolmogorov complexity. We use (0, 1} as our
alphabet. For each integer n >- 0, let bin (n) be a standard unique binary representation
of n over . Let N and bin (N) denote the set of all nonnegative integers and
{bin (n)[n N}, respectively. Denote the length of x E* by Ix] and denote the cardinal-
ity of set S by [[S[I.

A set T is a tally set if T_ {0}*. For each tally set T, bin (T) denotes {bin (n)[O"
T}. For each set B_E*, TALLY(B) denotes {O"[bin (n) B}.

A set S is sparse if there exists a polynomial q such that for all n, I1{ sl Isl n)ll

We use standard deterministic and nondeterministic time-bounded oracle
machines that act as acceptors. If M is an acceptor, then L(M, A) denotes the set of
strings recognized relative to oracle set A, and L(M) is written for L(M, ). We assume
a standard enumeration of such machines, say M, M,..., indicating by context
whether we are discussing the class of deterministic machines or the class of nondeter-
ministic machines. A function is time constructible if it is the running time of some
deterministic Turing machine.

We also consider standard deterministic time-bounded Turing machines that act
as transducers. We assume a standard enumeration of such transducers, say
N, N,. . For each i, let T be the running time of the transducer N, let f be the
function computed by the transducer N, and let R denote the range off. We assume
that the enumeration has the property that there exists a universal Turing transducer N
and a description function d with the following properties: for every i> 0 there is a
constant c such that for all x *,

(a) d(i) is not a prefix of d(j) if ij,
(b) fu(d(i)x)-f(x), and
(c) Tu(d(i)x)<-_ci Ti(x) log Ti(x)+ci.

Hartmanis [8] introduced a "generalized Kolmogorov complexity measure." Infor-
mally, it measures how far and how fast a string can be compressed. More formally,
for each pair g, of functions, we consider the following sets"

K,[g(n), t(n)] {yl(::lx)[[xl < g(n),f(x)=y, and T(x)<= (n)]}, where n

K[g(n), t(n)]=K,[g(n), t(n)], where u denotes the index of the universal
Turing transducer considered above.

We have the following fact.
LEMMA 2.1 [8]. Let be any index and let g(n) and t(n) be time-constructible

functions. Then there exists c > O and d > O such that Ki[g n ), n
K[g(n)+ d, c. t(n) log t(n)+c].

This lemma shows that the generalized Kolmogorov complexity defined by the
universal Turing machine N, is within small factors of any other complexity defined
by a different Turing machine. Thus we will use the generalized Kolmogorov complexity
defined by Nu to state our results.
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We will say that a set A has small generalized Kolmogorov complexity ifthe elements
of A have uniformly bounded generalized Kolmogorov complexity that is small in the
sense that there exist constants c > 0 and d > 0 such that A

_
K[d. log n, n ]. Properties

of sets with small generalized Kolmogorov complexity are investigated in 1], [8], 19].
P for > 0, andWe assume that the reader is familiar with the classes P, NP, and E

P
their relativizations to an arbitrary oracle set A, P(A), NP(A), and Z (A), respectively.
We will consider the classes DEXT {L(M)IM is a deterministic acceptor that runs
in time 2 for some > 0} and NEXT {L(M)[M is a nondeterministic acceptor that
runs in time 2 for some c > 0}, and will consider their relativizations to an arbitrary
oracle set A, DEXT (A), and NEXT (A).

3. Exponentially low oracle sets. Let c be an operator that maps 2v* into 22* with
the property that for every set A E*, ()

_
CO(A). For example, P(A) {BIB <= A}.

We write c for c(). A set A * is %low if cO(A)= c.
We are particularly interested in the class of DEXT-Iow sets. Observe

that only sets in DEXT can be DEXT-low. But there are sets in DEXT which are
known not to be DEXT-Iow since DEXT(DEXT)=DDEXT (recall that
DDEXT [_J {DTIME (22"")1C > 0}) which is a proper superset of DEXT. We have the
following fact.

PROPOSITION 3.1. Every set in P is DEXT-low.
Proof Let A P and let M be a machine recognizing A that runs in time n. Let

B DEXT (A) and let M2 be an oracle machine such that L(M2, A) B and M2 runs
in time 2 d". Membership in B can be decided by a machine M3 that simulates M2 but
instead of querying the oracle simply simulates M1. Clearly, such an M3 need have
running time only 0(2dn" (2an) c) "-0(2 d(l+c)n) (since on input of length n, M2 can
make at most 2d" oracle queries, each of length at most 2d"). Thus, M3 witnesses
BDEXT. l-]

We are interested in the structure of sets that are DEXT-Iow. Our next result (and
the results in 5) show that sets that are DEXT-low but not in P must be structurally
complex.

PROPOSITION 3.2. A set A is DEXT-low if and only if there are no tally sets in
P(A)-P.

Proof Let A be DEXT-Iow so that DEXT (A)- DEXT, and suppose that T is a
tally set in P(A). Then the set bin (T) can be seen to be in DEXT (A): an input string
x bin (n) can be expanded to be in the form 1" in time O(2lxl) and whether 1" is
in Tcan be decided relative to A in time o(nd) o(2dlxl). But since DEXT (A)=
DEXT, there is an unrelativized decision procedure for bin (T) that runs in time
O(2 el’l) and this procedure can be used to decide membership in T in time O(2 e[bin (n)l)
O(ne). Hence, T is in P.

Conversely, let A be a set that is not DEXT-low and let B DEXT (A)-DEXT.
We claim that the set TALLY (B) is in P(A) P. A decision procedure for membership
in B running in time 0(2 elxl) relative to A can be used to decide membership in
TALLY (B) in time o(2elbin(n)l) O(ne) relative to A; hence, TALLY (B) P(A). On
the other hand, if TALLY (B) had an unrelativized decision procedure running in time
O(nd), we could obtain from this a decision procedure for B running in time O(2dl’l)
so that B DEXT, contrary to our hypothesis. Hence, TALLY (B) is not in P. [3

The proof of Proposition 3.2 is essentially that given by Book [3]. It is a simple
example of a more general technique that will be used in 5.

Recall that every tally set has small generalized Kolmogorov complexity. This fact
suggests the following result.
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THEOREM 3.3. Let A be a set with small generalized Kolmogorov complexity. Then
A is DEXT-low if and only if A is in P.

Proof. The "if" portion follows from Proposition 3.1. To prove the "only if"
portion, assume that A has small generalized Kolmogorov complexity and A is not in
P. There exist c, d > 0 such that A

_
Kid. log n, nO]. We will show that DEXT (A)

DEXT so that A is not DEXT-low.
Let No be an exponential time-bounded transducer such that the function fo

computed by No is defined by

f(x) if N halts on x within 2c/)ll steps,
fo(x) to otherwise,

where ft and Nt are the universal function and machine, respectively (as in 2).
Let LA {X[fo(X) C A}. Then La DEXT (A). Notice that fo enumerates all strings

of Kolmogorov complexity less than or equal to that of the members of A. The language
LA consists of a set of witnesses for the small generalized Kolmogorov complexity of
the elements of A. Assuming that LA is in DEXT will yield the contradiction.

Let y be an element of A; then, y Kid. log k, k] where k lYl. Hence, there
exists some x such that Ixl--< d. log k and on input x, Nu outputs y and halts within
k (i.e., 2 (c/d)lxl) steps; hence, fo(x)= y. This means that for all y, y A if and only if
(3x)[Ixl<-a loglyl and fo(x)=y and x LA)]. Using this fact we can construct a
polynomial time-bounded deterministic acceptor for A that for y behaves as follows:

begin
input y;
for all x such that [xl -< d. log [yl do

if x LA and fo(x)=y then halt and accept
end.

Therefore, A c P, contradicting the hypothesis.
COROLLARY 3.4. For every tally set T, T is DEXT-low if and only if T is in P.
The reader should note that Corollary 3.4 demonstrates that Theorem 3.3 general-

izes Proposition 3.2.
Notice that there is a tally set in DEXT that is not DEXT-low" if L is a set that

is <- P,. cOmplete for DDEXT, the set T TALLY (L) is not in P since DEXT DDEXT
so by Corollary 3.4, T is not DEXT-low. Theorem 3.3 can be deduced from Corollary
3.4 by means of the following fact.

A polynomial semi-isomorphism from set A to set B is a function f computable in
polynomial time such that f witnesses the fact that A-<_ P,.B and the restriction of f to
A is a polynomially invertible bijection from A to B. Balcizar and Book [1] showed
that a set has small generalized Kolmogorov complexity if and only if it is polynomially
semi-isomorphic to a tally set. Later, Allender and Rubinstein [19] showed that
"semi-isomorphic" could be replaced by "isomorphic."

4. There are DEXT-Iow sets that are not in P. Here we establish the main result,
showing the existence of a set that is DEXT-low but is not in P. We saw in 3 that
any set that is both DEXT-low and not in P cannot have small generalized Kolmogorov
complexity and must contain infinitely many complex (noncompressible) strings. Recall
the result of Allender and Rubinstein 19] that a set has small generalized Kolmogorov
complexity if and only if it is polynomially isomorphic to a tally set. A set that is

polynomially isomorphic to a tally set must be sparse. The main result shows that there
is a sparse set that is DEXT-low but not in P, so this sparse set cannot be polynomially
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isomorphic to any tally set. (The reader may wish to review 2 for notation on
Kolmogorov complexity.)

Let e >0 be arbitrarily fixed, and consider the set Kin 2(/)n]. For brevity,
we let K denote K[n/2, 2(+)n] and/ denote the complement of K. A simple counting
argument is enough to show that for every n > 0, there exists at least one string in K
of length n" there are not enough strings in E* of length n/2 or less to map onto all
of the strings of length n,

Intuitively, K is a good candidate for a DEXT-low set in DEXT-P. What follows
is an intuitive explanation of our idea. Note that K DEXT. Thus, if the lengths of
queries made by a deterministic exponential time-bounded oracle machine M are
small, e.g., linear bounded with respect to the length of the input, then it can be
simulated deterministically by an exponential time-bounded machine that makes no
oracle queries. On the oth6r hand, if M makes a long query with respect to the length
of the input, then this query may be computable from a short description in exponential
time and may be in K (i.e., not in K). Thus, the answer to this query may be "no"
(i.e., we do not need the oracle here). The next lemma establishes this type of property
for the set K.

LEMMA 4.1. Let
such that for all but finitely many x, If(x)l > d,. Ix implies that f(x) K.

Proof Let c be a constant such that Ni runs in time 2 c". Let d > 1 be arbitrary.
For any x such that If(x)l> dlxl, we have f(x) K,[n/d, 2"/d)]. From Lemma 2.1
we see that Ki[n/d, 2Cn/d)]_K[n/d+d ’, c’(n/d). 2c"/a)], where d’ and c’ are con-
stants determined by N.

Choose a constant d such that d’+ n/d <- n/2 and c’(n/d) 2 c(n/d’) <2 for all
but finitely many n. Then we have K[n/d+ d’, c’(n/d) 2"/d’)]

_
K[n/2,2+] for

all but finitely many n. Therefore, for all but finitely many n such that If(x)l> d, lxl,
we have f(x)

However, we cannot prove the DEXT-lowness of K in this way. The machine M
may use some information obtained by answers to the previous queries. So the query
may not result from a short description in exponential time even if it is long. But if
the oracle is very sparse, we can compress this information.

Let E be any infinite subset of K in DEXT with the property that for each n > 0, E
contains at most one element of length between n and 2". For example, we can define
E to be the set {x[x is the smallest element (in lexicographic order) of/( of length
22""-}m, for some m > 0}; then it is easy to show that this choice for E is in DEXT.
Moreover the following lemmas show that E is not in P.

LEMMA 4.2. Let be any time-constructiblefunction. Let A be any infinite set accepted
by a deterministic Turing acceptor that runs in time t. Then there exists a deterministic
transducer N such that A f’) Ki[ [log n],2n" t(n)] is infinite.

Proof Let M be any deterministic acceptor that runs in time and recognizes A.
From M construct a transducer N which computes the function f defined as

fthe smallest (in lexicographic order) y A
f(bin (n))= ]such that lYl--n if such a y exists,

[0 if no such y exists.

It is easy to implement Ni so that it runs in time 2". t(n). Thus, we have
R K[ [log n ], 2". t(n)]

_
A. Since A is infinite, it is clear that R is infinite. I-]

LEMMA 4.3. If X is any infinite subset of K, then X is not in P. Hence, E is not
in P.

Proof Assume to the contrary that there is an infinite X P so that X
_

K. By
Lemma 4.2, for some polynomial p there exists a deterministic transducer N such that
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X71Ki[[log n],2".p(n)] is infinite. But from Lemma 2.1 we see that
Ki[[logn],2".p(n)]K[(logn)+d,(cn2".p(n).logp(n))+c]K for all but
finitely many n. Therefore, K (3 K , a contradiction, lq

Now we can show that E is DEXT-low.
TrEOREM 4.4. If L is in DEXT (E), then L is in DEXT. Hence, DEXT (E)=

DEXT.
Proof Let Mi be a deterministic exponential time-bounded oracle machine that

witnesses L DEXT (E), that is, L= L(Mi, E). We must prove that L is in DEXT.
CLAIM. There exists a constant d > 0 such that for all but finitely many x, if y is

a query made by M during its computation on x, then lyl> dlx implies y is not in E.
Proof of the Claim. The proof is based on the notion that one can convert M to

the transducer No that will produce each query string y from x with some additional
information bits.

Let the running time of M be 2 c". Suppose that in M’s computation on x relative
to E, the oracle is queried about string y. Let n =Ix] and let ql,"" ", q,,(m <=2c") be
the strings previously queried during this computation (i.e., y is the (m + 1)st query).
We first show that with input x and some additional information, all of which requires
at most (3n + 3cn) bits to encode, this computation can be simulated up to this point
without making any oracle calls.

Let {al, , ak} be the set of strings in E of length at most n. Notice that by the
definition of E, la 11-- -I" <-- 2n. Hence, by using 2n bits of additional information,
we can simulate an oracle call to E if the length of the string is at most n.

Note that Iq] =< 2c" for all i, 1 _-<i_-< m. Furthermore, there is at most one element
in E with length greater than n but no greater than 2". Since 2 < 22n for almost all
n, there exist at most two different q’s that are in E and have lengths that are greater
than n. Thus, if some qj is in E but Iqjl > n, then we can indicate that fact by knowing
its index j which costs at most cn bits of additional information for each qj. This means
that we can simulate the oracle calls to E even if the length of the string is greater
than n, just so long as we have 2cn bits of additional information.

Note that the string y is indicated by its index (i.e., m + 1). Hence, we can conclude
that it is possible to simulate Mi’s computation on x relative to E up to the query y
by making no oracle calls if we have enough additional information: at most (2n + 2cn +
cn) bits of such information are required. We encode this information using exactly
(2n + 3cn) bits and add them to the input string x; hence, (3n + 3cn) bits are needed.
Therefore, one can construct a deterministic exponential time-bounded transducer No
which produces each query y from some z where z has less than (3 + 3c)n bits. Now
it follows from Lemma 4.1 that there exists do> 0 such that for all but finitely many
Y, lyl > do, Izl implies y K so that y is not in E. Letting d be do(3 + 3c), we have that
lyl>d.lx[-ao(3+3c).lxl>-_do[zl implies y is not in E, for all but finitely
many y.

This concludes the proof of the claim.
To continue with the proof of the theorem, let M be a deterministic exponential

time-bounded acceptor which recognizes E. Then there is a deterministic exponential
time-bounded acceptor ML which recognizes L without making any oracle queries that
operates as follows"

begin
input x;
simulate Mi on x where

if Mi queries the oracle about a string y and lyl> alxl
then answer "NO" to the query;
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if Mi queries the oracle about a string y and lyl <= dlx[
then

begin
simulate Me on y to determine
whether y E

ify E then answer "YES" else "NO"
end

end.

It is clear that ML recognizes L and operates in exponential time. Thus, L is in
DEXT. ]

From Lemma 4.2 and Theorem 4.4, we have the desired result.
THEOREM 4.5. There is a sparse set E DEXT-P that is DEXT-Iow.
The technique used in the proof of the claim in Theorem 4.4 is similar to one

used by Goldberg and Sipser [6].

5. Polynomial lowness and exponential lowness. Here we will be concerned with
lowness with respect to levels of the polynomial hierarchy or levels of the exponential
hierarchy. To begin we review the definitions of the two hierarchies.

Let A be a set of. strings. Define Eoe(A) =/I’(A) a’(A)= a(A)= P(A), and
for each integer i->0, define A.P,+I(A)=P(E.P,+I(A)),E.P,+I(A)=NP(EP(A)) and
II’+l(A) co-E’+l(A). The structure {(EP(A), IIP(A), AP(A))},__>o is the polynomial-
time hierarchy relative to A. Define PH (A)= CI i>=o E’(A). If A , then we have the
polynomial-time hierarchy, in which case we write EP instead of ;P(Q), etc. Let
PH- PH ().

It is useful to characterize the classes in the polynomial-time hierarchy in terms
of quantifiers. To do this we use the notation (ty)n and (Vy)n to abbreviate (By, lYl -<- n)
and (Vy, Yl <-- n), respectively.

LEMMA 5.1 18]. For any A and k O, a set B is in E(A) ifand only if there exist
a set BoP(A) and a polynomial q such that for all x,xB if and only if
(:iYl)ql,l(VY2)qlxl (QYk)qI,I[(x, Yl, Yk) Bo], where Qk is ::l if k is odd and V
if k is even.

For properties of the polynomial-time hierarchy, see [16], [18].
Now we turn to the exponential-time hierarchy.
Let A be a set of strings. Define Eo(A) IIo(A)= A(A)= AI(A)--DEXT (A),

and for each integer -> 0, define A+I(A) DEXT (E/P+I(A)), E/E+I(A)
NEXT (E P(A)), and II +(A) co- ff+(A). The structure {(E E(A),
II/E (A), A (A))}i=>o is the exponential-time hierarchy relative to A. If A , then we
have the exponential-time hierarchy, in which case we write E instead of (), etc.

Also, the classes in the exponential-time hierarchy can be characterized in terms
of quantifiers.

LEMMA 5.2 [17]. For any A and k0, a set B is in ,(A) ifand only if there exist
a set Bo P(A) and a function e(n) 2 such that for all x, x B if and only if

(::ly,)e(Ix[)(VY2)e(Ixl) QYk)e(Ixl)[(X, Y,, Yk) Bo].

Aspects of the exponential-time hierarchy have been studied by Dekhtyar [5],
Heller [10], Orponen [13], Simon [15], and Wilson [17].

Now we can turn to lowness. Sch6ning [14] first studied the notion of lowness
with respect to classes in the polynomial-time hierarchy. He showed that a set is P-low
if and only if it is in P, and a set is NP-low if and only if it is in NP(3 co-NP. No
similar characterizations are known for the higher levels, but the ’- or E’-lowness
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of several types of sets was established by Ko and Sch6ning [12]. Our interest is in
the notion of lowness with respect to the classes in the exponential-time hierarchy.
We note that it is not known whether every set that is Ek-low is also E+l-low.

Our first result extends Proposition 3.1.
THEOREM 5.3. For every k >-O, if a set is ,-low, then it is E-low.
Proof. The case k 0 is Proposition 3.1. Let k > 0 and let A be such that ’(A)

’. It suffices to show that Eff(A)_Ek, so let B E(A) be chosen arbitrarily. By
Lemma 5.2 there exist Bo P(A) and constant c>0 such that x e B if and only if
(::lyl)e{lxl(VyE)e(lxl’’" (QYk)e(lxl)[(X, y,’" ", yk} Bo], where e(n) 2". Let B
{(x, oelxl}[X B}. Then there exists a set BE in P(A) that is defined in the obvious way
from Bo with the property that x’ =(x, 0elxl) B1 if and only if x e B if and only if
(::iy)q(ix,l}(Vy2)q(i,,l’’" (QYk)q(ix’l[(x’, y,’’’, yk}e B2], where q(n)= n ’. Clearly, B2 is
in P(A), and so by Lemma 5.1 we have B1 e ’(A)-kP. By removing "padding," it
can be seen that Ble’ implies Be. Hence, k(A)=k as claimed. [3

The results in 4 show that for k 0, the converse of this result does not hold.
Analogously to Theorem 3.3, however, we can show that for certain types of compress-
ible sets the notions of polynomial and exponential lowness coincide for sufficiently
large values of k. To make this precise, we first prove a technical lemma.

For a set C, denote by Pog(C) the class of sets recognized relative to C by
deterministic polynomial time-bounded oracle machines that on input of length n make
only queries of length O(log n). If A e Pog(C), then we say that C is a compact
description of A.

The reader should notice that every set A having small generalized Kolmogorov
complexity has a compact description, e.g., Nj(A). This is consistent with the fact
that such a set is polynomially isomorphic to a tally set. It is clear that a set with a
compact description need not have small generalized Kolmogorov complexity: there
exist sets with polynomial size circuits that do not have small generalized Kolmogorov
complexity, but all sets with polynomial size circuits have compact descriptions (see
the proofs of Theorems 5.5 and 5.6).

LEMMA 5.4. Let A be a set with a compact description in the class A (A) for some
k >-O. IfA is ,-low, then A is ,-low.

Proof The case for k- 0 is argued just like the proof of Proposition 3.2 and is
left to the reader.

Let k>0. Let A be E-low and let C A(A) be such that A Pog(C). We must
show that E’(A)= E" so that A is E’-low. To do this we consider an arbitrary set B
in E’(A) and show that B is in kp.

First, recall from Lemma 5.1 that there exist a set Bo P(A) and a constant c such
that x B if and only if (:ly)q(lxl(Vy2)q(ixl (QYk)q(lxl)[(x, y,. , Yk) Bo], where
q(n)-n c.

Second, observe that P(A)_ Pog(C) since A Pog(C) implies that polynomial
length queries about membership in A can be replaced by polynomial time computa-
tions with log-length queries about membership in C. Hence, Bo Pog(C); let Mo be
a Pog-Oracle machine such that L(Mo, C) Bo and let d > 0 be such that on any input
of length m, Mo makes queries about strings of length at most d. log m (notice that
there are at most mTM such strings).

We will consider a machine that simulates computations of Mo but replaces oracle
queries by table lookups. Let M1 be the deterministic polynomial time-bounded
acceptor which accepts inputs of the form (x, TyEs, TNO, Y," ", Yk), where TyEs and
Tso are two disjoint finite sequences of strings, if Mo accepts input (x, y,..., Yk)
when all oracle queries are in TyEsLJ TNo and queries in TyEs are answered "yes"



LOWNESS PROPERTIES 513

while queries in TNO are answered "no." Let B1 denote the set of strings accepted by
M. Let Be denote the E’ set obtained from B by defining (x, ryES, TNO) B2 if and
only if

(y,)q(i,l)(Vyz)q(ixl) (Qyk)q(ixl)[(x, ryES, Trqo, Y,, Yk) Bl].

Thus, for some polynomial p, we have

x B if and only if (! ryES, TNo)p(lxl)[(y TyEsU TNO)

implies yl =< oglxl" and ryEs is included in C and

TNO is included in C (the complement of C) and (x, ryES, TNO) E B2].

By hypothesis C a(A) so that A(A), and A(A)=DEXT(E’_,(A))_
NEXT(EkP_I(A))=E(A)=E since A is E-low. Thus, C and are in Ek. By
Lemma 5.2 there exist a set Co P and a constant such that z C if and only if
(lYl)s(Ixl)(VY2)f(ll) (QYk)y(Izl)[( z, Yl, ", yk) 6 Co], where f(n) 2 t". A similar
formula can be obtained to characterize membership in C.

Let D be the set defined by (x, (zl,..., z,)) D1 if and only if IZll,..., [z,, I_-<
log Ixld and {z,. ., z,}

_
C. Then, by Lemma 5.1 the following representation shows

that D is in E’"
(X (ZI," ", Zm) - DI if and only if

(ly,, , y,m)h(lxl)(Vy2,, Y2,m)h(lxl)
QYk,1, Yk,m)h(Ixl)[(2, Y,l, Y,,,1)e Co and and

(2m, Y,m,’’’, Yk,m) Co] where h is an appropriate polynomial.

Similarly, the set D2 {(x, (zl ,..., z,,))l [zl,""", IZml--<--log IXl d and {z ,..., 2m}._. }
is in E ’.

The representation (,) for membership in B can now be rewritten as x e B if and
only if

(**) (3ryEs! rNo)p([x[)[<X TyE) D, and <x, TNo>e D2 and <x, ryEs, TNO>e B2].

Now D, Dz and B2 are all in E’, and E’ is closed under polynomial-bounded
existential quantification, so that (**) shows that B is in E k

P as desired. [i]

While the proof of Lemma 5.4 is quite technical, the result is very useful as is
seen by the next two theorems.

THEOREM 5.5. Let S be a sparse set and let k >-_ 2. IfS is E-low, then S is also E-low.
Proof Since S is sparse, we can apply the coding technique developed in [7], [9].

Let Cs {(n, c, i,j, b)]S contains at least c strings xl <x2<’"<Xc of length n, and
the jth symbol of x is b}. (For brevity, we have identified integers with their representa-
tions. To be precise, we should have written (bin (n),bin (c),bin (/),bin (j), b) for
(n, c, i,j, b).) The symbol < denotes the lexicographic ordering of strings of *.

The following Pog-type algorithm recognizes S relative to Cs, which shows that
Cs is a compact description for S.

input x;
n := Ixl; //Note that In[ log Ixl.//
c:=0;
while n, c+ 1, 1, 1, 0) Cs or (n, c+ 1, 1, 1, 1)6 Cs do

c := c + 1; //The maximum value of c is
polynomially bounded in Ixl.//

for i= l to c do
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begin
y:=h;
forj= l rondo

if n, c, i, j, O) Cs then y := yO else y := y 1

if x =y then halt and accept
end;
halt and reject.

The set Cs can be accepted nondeterministically in exponential time relative to
S" on input (n, c, i,j, b), a nondeterministic machine can guess an appropriate sequence
x.,..., xc of strings, query the oracle to determine whether each string is in S, and
verify that the jth symbol of xi is b. Hence, Cs NEXT(S)_ A(S) for every k >_-2.

Thus, S has a compact description in A(S) so that S being E-low implies that S is
E’-low by Lemma 5.4.

From the results in 4, we see that the result of Theorem 5.5 does not hold for
k 0. Whether the result holds for k-1 is an open question.

Recall that a set A has polynomial-size circuits if there exists a sparse set S such
that A P(S). Another characterization 11], 12] is as follows" A has polynomial-size
circuits if there exists a set Ao P and a polynomial p(n) with the property that for
every n there exists an "advice" string w, [w[ _-< p(n), such that for all x with Ix[-< n, x A
if and only if (w, x) A0.

THEOREM 5.6. Let A be a set that has polynomial-size circuits and let k >= 4. If A
is E -Iow, then A is also E -low.

Proof. Let Ao P be a set that witnesses the fact that A has polynomial-size
circuits. A description CA for A can be obtained as follows" CA=
{(n, m, i, b)[(::lw),,[(Ix),,(x A , (w, x).Ao) and (’qw’ < w)(=lx),,(x A= / =:>
(w, x) Ao) and the ith symbol of w is b]}. It can be verified that CA E3(A) c A(A).
Further, the following Plog-type algorithm decides membership in A relative to CA.

input x;
n := Ix[;
m:=0;
while neither (n, m, 1, 0) nor (n, m, 1, 1) is in CA do
m:=m+l;

w:=h;
for i= l to m do

if n, m, i, O) CA then w := wO else w := w 1;
if (w, x) Ao then halt and accept else halt and reject.

Since CA is a compact description for A, CA Aa(A), and A is E-low for some
k >= 4, it follows from Lemma 5.4 that A is :’-low.

Balcizar, Book and SchBning [2] studied a more general type of lowness in the
polynomial-time hierarchy and the notions that they introduced are of interest here.

For integers i,j>=O, a set A is in LP(i,j) if EP(A) E]".
It is clear that a set in some class LP(i,j) is itself in PH. Suppose that AEP

Then for every i, EP(A)c_ EP+, so that the notion of A LP(i,j) can have significance
only if j <i+ n. Informally, we interpret A LP(i,j) with k =j-i to mean that using
the set A as an oracle has the power of at most k alternating quantifiers or of at most
the k-fold composition of the NP operator.

We "lift" the definition to sets in the exponential hierarchy in the obvious way.
For integers i,j>-O, a set A is in LV(i,j) if Eft(A) E.
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Clearly, for every i, j, L(i,j) El. It is easy to see that for every choice of i,j
with i<=j, LP(i,j)LP(i+I,j+I). However, we do not know whether i<=j implies
Le(i,j)_ L(i+ 1,j+ 1).

The following result is the obvious generalization of Theorem 5.3.
PROPOSITION 5.7. For every i, j with <=j, Lp (i, j)

_
L (i, j).

To generalize the results in 3 on tally sets and Theorems 5.5 and 5.6, we have
the following result.

PROPOSITION 5.8. (a) Let T be a set with small Kolmogorov complexity. For every
i, j with <-j, T Le i, j) if and only if T LP i, j).

(b) Let S be a sparse set. For every i,j with 2<=i<-_j,SLU(i,j), if and only if
SLP(i,j).

(c) LetA be a set withpolynomial-size circuits. For every i, j with 4 <- <-j, A L i, j)
if and only ifA LP(i,j).

Recall that a set is P-immune if it has no infinite subset in P. Lemma 4.2 shows
that there is a sparse set that is both P-immune and exponentially low.

THEOREM 5.9. If there exists an infinite set that is both P-immune and ,-low,
where k >-3, then there is an infinite P-immune set in X; hence P # X so that P # NP.

Proof. Let A be any infinite P-immune X-low set. Consider the infinite sparse
set S-{x]x is the "smallest" string of length Ix] in A}. Since S_ A, S is P-immune.
It is clear that S is in co-NP (A).

Notice that

E_(S) _c E_(co-NP (A))

Z_,(NP (A))= E(A)=E
since A is E-low. Thus, S L(k-1, k) so by Proposition 5.8(b), S LP(k 1, k).
Hence, S E’. [3

Another way to generalize the notions studied here is to extend the notion of
compact descriptions. Instead of requiring that A Pog (C), we could require that for
some k, A AkP, log (C). Then we could establish the obvious generalizations of Lemma
5.4 and Theorems 5.5 and 5.6. The proof is clear but tedious and the details are left
to the reader.

6. Concluding remarks. We have studied the existence and properties of sets
relative to which exponential complexity classes do not exhibit the pathology of not
being closed under relativization. As a main result, we have established the existence
of a set E in DEXToP such that DEXT (E) DEXT. Moreover, we have shown that
this set can be taken to be sparse. On the other hand, we have shown that for k-> 2,
if a sparse set S satisfies E(S)= E, then it is also true that E’(S)= E’. (The main
result shows that this is not the case for k 0.) In the case k 1, it remains unresolved
whether NEXT (S) NEXT implies NP (S) NP (i.e., S NP co-NP) for sparse S.

For tally sets and, more generally, sets with small Kolmogorov complexity, we
have shown that Eft(T) Eft implies E’(T) E’ for k => 0. For sets with polynomial-
size circuits, this implication holds when k_>-4.

In general, our results indicate that sets that are "exponentially low" but not
"polynomially low"--whenever they existmmust have complex strings. This is wit-
nessed by the fact that under various "simplicity" assumptions about a set A, we know
that for sufficiently large k, E ff (A) E ff if and only if E’(A) E ft. Also, the proof of
the main result relies on choosing a set of strings having reasonably high generalized
Kolmogorov complexity.
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The principal open questions may be summarized as follows: for each k->0,
characterize the class of sets that are X-low. The case of k 0 is of particular interest
due to the main result of the present paper. We have shown that for every value of k,
if a set is E kP-low, then it is E-low, but we have only partial results regarding the
converse. Since the notion of exponential lowness is less restrictive than its polynomial
counterpart, it appears that it might be easier to establish the lowness characteristics
of various structural properties of sets in the exponential than in the polynomial sense
(cf. [12]). What must not be overlooked is that the results of SchiSning [14], Ko and
Sch6ning [12], and Balcfizar, Book and Sch6ning [2] do not characterize sets that are
X’-low.
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MONOTONE BIPARTITE GRAPH PROPERTIES ARE EVASIVE*

ANDREW CHI-CHIH YAOt

Abstract. A Boolean function P from {0, 1}’ into {0, 1} is said to be evasive, if every decision-tree
algorithm for evaluating P must examine all arguments in the worst case. It was known that any nontrivial
monotone bipartite graph property on vertex set V x W must be evasive, when ]V ]W is a power of a

prime number. In this paper, we prove that every nontrivial monotone bipartite graph property is evasive.

Key words, bipartite graph property, complexity, decision tree, evasive, monotone property
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1. Introduction. In [RV2], Rivest and Vuillemin proved the Aanderra-Rosenberg
Conjecture JR] which states that, to evaluate any nontrivial monotone graph property
on n vertices, every decision-tree algorithm must examine (n2) entries ofthe adjacency
matrix in the worst case. A stronger conjecture, suggested by Karp (see JR]), that all
such graph properties are evasive, i.e., all entries must be examined in the worst case,
was left unresolved. Recently, Khan, Saks, and Sturtevant [KSS] gave a partial solution
by showing that, when n is a power of a prime, all such graph properties are evasive;
their proof employed an ingenious topological approach to this complexity problem.

The method used in Rivest and Vuillemin [RV1], [RV2] (also discovered in Best
et al. [BBL]) yields immediately that any nontrivial monotone bipartite graph property
on vertex set V W must be evasive, when vI w[ is a power of a prime number.
The purpose of this paper is to show that, in fact, every nontrivial monotone bipartite
graph property is evasive. We will adopt the topological view for this problem as
espoused in [KSS].

2. Main theorem. Let V={1, 2,. , m}, W= {1, 2,. , n} and m,n be the set of
all bipartite graphs G V W, E), where E

_
V W. For any two G V W, E),

G’= (V W, E’), we write G_-< G’ if E
_

E’; we say that G and G’ are isomorphic if
there exist permutations Pl, P2 of V, W such that (i,j) E if and only if (p(i), p2(j))
E’. A bipartite graph property on V W is a function P: 3,,.n- {0, 1} satisfying the
constraint that P(G)- P(G’) if G and G’ are isomorphic. A bipartite graph property
P on V W is monotone if P(G)_-< P(G’) for all G_-< G’; P is nontrivial if it is not a
constant function.

Let P be any bipartite graph property on V W. We are interested in evaluating
P(G), where the input graph G- (V W, E) is given as an m n adjacency matrix
(ai) with %= 1 for (i,j) E and 0 otherwise. A decision-tree algorithm T proceeds by
asking a sequence of queries: ai,.h ?, a2.2 ?,..., until the value of P(G) can be
determined; the choice of the (k+ 1)st query can depend on the results of all the
preceding k values a,,,. ., ak,,. The cost of T, cost (T), is the maximum number of
queries asked for any input G m.n. The complexity of property P is defined as
min {cost (T)] T (P)}, when -(P) is the set of all decision-tree algorithms for
property P. We say that P is evasive if C(P) -Ivl. wl. Our main result is the following
theorem; the remainder of this paper is devoted to its proof.
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THEOREM 1. Every nontrivial monotone bipartite graph property is evasive.

3. Preliminaries. We review some needed terminology and facts from standard
topology and from [KSS].

3.1. Abstract complex. An abstract complex on a finite set X {x, x2," , x,} is
a collection A of subsets of X with the property that A

_
B A implies A A. Each

A A is a face; the dimension of A is IAI-1. We call xi the vertices. The Euler
characteristic of A is x(A)= i:>-_o (-1)/, where f is the number of i-dimensional faces
of A. We say that A is rationally acyclic if the homology groups of A are Ho(A)=
and Hi (A) 0 for all > 0.

Let F be any permutation group of X. Assume that A is invariant under F, i.e.,
for all o-F, (Xi,,Xi:,’’’,Xik}G A implies (x(iL), Xr(i:),’’’,Xcr(i,)} GA" A face F=
{xi,,xi2,’" ",xik} is said to be minimally invariant under F if, for all trF,
{cr(i), tr(i2),""", cr(ik)}= {il, i2,’’’, ik}, and if in addition, no proper nonempty sub-
set of F has this property. Let (A, F) be the set of all nonempty faces of A that are
minimally invariant under F.

DEFINITION 1. Suppose A is invariant under F. If (A, F)=QS, let Av=(. If
(A, F) {A, A2," , A.} , let Av be the abstract complex on s(A, F) defined by
Av={{Ai[iD}ID_{1,2,...,s}, [,3ioAiA}.

3.2. Geometric complex. Let {v, vz,. ., v} be a set of k independent points in
R q where q > 0 is an integer. Denote by (v, vz,..., v) their convex hull, i.e., the set

{ Yl<=i<__k Aivi A >---- O fr all i’ and
1..<-ik’ A/ 1}.

A set M Rq is called a geometric realization of an abstract complex A on X
{x, xz,..-, x,} if there exists a set of independent points {v, vz,. ., v,}, called the
base, such that M=t,3AaYA, where YA=(Vi,,Vi2,’’’,Vik) for A={xi,,xi,...,xi}.
Clearly, any abstract complex A on X {x, x2, , x,} has a geometric realization in
R q if q_>_t-1.

We will call M Rq a geometric complex if M is a geometric realization of some
abstract complex A. It is a well-known fact in topology (see, e.g. [Mu]) that if M is
a geometric realization of two abstract complexes A and A’, then X(A)= X(A’). Thus,
we can define x(M) as x(A) unambiguously.

3.3. Fixed points. Let A be an abstract complex on X (x, x2, , x,}, invariant
under a permutation group F of {1, 2,. ., t}. Let M be a geometric realization of A
with base {Vl, v2,’", v,}. Then F induces a natural automorphism group on M.
Precisely, for each o- F, let f be the automorphism on M defined by

li<=k l<=i<k

for A >: O, 21ik Ai-- 1. Let Mv denote the set of fixed points of this automorphism
group, i.e., Mv { v v M,f(v) v for all tre F}.

THEOREM 2 [KSS]. Mv is a geometric realization of At.
For any two groups F and L, we say that L is a homomorphic image of F if there

is a 1-1 homomorphism from F onto L. Let i be the cyclic group of order 1.

In the paper all i’s are distinct whenever they appear in the notation {x, x,..., x}.
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THEOREM 3 [O]. If A is rationally acyclic and F is a homomorphic image of t,
then x(Mr) 1.

3.4. General string properties and topology. In the study of the complexity of
evaluating graph properties, it has been found useful ([BBL], [RV2]) to consider the
complexity of evaluating a more general class of functions, the string properties. A
string property P is a function from {0, 1} into {0, 1}. As done for graph properties in

1, we consider decision tree algorithms T for evaluating P(al, a2,’’’, at) by asking
an adaptive sequence of queries ai ?, ai ?," "; we define cost(T) and C(P) in the
same way. The property P is said to be evasive if C(P)= t. We say that P is nontrivial
if P is not a constant; P is monotone if P(al, a2,’", at) P(a, a,..., art) when
a _-< a for all i.

In [KSS], the approach to study a string property P is to associate with P the
abstract complex A on X {Xl, x2,..., xt} defined as follows: {xi, xi2,’", xik} A if
P(al, a,..., a,)=0 where ai a ak 1 and a =0 for j it. The following
fundamental observation was made.

THEOREM 4 [KSS]. If P is not evasive, then the associated A is rationally acyclic.
We need one more concept. Let F be a permutation group of {1, 2,. ., t}. We

say that P is invariant under F if P(a, a, at)= P(a<), a<), a<t) for all
cr F. It is clear that if P is invariant under F, so is the associated abstract complex A.

4. Proof of Theorem 1. First we rephrase the problem in the terminology of string
property ( 3.4). Let E,, S,S, where S,, S are the symmetric groups on V
{1,2,...,m}, W={l,2,...,n}. Each rE,. is a permutation of {(i,j)ll <= <- m,
l<_-j<_-n}, that is, if r=(p,p:), where pS,,,p2S, then r(i,j)=(p(i),p2(j)) for
all i,j. Let us regard a bipartite graph property P on V W as a string property
in the following way: Any input graph G 3,.. is identified with a

(a, a2,. ., a,. ., a) {0, 1}, where a is obtained from the adjacency matrix

(air) of G by concatenating the entries row by row; this naturally induces a string
property P" {0, 1} --> {0, 1}. It is easy to see that if P is nontrivial and monotone, so
is P’ as a string property; also P is evasive if and only if P’ is. In addition, P’ is
invariant under

To prove Theorem 1, let P be a nontrivial monotone bipartite graph property on
V W. Denote by P’ the corresponding string property on {0, 1}. Assume that P is
not evasive, implying that P’ is not evasive; we will derive a contradiction.

Let D
___

{1, 2, , m}. Denote by bo the vector (a, a12, , ai , a,), where
ai 1 for D, 1 =< =< n, and 0 otherwise.

LEMMA 1. There exists an integer 0 <- r(P’)<m such that P’(bo)=O if [D[=< r(P)
and 1 otherwise.

Proof As P’ is invariant under E,,, P’(bo)- P’(bo,) if IDI ID’[. It then follows
from the monotonicity of P’ that there exists an integer -1 <= r(P’)<= m such that
P’(bo) 0 if and only if [D -<_ r(P’). Finally, r(P’) 1, m, since P’ is nontrivial.

Let A be the abstract complex associated with P’. Then A is rationally acyclic by
Theorem 4. Let F be the subgroup I@Z of E,, i.e., F-{ro, r,..., r_} with
r(i,j)- (i, (j + 1)rood n). Then A is invariant under F since P’ is invariant under F.

Now let M be a geometric realization of A. As F is clearly a homomorphic image
of , we have by Theorem 3 that x(Mr) 1. Thus, x(Ar)=x(M) 1, since by
Theorem 2 Mr is a geometric realization of ..

On the other hand, we have from the definition of Ar that A.--
{{AiliD}lD_{1,2,...,m}, P’(b)=0} whenever Ar. Thus, either Ar= in
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which case g(Av)= 0 1, or we have by Lemma 1 that

x(Ar)= (_1)( m )0.j r(P’) j + 1

+
O..j<r( p’) j + 1 j

=l+(-1)rCP’)-’(m-l)r(P’)

31.

This contradicts the conclusion of the last paragraph.
We have proved Theorem 1.

5. Remarks. The most tantalizing open question in this subject is whether all
nontrivial monotone graph properties are evasive. As mentioned in [KSS], their
topological approach cannot resolve this question when only the transitive nature of
the underlying group for graph properties is exploited. The proof of our result on
bipartite graphs, as well as the proof of evasiveness for graph properties on six vertices
in [KSS], suggests that further progress might be possible if one examines in detail
the structures of the geometric complexes associated with graph properties.

Another interesting direction for further work is to prove evasiveness for other
classes of string properties. For example, any nontrivial monotone string properties
that are transitively invariant under cyclic group C,, must be evasive (as can be seen
from Theorem 2 in [KSS], or from Theorems 3 and 4 in this paper). Is the analogous
result true for string properties invariant under C, Cn ?

REFERENCES

[BBL] M. BEST, P. VAN ENDE BOAS, AND H. W. LENSTRA, JR., A sharpened version of the Aanderra-
Rosenberg Conjecture, Tech. Report ZW 30/74, Stichting Mathematisch Centrum, Amsterdam, 1974.

[KSS] J. KAHN, M. SAKS, AND D. STURTEVANT, A topological approach to evasiveness, Combinatorica, 4
(1984), pp. 297-306.

[Mu] J. MUNKRES, Elements of Algebraic Topology, Addison-Wesley, Reading, MA, 1984.
[O] R. OLIVER, Fixed-point sets of group actions on finite aeyclic complexes, Comment. Math. Helv. 50

(1975), pp. 155-177.
[RV1] R. L. RIVEST AND J. VUILLEMIN, On the number ofargument evaluations required to compute boolean

functions, Electronics Research Laboratory Memorandum ERL-M472, Univ. of California,
Berkeley, CA, October 1974.

[RV2], On. recognizing graph properties from adjacency matrices, Theoret. Comput. Sci., 3 (1976), pp.
371-384.

[R] A.L. ROSENBERG, On the time required to recognize properties ofgraphs: A problem, SIGACT News,
5 (1973), pp. 15-16.



SIAM J. COMPUT.
Vol. 17, No. 3, June 1988

(C) 1988 Society for Industrial and Applied Mathematics

OO7

DISTANCE-HEREDITARY GRAPHS,
STEINER TREES, AND CONNECTED DOMINATION*

ALESSANDRO D’ATRI AND MARINA MOSCARINI:

Abstract. Distance-hereditary graphs have been introduced by Howorka and studied in the literature
with respect to their metric properties. In this paper several equivalent characterizations of these graphs are

given: in terms of existence of particular kinds of vertices (isolated, leaves, twins) and in terms of properties
of connections, separators, and hangings. Distance-hereditary graphs are then studied from the algorithmic
viewpoint: simple recognition algorithms are given and it is shown that the problems of finding cardinality
Steiner trees and connected dominating sets are polynomially solvable in a distance-hereditary graph.

Key words, distance-hereditary graph, crossing chords, perfect graphs, connected dominating set,
Steiner tree
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1. Introduction. A graph is distance-hereditary if every two vertices have the same
distance in every connected induced subgraph containing both (where the distance
between two vertices is the length of a shortest path connecting them). These graphs
have been introduced and studied by Howorka [18] and further characterized by
Bandelt and Mulder [2] in terms of the distance function and forbidden isometric
subgraphs.

In particular, it has been proved [18] that distance-hereditary graphs are perfect
and can be characterized in terms of the existence of chords in cycles in the following
way: a graph is distance-hereditary if and only if each cycle on five or more vertices
has at least two crossing chords (where two chords (u, v) and (w, z) cross if the vertices
u, w, v, z are distinct and in this order on the cycle). The proofs of the results in this
paper are mainly based on this characterization; for this reason in a preliminary version
[10] we called these graphs cross graphs. Similarly, several classes of perfect graphs
[16] have also been characterized in the literature by means of adjacency properties
of vertices in cycles (e.g., chordal and strongly chordal graphs [14], Meyniel’s graphs
[21], cographs [7], parity graphs [5]). Furthermore, starting from the studies on acyclic
hypergraphs in database theory [9], [12], [13], it has been shown that acyclicity
properties in hypergraphs correspond to chordality properties in bipartite graphs and
vice versa 1 ], 11 ].

In this paper new characterizations of distance-hereditary graphs are given; fur-
thermore, these graphs are related to the above classes of perfect graphs, and are
studied with respect to classical problems that are open or computationally hard in
several classes of perfect graphs.

In 3, the new characterizations are proved. In particular, it is shown:
(1) That the class of distance-hereditary graphs is closed under multiplication of

vertices 16] and appending of leaves and isolated vertices (distance-hereditary graphs
are exactly those graphs generated from a single vertex by those operations); we note
that this result has been obtained independently by Bandelt and Mulder [2] in the
case of connected distance-hereditary graphs;

Received by the editors August 11, 1986; accepted for publication (in revised form) May 13, 1987.
This work was partially supported by MPI within the National projects on "Design and Analysis of
Algorithms" and on "Formal Aspects of Databases."

? Dipartimento di Ingegneria Elettrica, Universit dell’Aquila, Monteluco, Roio, 1-67040 L’Aquila, Italy.
Istituto di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30, 1-00185 Rome, Italy.

521



522 A. D’ATRI AND M. MOSCARINI

(2) That these graphs correspond exactly to graphs in which all minimal connected
subgraphs joining a given set of vertices have the same number of vertices (in other
words, the distance-hereditary property can be extended to an arbitrary set of vertices);

(3) That distance-hereditary graphs can be characterized also in terms ofproperties
of their minimal separators and hangings.

In 4, distance-hereditary graphs are related to various classes of perfect graphs:
cographs, parity graphs, strongly chordal graphs, (6, 2)-chordal bipartite graphs [1],
comparability and permutation graphs [16].

In 5, distance-hereditary graphs are studied from the algorithmic viewpoint.
Polynomial algorithms are given:

(1) To recognize distance-hereditary graphs (based on some of the above charac-
terizations);

(2) To solve the cardinality Steiner tree and the connected dominating set problem
in this class of graphs.

We note that the Steiner and the connected domination problems play a significant
role in discrete optimization and, although there is no obvious relationship between
them, they are of the same complexity for a variety of classes of graphs. In particular,
the cardinality Steiner tree problem is known to be polynomially solvable for the
following classes of perfect graphs: strongly chordal graphs [22], permutation graphs
[6], cographs [20], and (6, 2)-chordal bipartite graphs [1]; on the other hand, this
problem is NP-complete 15] for chordal and split graphs [22], bipartite and compara-
bility graphs [20]. Similar results hold for the connected dominating set problem [20].

Since the class of distance-hereditary graphs properly contains some of the largest
classes of graphs in which the problems are polynomially solvable, the results given
in this paper may be considered as a contribution to a better definition of the bound
between tractability and intractability for these problems.

2. Terminology and notation. We shall consider finite, simple loopless, undirected
graphs G (V, E), where V is the vertex set and E is the edge set, and we shall use
more-or-less standard terminology from graph theory [3], [17], some of which we
review here.

Let S and T be two subsets of V. We denote with (S) the subgraph of G induced
by S, with N.(S) the neighborhood of S in T, that is the set of vertices in T that are
adjacent to any vertex in S and with N-[S] the closed neighborhood of S in T, that is
N.(S) S (for simplicity we shall omit T if it coincides with V and we shall use v
instead of {v} whenever no ambiguity arises). A vertex v is isolated if N(v)=, is a

leaf if IN(v)[ 1. Two vertices v and v’ are twins if they have the same neighborhood
(N(v) N(v’)) or the same closed neighborhood (N[v] N[v’]).

The set of vertices S is a separator of G if either ISI IV -1, or the removal of
S from G increases the number of its connected components. A separator of G is
minimal if none of its proper subsets is a separator. A block of G is a maximal connected
subgraph of G that contains no cutpoint.

The set of vertices S is a domination of T if T N[S] and for no S’_ V such
that T

_
N[S’] we have IS’ < SI. The set S is a connected domination ofT if T N[S],

the induced subgraph (S) is connected and for no S’_ V, such that T_ N[S’] and
(S’) is connected, we have ]S’] < IS[. A (connected) dominating set of G is a (connected)
domination of V.

The induced subgraph (S) of G is a connection of T if (S) is connected and
T S. A connection (S) of T is nonredundant if, for no v S, we have that (S-{v})
is a connection of T; it is a minimum connection of T if no connection of T has less
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than ]SI vertices. A Steiner tree of T is a spanning tree of a minimum connection of
T. An induced path is a nonredundant connection of a pair of vertices; an induced
path is a shortest path if it is a minimum connection. The distance between u and v
in G, i.e., the length of a shortest path between u and v in G, will be denoted by de(u, v).

If G is connected and v is one of its vertices, the hanging ofG by v is the function

h that associates to every u V the value de(u, v) (h(u) is the level of u in the
hanging h). Li(h) (or simply Li, when no ambiguity arises) denotes the set of vertices
with level in h. Given a hanging h of G, the horizontal part of G with respect to h,
denoted H(G, v), is the subgraph (V, E’) of G in which E’ is the set of edges in E
between pairs of vertices having the same level in h, and the vertical part of G with
respect to ho, denoted V(G, v) is the complement of H(G, v) in G (see Fig. 1). The
concepts of hanging, level, horizontal part and vertical part can be extended to
disconnected graphs by considering one hanging vertex for every connected component.

L

FIG. 1. A hanging of a distance hereditary graph (a) and its horizontal (b) and vertical (c) parts.

A cograph [5], [7] is a graph that does not contain any induced path of length
three; a chordal graph is a graph having a chord in every cycle on four or more vertices;
a strongly chordal graph [14] is a chordal graph in which every cycle on six or more
vertices contains a strong chord (i.e., a chord joining two vertices with an odd distance
in the cycle); a ptolemaic graph is a connected graph such that for every four vertices
Vl, /)2, /)3, and /)4 the following inequality is satisfied: d(vl, v2)* dG(v3, /)4)
d(vl, v3) * d(v2, v4)+ d(vl, v4) * d(v2, v3); a parity graph [5] is a graph having
two crossing chords in every odd cycle on five or more vertices; a (6, 2)-chordal bipartite
graph 1] is a bipartite graph having two chords in every cycle on six or more vertices;
a comparability graph [16] is a graph that is transitively orientable (i.e., there exists an
assignment of directions to edges such that if (u, v) and (v, w) are arcs then so is
(u, w)); a permutation graph [16] is a comparability graph whose complement is also
a comparability graph.
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3. Characterizations. The following theorem provides several equivalent
definitions of distance-hereditary graphs that characterize them in terms of existence
of particular kinds of vertices (isolated, leaves, twins) and in terms of properties of
connections, separators, and hangings. The results from (1) to (3) are showed by
Howorka in [18]; in this section the proof of the remaining equivalences is given.
Bandelt and Mulder [2] provided several interesting characterizations of connected
distance-hereditary graphs, based on metric properties and forbidden configurations,
and also independently proved the equivalence between (1) and (7), in the connected
case, by using a different proof technique.

THEOREM 1. Given a graph G (V, E) the following statements are equivalent:
(1) G is a distance-hereditary graph.
(2) Every cycle in G with five or more vertices has two crossing chords.
(3) Every induced path in G is a shortest path.
(4) Every nonredundant connection in G is a minimum connection.
(5) For every T

_
V and every vertex v in a minimal separator S of T) we have

NT-S( V) NT-s( S).
(6) For every cycle c in G if {u, } is a separator of the subgraph G’ induced by c

then u and are twins in G’.
(7) Every induced subgraph of 0 contains an isolated vertex, or a leaf or a pair of

twins.

(8) For every hanging h of 0 and eery pair of vertices u, U, 1 <- <- k, that are
connected in (V-L-), we have L- -] N(u)= L- ( N(v).

Proof Throughout the proof we assume that V -> 5 and that G is connected. The
other cases follow immediately. Since the equivalences of statements from (1) to (3)
are proved in [18], we will prove the following implications:

(4)<=>(3)=(5):=>(6):=>(2)>(7) and (2)<=>(8).

(3):=>(5). Statement (5) trivially holds if iS] 1 or ]SI IVI-1. Therefore, let us
suppose that 1 < [SI <IV[- 1. Let u and v be two distinct vertices in S and C’ and C"
be two distinct connected components of (V-S) (if ISI <IV]- 1, then (V-S) has at
least two connected components). Since S is minimal, we have that u is adjacent to
at least one vertex in C’ and to at least one vertex in C"; the same must also be true
for v. Let u’ and u" be two vertices, in C’ and C", respectively, adjacent to u; from
these considerations it follows that there exist an induced path (u, vl, , Vn, V) from

lvv)u’ to v whose internal vertices are in C and an induced path (v, v’’, , V,n from
v to u" whose internal vertices are in C". Consider the path p-
(u’, v’l, , v’,, v, v’, , v, u"); since no vertex in C’ is adjacent to a vertex in C",
p is induced and, due to (3), its length must be two. Hence, both u’ and u" must be
adjacent to v; this implies that for every vertex v in a minimal separator S of G we
have Nv-s(v) Nv-s(S). Since every induced subgraph of a distance-hereditary graph
is distance-hereditary, (5) is proved.

(5)(6). The proof is trivial; in fact, {u, v} is also a minimal separator in G’.
(6)(2). Let us suppose, by contradiction, that there exists in G a cycle c=

(v, vz,..., v,, v), q 5, with no pair of crossing chords. Consider the subgraph G’
of G induced by the vertices in c. If e has no chord then every pair of nonconsecutive
vertices in c is a separator of G’ whose vertices are not twins in G’. Otherwise, let
(v, v), < <j < q, be a chord in c. Since c has no pair of crossing chords, no vertex
in {v+, , vj_} can be adjacent to a vertex in {v+, ., vq, v,. ., v_}. Therefore,
the set S {v, vj} is a minimal separator for G’. Furthermore, since e has no pair of
crossing chords, (v_, v) and (v, v+) cannot be both in G’ and a contradiction arises.
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(3)0(4). Let T, with [TI->3 (otherwise the implication is trivial), be the set of
vertices in G to be connected and let G’= (V’, E’) and G"= (V", E") be two distinct
nonredundant connections of T; we will show that if (3) holds, then there exists a 1-1
correspondence between V’ and V". In fact, we associate with every vertex in V’- V"
a vertex in V"- V’ and we prove that such an association is a 1-1 mapping. First, we
prove that:

(a) Given a vertex v’ V’-V", for every pair C1 (V1, E) and C2 (V_, E2) of
connected components of (V’-{v’}) there exists a vertex v" V"-V’ such that
Nv, t v( V") Nv, v( V’).

Let v and v be two vertices in T V and T V2, respectively, such that
p’=(v,. ., v_l, v, v+,. ., v), k->_3, is an induced path in G’ from v to v in
which v v’ (such a pair of vertices always exists because of the definition of nonredun-
dant connection). Since (3) holds, there exists in G" an induced path p" connecting
v and v with the same length as p’. In order to prove (a), we will show that:

(b) There exists in p" a vertex v" that is adjacent to both v_ and v/.
If k- 3, the existence of v" trivially follows from (3). If k->4, let us suppose, by

contradiction, that no vertex in p" is adjacent to both v_ and v/l. Let v./, j < i, be a
vertex in p’ adjacent to at least one vertex in p" and such that no vertex in p’ between
v./ and vi is adjacent to any vertex in p"; analogously, let vh, h > i, be a vertex in p’
adjacent to at least one vertex in p" and such that no vertex in p’ between vi and Vh
is adjacent to any vertex in p"; furthermore, let v* and v/ be two vertices in p" such
that v* is adjacent to v, v/ is adjacent to vh and no vertex in p", between v* and v/,
is adjacent to either v./ or Vh. Observe that if v and vh coincide with v_ and v+,
respectively, then v* and v/ have to be distinct, otherwise there would be a vertex in
p" adjacent to both vi_ and v/. Therefore, due to the fact that p’ and p" are induced
paths, there exists an induced path in G of length greater or equal to three from v_
to vi/. This implies a contradiction and proves (b).

Now let w be a vertex in V_ distinct from v/l and adjacent to v’; we will show
that w is adjacent to v". Let us suppose, by contradiction, that w is not adjacent to
v". Since (3) holds, w and v+ cannot be connected in C via an induced path of
length greater than two. If w and v/ are adjacent, the path (v_, v", v/, w) is an
induced path longer than (v_, v’, w) (contradiction). If w and v/l are not adjacent,
let z be a vertex in V adjacent to both w and v/. In this case, the only admissible
chord in the path p* (v_, v", v+, z, w) is (v", z). Therefore, there exists an induced
subpath of p* between vi_ and w longer than (vi-1, v’, w) (contradiction).

Since analogous considerations can be done if w is a vertex in V distinct from
Vi-l and adjacent to v’, we can conclude that v" is adjacent to every vertex in Nv, u v2(V’).
Analogously, it is possible to prove that v’ is adjacent to every vertex in Nv, u v2(V").
Furthermore, v" cannot be in V’, otherwise G’ would not be nonredundant, and (a)
is proved.

We now show that:
(c) There exists exactly one vertex v" belonging to V"-V’ such that Nv,(v’)=

Nv,_,;(v"); furthermore, for every v* V’ distinct from v’ we have Nv,(V") Nv,(V*).
If INv,(v’)l-2, then the existence of v" trivially follows from (a). If INv,(v’)[>-3,

let C1 and C be as in (a); then there exists a vertex v’ V" such that Nv, uv(V)=
Nv,v(V’). Therefore, if there exists a. vertex v3 Nv,(V’) that is not adjacent to v’,
such a vertex must be in a connected component C3 (V3, E3) of (V’-{v’}) distinct
from both C and C2. Because of (a) there exists a vertex v V" (distinct from v’)
such that Nv2u (v) Nv v_,(v’). We will show that every vertex in C adjacent to
v’ is adjacent to v. In fact, let us suppose, by contradiction, that there exists a vertex
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vl in C1 adjacent to v’ and not adjacent to v and let v2 be any vertex in C2 adjacent
/)3) isto v’. In this ease, the only admissible chord in the path p* (v, v, v, v2,

(v’, v). Therefore, there exists an induced subpath of p* between v and v3 longer
than (v, v’, v3) (contradiction).

By repeatedly applying the above argument, because of the finiteness of V’, it is
possible to see that there exists a vertex v" V" such that Nv,(V’)C_ Nv,_v,(v"). In
order to prove that Nv,(v’) Nv,_v,(v"), let C and C2 be as above, and let us suppose,
by contradiction, that there exists a vertex u in C adjacent to v" and not adjacent to

?ov, furthermore, let vl and v2 be two vertices in C1 and C, respectively, adjacent to
v’, and let (u, ul,.. , u,, v, v’), n _-> 0, be an induced path from u to v’ whose internal
vertices are in C; we have that the path (u, u,. ., u,, v, v’, v2) is an induced path
from u to v2 longer than (u, v", v2); hence, a contradiction arises.

Furthermore, due to the fact that G" is nonredundant, no vertex in V" distinct
from v" can enjoy the same property. Finally, due to the fact that G’ is nonredundant,
v"; V’ and for no vertex v* in G’ distinct from v’ we may have Nv,(v")= Nv,(v*).

(4)=:>(3). It trivially follows from the definitions of nonredundant connection and
induced path.

(2)=:>(7). Since an induced subgraph of a distance-hereditary graph is distance-
hereditary, it is sufficient to prove that if every cycle in G of length five or more has
two crossing chords then G contains an isolated vertex or a leaf or a pair of twins.

Since every cycle in a graph is contained in one block, at least one block
G’= (V’, E’) exists in G sharing at most one vertex with the remaining blocks. If
[V’I 1 then G has an isolated vertex. If [V’[ 2 then the vertex belonging only to G’
is a leaf in G. Therefore, it is sufficient to prove that"

(a) If IV’[ > 2 there exist in G’ two pairs of twins.
In fact, if v is the vertex that G’ shares with the remaining blocks and (a) holds

then there exists at least one pair of vertices of G (both distinct from v) that are twins
in G’; since they cannot be in a block distinct from G’, they are also twins in G and
(2)=:>(7) is proved. In order to prove (a) we will prove a number of facts.

(b) If every cycle in G of length five or more has two crossing chords then for
every minimal separator S of G we have that (S) is a cograph.

Since (2)=:>(5), if v is a vertex in Nv_s(S) (because of the definition of minimal
separator INv_s(S)[>-_ 1) all vertices in S have the same level in h. Then, by (2)(3),
every induced path in (S) cannot be longer than two and (b) is proved.

(c) If every cycle in G of length five or more has two crossing chords every
minimal separator S of G either is a cutpoint or contains at least one pair of twins.

Because of (b), (S) is a cograph. It has been proved in [7] that in every nontrivial
cograph there are two vertices that are twins; therefore if S is not a cutpoint it contains
two vertices u and v such that Ns(u)-Ns(v) or Ns[u]= Ns[v]. Since (2)(5) it
follows that Nv(u)= Nv(v) or Nv[u]= Nv[v] and (c) is proved.

(d) In every nontrivial connected graph there exist at least two minimal separators.
Let G be a nontrivial connected graph with at least two vertices. G must contain

at least one nonempty minimal separator S. Let v be a vertex in S; we have that V-{v}
is a separator of G, then G must have a minimal separator distinct from S and (d) is
proved.

We are now able to prove (a). In fact, since G’ is a block, every minimal separator
S in G’ contains at least two vertices. Because of (d) this implies that G has at least
two minimal separators whose cardinality is greater than or equal to two. Finally, due
to (c), (a) is proved.

(7)=:>(2). Let us suppose, by contradiction, that there exists in G a cycle c--
(v, v:,. ., Vq, v), q _-> 5, with no pair of crossing chords. Consider the subgraph G’
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of G induced by the vertices in c; no vertex in c can be a leaf or an isolated vertex
in G’. Furthermore, let vi and v. be any pair of distinct vertices in c; since q_>-5 we
may assume without loss of generality that 1 < <j < q. Since c has no pair of crossing
chords, (vi-1, v) and (v, v/l) cannot be both in G’; hence vi and v./cannot be twins
in G’ (contradiction).

(2) =:> (8). Let hv be a hanging of G, and v’ and v" be a pair of vertices having the
same level in hv and connected by an induced path p whose vertices have level in

h greater or equal to i. Since the implication trivially holds for 1, let > 1 and let
us suppose, by contradiction, that U- f3 N(v’) L;-1 f3 N(v"). Without loss of general-
ity, we assume that there exists a vertex v* U-l(h,,)f3 (N(v’)- N(v")). Consider two
induced paths (vl, v_l," , v’, v) and (v’.’,, v’.’,-1,"’, v, v’), of length greater than

v* and for every k, 0 <k <i-l, vandvhaveone, such that v= v, v v, vi-1
level k in hv (therefore v/= vg v); let j be the maximum k, k < i, such that v, is
adjacent to v_l or v,_l is adjacent to v. Suppose that v’ is adjacent to v-l" and let
us consider the induced pathsp’ p"v-l, ., v, v-l) and (vi, v-l, ", v-l). Let
/v be the nearest vertex to v" among those of p that are adjacent to v_l’ and let us

consider the cycle generated by p’, p", (v_l, v/) and the subpath of p between v/ and
v". The length of such a cycle is greater than four; furthermore, the only admissible
chords in this cycle are the chords (v,, v), i-1-< k <j-1 (that is chords connecting
vertices with the same level), and chords connecting v7-1 and a vertex in p; therefore,
the cycle contains no pair of crossing chords (contradiction). Analogous considerations
can be done if v is adjacent to

(8)==>(2). Let us suppose, by contradiction, that there exists in G a cycle c
(vl, v2,’", Vq, vl), q => 5, with no pair of crossing chords. First we prove that:

(a) There exists at least one vertex in c that is not an endpoint of any chord in c.
Let us suppose, by contradiction, that every vertex in c be an endpoint of a chord

in c. Let (v, v), <j, be a chord in c; if there exists a vertex in c that is consecutive
with both v and v, then every chord starting from such a vertex crosses (v, v)
(contradiction).

Otherwise, if no chord crosses (vi, v), we can consider a chord (Vh, Vk), such that
< h < k <j, and repeatedly apply the same argument until a contradiction arises and

(a) is proved.
Now let vn be a vertex in c that is not an endpoint of any chord in c. Without

loss of generality, we can assume that 2 < n < q-1. Consider the hanging hv,, of G.
Since no chord starts from vn, we have that the only vertices in c having level one in
h,. are v._l and v.+l; therefore Vn_ and v.+2 have level two in ho,. and are connected
by a path (the path in c that does not have v._, v., and v.+l as internal vertices)
whose vertices have level greater or equal to two. Since c has no pair of crossing
chords, the edges (v._2, v.+l) and (v.-l, v.+z) cannot be both in G and a contradiction
arises.

Characterization (8) provides a simple property to be satisfied by every hanging
in order that a graph be distance-hereditary. Observe that Bandelt and Mulder, starting
from an arbitrary hanging, provided a more complex characterization based on five
conditions (see [2, Thm. 3]); two of them (conditions (1) and (3)) are implied by our
characterization (8).

4. Relationships between distance-hereditary graphs and other classes of perfect
graphs. We now relate distance-hereditary graphs with other kinds of graphs defined
in 2.

From the definitions of a distance-hereditary graph and a parity graph it trivially
follows that a distance-hereditary graph is a parity graph. Furthermore, Howorka 19]
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proved that Ptolemaic graphs are precisely chordal distance hereditary graphs. The
following proposition states the relationships between the class of distance-hereditary
graphs and the classes of cographs, (6,2)-chordal bipartite graphs, comparability
graphs and permutation graphs (see Fig. 2).

PROPOSITION 1. (i) Cographs are distance-hereditary graphs; there are distance-
hereditary graphs that are not cographs.

(ii) (6, 2)-chordal bipartite graphs are precisely bipartite distance-hereditary graphs.
(iii) There are distance-hereditary graphs that are not comparability graphs.
(iv) There are permutation graphs that are not distance-hereditary graphs.
Proof of (i). It has been proved in [7] that in every nontrivial cograph there are

two vertices that are twins, and that every induced subgraph of a cograph is a cograph;
due to (7) in Theorem 1, this implies that a cograph is a distance-hereditary graph.
The graph in Fig. 3 is a distance-hereditary graph that is not a cograph.

Proof of (ii). The proof immediately follows from the following result provided
by Howorka [18]: a graph is distance-hereditary if and only if every cycle with five or
more vertices has two chords and every cycle with five vertices has two crossing chords.

Proof of (iii) and (iv). See the graphs in Figs. 4 and 5. 0
Finally, the following theorem gives a property of distance-hereditary graphs

which is similar to a decomposition property proved in [4] and [5] for Meyniel and
parity graphs; in particular it shows that a distance-hereditary graph can be easily
decomposed into a cograph and a (6, 2)-chordal bipartite graph (without common
edges) by hanging it with respect to one of its vertices. This property has been

Comparability

[Permutation

NP-complete

Strongly Chordal

polynomial

(6,2)-chordal

FIG. 2. Containment relations and bound between tractability and intractability ofSteiner tree and connected
domination problems for classes discussed in this paper.

FIG. 3. A distance-hereditary graph that is not a cograph.
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FIG. 4. A distance-hereditary graph that is not a comparability graph.

FIG. 5. A permutation graph that is nora distance-hereditary graph.

independently proved by Bandelt and Mulder [2, Property (2) in Theorem 3 and
Corollary 5].

THEOREM 2. Let G be a distance-hereditary graph. For every hanging h of G, the
horizontal and the vertical part of G with respect to h are a cograph and a (6, 2)-chordal
bipartite graph, respectively.

Proof It has been shown [5] that, if G is a parity graph, H(G, h) is a cograph.
Due to the containment of the class of distance-hereditary graphs in the class of parity
graphs, the first part of the statement is proved.

In order to prove the second part, let us assume, without loss of generality, that
G is connected and let hv be a hanging of G and k be the maximum level of vertices
of G in hr. The statement is trivial if k-<_ 1. Otherwise, let V1 and V2 be the set of
vertices in V having level even and odd, respectively; it is easy to see that V(G, h)
is bipartite with respect to V1 and V2. Furthermore, let us suppose, by contradiction,
that there exists a cycle c (v, v,..., vq, v) in V(G, h), of length q_->6, with at
most one chord. Let j be the maximum level in h of vertices in e and let vi be a vertex
in e having level j; without loss of generality, we may assume that 3-< <_-q-2. The
following cases may arise.

Case (1). Both vi_ and v+2 have level j-2. In this case (v_, vi, v+) is a path
between v_l and vi+ whose vertices have level greater than or equal to j. Since either
(v_, v+l) or (vi_, v+2) is not in E, due to (8) in Theorem 1, a contradiction arises.

Case (2). Either v_2 or v+2 has levelj-2. Suppose v_z has levelj-2. If (vi_2,
is not in E then the same considerations as in Case (1) can be done. Otherwise, again
by (8) in Theorem 1, (vi_z, v+3) E; since e has at most one chord, this implies that
q i+ 3 6. The cycle c cannot have any of the following chords:

(v, vs) and (v3, VG); in fact, c cannot have a chord distinct from (v, v4) in
V(G, hv)

(v, vs); in fact, if (V3, /)5) E then (v, v), (v3, VG) E.
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Hence, we have that (V2, /)6)E E. Consider the cycle (v2,/)3,/)4, /)5, /)6); this cycle
has no pair of crossing chords (contradiction).

Case (3). Both vi-2 and vi/2 have level j. If q i+3 =6, we have that the only
admissible chords in G are (v2, v4), (v2, v6), (v4, v6) and at most one chord in
{(v, v4), (v2, vs), (v3, v6)} (otherwise c would have two chords in V(G, hv)). In fact,
by Theorem 1, the existence of (v, v3) or (v, vs) or (v3, vs) would imply the existence
of two chords in {(v, v4), (v2, vs), (v3, v6)}. Therefore, there exists a cycle of length
five in G without crossing chords (contradiction).

If q > 6 we have that vi-3 and vi/3 have level j-1. Since v_ and vi/ have level
j-1 in hv, again by Theorem 1, there exists a vertex v’ having level j-2 and adjacent
to /)i-3, /)i+3, vi_, and

If neither (v_3, v) nor (vi_2, v+) is in E, consider the cycle c’=
(vi-3, vi-,_, vi-, v, vi+, v’, vi-3). We have that (v_,_, vi) cannot be a chord of c’, in fact
if (vi-:, v). E, then (vi-3, vi), (vi-2, vi+) E. Therefore (vi-3, vi+) must be in E.
Consider the cycle (vi-3, v_, vi-, v, v+, v-3); this cycle has no pair of crossing
chords (contradiction).

If either (vi_3, v) or (v_2, v+) is in E, analogous considerations can be done by
considering the cycle (vi-, vi, vi+, vi+, vi+3, v’, v_), t-1

5. Recognition, Steiner tree, and connected domination problems. The recognition
problem (i.e., the problem of deciding in polynomial time whether or not a graph
belongs to a given class) is open for the class of perfect graphs, but it has been solved
for several of its subclasses, such as the ones discussed in the previous sections. In
particular, Burlet and Fonlupt [4] provide an algorithm, based on a decomposition
process, that recognizes in polynomial time Meyniel graphs; an easy adaptation of
this algorithm (obtained by restricting the decomposition operation and the type of
final inseparable components) allows us to also recognize parity graphs (see [4] and [5]).

Two recognition algorithms for distance-hereditary graphs are now presented. The
first is a procedure that reduces a distance-hereditary graph into the empty graph, by
recursively eliminating vertices with particular properties (similarly to what is done
for cographs in [7]); the second one is based on connectivity tests in the graph hangings.
Such algorithms are a straightforward consequence of characterizations (7) and (8) in
Theorem 1 and it is easy to see that they work in polynomial time.

ALGORITHM l.
input a graph G V, E);
output the variable succeeds (true if and only if G is a distance-hereditary graph);

procedure delete G, succeeds);
begin
W:=Q;
for every v G do

if v is an isolated vertex or a leaf or if v has a twin in G then
begin G := V { v}); W := W 12 { v} end;

if G then if W then succeeds :=false else delete (G, succeeds)
end;

begin succeeds := true; delete (G, succeeds) end.

ALGORITHM 2
input and output as above;
begin

succeeds := true;
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for every connected component C of G do
for every w C do

begin
determine hw;
for every pair u, v C do

if hw(u)= hw(v)=
and u and v are connected in (V-Li-l(hw))
and Li-(hw) N(u)# L-l(hw)f-) N(v) then
begin succeeds :=false; exit end

end
end.

We now present two polynomial algorithms to find Steiner trees and connected
dominations in distance-hereditary graphs, respectively. First, characterization (3) in
Theorem 1 suggests a simple greedy technique to find Steiner trees in distance-hereditary
graphs in polynomial time by using the following algorithm:

ALGORITHM 3.
Input a connected graph G (V, E) and a subset S of its vertices
output a subtree of G that includes all vertices in S;
begin

for every v V- S
if V- {v}) is a connection of S then G := V- {v});

determine a spanning tree of (3

end.

THEOREM 3. If G is a distance-hereditary graph Algorithm 3 determines a Steiner
tree of S in O(I V IEI) time.

Proof In fact, the first step in Algorithm 3 determines a nonredundant connection
of S that, by Theorem 1, is also minimum. Since such a step can be done in time
o(Ivl, IEI) (in fact, it requires a connectivity test for every vertex in V-$) and a
spanning tree can be found in linear time, the overall complexity is O(I VI * IEI). t3

Also characterization (8) in Theorem 1 has an interesting algorithmic impact. In
fact, we now prove that a polynomial algorithm based on this characterization exists
to solve the connected domination problem in distance-hereditary graphs.

In order to approach the problem, let us provide some technical lemmas.
LEMMA 1. Let G (V, E) be a distance-hereditary graph, hw be a hanging of G, k

be max(hw(v)l v V), andD
_

Vsuch that D) is connected and V N[D]. We have that"
(a) For every i, 0 < < k, D f’) L ;
(b) Every vertex v Li, 2 <-i <- k, is adjacent to a vertex u D f) L-1"

(c) If we:D, then (Dfq(LI L2)) is connected.
Proof In order to prove (a), let us suppose, by contradiction, that there exists i,

0< < k, such that D does not contain any vertex in L. Three cases arise"
There exists a pair of vertices u, vD such that hw(u)<i and hw(v)>i; in

this case D cannot be connected;
For every v D, we have hw(v)< i; this implies that no vertex in Lk could be

in N[D];
For every vertex v D, hw(v)> i; in this case w could not be in N[D].

Since in all cases a contradiction arises, (a) is proved.
In order to prove (b), let v be a vertex of G such that hw(v)= >_-2 and let z D

be adjacent to v. Let us suppose that hw(z)= i. By (a) and by the hypothesis that (D)
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is connected, there exists a vertex u D with hw(u)= i-1 connected in (D) to z via
a path p. Let u’ be the nearest vertex to z on p having level i-1; by (8) in Theorem
1, v is adjacent to u’. Since similar considerations can be done if hw(z)= i+ 1, (b) is
proved.

Finally, due to (a) and (b), every vertex in D (q L is adjacent to a vertex in D f’l L.
Furthermore, if w D then for every pair of nonadjacent vertices in D f-I L, by (3) in
Theorem 1, there exists in (D) a path of length two connecting them; the only internal
vertex in such a path must be either in D f-)L or in D f’)L2; this proves (c).

LEMMA 2. Let G V, E) be a nontrivial distance-hereditary graph, and let hw and
k be as in Lemma 1. There exists a connected dominating set of G that does not contain
any vertex in Lk.

Proof Let D be a subset of V such that (D) is connected and V-- N[D], and let
v D be a vertex such that hw(v)= k.

If k 1, then {w} is a connected dominating set of G.
if k 2, then every vertex in L is adjacent to w and every vertex in L is adjacent

to a vertex in Df-)L (because of (b) in Lemma 1). Therefore, if D is a connected
dominating set of G, then D-{v} L3 {w} is a connected dominating set of G.

If k > 2 then, by Lemma 1, there exist a vertex u D Lk- adjacent to v and a
vertex z Df’)Lk- adjacent to u; due to (8) in Theorem 1, every vertex v’ adjacent
to v, with hw(v’)= k, is also adjacent to u, and every vertex v" adjacent to v, with
hw(v") k-1, is also adjacent to z; therefore D cannot be a connected dominating
set of G.

LEMMA 3. Let G, hw and k > 2 be as in Lemma 1. Let Gi, 1 <-_ <- 2, be the subgraph
of V(G, hw) induced by LiL3 L+, S and S’ be two subsets of L that are dominations
of L in Gt, and $2 and S’2 be two subsets of L that are dominations of L in Gz. We
have that"

(a) N(S2) L’= N(S’2) L"
(b) lf S’t

_
N[St], then St

_
N[S’];

(c) If (St $2) is connected, then (S’ [_J S’2) is connected;
(d) If (S[.JS2) is connected and [S[=[S’[>I, then N[SUS]fqL=

N[S’ U S’] L.
Furthermore, the properties above hold if k 2, by assuming S2 S .

Proof. In order to prove (a), let us suppose, by contradiction, that there exists a
vertex v L adjacent to a vertex u $2 and not adjacent to any vertex in S_. Let z L
be a vertex adjacent to u; since S and S are dominations of L in G, there exists a
vertex y S (hence distinct from u) adjacent to z. Due to (8) in Theorem 1, y must
be adjacent to v and a contradiction arises.

In order to prove (b), let us suppose, by contradiction, that there exists a vertex
v S- S’ that is not adjacent to any vertex in S’. Since S is a domination of L in
G, there exists a vertex z L adjacent to v and not adjacent to any vertex in S
distinct from v. Let y be a vertex in S’- S adjacent to z. Since S’

_
N[S], there exists

a vertex u S adjacent to y.
If u S fq S’ let us consider the cycle c1, (w, v, z, y, u, w). We have that c cannot

have any of the following chords:
(w, z), in fact, hw(z)= 2;
(v, u) and (v, y), since v is not adjacent to any vertex in
(z, u), since z is not adjacent to any vertex in St distinct from v."

Therefore, ct has no pair of crossing chords and a contradiction arises.
If u St- S’t, u must be adjacent to v, otherwise c would have no pair of crossing

chords. Let z’ L be adjacent to u and not adjacent to any vertex in S distinct from
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U, and let y’ S- Sl be adjacent to z’. Consider the cycle c2 (w, v, u, z’, y’, w). We
have that c2 cannot have any of the following chords:

(w, z’), in fact, hw(z’)= 2;
(v, z’), since z’ is not adjacent to any vertex in $1 distinct from u;
(v, y’), since v is not adjacent to any vertex in S.

Therefore, c2 has no pair of crossing chords and a contradiction arises that proves (b).
in order to prove (c), let Isl Is’,l--> 2 (in fact (c) trivially holds if Is, I- Is’,l 1)

and let u’ and u" be a pair of nonadjacent vertices in S’; we prove that there exists a
vertex u S LI S adjacent to both u’ and u". First we prove that"

(i) There exists a vertex v S 12 Sz adjacent to both u’ and u".
Three cases arise.

Case (1) u’, u" S. Due to the connectivity of (S $2) and to (3) in Theorem
1, (i) trivially holds.

Case (2) u" S. Since S is a domination of L in G, there exists a vertex z’ L
such that N(z’) fq S {u’}. Let v’ S-S be adjacent to z’; v’ cannot be adjacent to
u", otherwise the cycle (w, u’, z’, v’, u", w) would have no pair of crossing chords.
Hence, due to the connectivity of (S U $2) and to (3) in Theorem 1, there exists a
vertex v $1U S adjacent to both v’ and u". The cycle c (w, u", v, v’, z’, u’, w) must
have the chord (v, u’). In fact c cannot have the following chords:

(w, z’), since hw(z’)= 2;
(u, u"), by hypothesis;
(z’, u"), because of the choice of z’;
(v’, u"), see above.

Case (3) u’, u" S’- S. Since S’ is a domination of L in G, there exist two
vertices z’, z" L2 such that N(z’)f-IS= {u’} and N(z")fq S= {u"}. Let v’ and v" be
two vertices in S adjacent to z’ and z", respectively. Due to the connectivity of (S [.J $2)
and to (3) in Theorem 1, there exists in (S 13 $2) an induced path from v’ to v" whose
length is less than or equal to two. We will show that"

(ii) v’ is distinct from v", and
(iii) v’ and v" are not adjacent.

In fact, if v’ and v" coincide then the cycle c (w, u’, z’, v’, z", u", w) cannot have any
of the following chords:

(w, z’) and (w, z"), in fact hw(z’)= hw(z") 2;
(u’, u"), (u’, z") and (u", z’), because of the choice of u’, u", z’, and z";
(z’, z"), in fact its existence should imply the existence of both (u’, z") and

(u",z’).
Therefore, the only admissible chords in c should be those starting from v’ and a
contradiction arises which proves (ii). If v’ and v" are adjacent then, analogously, the
cycle c (w, u’, z’, v’, v", z", u", w) cannot have the chords (w, z’), (w, z"), (u’, u"),
(u’, z"), (u", z’) and (z’, z"). Furthermore, c cannot have the chords:

(z’, v") and (z", v’), because of (ii);
--(u’, v") and (u", v’), otherwise the cycle (w, u’, v", z", u", w) and the cycle

(w, u’, z’, v’, u", w) would have no pair of crossing chords, respectively.
Therefore the only admissible chords in c2 are (w, v’), (w, v"), (u’, v’), and (u", v")

(no pair crosses), and (iii) is proved.
Therefore, let v S[A S be adjacent to both v’ and v". Consider the cycle

c3 (w, u’, z’, v’, v, v", z", u", w); analogously to cz, c3 cannot have the chords (w, z’),
(w, z"), (u’, u"), (u’, z"), (u", z’), (z’, z"), (u’, v"), and (u", v’); furthermore it cannot
have the chords (z’, v"), (z", v’) and (v’, v"), because of (ii) and (iii), and the chords
(z’, v) and (z", v), for the same reason, if v S, and due to the absence of (v", z’) and
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(v’, z") and (8) in Theorem 1, if v $2. Therefore the only admissible chords in e3 are
(u’, v’), (u’, v), (w, v’), (w, v), (w, v"), (u", v), and (u", v"). If (u’, v) or (u", v) were
not in c3 then one of the following cycles should have no pair of crossing chords:

c3;

(w,u,z,v,v,u ,w),
(w,u",z",v",v,u’,w).

Therefore, v is adjacent to both u’ and u" and (i) is proved.
Now, if v S U S, such a vertex is the connecting vertex u and (c) is proved;

otherwise, two cases arise.
Case (1) v $1- S’1. Since S is a domination of L in G, there exists a vertex

z L adjacent to v and not adjacent to any vertex in S distinct from v; such a vertex
cannot be adjacent to u’ or to u". In fact, suppose that z is adjacent to u’ and not
adjacent to u"; then the cycle (w, u’, z, v, u", w) should have no pair of crossing chords
(contradiction). Analogously, a contradiction arises if z is adjacent to u" and not
adjacent to u’. Therefore, suppose that z is adjacent to both u’ and u"; in this case,
due to the choice ofz, we have that both u’and u"areinS’-i Sa. Letz,z, v,and
v" be as in Case 3 above. Since z’ and z" cannot be adjacent to v, then they cannot
be adjacent to z (due to (8) in Theorem 1); this implies that the cycles:

(u’, z’, v’, v, z, u’) and
(u", z", v", v, z, u"),

cannot have any pair of crossing chords (contradiction).
Since S is a domination of L2 in G, there exists a vertex u e S’1 adjacent to z;

by the considerations above, such a vertex must be distinct from both u’ and u".
Furthermore, the cycle (w, u, z, v, u’, w) must have the chord (u, u’); analogously, u is
adjacent to u" and (c) is proved.

Case (2). v Sz-S. Since S is a domination of L in G, there exists a vertex
z 6 L adjacent to v and not adjacent to any vertex in Sz distinct from v. Since S is
a domination of L in G, there exists a vertex u S-$2 adjacent to z. Because of
(8) in Theorem 1, u must be adjacent to both u’ and u", and (c) is proved.

In order to prove (d), by (a) and (b), it is sufficient to prove that (N(S Sz) (3 L)
S _(N(S’ U S’)f3 L)-S (due to (c), the same argument can be used to prove that
(N(S S) f’l L) S c_ (N(S’l U S) 71L) $1). Let us suppose, by contradiction, that
there exists a vertex x e L adjacent to a vertex u e S’U S_ and not adjacent to any
vertex in S U S; due to (a), x cannot be adjacent to any vertex in S;, then u is in
S- S. First we will prove that"

(i) every vertex z in L adjacent to u is adjacent to x.
In fact, let v e S be a vertex adjacent to z (since u S, v is distinct from u); since x
is not adjacent to any vertex in $1, if z were not adjacent to x then the cycle
(w, x, u, z, v, w) should have no pair of crossing chords; hence (i) is proved.

We now prove that:
(ii) S and S are disjoint.

Let x and u be as above; let z be a vertex in L such that N(z) S’ {u} and v be a
vertex in S- S’ adjacent to z and let us suppose that u’ is a vertex in S’ distinct from
u. If, by contradiction, u’ were in S, due to the connectivity of (S U $2) and to (3)
in Theorem 1, either v is adjacent to u’ or there exists a vertex y $1 $2 adjacent to
both v and u’. In the first case, the cycle (w, x, z, v, u’, w) has no pair of crossing
chords. In the second case, let us consider the cycle e (w, x, z, v, y, u’, w); the only
admissible chords in c are (w, v), (w, y) and (z, y); hence, if z is not adjacent to y, c
has no pair of crossing chords; otherwise (w, x, z, y, u’, w) has no pair of crossing
chords (contradiction); hence (ii) is proved.
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Since S’t is a domination of L in G1 and (i) holds, there exists a vertex z L
adjacent to u and x and not adjacent to u’. Furthermore, there exists a vertex z’
adjacent to u’ and not adjacent to x; otherwise (by (i) and by the fact that every vertex
in L is adjacent to a vertex in S’t) every vertex in L should be adjacent to a vertex
in (S-{u, u’}) (_J {x} and, hence, Stl should not be a domination of L2. Let v, v’ St
be two vertices adjacent to z and z’, respectively (such vertices exist because of (ii)).
Since (St U S2) is connected, there exists an induced path in (St (_J S_) connecting v and
v’ whose length, due to (3) in Theorem 1, is less than or equal to two. Three cases arise.

Case (1). v and v’ coincide. In this case, the cycle cl (w, x, z, v, z’, u’, w) cannot
have the chords:

(w, z) and (w, z’), in fact hw(z) hw(z’) 2;
(u’, z) and (x, z’), because of the choice of z and z’;
(z, z’), because its existence should imply the existence of both (u’, z) and

(x, z’);
(x, v), since x is not adjacent to any vertex in S.

Hence, if c does not have the chord (x, u’) then it has no pair of crossing chords;
otherwise, the cycle (x, z, v, z’, u’, x) has no pair of crossing chords.

Case (2). v and v’ are adjacent. In this case, the cycle c2 (w, x, z, v, v’, w) has
no pair of crossing chords, since it cannot have the chords:

(w, z) and (x, v), as above;
(x, v’), because x is not adjacent to any vertex in S;
(z, v’), because of Case (1).

Case (3). There exists a vertex y $1 LI $2 adjacent to both v and v’. If y S then
the cycle c3 (w, x, z, v, y, w) has no pair of crossing chords, since it cannot have the
chords:

(w, z) and (x, v), as above;
(x, y), because x is not adjacent to any vertex in $1;
(z, y), because of Case (2).

If y Sz then the cycle c4 (w, x, z, v, y, v’, w) has no pair of crossing chords, since it
cannot have the chords:

(w, z), (w, y), (x, v), (x, v’), and (z, v’), as above;
(v, v’), because of Case (2);
(z, y), since its existence would imply the existence of (z, v’);
(x, y), since x cannot be adjacent to any vertex in $2.

Finally, since in all cases a contradiction arises, (d) is proved.
The basic idea, underlying the following algorithm to solve in polynomial time

the connected domination problem in distance-hereditary graphs, consists in the
reduction of the global optimization problem into this local optimization problem:

Given a hanging of the distance-hereditary graph, find a minimum set of vertices
with level which is a domination of all vertices with level i+ (see (b) in
Lemma 1).

In fact, the reduction is based on the following facts:
The local problem is solvable in polynomial time (due to Proposition (a) in

the proof of Theorem 4);
To obtain a connected dominating set, the vertices with maximum level k in

the hanging can be ignored (by Lemma 2);
Let S and $2 be solutions of the local optimization problem at the first and

second level, respectively. By Lemma 3, if S contains more than one vertex then both
the connectivity of the graph induced by the union of the solutions of the same problem
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from the first level to the level k- 1 and the adjacency to such union of all vertices at
the first level, are independent from the choice of $1 and

ALGORITHM 4.
input a connected graph G (V, E);
output a subset D of V;
function DOMINA(i); [determine a minimum subset DOMINA of Li-1

such that N(DOM!NA)
_
L]

begin
DOMINA := Li- 1o

for every v DOMINA do
if N(DOMINA-{v})

_
L then DOMINA := DOMINA-{v}

end;
begin

determine any hanging hw of G;
D:=; k:=max(hw(v)lv V);
for := k downto 3 do D := D DOMINA(i);
if there exists a vertex z L such that N[z]

_
L t.J L

then D := D {z}
else begin
D := D DOMINA(2);
if N[D] ;P_ L or (D) is not connected

then D := D U {w}
end

end.

THEOREM 4. If G is a distance-hereditary graph then Algorithm 4 determines a
connected dominating set of G in polynomial time.

Proof. It is easy to see that Algorithm 4 works in polynomial time, that the set D
of vertices obtained by it induces a connected subgraph of G and that V= N[D].
Therefore, we have to prove that if G is a distance-hereditary graph, then D is a
minimum set of vertices enjoying the properties above.

In the following let hw be a hanging of G and let k be max (hw(v)lve V). If k<= 1,
then either D {z} or D {w}; hence D is a connected dominating set of G. Therefore,
let k => 2 and let Gi, <-- < k, be the subgraph of V(G, hw) induced by L t_J L+. First
we will prove that"

(a) If S is a subset of L, 1 =<i< k, such that N(S)_ L+ and no subset of it has
the same property then S is a domination of L+t in G.

Let us assume, without loss of generality, that G is connected (otherwise the
following argument can be applied to every connected component of Gg). First we
will prove that the subgraph of Gi induced by S LJ Li+ is also connected. In fact, if u
and v are two distinct vertices in S, by (8) in Theorem 1, there exists a vertex in L-adjacent to both u and v; therefore, due to (3) in Theorem 1, every induced path
between u and v in G has length two. This implies that there exists a vertex in L+

adjacent to both u and v; hence, the subgraph of G induced by SLJL/ is a
nonredundant connection of L/1 in Gi. Since, by Theorem 2, V(G, hw) is a distance-
hereditary graph and an induced subgraph of a distance-hereditary graph is distance-
hereditary, G is also a distance-hereditary graph. Due to (4) in Theorem 1, (a) is proved.

Let us suppose, by contradiction, that there exists D’___ V such that (D’) is
connected, V N[D’] and ID’I < [DI. Due to Lemma 2, we may assume that no vertex
in Lk is in D’. If there exists i, 0<i< k, such that [D’ f)L’I < [D fq L’I then, due to (a),
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there exists a vertex in Li+ that is not adjacent to any vertex in D’ L and, due to
(b) in Lemma 1, a contradiction arises.

Therefore, we have that for every i, 0 < < k, ID (q Lil ID’ (q LI; then w e D D’.
We will prove that this implies that [DOMINA(2)I > 1.

Let us suppose, by contradiction, that [DOMINA(2)[= 1. Hence (D-{w}) is
connected; therefore, since we D, by Algorithm 4 we have that D-{w} is not a
domination of L1. If k> 2, let DOMINA(2)= {v}, D’(’I L1= {u}, z be a vertex in L
that is not in N[D-{w}] and y be a vertex in D’fqL2; due to (a) in Lemma 3, z
cannot be adjacent to y and, hence, the cycle (w, z, u, y, v, w) has no pair of crossing
chords (contradiction). If k 2, since D’ does not contain any vertex in Lk, N[u] must
contain LU L2; but in this case, by Algorithm 4, w would not be in D (contradiction).

Therefore, if we D then IDOMINA(2)I> 1. Furthermore, by Algorithm 4, two
cases arise:

(i) (D-{w}) is not connected; or
(ii) There exists a vertex in L that is not in N[D-{w}].
Let us suppose that (i) holds. In this case (DOMINA(2)) and (DOMINA(2)U

DOMINA(3)) are not connected. In fact, due to (b) in Lemma 1, each vertex in
DOMINA(i + 1), 1 < < k, is adjacent to at least one vertex in DOMINA(i), then there
exists a path between any vertex in DOMINA(i+ 1), 1 <i<k, and a vertex in
DOMINA(2). Therefore, if it were a path in (DOMINA(2)) or in (DOMINA(2)
DOMINA(3)) between any pair of vertices in DOMINA(2), (D-{w}) would be
connected. On the other hand, since w D’, due to (c) in Lemma 1, (D’f)(L t_J L2))
is connected; hence due to (c) in Lemma 3, a contradiction arises.

Let us now suppose that (ii) holds. Since L N[D’fq (LU L2)], due to (b) and
(d) in Lemma 3, a contradiction arises.
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A POLYNOMIAL APPROXIMATION SCHEME FOR
SCHEDULING ON UNIFORM PROCESSORS:

USING THE DUAL APPROXIMATION APPROACH*

DORIT S. HOCHBAUM? AND DAVID B. SHMOYS:

Abstract. We present a polynomial approximation scheme for the minimum makespan problem on
uniform parallel processors. More specifically, the problem is to find a schedule for a set of independent
jobs on a collection of machines of different speeds so that the last job to finish is completed as quickly as
possible. We give a family of polynomial-time algorithms {A} such that A delivers a solution that is within
a relative error e of the optimum. This is a dramatic improvement over previously known algorithms; the
best performance guarantee previously proved for a polynomial-time algorithm ensured a relative error no
more than 40 percent. The technique employed is the dual approximation approach, where infeasible but
superoptimal solutions for a related (dual) problem are converted to the desired feasible but possibly
suboptimal solution.

Key words, scheduling, approximation algorithms

1. Introduction. We will consider a fundamental problem of scheduling theory.
Suppose that we have a set of jobs J with independent processing times p,..., Pn
that are to be executed on m nonidentical machines; these machines run at different
speeds s, ,., s,,. More precisely, if job j is executed on machine it takes pj/si time
units to be completed. The objective is to assign the jobs to machines so as to minimize
the total execution time required to run the jobs assigned to the most heavily loaded
machine. In other words, it is the minimum time needed to complete the processing
of all of the jobs. In the classification scheme of [GLLR] this problem is denoted
Qfffmax, the minimum makespan problem on uniform parallel machines. In this paper,
we will present a family of algorithms for this problem where these algorithms are, in
a sense to be indicated below, the best possible algorithms for this problem.

As is true for most scheduling problems, this problem is likely to be intractable
since it is NP-complete, and therefore the existence of a polynomial-time algorithm
for .it would imply that P NP. As a result, the algorithm designer must be willing to
settle for a solution somewhat worse than the optimal schedule. One natural approach
is to consider approximation algorithms for the problem which deliver a schedule with
makespan that is guaranteed to be within a specified relative error of the optimum
schedule length. This approach was first considered by Graham [G], who showed that
if all of the machines have the same speed, then the simple "on-line" procedure of
scheduling any job when a machine becomes idle always delivers a schedule that
finishes within at most 1 + (1-1/m) times the optimal schedule length. We shall call
such a polynomial-time procedure a (1-1/m)-approximation algorithm. Work on this
special case of identical machines culminated in the recent work of Hochbaum and
Shmoys [HS], that showed that for any fixed e > 0 there exists an e-approximation
algorithm. This was a dramatic difference from previously known work on the more
general problem with different processing speeds. Although much work had been done
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on this harder problem (e.g., [CS], [GIS], [HoS]) the best algorithm published to date
delivers a solution that could be up to 40 percent more than the optimum [FL].

In this paper, we present a family of polynomial-time algorithms {A}, such that
the algorithm A is an e-approximation algorithm for the more general problem. Such
a family of algorithms is traditionally called a polynomial approximation scheme. Notice
that the algorithm A is polynomial in the size of the input, but not in the value of
1/e. If the family of algorithms has the property that A is polynomial in 1/e and the
size of the instance, then the family is known as a fully polynomial approximation
scheme. Since this problem is strongly NP-complete, our results are, however, the best
possible in the sense that if there were a fully polynomial approximation scheme for
this problem, then P NP [GJ].

Due to the exponential dependence on 1! e in the running time of our algorithm,
it is not particularly practical for small values of e. However, the result shows that
there do exist polynomial-time algorithms that produce solutions with far superior
guarantees to the previously known algorithms, and thus one might hope for practical
algorithms with better guarantees than are known today. Note that the discussion
above implies that there are limits to the amount of improvement that is possible; still
one might hope for an O(n log n) or O(n2) algorithm that is guaranteed to have relative
error no more than, for example, 5 percent. In addition to this existential sort of
practical implication, we also believe that the framework around which our algorithm
is built can lead to efficient algorithms with extremely good guarantees. As an example
of this, we give an extremely efficient but exceedingly naive algorithm which is an
adaptation of our framework, and is guaranteed to deliver a solution that is within 50
percent of the optimum. In addition, the analysis of this algorithm is similarly trans-
parent.

2. A framework for approximation algorithms for scheduling problems. In this
section we will describe the basic structure of our polynomial approximation scheme
for the minimum makespan problem with uniform processors. Consider for the moment
the related question of deciding whether there exists a schedule for a given instance
of this problem where all of the jobs are completed by time T. If we think of the units
of the processing times pj as steps, and the units of the speeds as steps per unit of
time, then machine can process Tsi steps before the deadline T. The decision problem
can then be viewed as a bin-packing problem with variable bin sizes. Furthermore, notice
that the notation for this problem can be simplified by rescaling both the processing
requirements and the speeds by a factor of 1! T: in this bin-packing variant the aim
is to decide whether a set of jobs (which we will interchangeably call pieces) of sizes
P, , Pn can be packed into a set of bins of sizes s, , s,,.

Suppose that we had an efficient procedure for solving the bin-packing problem
with variable bin sizes. Then it is possible to solve the minimum makespan problem
with uniform machines by a simple binary search procedure. For the midpoint T of
the current range of possible optimum makespan values, we run the decision procedure;
if a schedule is found then the upper bound is updated to the midpoint, otherwise the
lower bound is updated. To initialize the binary search we need to obtain easy upper
and lower bounds on the length of the optimum schedule. One such upper bound is
U P.i/maxi si (schedule all jobs on the fastest machine) and one such lower bound
is L p/(m.maxi s) (even if all machines are as fast as the fastest, there must be
enough total processing capacity for the machines to process the total processing
requirement). Notice that these bounds have a ratio bounded by m. Thus after log m +
iterations of a binary search procedure the difference between the upper bound and
lower bound on the optimum makespan value is at most 2-t times the optimum value.
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Unfortunately, this bin-packing problem is also NP-complete, so it seems unlikely
that we will find an efficient procedure to solve it. Instead we will argue that solving
a relaxed version of the bin-packing problem will be sufficient for our purposes. We
first introduce some useful terminology. For each collection of jobs J with processing
times {p,...,p,}, and set of bin sizes S={s,..., s,,}, a truly feasible packing is a
partition of the job set into m parts, Bi, i=l,..., m where the total processing
requirement ofjobs in Bi is at most si for 1,. , m. Similarly, we define an e-relaxed
feasible packing to be a similar partition, but one that need only satisfy the weaker (or
relaxed) condition that the total processing requirement ofjobs in B be at most (1 + e)si.

An e-relaxed decision procedure is a procedure which, given a collection J of jobs
with processing times {p,...,p,}, and a set of bin sizes S={s,..., s,}, outputs
one of two outcomes:

(1) An e-relaxed feasible packing; or
(2) Some certificate that no truly feasible packing exists.
Consider now the binary search procedure described above with an e-relaxed

decision procedure in place of the algorithm assumed to solve the bin-packing problem
with variable sizes. Notice that when an update of the lower bound is done, the new
value must still be a valid lower bound on the optimum makespan length, since the
e-relaxed decision procedure fails to produce a packing only when no truly feasible
packing exists. Similarly, if the upper bound is updated to t, then a schedule has been
obtained of length at most (1 + e)t. From these observations it is not hard to obtain
the following result.

THEOREM 1. An e-approximation algorithm for the minimum makespan problem
with uniform parallel machines can be obtained by executing the binary search procedure
using an e/2-relaxed decision initialized with upper and lower bounds, U and L, respec-
tively, for log m + log (3/ e iterations.

For the complete details of the proof of this, plus a more general setting in which
the same basic ideas are applicable, the reader is referred to [HS]. It is also useful to
note that by continuing for more iterations (but only polynomially many) it is possible
to convert an e-relaxed decision procedure into an e-approximation algorithm (as
opposed to the result given above which uses an e/2-relaxed decision procedure).
From Theorem 1, we get the following immediate corollary.

COROLLARY 1. Iffor allfixed e > 0 there exists a polynomial-time e-relaxed decision
procedure for the bin-packing problem with variable bin sizes, then there is a polynomial
approximation schemefor the minimum makespan problem with uniform parallel machines.

3. An e-relaxed decision procedure for bin packing with variable bin sizes. In this
section we will show how to construct an e-relaxed decision procedure for the bin-
packing problem with variable bin sizes for any e > 0. For the remainder of the paper
we will assume that the pieces (or jobs) have sizes p, , p,, and the bins have sizes
sl, , s,,, where sl>_- s2=>" ->

For convenience we shall assume that 1/e is a positive integer. The description
of the algorithm and the proof of its correctness will proceed in a few phases. We first
construct a certain layered directed graph with two nodes designated "initial" and
"success." We prove that if there is a truly feasible packing, then there is a directed
path from "initial" to "success." Furthermore, the existence of such a path provides
a means of efficiently constructing an e-relaxed feasible packing. Hence, the procedure
consisting of constructing the graph, identifying if there is a path from "initial" to
"success," and then deriving the respective packing is indeed an e-relaxed decision
procedure.



542 D. S. HOCHBAUM AND D. B. SHMOYS

An intuitive outline of the algorithm relies on the analogy to the special case of
bin packing m bins of equal size (=1). Such an algorithm is given in [HS], but its
presentation, however, does not lend itself to the required generalization. Here we
modify the description of the algorithm to clarify the analogous procedure in the
variable-size bins case. For the equal-size case, all pieces lie in the interval (0, 1], and
the attempt is to e-relaxed pack them in at most rn bins. The first pieces to be packed
are of size greater than e; these large pieces will be denoted by Jlarge {jIPj > e}. The
phase of the algorithm where these pieces are packed is called large-pack. Since these
pieces are large, fewer than 1/e of them can fit in one bin. These large pieces are
further partitioned according to their size in subintervals of length e 2 each. All piece
sizes in such subintervals are all rounded down to the lower end of the subinterval,
which is the nearest multiple of e no more than the original piece size. After this
rounding, the number of large piece sizes is at most w (1-e)/e2. Thus, the packing
of large pieces in a bin can be uniquely described by an array of the distribution of
piece sizes that go into that bin. It is an array with one entry for each subinterval, and
an integer value between 0 and 1/e in each entry. Such an array, or a configuration,
specifies how many pieces of each subinterval go into each bin. A configuration
(x, , Xw) is called feasible if each xi >- 0 and the total sum of the rounded sizes of
pieces in the configuration is at most 1, the size of the bin.

The distribution of the remaining large pieces to be packed, the state vector, is
described by a similar array, except that each entry may contain a nonnegative integer
no more than n. Therefore, the total number of possible state vectors is at most n w. A
state vector (n, rt2," ", rtw) is reachable from a state vector (n’, n,. ., n’) if there
is a feasible configuration (x,..., xw) such that ni ni-x for i= 1,..., w. The first
step of the procedure is to construct a layered directed graph where the nodes
correspond to state vectors in the following way. Let Vo," , V,, be the nodes in the
0th through mth layers, respectively. For i= 1,..., rn- 1, V contains a vertex (i, n)
for each possible state vector n. V0 contains only one vertex, the "initial" node, and
is labeled with the state vector corresponding to the initial distribution of rounded
piece sizes. Similarly V,, contains only the "success" node, which is labeled with the
zero state vector (corresponding to the case that all pieces are packed). From each
node (i, n), there is an arc directed towards the node (i+ 1, n’) if and only if the state
vector n’ is reachable from the state vector n. Given any truly feasible packing of the
original instance, it is easy to see that the induced packing on the (rounded) large
pieces implies that there is a path from the initial node to the success node. We next
show that from any path from initial to success we can compute an e-relaxed feasible
packing of the large unrounded pieces. The path clearly specifies a packing of the
rounded large pieces. If we now restore the large pieces to their o.riginal sizes (arbitrarily
selecting them from the appropriate subintervals), this "inflating" process may either
result in a packing that is truly feasible, or the pieces may exceed the capacity (= 1)
of some bins. However, the rounding was done in such a way so that it is easy to
bound the amount by which the inflated pieces will exceed the bin capacity. To round
each piece it was necessary to subtract at most e from its actual size, and there are
no more than 1/e pieces per bin. Thus, the total difference between actual and rounded
piece sizes in a bin is at most e, and so the total actual piece size cannot exceed 1 + e.

In summary, the procedure large-pack constructs the layered graph, finds a path from
initial to success, which then yields an e-relaxed feasible packing of the large pieces.

We now must show how to extend this e-relaxed feasible packing to include the
small pieces, in a way that will always succeed if there is a truly feasible packing of
the original instance. The existence of a truly feasible packing induces a truly feasible
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packing ofthe large pieces, with sufficient total slack in the bins in order to accommodate
all the small pieces. Moreover, the total slack in a truly feasible packing of the large
pieces, V m JJ,.rgo PJ, can be no more than the total slack remaining in bins packed
under capacity in an e-relaxed feasible packing of the large pieces, the relaxed slack,
vre= Yi=l max {0, 1-Yjc, P} where Ci is the set of pieces assigned by large-pack to
bin i. Now let Jsm,l =J-Jlarge. Since V’>=jj.,m,,,,pj and vrel-> V’, it follows that
vre>->_yjJ pj. If this inequality is not satisfied then there can be no truly feasible
packing; otherwise we will be able to small-pack the remaining (small) pieces. This is
done by assigning one piece at a time to any bin with positive slack (that is, filled with
less than its unit capacity), even if this slack is less than the size of the piece. This
procedure guarantees that:

(1) So long as there is positive slack, small pieces can be packed;
(2) By packing a small piece of size pj, the total remaining slack is reduced by

at most pj; and
(3) Bins that become packed over capacity in the small-pack phase are packed

with at most 1 + e times their true capacity (since the capacity is exceeded only by
adding a small piece (i.e., <e), to a bin that was previously truly feasibly packed).

Therefore, if there is a truly feasible packing, the large-pack and small-pack
procedures will find an e-relaxed feasible packing. The complexity of the algorithm
is dominated by the large-pack procedure, where we construct the layered graph. The
graph has at most 2+ (m + 1)n 1/2 nodes and each node has at most (l/e) /2 arcs
originating at it. The construction of each arc amounts to checking the feasibility of
the corresponding packing of a bin. This is done with at most 1/e additions and one
comparison. The complexity of the e-relaxed procedure is hence O((m/e)(n/e)1/),
which is a polynomial for any fixed positive e.

In the generalization of the equal-size bin e-relaxed procedure to the variable-size
case we come across a major obstacle. The size of the subintervals in which the pieces
are partitioned depends on the size of the bins in which the pieces are to be packed.
Moreover, the definition of large and small pieces depends on the size of the bin in
which the pieces are to be packed. Let the largest bin size sl be normalized to 1. The
piece sizes are hence in the interval (0, 1]. We round down piece sizes as follows; for
a piece in the interval (e k+, e k] we round its size down to the nearest multiple of
k+2e Formally, define

Lp /e + J e, where k=max {q>0lpj= <= eq}.

Consider now a bin of size sg in the interval (e k+, ek]. In the previous case, the large
pieces for this bin were those with sizes in the interval (es, s] since s 1 for all i.
This interval can intersect both of the intervals (6 k+2, 6 k+] and (e +l, e k] and as a
result, we will slightly modify the notion of large in generalizing the algorithm to the
case of variable-size bins. The pieces in the interval (e k+, e k] are large for this bin
whereas the pieces in the interval (e k+2, e k+] are called medium pieces. The pieces
of size less than or equal to e k+ are small for this bin. Notice that the definition of
large, medium, and small pieces did not depend on the precise size of the bin, but
only on the interval of the form (e +, e] that contained the bin size’, for convenience
we will often refer to this as interval I. As before, it will always be true that a small
piece for a bin is no more than e times the bin size. The strategy will be to execute
the packing of the bins 1, 2,..., m in two phases:

(1) Large- and medium-piece packing (l&m-pack);
(2) Small-piece packing (small-pack).
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Note that a piece can be large, medium, or small depending on the size of the bin in
which it is packed. It will also be useful to classify bin sizes for a given interval of
piece sizes. For pieces in interval k, (e TM, ek], a bin is large if it is in interval k, huge
if it is in interval k-1, and enormous if it is in interval k-2.

We construct a directed, layered graph where each node is labeled with a state
vector describing the remaining pieces to be packed as large or medium pieces. Since
each bin may generate different classes of large or medium pieces, a straightforward
representation of such an array leads to roughly n such possible state vectors, Instead,
the graph will be grouped into stages, where a stage will specify the l&m-pack of bins
in one interval (e k/, ek]. Each layer within a stage corresponds to packing a bin in
the corresponding interval. Both the bins within the stage and the stages are arranged
in order of decreasing bin size. At the end of the l&m-pack of the bins of the stage
corresponding to interval k, we will provide for the packing of the remaining unpacked
pieces in interval k; these pieces will be packed as small pieces. (Note that these pieces
must therefore be packed in bins that are enormous for them.)

The treatment of the bins and pieces in this conglomerate way will make it possible
to reduce the amount of information encoded in the state vector. The state vector
associated with each node is of the form (L; M; V, V2, V), where L and M are vectors
each describing a distribution of pieces in the subintervals of (e k+l e k] and (e k+2 e k+l]
respectively. The subinterval division is of length ek+2 and e k+3 respectively, so each
of these vectors is of length w=(1-e)/e2 and the value of each entry is at most n.
For simplicity of notation, let/,. , lw and /,. , lw denote the values of the lower
endpoints of the subintervals of (e k+l, e k and (e k+2, e k+], respectively. (See Fig. 1.)

Subinterval_- Large Huge Enormous

sizes x’e6 "e5 -’" bins bins bins

II II II -X

5 4 3 2
Small Medium Large
pieces pieces pieces

Logarithmic
scale

FIG. 1. The represents the size of a bin to be packed in interval 2. The identity ofpieces and other bins
is relative to this interval.

As was mentioned above, after the l&m-pack of the bins in interval k, we must
allow for the packing of the pieces in interval k that will be packed as small pieces.
These pieces must be packed in enormous bins (those from interval k-2) and so we
need to know that there is sufficient unused capacity in the enormous bins to at least
contain the total size of these unpacked pieces. This is the function of the value V in
the state vector; it records the slack, or unused capacity in the partial packing of the
enormous bins with large and medium pieces. For stages corresponding to intervals
greater than k, we will also need to know the unused capacity in the huge and large
bins, and this is the function of V2 and V, respectively. However, there is a crucial
point in that each node is labeled with a possible value for V, V2, and V, so we must
be able to represent the possible values in some compact way. Consider the sizes of
the pieces that will be packed as small pieces into this as-yet-unused capacity. For V1,
pieces in interval k are small, and thus all pieces to be packed into this unused capacity
have rounded sizes that are multiples of e k/2; as a result, it will be sufficient to represent
Vl as an integer multiple of e k/. Similarly, V: and V will be represented as integer
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multiples of e k+3 and e k+4, respectively. Furthermore, we will argue below (in Lemma
1) that for the purposes of the algorithm, it will be sufficient to have one node for all
multiples greater than n e2 for any of these three parameters. As a result, the number
of possible state vectors in each layer is bounded from above by n2/2. (n/e2)3.

Suppose that there are mk > 0 bins with size in (e k+l ek]. The stage corresponding
to this interval will actually have mk+ 1 layers of nodes. In each of these layers, there
is one node for every possible state vector (n,...,nw; ,’",aw; V,Vz, V). A
node in the (l+l)st layer of the stage labeled (n,..., nw; ,’", aw; V1, V2, V) is
reachable from a node in the/th layer of the stage (n’, ",nw,, ,nw, V, V, V’),
if:

(1) There is a configuration (x, , x; :, ,) where x and : are nonnega-
tive integers for i- 1,. ., w such that n- n-x and fi- t- :,

(2) The configuration is feasible; that is, the total sum of rounded piece sizes,
,= xl+=: may not exceed s, the size of the Ith bin in that stage; and

(3) V= V’+ [slack/e k+4] where slack=s-( xl+., ).i=1 i=1

We define here the concept of the usable slack in bin as

usable slack [slack//e k+4]. ek+4.

Note that in the first layer of the first stage we keep only the node with the state vector
corresponding to the distribution of pieces in (e, 1] and (e 2, e] with V V V 0.

Intuitively, a node z is reachable from an initial state vector for the stage if there
is an l&m-pack of the first bins in that group using feasible configurations, leaving
a remaining piece distribution as in node z, and accumulating in all bins a total of
V" e k+4 in usable slack. (See Fig. 2.)

m Layers

o.""o .

.).OO

Initial
state Packing Packing Final

vectors 1st bin mkth bin state
of layer of layer vectors

Initial
state

vectors
of next bin
interval

FIG. 2. One stage of the layered graph (for interval k).

Note that the number of feasible configurations is at most (1/62)2/e2, since no
more than 1/e large or medium pieces can fit in a bin. This number is polynomial
for any fixed positive value of e (or actually just a large constant).

The state vectors in the final layer of one stage have to be updated to the proper
form of initial state vectors for the subsequent interval of higher index that contains
a bin. Suppose that the next such interval is q intervals away; that is, it is the interval
(E k+q+l, E k+q]. Let 11 ’) denote the value of the lower end of the ith subinterval of
(e k+’+, e k+t] and let nl ’), > 2, be the number of pieces contained in that subinterval.
(For =0, 1, nl ’) will be used to denote the large and medium pieces remaining after
the l&m-pack for interval k.) We will set q c to indicate that there are no more bins.
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function update (q, (n o), Uw-co)., n]), n ()w V1 V2 V))
begin

(o)1(o)v’:= v,. /- E n,.,

if VI)< 0 then return ("failure")
if q :> 2 then

begin

V2) :__ Vl)__ V2"/k+3__ E n(’)ll’),
i=l

if Ve)< 0 then return ("failure")
end

if q _-> 3 then
begin

q--l

Vq) :-- V2)-[ V" Ek+4_ E E RIt)ll t)

t:2 i=1

if vq)< 0 then return ("failure")
end

1
if q < then V := Vq).

k+q+2

case (q) of
1" V:= Vl+ V2; V2: V
2: Vl:= V+ V; V2:=0
[3,’’’,)" Vt:=V; V2:=O
00:VI:--0; V2:---0; V:--0

endcase
return ((nq), n’, nq+, n+; V, V, 0))

end

The procedure update may result in "failure," in which case there is no arc
originating at the node examined. Otherwise, the output of the function gives the state
vector of the node into which the arc will be directed. It is important to notice that in
implementing the procedure we will not scan each subinterval on the line, only those
with nl’)>0. This is readily done, since the pieces are sorted. Also note that in the
updating layer there is at most one arc originating at each node.

Following the updating process of the last interval in which bins are found, we
add one more arc level to the final node, "success." A node will have an arc from it
to "success" if and only if its state vector is the zero vector (0,0,...,0; 0,...,0;
V1, V2, V). It is somewhat simpler to avoid altogether the update layer at the end of
the last interval and have arcs going directly to "success" based on the outcome of
"update" only if the update procedure results in the zero state vector.

LEMMA 1. The graph constructed has at most O(2m. /’/2/e2+3" 1/e 6) nodes.
Proof. Each of the first and last layers contains exactly one node. All other layers

of nodes correspond either to the beginning or the end of a bin interval, or to packing
a bin within an interval. For each interval that contains at least one bin, the number
of layers is equal to one more than the number of bins in the interval. Since there are
m bins the total number of layers is no more than 2m.

Each layer may contain all possible state vectors. The first 2w<-2/e entries
describe the distribution of large and medium pieces remaining in the interval. Every
subinterval may contain r {0, 1,..., n} pieces, so the number of such distributions
is 0(n2/2).
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Finally, V1, V2, V express the unused capacities that may be used to pack small
pieces. Consider first V1; since each small piece for these bins is of size at most e k,
and there are no more than n small pieces, any volume beyond ne k is irrelevant. The
value V1 is actually given as the scalar multiple of e k+2, so multiples beyond n. ek/e k/2

rile 2 may be equivalently represented. Identical calculations show that for Vz and V
as well, it is sufficient to consider only n/e 2 possible values, where the largest value
represents all remaining positive volumes. The total number of state vectors is hence
O(2m. n/2(n/82)3), as claimed.

LEMMA 2. The number of arcs originating at each node is 0((1/e)2/2).
Proof Each arc corresponds to a feasible configuration (x, , Xw; Y., , w).

The number of large pieces from a subinterval xi that can go in a bin is in {0, 1, , 1/e},
whereas the number of medium pieces i can vary from 0 up to 1/e. The total number
of feasible configurations is therefore bounded by (1/e + 1)/2(1/e2+ 1)/ which is
o((1/)/).

COROLLARY 2. The total number of arcs in the graph is O(2m(n/e)2/)+3).
Once the graph is available, the existence of a path from initial to success can be

verified in time linear in the number of arcs. This computation also yields a specific
path. We now prove that if there is a truly feasible packing then such a path indeed
exists, and if such a path exists, then we can construct a (2e + eZ)-relaxed feasible
packing. These two claims are sufficient to yield a (2e + eZ)-relaxed decision procedure.

LEMMA 3. If there is a truly feasible packing, then there is a path in the multilayered
graph from "initial" to "success."

Proof Given a truly feasible packing, it is possible to label every piece in the kth
interval (e k+l, e k] as L(k), M(k), or Sk), depending on the size of the bin in which it
is packed"

j L(k) if piece j is packed as large--in a bin in interval k;

J M(k) if piece j is packed as medium--in a bin in interval k- 1;

jSk) if piece j is packed as small--in a bin in one of the intervals
0, 1,. ., k-2.

In addition, let p(k) denote all of the pieces in interval k.
Each node in the first layer of a stage is labeled with a state vector that specifies

pieces as well as unused capacities. We will show by induction that certain induced
partial packings of the truly feasible packing yield paths in the layered graph. The
lemma will follow as a corollary to this stronger inductive assertion, which we will
give below. Given a truly feasible packing, consider the partial packing induced by
the pieces, Mk) [,.J [,..j k--1=oP )). This leaves a certain amount of slack v]k) and v2k) in
the bins in the intervals 0 through k-2 (enormous bins) and in interval k-1 (huge
bins), respectively.

We claim that there is a path from initial to some node in the first layer of stage
k (so that interval k must contain bins) such that the state vector of that node has
V v]k), V2 v(2k) and has the piece distribution of (L(k)[,.J s(k); p(k+l)).

The claim is certainly true for k 0, where there is a trivial path from the initial
node to itself, and the initial node does have the appropriate state vector. (Note that
M) must be the empty set.)

Inductively, we can then assume that at the beginning of stage k (which contains
bins) we have a path to a state vector labeled with the as-yet-unpacked pieces from
interval k, all of the pieces from interval k + 1, and appropriate upper bounds on the
slacks. Focus now on the packing of the bins in interval k. For each bin we have a
truly feasible packing of the large and medium pieces, and this specifies a feasible
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configuration. This configuration corresponds to an arc in the graph. Now we consider
the change in the value of V between the tail and head of this arc. This change is the
usable slack (properly represented), which is at least the true slack--for two reasons.
First, we effectively round the size of the bin to the next largest multiple of e k/4, and
second we use the rounded (down) sizes of the pieces to compute the usable slack.
Thus at each layer within the stage, the value of V in the state vector is at least as
large as the actual slack in the truly feasible packing. The reader can verify with little
difficulty that following the arcs specified by the feasible configurations generated by
the given packing must lead to a node in the final layer of the stage that is labeled
with a state vector with piece distribution corresponding to (s(k); L(k+) [..J S(k+l)) and
where the total usable slack value V is at least the true slack.

It remains only to show that the update arcs are also present as needed. Consider
the case where interval k + also contains bins. In this case, we need only show that
the volume represented by V is at least .is()/j, since then there is an update arc,
and it leads to a node that satisfies the induction hypothesis. However, this inequality
is easy to verify, since vk) EjS(t)pj and we know that V1 _->/.)k) (by induction) and
pj _>- p (by definition). The remaining cases for the size of the next bin (corresponding
to q 2, q [3, c) and q co) follow by similar calculations.

LEMMA 4. If there is a path in the graph from initial to success, then there is a
(2e + e2)-relaxed feasible packing.

Proof. There are two types of arcs in the graph, l&m-pack arcs that correspond
to a feasible configuration, and the update arcs. The relaxed packing is done by tracing
the path from initial to success as follows. Each bin has an arc along the path that
specifies the l&m-pack of pieces in the bin. We pack bins in order of decreasing size
(as they are encountered on the path) according to the feasible configuration specified
by the arc (arbitrarily choosing pieces from each subinterval). It will be convenient to
view the piece as having its rounded size, and later we will consider the effect of
inflating it to its true size. In the updating phase at the end of the stage for interval k,
we pack the remaining pieces from interval k as small pieces. An unpacked piece j
with size in (e k/l, e k] is packed in any enormous bin (in intervals 1,. ., k- 2), with
positive usable slack1. Recall that for a bin interval k its usable slack is computed as
if the volume of the bin were rounded to the next highest multiple of e k+4. We then
update usable slack1:= max {usable slack-/, 0}. This small-pack phase is always
successfully completed since there is an update arc if and only if there is sufficient
total slack to accommodate all pieces to be packed as small pieces, and the total usable
slack is at least as large. Therefore, we are also able to construct a packing from the path.

Consider the (rounded) pieces packed into bin where the size of bin is si,

which is in interval k. Focus on the small piece j that, when added to the bin, exhausts
the usable slack; suppose that piece j is in interval k + 2. (It certainly cannot be in an
interval of smaller index, since it must be small for bin i.) In this case, all pieces in
the bin have rounded sizes that are multiples of e k/4, and in fact, before piece j was
added, the rounded piece sizes did not exceed si. Hence, the bin contains at most
$i q" Ek+2 in terms of rounded sizes. If piece j comes from an interval greater than k + 2,
then the bin clearly contains total rounded size no more than s + ek+4+ e k+3, which is
less than s + e k+2 (since e <_- 1/2). Therefore, if B is the set of pieces packed in bin i,, fij<---Si+ek+z<<-Si+eSi--(1-4c-e)Si

B,

Furthermore, for any piece j, pi<-(l+e)p.i, since if
/j + ep. Combining these inequalities, we see that bin j is packed with (unrounded)
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pieces of total size at most (1 + e)(1 + e)si. This is therefore a (2e + e2)-relaxed feasible
packing.

Thus, the procedure all-pack consisting of building the layered graph, finding a
path from initial to success, and then (if possible) converting the path to a packing as
described above, is a (2e + e2)-relaxed decision procedure. By observing that 2e + e <=
-e when e -<_ 1/2, we see that the following theorem is a corollary ofthe previous discussion.

THEOREM 2. For e <=1/2, the procedure all-pack delivers an e-relaxed packing in
O(m.n/+3) steps. Each step consists of one arc evaluationat most (2/e:)-1
additions and one comparison, orfor the updateat most n additions and 3 comparisons.

4. A -relaxed decision procedure for bin packing with variable sizes. In this section
we consider a special case of the problem considered in the previous section" we fix
e =1/2. In other words, we wish to construct a procedure which, given an instance
I (J, S), either concludes that no truly feasible packing exists, or else finds a 1/2-relaxed
feasible packing. Unlike the algorithm of the previous section, this algorithm is
extremely simple and efficient. Once again, we assume that the bin sizes are s => s:

Consider the following recursive procedure"

procedure pack J, S, m)
begin

if p is Si then
begin
Jm:: {jlps/2}
Jnew::J-Jsml
t: {j .wlp s}
if Jilt empty then

begin
choose j such that py max p

jJt

pack j in bin m (+)
ew:= Y.w-- {j}

end
S.w:=S-{m}
if Jw empty then call pack (Jw, Snow, m 1)
while there exists unpacked piece j J

find bin packed with s add piece j to bin (.)
end

else
output "no truly feasible packing"

end

LEMMA 5. If an instance I (J, S) has a truly feasible packing then the instance

Inw (Jw, Snow) created by procedure pack (J, S, m) has a truly feasible packing.
Proof If (J, S) has a truly feasible packing, then ceainly so does (J-Jsml, S).

Consider any such truly feasible packing. Since all of the pieces in J- Jsml are greater
than s/2 only one piece f can be contained in bin m. Ifj f then form a new packing
by interchanging these pieces. By the choice of j, p,_ py, so the bin that contained j
before the interchange remains truly feasibly packed after the swap. Thus, by consider-
ing bins 1 to m- 1, we see that there is a truly feasible packing for the instance Inw.

LEMMA 6. If the procedure pack (J, S, m) outputs "no truly feasible packing" then
there is no truly feasible packing.
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Proof Suppose for a contradiction that there were a truly feasible packing. Then,
by Lemma 5, for each recursive call of pack there is a truly feasible packing of the
specified instance. However, for the failure message to be printed, the last of these
instances must have Yj pj > i si. This is clearly a contradiction, since no instance that
has greater total piece size than total bin size can have a truly feasible packing.

LEMMA 7. Ifthe procedure pack(J, S, m) does not output "no trulyfeasible packing"
then it successfully packs all pieces in a 1/2-relaxed feasible packing.

Proof In considering the procedure pack, there is only one statement in which it
could conceivably fail, and this is the statement indicated by (.). Why should it always
be possible to find a bin that is packed within its true capacity? If this were not possible,
then all bins are packed beyond their true capacity, and then surely i P > i si. But
this is precisely the situation we have excluded in this case of the if statement.

To show that the packing produced is 1/2-relaxed feasible is also quite simple.
Consider the two steps in the procedure in which pieces are packed. In the statement
indicated by (+), we ensure that the piece fits within the true bin capacity. In statement
(.), we always add to some bin a piece of size <=Sin <---- Si/2, and since bin previously
contained <- s, afterwards it contains no more than (3/2)si.

We now discuss an efficient implementation of the procedure pack(J, S, m). We
shall assume that the piece and bin sizes are given in sorted order. Note that the
recursive procedure packs "large" pieces in bins of decreasing bin size, and then packs
"small" pieces in bins of increasing size. It will be convenient to maintain two pointers
to the sorted list of piece sizes: one to the largest piece no larger than the current bin
size, and one to the smallest piece at least half the current bin size. By the monotonicity
property just mentioned, only O(n) time is required to maintain these pointers,
amortized over the running time of the procedure. Furthermore, given these pointers
it is easy to see that the procedure can be implemented in linear time, since no piece
need be "touched" more than a constant number of times. By combining these ideas
with Lemmas 6 and 7, we get the following result.

THEOREM 3. The procedure pack(J, S, m) is a -relaxed decision procedure for the
bin-packing problem with variable bin sizes. Furthermore, given the bin and piece sizes in
sorted order, the algorithm runs in linear time.

5. Conclusions. In considering the framework employed in the polynomial
approximation scheme, it is important to note that this framework is not particular to
this scheduling problem. As was discussed in [HS], the key notion in the success of
this approach is a dual approximation algorithm. For the ordinary bin-packing problem,
for example, an e-dual approximation algorithm delivers a solution where the number
of bins used is at most the optimum number, but is possibly infeasible. This infeasibility
is bounded: each bin can contain no more than (1 + e) times the original bin capacity.

The e-relaxed decision procedure is essentially the same notion, except for the
fact that there is no optimization involved. This can be fixed by considering the
following generalized problem: given a set of pieces {Pl, ",Pn} and a profile of bin
sizes s, , s, find the minimum number of copies of this profile needed to pack all
of the pieces. It is quite simple to see how to convert the e-relaxed decision procedure
into an e-dual approximation algorithm by using binary search.

We believe that this "dual approach" to approximation will continue to yield
strong results in constructing approximation algorithms for problems for which good
(traditional) approximation algorithms have been, heretofore, elusive. The work
presented here certainly adds further confirming evidence.
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A GRAPH THEORETIC APPROACH TO STATISTICAL DATA SECURITY*

DAN GUSFIELD"

Abstract. In this paper we study the problem of protecting sensitive data in an n by n two-dimensional
table of statistics, when the nonsensitive data are made public along with the row and column sums for the
table. A sensitive cell is considered unprotected if its exact value can be deduced from the nonsensitive cell
values and the row and column sums. We give an efficient algorithm to identify all unprotected cells in a
table. The algorithm runs in linear time if the sensitive values are known, and in O(rl3) time if they are not
known. We then consider the problem of suppressing the fewest additional cell values to protect all the
sensitive cells, when some cells are initially unprotected. We give a linear time algorithm for this problem
in the useful special case that all cell values are strictly positive. We next consider the problem of computing
the tightest upper and lower bounds on the values of sensitive cells. We show that each cell bound can be
computed in O(n3) time, but all 19(n2) values can be computed in O(rl4) total time. In the case that all the
cells are sensitive, we show that trivial methods compute the tightest bounds, and in fact, the n lower
bounds can be computed in O(n) arithmetic and comparison operations. Although these problems at first
appear to be problems in integer linear algebra, the solutions are based on computational graph theory,
and the worst case times are significantly faster than for approaches based on linear algebraic computations.

Key words, data security, graph algorithms, network flow
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I. Introduction. In this paper we study the problem of protecting sensitive data
in a two-dimensional table of statistics when the nonsensitive data is made public.
Work in this area was begun by Fellegi, Cox, and Sande [FELl, [COX75], [COX77],
[COX78], [COX80], [SAN], and reported in Denning [DEN]. The general problem
is motivated by concerns for privacy and security, and is a problem of practical
importance and active interest for both the U.S. Census Bureau [USDC], and Statistics
Canada [BCS]. For a more complete discussion of background and motivation see
[DEN]. The problems considered in the paper all appear at first to be problems in
integer linear algebra, but in this paper they are reduced to graph theoretical problems
where they are more efficiently solved.

1.1. Problem statements, definitions, and main results. The basic setting for the
paper is that one party (the Census Bureau, say) has a two-dimensional table, D, of
cross-tabulated integer statistics; each entry D(i, j) is a nonnegative integer in cell (i, j)
of D; R(i) is the sum of the cell values in the ith row of D, and C(j) is the sum of
the cell values in the jth column of D. We assume that D has at least two rows and
at least two columns, and that each R(i) and C(j) is strictly positive. All the row and
column sums are to be made public (disclosed) along with some of the cell values,
but the remaining cell values, called sensitive values, are to be suppressed (not dis-

closed). Unless care is taken, however, the disclosure of the nonsensitive values might
allow an adversary to deduce the exact value of one or more of the sensitive values.
Hence, to avoid disclosing the exact value of any sensitive cell, the values of some
nonsensitive cells may also need to be suppressed; these suppressions are called
complementary suppressions, in a table D, the set of suppressed cells consists of the
sensitive cells along with any complementary suppressed cells.

* Received by the editors August 25, 1986; accepted for publication (in revised form) June 12, 1987.
This research was supported in part by National Science Foundation grant MCS-81/05894 and by U.S.
Census Bureau grant JSA 86-9.

Division of Computer Science, University of California, Davis, California 95616.
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Given a table with suppressions, a suppressed cells is called protected if its exact
value is not determinable from knowledge of only the row and column totals, and the
values of the unsuppressed cells. To make this precise, let X be the set of all suppressed
cells and for cell (i,j) X, let x(i,j) be a variable denoting the value of the cell. For
each row and columnj, let R*(i) and C*(j) be, respectively, the sum ofthe undisclosed
values in row of D, and the sum of the undisclosed values in column j of D.

DEFINITION. Let R be the set of row indices and C be the set of column indices.
For iR, let X(i) be the set of indices j C such that (i,j) is a suppressed cell.
Similarly, for j C, let X(j) be the set of indices R such that (i, j) is a suppressed
cell.

DEFINITION. We define a legal solution of D as a nonnegative integer solution
to the following system of linear equalities:

For each fixed R, ’.jxi x(i, j) R*(i), and

For each fixed j C, ,ixo x(i, j) C*(j).

DEFINITION. A cell (i,j) in X is protected if and only if there exists two legal
solutions Xl and x2, such that x(i, j) x2(i, j).

DEFINITION. A table with suppressions is protected if and only if all of its
suppressed cells are protected.

Notice that this definition of protection essentially implies that side information
such as correlations between cell values or special bounds on cell values etc. are
unknown to the adversary, or at least do not restrict the set of legal solutions. Most
of the results in this paper can easily be extended to the cases when given upper and
lower bounds on the values of individual cells are known to the adversary (provided
that the Census Bureau knows what bounds the adversary is assuming); we will briefly
discuss these extensions later. Notice also that the assumption that each R(i) and C(j)
is strictly positive is reasonable, since without the assumption there is no way to protect
the (all zero) entries in such a row or column.

In this paper we discuss four problems:
(a) (Census Bureau problem) Given knowledge of the complete, original table,

D, and given a set of cells X, determine whether table D would be protected after the
suppression of the values in set X.

We cast this problem as a graph theoretic problem and give an algorithm that
identifies all unprotected cells and runs in linear time in the size of X.

(a’) (Adversary problem) Given a table D, where the values in the set of cells X
are suppressed, hence unknown, determine whether D is protected, and if not, deter-
mine the exact value of all the unprotected cells.

We reduce this problem to the Census Bureau problem, using a single maximum
flow computation on a graph with IXI edges. Hence, after one maximum flow computa-
tion, the adversary problem can be solved, as above, in time linear in

(b) (Complementary Suppression problem) Given the full n x m table D, and a
set of sensitive cells X to be suppressed, determine the minimum number (and selection)
of complementary suppressions needed so that all the sensitive cells are protected.
This is a problem that the Census Bureau faces when choosing which cells to disclose
in the case that additional suppressions are needed to protect the sensitive cells.

We solve this problem in time O((n / m)lXI), for the case that all cell values are
strictly positive. The solution is based on a computational problem in graph theory
studied by Eswaran and Tarjan [ET]. In [G] we sketch a more complex linear time
solution to this special case.

(c) (General Interval Estimation) Given a table with a set X of cell suppressions,
determine the tightest upper and lower bounds on the values of each suppressed cell.
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This is a generalization of problem (a’) since a cell is protected if and only if the upper
and lower bounds on its value are unequal.

We show how to compute each bound of a suppressed cell with a single O(n3)
time network flow computation. In an n n table with (R)(n 2) sensitive cells, this yields
an O(n 5) time algorithm to compute all the bounds. We then improve this running
time to O(n4), by reducing the problem of computing all the upper bounds to a problem
studied in [SC]. We also show the surprising result that in an n m table, there can
never be more than n + m- 1 distinct upper bound values, no matter how many cell
values are suppressed.

(d) (Special Interval Estimation) In the case that all the cell values are suppressed,
determine the tightest upper and lower bounds on the cell values. We show that trivial
methods suffice here, and in fact, the lower bounds can be computed with O(max n, m])
arithmetic operations and comparisons in an n m table, although the output has size

In the published literature on these problems, problem (c) is solved by minimum
cost flow or linear programming methods applied independently for each bound
[COX77], [COX78], [COX80], [DEN]; problem (b) is solved by trial and error,
iteratively using the upper and lower bounds computed by (c) [COX80]; problem (a)
is solved by computing upper and lower bounds and checking for equality [COXS0];
and no special, efficient method is discussed for problem (d). Hence the results here
provide substantial theoretical and practical improvements for problems (a), (b), and
(d), and a theoretical improvement in problem (c). It is an empirical question whether
the simpler and faster (in worst case) network flow methods for problem (c) are better
in practice than the linear programming methods suggested in the literature [COX78].

In actual systems concerned with statistical security, problems (a) and (c) are
often in the inner loop of larger programs that repeatedly modify the table and then
need to know if the cells are secure, or what the tightest bounds on their values are.
For example, problem (b) is of that type. Hence any speedup in solving these two
problems is particularly important.

2. Determining if D is protected. In this section, we discuss problem (a), giving a
linear time algorithm to determine if D is protected. Although the Census Bureau
problem was posed above as a problem in integer linear algebra, we will see that it is
more effectively treated when viewed as a problem in computational graph theory.

DEFINITION. Graph H is a bipartite graph with node set R on one side representing
the rows of table D, and node set C on the other side representing the columns of D.
There is an edge (i,j) between node on R and node j on C if and only if cell (i,j)
is suppressed in D. An edge (i,j) in H is undirected if and only if D(i,j)> 0, and is
directed from node in R to node j in C if and only if D(i,j)= O.

Figure 1 shows an example of a table D and Fig. 2 shows the graph H derived
from D.

DEFINIXION. We use the notation (i, j) to indicate that edge (i, j) is directed from
node to node j. Where the distinction does not matter, we will use the term "edge"
and the notation (i,j) to refer to either the undirected edge (i,j) or the directed edge
(i,j).

DUFINITIO. A cycle in H is called traversable if it is a simple cycle, and it is
possible to walk around it without ever going opposite to the direction of any of the
directed edges on it. Clearly any directed or undirected simple cycle is traversable.
Note that an undirected edge in H can be used in one direction in one traversable
cycle, and in the other direction in another traversable cycle.
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The following theorem reduces the Census Bureau problem to a graph theoretic
problem.

THEOREM 1. A suppressed cell (i*,j*) is protected if and only if its associated edge
in H is contained in at least one traversable cycle in H.

Proof. We first show sufficiency. Let SC be a traversable cycle in H. Arbitrarily
pick a directed edge e in SC, and if there are none, then pick any edge e in SC. Starting
with edge e, alternately label the edges around SC positive and negative. Since H is
bipartite, the labeling is well defined, and since SC is traversable, all the directed
edges will have positive labels. Let f be the minimum of the D(i,j) values of the
negative labeled edges in SC. Adding f to D(i,j) for any positive labeled edge (i,j),
and subtracting f from D(i, j) for the negative labeled edge (i, j) gives a legal solution
x to D, such that for any edge (i,j) on SC, x(i,j) D(i,j). Hence all cells associated
with edges in SC are protected.

To prove necessity, suppose cell (i*,j*) is protected and let x be a legal solution
to D such thatx(i*,j*) D(i*,j*). Define F(i,j) x(i,j)- D(i,j),foreachsuppressed
cell in D. We represent F as a weighted bipartite graph, F*, containing directed edge
(i, j), R, j C, with weight F(i, j), if F(i, j) > 0, and containing directed edge (, i),

R, j C, with weight F(i, j), if F(i, j) < 0. Clearly, if there is no edge between nodes
and j in H, then there is none in F*. Further, if (i, j) is an edge in H, then edge (j, i)

cannot appear in F*, since D(i, j) 0 and so F(i, j) x(i, j) D(i, j) _-> 0. Since
x(i*,j*) D(i*,j*), either (i*,j*) or (j*, i*) is an edge in F*. We will suppose that
F* contains edge (i*, j*) and show that (i*, j*) is contained in a traversable cycle in
H. The case when F* contains edge (j*, i*) is symmetric.

First, note that for any fixed node in F*, the weights of all the edges incident
with sum to zero. Hence any node in F* that is incident with at least one edge is
incident with at least one edge directed into and one directed out of i; we call this
the balance property. It follows easily from the balance property, and from the fact
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that (i, j) is an edge in F* only if (j, i) is not, that there exists a traversable cycle, SC,
in F*, with at least four edges. Notice that in SC the signs on the edges alternate
positive, negative around the cycle. Cycle SC must also be a traversable cycle in H,
since every edge in SC is either in H with the same direction as in F*, or is directed
in F* and undirected in H. Let f be the minimum absolute value of the weights of
the edges on SC. We subtractf from each positive weight on SC, addf to each negative
weight on SC, and remove any edges with resulting weight zero (there is at least one);
the result is a subgraph of F* which again has the balance property. We can therefore
continue finding traversable cycles in F*, and hence also in H, changing weights and
removing edges each time, until there are no more edges left. Edge (i*, j*) must be in
at least one of these cycles, hence must be in a traversable cycle in H. ]

Theorem 1 shows that for the question of protection, only the directions of the
edges in H matter. This means that the only distinction that matters (in determining
protection) is whether D(i, j) is zero or not. Notice also that the Census Bureau problem
can be answered without needing to explicitly know R*(i) or C*(j).

2.1. Graph CG. By Theorem 1, problem (a) can be solved by determining which
(if any) of the edges of H are in no traversable cycles in H. We next solve this problem
with a linear time algorithm that constructs the mixed graph CG; the edges of CG
are exactly those edges of H that are in no traversable cycles in H. Graph CG will
also be central in the problem of minimizing the number of complementary sup-
pressions. The construction of CG uses the graph theoretic objects of bridges and
strong components. Definitions of these objects and algorithms to find them are fully
developed in a number of texts, such as [AHU] and [EVE].

CONSTRUCTION OF GRAPH CG.
(1) Find the strongly connected components of H. Let A be the set of edges

running between these components. Clearly all the edges of A are directed edges in H.
(2) Consider each of the strong components as a separate undirected graph,

ignoring the directions on any directed edges. Find all (if any) bridges in each of the
separate graphs, and let B be the set of bridges found. It is easily proved that any
edge in B is an undirected edge in H.

(3) Let K be the graph induced by the edges of H minus A3B, and let
K (1),. ., K(r) be the connected components of K. Graph CG is formed by condens-
ing each K(i) in H. Hence each node in CG is in 1-1 correspondence with some
K(i), and the edges of CG are exactly A U B.

In Fig. 3, graph CG is constructed from H shown in Fig. 2.
THEOREM 2. Edge (i, j) is in no traversable cycle in H if and only if (i, j) is in

A hJ B. That is, cell (i, j) is unprotected if and only if nodes and j are in different
components of K.

Proof. First any edge which is in a traversable cycle in H is in some strong
component of H, and so no edge in set A is in a traversable cycle. Second, any directed
edge (u, v) in a strong component is traversable, since, by definition of strong com-
ponent, there must be a traversable path P from v to u in H. So edge (u, v) followed
by path P is a traversable cycle in H. Hence A exactly contains the directed edges
that are on no traversable cycles. Now we consider which undirected edges of H are
traversable. Since no edge in A is in a traversable cycle, we can delete set A from H
without affecting which undirected edges are traversable. Any bridges in the resulting
graph (considered undirected) are clearly nontraversable, so all edges in B are non-
traversable. What remains to be shown is that any undirected edge (u, v) not in B is
in some traversable cycle in H. Since (u, v) is not a bridge in the strong component it
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Fit3. 3. Construction ofgraph CGfrom H. Figure 3(a) shows the two strong components r(1) and r(2)
of H. In r(1) the bridges are (R3, C2) and (R3, Ca). There are no bridges in r(2). The edges of set A are

(R1, C4) and (R3, C5). Figure 3(b) shows graph CG.

is contained in, there must be a path P in H, not containing edge (u, v), connecting
(ignoring the directions of the edges on P) node u and node v. If P is traversable in
either direction, we are done. If P is not traversable, let (x, y be the first directed edge
on P such that the walk from u to v on P goes in the wrong direction, i.e., from y to
x. Since (x, y is not in set A, it is on some traversable cycle in H, and so there is a
traversable path, P’, from y to x in H. Now the path consisting of P to y, P’ to x, and
P to v is a path from u to v which traverses one less edge in the wrong direction than
does P. By repeating this argument, a traversable path in H from u to v can be found,
and hence (u, v) is in a traversable cycle in H.

Hence problem (a) can be solved in time linear in the size of X, as it is well known
[AHU], [EVE] that strong components and bridges can be found in time linear in the
number of edges and nodes in the graph.

Figure 3 shows that cells (1, 4), (3, 2), (3, 3), and (3, 5) of table D in Fig. 1 are
unprotected.

2.2. Solving the adversary problem (a’). Let x be any legal solution to D, and let
D(x) be the complete table formed by assigning x(i,j) to each suppressed cell (i,j)
in D. It follows by the definition of protection that any suppressed c11 is unprotected
in D(x) if and only if it is unprotected in D. Hence, although the adversary does not
have the full original table D, if he knows any legal solution x to D, then he can input
D(x) to the above algorithm and determine which cells in D are unprotected. If (i,j)
is such a cell, then D(i,j)= x(i,j), and hence the adversary knows its value.

We now show that a legal solution to D can be found in time O(n3) using network
flow.

2.2.1. Finding a legal solution.
DEFINITION. Network G is constructed from graph H as follows: first direct each

edge (i, j) in H from E R to j E C, and give each such edge a capacity of infinity;
then add a node s to H and a directed edge from s to each node of R, and a node
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to H and a directed edge from each node of C to t. The capacity of each edge (s, i)
is set to R*(i), and the capacity of each edge (j, t) is set to C*(j). Let T be the sum
of the capacities of the edges out of s (T is also the sum of the edge capacities of the
edges into t).

DEFINITION. A flow function F is an assignment of a nonnegative real number,
F(i,j), to each directed edge (i, j) of G such that F(i,j) is less than or equal to the
capacity of edge (i, j) and so that for every node iS s, t, ,j F(i,j)= j F(j, i). The
quantity i F(s, i) is called the value of the flow, and it also equals i F(i, t). A flow
is called a maximum flow if its value is maximum over all flows in G. A flow is called
integral if F(i,j) is an integer for every edge (i, j).

It is known [FF] that a maximum integral flow exists if the capacities on all the
edges are integers. The following fact is immediate.

FAc’r 1. Let D and G be as above and let x be any legal solution of D. If F(i,j)
is set to x(i,j) for each (i, j) in X, then F(i,j) is an integral maximum flow in G of
value T, i.e., F is an integral flow that saturates all edges out of s, and these edges
form an s-t cut in G. Conversely, any integral maximum flow in G (of value T)
defines a solution to D in the analogous way: x(i,j) F(i,j) for (i, j) X. Hence a
suppressed cell (i, j) in D is protected if and only if there exists two integral flows FI
and F2 in G, each of value T, such that F(i,j) F2(i,j).

The example in Fig. 4 illustrates the above definitions and fact.
It is well established that the maximum flow can be found in time O(n3) in a

graph with O(n) nodes, and for sparse graphs, the maximum flow can be found in

F 7

2 3

3 4

FIG. 4. Graph G derived from D. A maximum flow F is indicated on the center edges.



GRAPHS AND DATA SECURITY 559

time O(n/ log n), where E is the number of edges in the graph [ST]. Recent papers
on network flow have improved these time bounds to O(nF. log (n2/F_,)) [GT], and
O(n + n2 log (Cmax)) [AO], where Cmax is the largest capacity in the network. It has
also been established [GMB] that for an n m table where n < m, the flow can be
found in O( n2m) time rather than O(( n + m)3); this distinction is important when n << m.

Note that problem (a) is solved in linear time while problem (a’) first requires the
computation of a maximum flow. These two solutions are essentially the same, but in
problem (a), the Census Bureau has the advantage that it knows a particular legal
solution for free, namely the one corresponding to D itself.

3. Optimizing complementary suppressions. In this section, we will use H and CG
to represent and help determine the optimal complementary suppressions in D; we
will see that this problem can be cast as a graph augmentation problem on CG.

Each complementary suppression in D charges graph H: if cell (i, j) is suppressed
and D(i, j) 0 then the directed edge (i, j), R, j C, is added to H, and if D(i, j) > 0
then the undirected edge (i,j) is added to H. This direct correspondence between cell
suppressions in D and edge additions in H, combined with Theorem 1, implies that
the complementary suppression problem can be solved by taking any H and adding
the fewest number of edges corresponding to complementary suppressions in D, so
that every edge in the resulting graph is in some traversable cycle. Problems of this
type are called graph augmentation problems.

It is easy to see (and prove) that the complementary suppression problem can be
solved using CG in place of H, i.e., the smallest set of edges that must be added to
CG so that every edge is traversable, is also the smallest set that must be added to H
to make every edge in it traversable, and vice versa. What makes this augmentation
problem difficult, is that only those edges corresponding to unsuppressed cells in D
can be added to CG, and if (i, j) is an unsuppressed cell where D(i,j)=0, then the
edge corresponding to cell (i, j) is the directed edge (i, j), R, j C.

The above complementary suppression problem has been shown to be NP-
complete [KG], but the graph CG is still useful, since one can quickly see the effect
of any proposed complementary suppressions. This leads to efficient implementation
of heuristics (such as those suggested in [COX80]) based on hill climbing and incre-
mental optimization, i.e., incrementally selecting a suppression that makes the most
edges traversable, updating CG, and repeating until every edge is in some traversable
cycle. Further, there are useful special cases of the complementary suppression problem
that can be efficiently solved. In the following section, we solve the case when D(i, j) > 0
for every cell in D. This assumption is valid for a large class of problems, and is of
practical interest. We can also apply the solution to the more general class of problem
where D(i, j) > 0 for every sensitive cell, but where other cells in D may have zero value.

3.1. Special case: D strictly positive. In this section, we optimally and efficiently
solve the complementary suppression problem under the assumption that D(i,j)> 0
for every cell in D. This condition is often satisfied in certain classes of Census Data,
and the agent with the complete table can exploit the condition when it arises. We
should note, however, that for the definition of protection to remain relevant, the
adversary must not know when these special cases arise. That is, the adversary must
work in the solution space that includes zero, while the Census Bureau can exploit
more restrictive assumptions when appropriate. In this section, we present a simple
O((n+m)lxI) time method based on a related problem and solution studied by
Eswaran and Tarjan [ET]. In [G], we examine a more general class of graph augmenta-
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tion problems (containing the special case discussed here) and sketch a solution to
those problems that solves the special case in O(IXI) time. The faster solution is more
involved than the one given here.

Unlabeled graph augmentation. In [ET], the following problem is solved: Given a
forest, FG, of undirected trees, add the fewest number of undirected edges to FG so
that every edge is in a simple cycle (hence of length at least three), where it is permitted
to add an edge between any pair of nodes in FG. In our applications, we will only
need the solution to this problem when FG is a single tree and contains at least three
leaves (isolated nodes never arise in our applications, and the complementary sup-
pression problem for two leaves is easy to solve directly). We sketch the solution of
the unlabeled graph augmentation problem given in lET], for the case of FG a single
tree.

ALGORITHM ET
1. Number the leaves of CG in pre-order, i.e., traversing the tree by depth-first

search, the leaves are numbered in the order that they are reached. Let v(i) be the ith
leaf reached.

2. Suppose FG has p leaves and k= [p/2J. Add an edge between leaves v(i)
and v(k+i), for i=1 through k. If p is odd (p=2k/l), then add an edge between
v(p) and any other leaf in FG.

For a proof that this solution is correct, see [ET]. Note that Algorithm ET clearly
runs in time linear in the number of edges of FG.

Labeled augmentation: modifying ET. When table D is strictly positive, CG is a
forest of undirected trees. If we take CG in place of FG and use Algorithm ET (adding
[p/2] edges and yielding graph CG*) we may not end up with a solution to the
complementary suppression problem since "illegal" edges (those not corresponding
to unsuppressed cells in D) may have been added. We give here an O((n+ m)lXl)
time algorithm that takes CG* and transforms it to obtain an optimal solution to the
suppression problem. We first need some definitions and observations.

DEFINITION. In CG we give a node the label of R if it is a node on the R side
of G, we give it the label C if it is on the C side of G, and we give it the label B if
it is a condensed node and therefore contains nodes of G from both R and C. Let r,
c and b be the number of leaves of CG labeled R, C, and B, respectively.

Given this notation, the complementary suppression problem for the case that D
is strictly positive is a graph augmentation problem on CG with the constraint that
no (R, R) edges or (C, C) edges may be added. We will refer to this graph augmentation
problem as the labeled augmentation problem.

FAC’r 2. Assuming r-< c, a simple lower bound on the size of the optimal solution
of the labeled augmentation problem is c if r+ b =< c, and is [(r+ c+ b)/2] otherwise.
We will see that this bound can be exactly met.

Assumption. We will assume that CG has p r + b + c > 2 leaves, that p is even,
that r <- c, and until 3.1.4, that r+ b >= c. The complementary suppression problem is
trivial when p 2. When p is odd, we reduce the analysis to the even case as follows:
If r+ b _-> c and p (defined as r+ b+ c) is odd, it follows that r+ b > c; we remove from
CG any B leaf and the unique path from it to a node of degree three or more, creating
a forest with an even number of leaves where r+ b >= c. The solution to the labeled
augmentation problem when p is odd is then obtained by taking the solution to the
reduced case (p even) and adding an edge from the deleted B leaf to any other leaf.
In 3.1.4 we will briefly discuss the case that r + b < c.
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CG a single tree. To explain the general idea of transforming the solution given
by Algorithm ET into a solution of the labeled augmentation problem, we first assume
that CG is a single tree; later we discuss how to handle the case of CG a forest.

DEFiNiTiON. Let E* initially be the set of edges added to CG by Algorithm ET,
and let CG* be the graph resulting from adding E* to CG.

We note thefollowing consequence of Algorithm ET, which is an easy extension
of the correctness proof of ET given in [ET].

FACT 3. When CG is a single tree, every edge in CG is in a cycle in CG* containing
exactly one edge of E*. That is, let C(e) be the unique cycle created by adding an
edge e of E* to CG, and let CC be the set of all such cycles, then every edge in CG
is contained in at least one cycle of CC. When edge e’ of CG is in C(e), we say that
edge e covers edge e’.

THEOREM 3. E* can be transformed into an optimal solution to the labeled augmenta-
tion problem in time O((n + m)lX[).

Proof. If E* contains no (R, R) edge and no (C, C) edge then it is a solution to
the labeled augmentation problem. However, if there is an (R, R) edge, e, in E*, then
since r =< c, there must also be either a (C, C) edge or a (C, B) edge in E*. Suppose
there is a (C, C) edge, e’, in E*; the case of (C, B) is similar. Let S be the unique
smallest subgraph of CG that connects the endpoints of e and e’. These four endpoints
are leaves of S, and the topology of S is one of the three cases shown in Fig. 5. In
each of the three cases there is a way to add two (R, C) edges between the endpoints
of e and e’ so that every edge of S is in a cycle consisting of edges of S plus exactly
one of the two new edges, i.e., every edge in S is covered by one of the new edges.
For example, in the first case we add an edge between the upper left C and lower
right R, and an edge between the upper right C and the lower left R. Now in CG*,
all edges covered by e and e’ are in S, and so by Fact 3, every edge in CG not in S is
covered by some edge of E*-{e, e’}. Hence we can delete e and e’ from E*, and add
the appropriate two new (R, C) edges to E*, so that every edge in CG is again covered
by some edge in E*. Note also that E* remains disjoint from the edges of CG. We
call such a set of edge deletions and insertions an edge exchange. By successive edge
exchanges we can find a set of edges, E*, containing no (R, R) edges, such that every
edge in CG is covered by an edge in E*. Note that in these edge exchanges, the size
of E* remains constant.

C C C R C C

R R C R R R
FIG. 5. Cases for edge exchanges. Each line represents a path between the endpoints.

Suppose now that E* contains no (R, R) edges; we will remove all the (C, C)
edges in E* using edge exchanges similar to those above. If there is a (C, C) edge in
E*, but no (R, R) edge, then there must be either an (R, B) or a (B, B) edge in E*
(this follows by arithmetic from the assumptions that r -< c and r + b >_- c). We can again
do an edge exchange to replace a (C, C) and, say, a (B, B) edge with two appropriate
(C, B) edges, maintaining the size of E*, and the property that every edge of CG is
covered by an edge of E*. We repeat until E* contains no (R, R) or (C, C) edges, and
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note that ]E*[ has remained constant, and that E* has throughout been disjoint from
the edges of CG.

The set E* is now a solution to the labeled augmentation problem. It is easy to
see that it is optimal, since IE*]=p/2=(r+ c+ b)/2, the lower bound noted in Fact 2.

To analyze the time needed for the transformation, note that at most (r+ c)/2
edge exchanges are needed, and the cost of each is bounded by the number of edges
in CG. Both (r / c) and the number of edges in CG are bounded by (n + m) and by
]XI, hence O((n + m)lxl) time suffices. Note that this could be reduced to o(Ixl) time
if, in every edge exchange, both of the possible pairs of edge additions maintain the
cover of the edges of S. However, as shown in the first case of Fig. 5, it is not true
that both pairs of edge additions maintain the cover.

Labeled augmentation when CG is a forest. In general, G may not be connected
and so CG will not be a single tree. We now solve the labeled augmentation problem
in the case that CG is a forest. The idea is that we first add a set of node disjoint
edges (where no node is incident with more than one edge in the set) between leaves
to connect the trees of CG into a single tree, T*, and then solve the problem as before.
We must be careful in the way that we add edges to form T*. We call the first edge
additions (forming T*) phase one, and the next edge additions (done by Algorithm
ET) phase two, which is then followed by.any needed edge exchanges. We let E* now
start with only those edges added in phase two. However, we must be careful about
which edges are added in phase one, because when CG is a forest, Fact 3 is no longer
true, i.e., it is not true that in CG* every edge of CG is in some cycle containing only
one edge of CG*-CG (see Fig. 6).

F:3o oC
oo

eeOooeooeeo ooeoooOOO oe

FIG. 6. CG is shown in solid and the optimal augmentation is dashed. No edge in CG is covered by just
a single edge of the optimal solution.

Fact 3 was crucial in the proof that all edges remain traversable after an edge
exchange, and the edge exchange operation and argument become much more compli-
cated if we ever remove edges added in phase one. To get around this problem, we
want to be sure that the edges added in phase one can appear together in an optimal
solution to the labeled augmentation problem. If so, then these edges become fixed
after phase one, and the remaining problem is exactly the labeled augmentation problem
for the single tree T*.

THEOREM 4. The trees of CG can be connected (forming T*) by node disjoint,
phase one, edges such that there exists an optimal solution of the labeled augmentation
problem for forest CG, containing all of those phase one edges.
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Proof We first arbitrarily relabel (b+c-r)/2 of the B leaves in CG to be R
leaves, and relabel the remaining (b+r-c)/2 B leaves to be C leaves. The effect is
that CG now contains an equal number of R and C leaves and no B leaves. We now
claim that it is possible to connect CG into a single tree, T*, using a set of node
disjoint (R, C) edges. In fact, this can be done myopically: as long as CG is not
connected there must exist two components in CG such that one contains an R leaf
and one contains a C leaf. To see this, suppose that CG is not connected, and let CC
be a component containing an R leaf. Since each component is a tree, each component
has a leaf, and if a component other than CC has a C leaf, the claim is proved. If
there are no C leaves outside of CC, then all leaves outside of CC are R leaves, and
one of these can be connected to a C leaf in CC. There must be such C leaves, since
the number of R and C leaves are equal before any phase one edge additions and
this equality is maintained with each edge addition.

After T* is formed, the number of R and C leaves are still equal, hence the
number of (R, R) edges added by Algorithm ET (in solving the unlabeled augmentation
problem on T*) must equal the number of (C, C) edges added. Edge exchanges strictly
between these (phase two) edges can then be done to form a legal solution to the
labeled augmentation problem for CG. This solution contains all phase one edges,
and is optimal since it adds exactly p/2 edges. Hence there exists an optimal solution
to the labeled augmentation problem for CG, containing all the phase one edges. []

There are other ways of connecting the trees in phase one, and it is often useful
to have several choices available. This is particularly true for the case when D(i, j) > 0
for the sensitive cells, but nonsensitive cells can be zero (see [G] for a more complete
discussion of this).

Labeled augmentation when r + b < c. We briefly discuss the labeled augmentation
problem in the case when r + b < c. We assume that r + b => 1 since the complementary
suppression problem is simple to solve directly when CG only has C leaves. When
r+ b < c, at least c edges must be added. If CG is a single tree, we can achieve this
bound by taking the solution given by ET (which contains p/2 edges) and make edge
exchanges until the only edges in E* are (R, C), (C, B) and (C, C) edges. This can
always be done since r+ b < c. At this point we can arbitrarily pick an R or B node,
v, in CG, delete all (C, C) edges from E* and attach each exposed C leaf to v. In the
case that CG is a forest, a similar argument to those above shows a way to connect
the forest with phase one edges which have the property that they can be together in
an optimal solution. As before, the problem then reduces to the case of a single tree.
Unlike the previous case, however, the phase one edges need not all be node disjoint,
since even in the case of a single tree, as many as c-(r + b) edges may touch nodes
that are touched by other edges of the augmentation.

Figure 7 shows a complete example of complementary suppression when D is
strictly positive. Since cycles in H are traversable when D is strictly positive, we only
indicate which cells have been suppressed, and can ignore all numerical values.

Labeled augmentation and necessary conditions for protection. Cox in [COX80]
discusses the utility of using simple necessary conditions for protection in heuristic
methods for complementary suppression. In particular, he discusses the necessary
condition that every row or column containing a sensitive cell must contain at least
two suppressed cells. This is the condition that H contains no leaves. A stronger
necessary condition that subsumes this is that H contains no bridges, i.e., that every
edge in H is in a simple cycle (ignoring the directions of the edges). When D is strictly
positive, every cycle in H is traversable, and so the necessary condition is also sufficient.
In the general case this is not true, but the above labeled augmentation methodology



564 DAN GUSFIELD

X X X X

X

D
X X X

X X

X X

FIG 7(a). Example of complementary suppression. D is assumed strictly positive; the cells with x’s are
suppressed.

C 2 3 4 5 6 7 8

3 4 5 6

FIG. 7(b). Graph H derived from D.

C1 C2 Ca C4 B

R. R 2 B
FIG. 7(C). Graph CG derivedfrom H with phase

one and two edges (dashed) added. Edge (C3, B) is
the phase one edge.
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FIG. 7(d). Solution to the labeled augmentation
problem after edge exchange.

X X X

0
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D
0 X X

X X X

X X

0 x x
FIG. 7(e). Table D with complementary suppressions added (shown as circles).
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can still be used to add the fewest number of complementary suppressions to satisfy
the necessary condition that every edge in H be in a simple cycle (ignoring directions).
Hence this stronger necessary condition can be efficiently and optimally imposed, and
therefore may be useful in practice.

Special case: X strictly positive. Above we solved the complementary suppression
problem when D is assumed to be strictly positive. A less restrictive and more useful
assumption is that the original sensitive cells are strictly positive (no zero valued data
is sensitive), but other cells in D may have zero value. We do not know how to solve
this problem efficiently, but under the assumption that the zero valued cells are not
extremely dense, the above methodology may often be used to efficiently produce
optimal solutions, or near optimal solutions. Full details on this problem are contained
in [G1 ].

4. Interval estimation: tightest general upper and lower bounds.
DEFINITION. If cell (i,j) is suppressed in D then the tightest upper bound on its

value is the largest value that x(i, j) can take on in any legal solution of D. Similarly
the tightest lower bound on its value is the smallest value that x(i,j) can take on in a
legal solution of D.

In this section, we first show how to compute each tightest bound with a single
network flow computation. This improves previous methods (cited in the introduction)
which were based on minimum cost network flow or linear programming. Each network
flow computation takes 0(/’/3) time, hence, in an n by n table if O(n2) bounds need
to be computed, the best time guarantee based on this method would be O(nS). We
next show that this time bound can be reduced to O(?14), and that O(n log n) maximum
flow computations suffice to find all the tightest upper bound values in any table. A
biproduct is that in any table (even those with O(n2) missing values), there are never
more than 2n- 1 distinct upper bound values. These results are obtained by reducing
the problem of computing tightest upper bounds to a problem discussed by Schnorr
[SC]. The problem of computing all the lower bounds is more directly seen to take
only O(/4) time.

4.1. Computing a single bound.
DEFINITION. Given the complete table D, construct the graph G(H) from H and

D as follows" replace every edge in H with two edges between the same nodes, with
one edge in each direction; for each edge (i, j) from R to C, set the capacity of (i, j)
to M, a finite number larger than the largest R*(i); for each edge (j, i) from C to R,
set the capacity of (j, i) to D(i, j).

Graph G(H) can be thought of as the augmentation graph [FF] of the flow in
network G given by the original values in D.

DEFINITION. Let FG(i,j) be the value of the maximum flow from node to node
j in G(H). Note that FG(i,j) is not just the flow on the single edge (i, j).

THEOREM 5. If (i*, j*) is a suppressed cell in D, with i* R and j* C, then
FG(j*, i*) is the tightest upper bound on the value of cell (i*, j*) in D, and
max [0, D( i*,j*) FG( i*,j*) + M] is the tightest lower bound on the value ofcell (i*,j*)
in D.

Proof. Let F be the maximum flow from j* to i* in G(H), and recall that F(i,j)
is the flow from node to node j along the single edge (i, j).

We first show that F defines a legal solution x of D where x(i*,j*) has value
FG(j*, i*). Define x(i*,j*)= FG(j*, i*), and for every other suppressed cell (i,j).
(i*,j*), ig, jC, define x(i,j)=D(i,j)+F(i,j)-F(j,i). Since F(j,i)<-D(i,j),
x(i, j) _-> 0. Now consider any node in R other than i*. Then with the above assignment,



566 DAN GUSVIELO

the sum in row is., x(i,j)= ., D(i,j)+ F(i,j)- .,
jX(i) jX(i) jX(i) jX(i)

But the flow into must equal the flow out of i, so

x(i,j)= D(i,j)=R*(i).
jX(i) jX(i)

For i*,

jX(i*)
x(i*,j) FG(j*, i*)+ ., D(i*,j)+

jX i*)--j* jX i*)-j*

F(j, i).

[F(i*,j)- F(j, i*)].

E D(i*,j)=R*(i*).
jaX(i*)

The argument for any column is similar, so x is indeed a legal solution to D.
We now show that there is no legal solution where cell (i,j) has a value larger

than FG(j*, i*). Suppose there is a solution x such that x(i*, j*) > FG(j*, i*). Consider
the differences x(i, j)- D(i, j), for each suppressed cell (i,j) (i*, j*)i R,j C; assign
F’(i,j) to be x(i,j)- D(i,j) when the difference is positive, and F’(j, i) to be [x(i, j)-
D(i,j)[ when the difference is negative; and assign F’(j*, i*) to be D(i*,j*). We first
show that F’ is a flow in G(H) from j* to i*. Clearly, all values in F’ are positive,
and no capacity constraints are exceeded. Now for any i*, R,

E [F’(i,j)-F’(j,i)]= E [x(i,j)-D(i,j)]
jX(i) j_X(i)

E x(i,j)- ., D(i,j)=O,
jX(i) jX(i)

since x and D are both legal solutions, and hence both terms add to R*(i). So F’ is
a flow in G(H). To calculate its value, consider the net flow into i*. That flow value
is

D(i*,j*)+ E [D(i*,j)-x(i*,j)]= R*(i*)- ., x(i*,j)
X(i*)-j* X (i*)-j*

x(i*,j*) > FG(j*, i*).
This contradicts the assumption that F is the maximum flow from j* to i* in G(H).
Hence FG(j*, i*) is the tightest upper bound on the value of cell (i,j).

The formal proof for the lower bound is very similar to that for the upper bound,
and is omitted. The intuition behind the lower bound formula is that the flow from i*
to j* is M plus the largest amount by which D(i*, j*) can be decreased while keeping
the row and column sums correct. So to find the largest possible decrement, subtract
M from FG(i*,j*); then to find the tightest lower bound, subtract the decrement from
the initial value of the cell. The result will be the tightest lower bound, unless the
decrement is so large that the result is negative. A negative result is not meaningful
for our problem, and so in this case the tightest lower bound is zero. [3

4.2. Speeding up the computation of tightest hounds. If each bound is computed
independently as above, and there are O(n2) suppressed cells in an n by n table, the
best implied time bound for finding all the bounds would be O(nS). However, there

E x(i*,j)= FG(j*, i*)+ E D(i*,j)-FG(j*, i*)
jaX(i*) jX(i*)

But jx(i*)-j* [F(i*,j)-F(j, i*)] is the negative of the net flow into i* from all
nodes other than j*, hence it is -(FG(j*, i*)-D(i*,j*)). So
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is a great deal of interdependence between the bounds, and it is not necessary to
compute each one independently. It is possible to exploit this interdependence to
obtain an O(/14) time method to compute all bounds in an n x n table, no matter how
many cells are suppressed. Another reflection of the interdependence of the bounds
is that there can never be more than n + m-1 distinct upper bound values in any
n m table, no matter how many cells are suppressed; similarly there are never more
than n + m distinct lower bound values.

DEFINITION. For two nodes and j in G(H) define (i,j) as the minimum of
the flow values FG(i,j) and FG(j, i).

LEMMA 1. Let (i,j) be a suppressed cell in D. Then in G(H), FG(i,j) > FG(j, i),
where R, and j C.

Proof This is trivially true because there is a direct edge from to j with large
capacity M, hence FG(i,j)>= M, while by Theorem 5, FG(j, i) is the tightest upper
bound on the value of cell (i,j) which is certainly bounded by R*(i)< M. [3

Lemma 1 and Theorem 5 together imply the following.
LEMMA 2. For a suppressed cell (i,j) in D, (i,j), computed on G(H), is the tightest

upper bound o/1 the value of cell i, j).
The computation of tightest bounds involves many network flow computations

on the unchanging graph G(H), where the choice of source and sink varies in each
computation. Hence, we would like an efficient method (significantly faster than
computing each flow separately) to compute FG(i,j) for all pairs (i, j) in X. Such
methods are known for undirected graphs [GH], [G2]; in those methods, all (ke)
flow values can be computed with only k-1 flows in a k node undirected graph. For
directed graphs, no such equivalent method is known. However, if fl(i,j) is defined
to be the minimum of the flow values from to j, and from j to i, then it is known
how to compute the l)(k:) values of fl(i,j) for all pairs of nodes in a directed graph
with k nodes, using at most O(k log k) maximum flows. Further, the total time needed
for all the flows together can be bounded by O(k4) [SC]. We refer the reader to [SC],
but note that these results follow from the structure and interdependence of the beta
values. Graph G(H) has n + m modes if the table is/1 m, hence given Lemma 2, we
have the following.

THEOREM 6. All tightest upper bounds on the values of suppressed cells ca be
computed in O((n/ m)4) time in a/1 n m table, and hence in O(n4) in an/1 /1 table.

To compute the tightest lower bounds in O(/14) time, note first that there can only
be 2/1-1 nonzero lower bounds. This follows from viewing the network flow problem
on G (the problem of finding a single legal solution to D) as a linear programming
problem, and noting tttat for such a linear programming problem, all but 2n 1 variables
are set to zero in any basic feasible solution [MUR]. Such a basic feasible solution
can be constructed from any feasible solution in time O(n4), and hence all but 2n- 1
lower bounds of zero are identified in that time. The lower bounds for the remaining
2/1-1 cell can each be computed independently, in total time O(/14).

In [G1], we present a completely different network flow method for computing
each individual bound. In that method, the graph is changed for each cell, so the
method is not easily combined with Schnorr’s beta method.

The number ofdistinct upper bound values. We have shown that for any suppressed
cell (i, j) the tightest upper bound on the value of cell (i, j) is equal to fl(i,j)=
min [FG(i,j), FG(j, i)] in G(H). It is known [SC] that there can never be more than
k-1 distinct values for fl(i,j) in any directed graph with k nodes. Since G(H) has
/1 + m modes, and the/3 values define the tightest upper bounds in D, there can never

be more than n + m- 1 distinct tightest upper bounds in D. This is easily verified on
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the table where all cells are suppressed, but holds in general. The proof in [SC] is
extracted from the details of the method to compute the betas; for a simpler proof,
see [G1]. In summary, we have the following.

THEOREM 7. In any n m table D, there are at most n + m 1 distinct tightest upper
bounds on the values of the suppressed cells in D.

5. Tightest upper and lower bounds in a totally suppressed table. There are applica-
tions of the estimation problem where all entries in the table are suppressed. Here we
show that trivial methods suffice in this case to compute the tightest upper and lower
bounds on the cell values.

THEOREM 8. In a totally suppressed table the tightest upper bound on the value of
cell i, j) is min R(i), C(j) ].

Before proving Theorem 8, we establish the following lemma.
LEMMA 3. Let R(1),. ., R n and C (1),. ., C m be any nonnegative integers

such that i--1 R(i)= j= C(j). Then there exists a legal solution to the table D where
all cells are suppressed and R(i) is the ith row total and C(j) is the jth column total
in D.

Proof. In the network flow interpretation of table D above, graph H is a complete
bipartite graph, and so in G any s- cut must contain either all edges incident with
s, or all edges incident with t. Hence the minimum cut and maximum flow have value
i=1 R(i), and there is a legal solution to D. [3

Proof of Theorem 8. Clearly min JR(i), C(j)] is an upper bound on the value of
cell (i,j). Assume min [R(i), C(j)]= R(i). To show that the bound can be met we
must exhibit a solution to D in which (i,j) is given value R(i). We simply give cell
(i, j) the value R(i), and give all other cells in row the value 0; we then remove row
from D and set C(j) to C(j)-R(i). The row totals still equal the column totals in

the reduced table, and so by Lemma 3, the reduced table has a solution, and hence
min [R(i), C(j)] is an attainable value for (i,j).

Now we examine the lower bound.
THEOREM 9. In the totally suppressed table the tightest lower bound on the value of

cell i, j) is max [0, R(i) + C(j) T], where T ,i--1 R (i).
Proof. We first show that the above is a lower bound. The cell values in row

must add up to R(i), but without cell (i,j), the total that all other cells in row can
contribute is T-C(j). Hence cell (i,j) must have value at least R(i)+C(j)-T. The
same lower bound is obtained by doing the analysis along column j. To show that this
bound is tight, give cell (i,j) the value max[0, R(i)+ C(j)-T], and assign values to
the other cells in row so that the total assigned in row is exactly R(i) (this is always
possible). After deleting row and reducing each C(k) by the amount assigned to cell
(i, k), the row and column totals are still equal, and so, by Lemma 3, the reduced table
has a solution, and the theorem is proved.

COROLLARY 1. In a totally suppressed table of size n m, let C(k) be the largest
row or column total. Then only cells in column k can have a nonzero lower bound. Further,
cells in column k can have a nonzero lower bound only if C k) > T/2.

Proof max[O,R(i)+C(j)- T]=0 unless R(i)+C(j)> T, which can happen
only if either R(i)> T/2 or C(j)> T/2, in which case C(k)> T/2 also. Now for any
j k, C(j) <- T-C(k), and so g(i)+C(j)- T<-R(i)+[T-C(k)] T=
R i)- C(k) <-- O. So only cells in column k can possibly have a nonzero lower bound.

A symmetric statement holds when the largest row or column sum is a row sum.
Hence we need to compute lower bounds only for the cells in the row or column with
maximum sum; all other cells have lower bounds of zero. Therefore O(max [n, m])
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arithmetic operations and comparisons suffice in this case, although the output is of
size O(nm).

COROLLARY 2. Any n x m totally suppressed table is protected, for n, m > 1.

Proof. Cell (i,j) is protected if min JR(i), C(j)]> max [0, R(i)+ C(j)- T]. We
assumed that every row and column sum was nonzero, so (i, j) is protected if
min JR(i), C(j)] > g(i)+C(j)- T. Assume that g(i)-_< C(j). If R( i) g(i)+C(j)- T
then C(j) T, but when n > 1 this is a contradiction to the assumption that all column
sums are nonzero.

6. Extensions and open questions. As mentioned in the introduction, the Census
Bureau and Adversary problems can also be efficiently solved when there are known
independent upper and lower bounds on the value of each suppressed cell. In that
case, graph H is constructed as before, but for cell (i,j), the (i, j) edge in H is directed
from to j if D(i, j) is at its lower bound, from j to if D(i, j) is at its upper bound,
and undirected otherwise. Cell (i,j) is then protected if and only if edge (i,j) is in a
traversable cycle in H, and the linear time algorithm to find the traversable edges
presentel in this paper works for this case as well.

Several of the ideas in this paper have been extended in nontrivial ways, and
appear in [K], [KG]. In particular, one may ask whether a given linear function of a
set of suppressed cells is invariant over all the legal solutions of D. In this paper we
essentially considered the simplest linear function, that of a single cell value. In [KG]
it is shown that given any linear function of a set of suppressed cells in D, one can
determine in linear time in IXI if that function is an invariant.

We mention a few of the many interesting open questions that remain.
(1) Generalize the approach in this paper to tables of three or more dimensions.

Even the totally suppressed case is open for three dimensions. For example, the
three-dimensional analogues of Theorems 8 and 9 do not even hold (see Fig. 8).

u 1

L0

u5

L1

/, ,u,L /

5 1

/ u,,L / u L
u 5 1
L 1 0

FIG. 8. Three-dimensional table of size 2 x 2 2. The two numbers in each cell below the triangle are
the upper and lower table entries respectively, i.e., cell (1, 1, 1) has entry 1, cell (2, 1, 1) has value 4, cell
(2, 1, 2) has value 1, etc. The numbers in the triangles are the sums of the cells looking downward. The numbers
on the left side are upper and lower sums of the cells looking horizontally along a line, and the numbers on the
bottom are upper and lower sums ofthe cells looking vertically along a line. The minimum ofthe sums constraining
cell (2, 1, 1) is 5, and so the "analogue" of Theorem 8 suggests that in the totally suppressed table with these
sums (2, 1, 1) could have value 5. But this is not possible since then cell (2, 2, 1) would be forced to be zero
and then cell (1, 2, 1) would be forced to be 1, which contradicts the fact that cell (1, 2, 1) is forced to be zero
by the zero in the triangle.
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(2) In this paper a cell was defined to be protected if the tightest upper and lower
bounds differ by at least one. A more useful condition is that they should differ by
some 6 > 1. Can we efficiently (in linear time) determine whether D is protected for
a given 8 > 1 specified ahead of time? What about for 8 given as input? What about
the complementary suppression problem in these cases?

(3) It may be realistic to assume bounds on the sums of a set of cell values, or
correlations between the values of certain cells. How can these be handled in the
protection, suppression, and estimation problems?

(4) Can the general tightest upper bounds be computed faster than O(n4) time?
There is an easy reduction from the maximum flow problem to the problem ofcomputing
a single bound, hence O(n3) seems the best realistic target for the time needed to
compute all the bounds. We conjecture that this bound is attainable.

Acknowledgments. I would like to thank everyone in the Yale theory group and
Dick Karp for listening to parts of this work as it evolved. Special thanks to Gregory
Sullivan for reading early drafts of this paper.
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MINIMUM SPANNING TREES IN k-DIMENSIONAL SPACE*

PRAVIN M. VAIDYA’

Abstract. We study the problem of finding a minimum spanning tree in the complete graph on a set V
of n points in k-dimensional space. The points are the vertices of this graph and the weight of an edge
between two points is the distance between the points under some L,j metric. We give an O(e-kn log n)
algorithm for finding an approximate minimum spanning tree in such a graph; the weight of the approximate
minimum spanning tree is guaranteed to be at most (1 + e) times the weight of a minimum spanning tree.

We also present an algorithm to find a minimum spanning tree in the complete graph on V. Under the
assumption that V consists of n random points, independently and uniformly distributed in the unit k-cube
[0, 1] ’, the expected running time of this minimum spanning tree algorithm is shown to be O(na(cn, n))
where c is a constant dependent on k and a is the inverse Ackermann function.

Key words, minimum spanning trees, approximation algorithms

AMS(MOS) subject classifications. 68Q20, 68Q25, 68U05

1. Introduction. Given an undirected graph with a weight assigned to each edge,
a spanning tree is a connected acyclic subgraph, and a minimum spanning tree (MST)
is a spanning tree whose edges have a minimum total weight among all spanning trees.
The classical algorithms for finding an MST were given by Dijkstra [4], Kruskal [9],
Prim 10], and Sollin ]. It is well known that for a graph on n vertices, an MST may
be found in O(n2) time. For a graph with m edges and n vertices, it was shown by
Yao 15] that an MST may be found in O(m log log n) time. Further results on MST’s
may be found in [6], [8].

We study the problem of finding an MST in the complete graph on a given set V
of n points in k-dimensional space. The points are the vertices of this graph and the
weight of an edge between any two points is the distance between the points under
some distance metric Lq. Each point x is given as a vector (x, x2,’’’, Xk). The Lq,
q- 1, 2,..’, c, distance between any two points x and y is given by (k=
(Note that the L distance is given by maxi Ixi-yil.) We assume that the dimension
k and the distance metric Lq are fixed (so distance is to be always interpeted as Lq
distance).

The problem of finding an MST on a set of points in k-dimensional space differs
from the problem of finding an MST in a general weighted undirected graph in two
respects. First, the input consists only of kn numbers, the edges and the edge weights
being implicitly defined. Second, in many applications of MST on points in space,
like clustering, pattern recognition [5], 17], and other geometric and statistical applica-
tions, a spanning tree whose weight is close to the weight of an MST would serve just
as well. So it is useful and interesting to investigate if the geometric nature of the
problem can be exploited to obtain fast algorithms for finding a spanning tree on
points in space whose weight is minimum or close to minimum.

Shamos and Hoey were the first to utilize the geometric nature of this problem,
and in [12] they give an O(n log n) algorithm for n points in the plane (k 2) with
Euclidian metric. In [16] Yao gives algorithms which construct an MST in time

* Received by the editors August 18, 1986; accepted for publication April 17, 1987. The work of this
author was supported by a fellowship from the Shell Foundation.

" Department ofComputer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
Present address, AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
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O(n2-2-’h+"(log n) 1-2-’+’’) for any fixed k _-_ 3, and distance metrics Lq, q 1, 2, co. In
[7], O(n(log n)k-), 0--<2, algorithms are given for fixed k->2 and L, L distance
metrics. An algorithm for finding a spanning tree, with weight at most (1 + e) times
minimum, for k 3 and L2 distance metric is given in [2] but the .running time is
dependent on the ratio of the maximum to the minimum distance between any two
points. In [14], an O(n(log n)k+ e -k-)) algorithm is given for finding a spanning tree
with weight at most (1 + e) times minimum, for e > 0, and fixed k and fixed metric Lq.

We give two algorithms for fixed dimension k and fixed metric Lq. The first
algorithm, given in 3, runs in O(e-kn log n) time and finds an approximate minimum
spanning tree whose weight is at most (1 + e) times the weight of an MST. The second
algorithm, presented in 4.1, always finds an MST. For n random points, independently
and uniformly distributed in the unit k-cube [0, 1]k, the expected running time of the
second algorithm is shown to be O(no(n, n)), where c is a constant dependent on k
and a is the inverse Ackermann function defined in [13]. As a grows extremely slowly
with n, the expected running time of the second algorithm is almost linear. We note
that the constants in the running times of both the algorithms depend on the dimension
k. The probabilistic analysis of the second algorithm is given in 4.2.

As far as the model of computation is concerned, we assume that all access,
arithmetic and comparison operations require constant time. We also assume that some
form of indirect addressing is available so that the process of distributing n numbers
into rn buckets can be carried out in O(rn + n) time.

Without loss of generality we assumethat all the n points in the given set V are
located in the unit k-cube [0, 1] k. We let d(p, p’) denote the distance between two
points p and p’, and we let WMSV denote the weight (length) ofan MST in the complete
graph on V. A box is defined to be the product Jl x J2 x... x Jk of k intervals, or
alternatively the set of those points x (x, x2,’", Xk) such that xi is in interval Ji,

1, 2,. ., k. A box is cubical if and only if all the k intervals defining it have the
same length, and the size of a cubical box is the length of each of the k intervals
defining it. For a set of points S, we let dmax(S) denote the greatest distance between
two points in S. For sets of points S and S, we let dmin(S, $2) and dmax(S, S:),
respectively, denote the minimum and maximum distance between a point in $I and
a point in S.

2. A brief overview. In the approximate minimum spanning tree algorithm we first
extract a sparse graph G (V, E) from the given set of points V, and then find an
MST in G using a standard procedure [6], [7], [11]. There are O(e-kn) edges in G
and there is a spanning tree in G of weight at most (1 + e) WMSV. We obtain the graph
G as follows. Using a co|lection of grids the region containing the given points is
divided into cubical boxes, each grid partitioning the region into boxes of identical
size. In each box b, we select a representative point from among the points in V that
are located in box b. An edge between the representative in box b and the representative
in box b’ is included in G if and only if b and b’ are of identical dimensions and the
minimum distance between b and b’ is below a certain threshold. In addition to edges
between representatives, G contains an adequate number of short edges (of length <
eWMsT/3n) suitably chosen to ensure that G is connected. Now suppose V is
partitioned into V1 and V2, and (p, P2), P V, P2 V2, is the unique edge in an MST
from V to V2. Then either there are points p V, p V2, such that (p., p&) is in G,
p’l and p are representative points in boxes, and d(p, p)-< (1 + e)d(p, P2), or among
the short edges, in G there is a path from p to P2 of length at most eWMsv/tl2. This
guarantees the existence of a good spanning tree in G.
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The procedure to extract G may be implemented in O(e-kn log n) time, and as
G contains O(e-kn) edges, an MST in G may be found in O(e-kn log n) time using
a standard procedure [6], [8], 11], 15]. So the overall running time of the approximate
minimum spanning tree algorithm is O(e-kn log n).

In the exact minimum spanning tree algorithm we first extract a graph G’= V, E’)
from the given set of points V such that G’ always contains a spanning tree of weight
WMST- The graph G’ is sparse with high probability, and can be extracted in O(IE’I)
time. We then try to sort the edges in G’ by weight, in O(IE’I) (linear) time, by running
a fixed number of passes of radix (bucket) sort 11], with radix 2 r2n 1. If this approach
fails to sort the edges in G’, we sort them in O(IE’lloglE’l) time using a standard
algorithm [11]. Once a sorted list of edges in G’ is available, utilizing Kruskal’s
algorithm an MST in G’ may be obtained in O(na(IE’l, n)) time where a is the inverse
Ackermann function defined in [13]. Suppose the given set V consists of n random
points, independently and uniformly distributed in the unit k-cube [0, 1] k. Then the
probability that G’ has more than cn edges, where c is a constant dependent on the
dimension k, is o(1/n2). Also, the probability that a fixed number of passes of radix
sort, with radix 2 rlg2n], fail to sort the edges is o(1/n2). Then it follows that the
expected running time of the minimum spanning tree algorithm is O(na(cn, n)).

G’ is obtained in a manner similar to G above. Using a collection of grids the
unit k-cube [0, 1]k is divided into cubical boxes, each grid partitioning the unit k-cube
into boxes of identical size. Let b, b2, be boxes of identical dimensions such that the
minimum distance between b and b2 is above a certain threshold and below another
threshold. We test an easy to compute condition such that (i) if the condition is false,
then none of the. edges between a point in b f3 V and a point in b CI V can be included
in an MST in the complete graph on V, whereas (ii) if the condition is true, then there
is an empty region which does not contain a point in V and whose volume is greater
than or equal to the volume of bt or b2. We include every edge between a point in
b f3 V and a point in ba CI V in G’ if and only if this condition holds. In addition, we
also include most of the short edges (length < c’n -/k, c’ a constant) in G’. We thereby
ensure that G’ always contains an MST in the complete graph on V. If the number of
edges in G’ exceeds cn, then either there is a large region in the unit k-cube which
does not contain a point in V or there is some region in the unit k-cube that contains
a concentration of points in V, and under the assumption that the points in V are
independently and uniformly distributed in the unit k-cube both these events occur
with very low probability.

3. Approximate minimum spanning tree algorithm. The algorithm to find an
approximate MST in the complete graph on the given set V of n points consists of
two stages: in the first stage we extract a sparse graph G (V, E) from the given set
V of points, and in the second stage we use a standard procedure [6], [7], 11] to find
a minimum spanning tree in the graph G. The graph G (V, E) has the following
properties.

(1) G contains a spanning tree whose weight (length) is at most (l+e+l/n)
times WMs-r.

(2) IEI O(e-n).
We shall require a few definitions before we can describe the algorithm to extract

G. Let go be a smallest cube enclosing all the n points in V, and let Lo be the length
of a side of go. Let g be a grid that partitions go into 2k identical cubical boxes, and
let t= [(log2 (24([e-])2k2n2))]. Let Bi denote the set of those boxes (cubes) in gi

which contain a point in V, and let B (.J 6k/q=o B. Let Li c, [e-] -2 Lo, where c,
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for Lq metric, q 1, 2, 3,- ., . We let r(b) denote the representative point in box b.
We now give an algorithm to extract the graph G (V, E) from the set of points V.

ALGORITHM SPARSE-GRAPH.
1. For each box b B, pick a representative point r(b) from among the points

in b f’l V, and let R (r(b)" b B}, for 1,. , 5. We pick representatives
so that R

_
R2 c: R

_ .._ R.
2. Let X =LI a,___ Xi where

X=((r(b), r(b2))" be B,, b2 B,, dm(b, b2)--< L,}.
3. Let Y=((p, r(b))" p b, b B.
4. Let E=XUY.
end Sparse-Graph

The edges in X connect representatives in boxes b, bE, in B such that dm(b, bE)
lies between two thresholds L and L/3. The edges in Y are small in length compared
to WMs-r and they ensure that G (V, E) is connected.

We need some additional definitions before we can show that G has the desired
properties. Let Z denote the set of all the edges in the complete graph on V, and let

Z {(p, P2)" P e bl, p2 e bE, b e B,, b2 B,, dmin(bl, bE) L,/3}.
The following two lemmas follow directly from the definitions.

LEMMA 1. For 1_-< i_-<tS, ifbeB, bEB, and dmi(b, bE)>-L/3 then dm(b)
dma(b2)<-(e/E)dmin(b, b2) and dmax(b, b2)--< (1 +e)dmn(b, b2).

LEMMA 2. Zo G Z g’

_
Zi -" G Z8

_
Z.

LEMMA 3. For 1 <-i 8, if (p, P2)e (Zi-Zi-) then p, P2, are located in boxes
b, b2, which satisfy b Bi, b2 B, and L/3 -< dmi,(b, b2) <- L.

Proof. Suppose p, P2 are located in boxes b, b2, in B, respectively. Since
(p,p2)Zl, dmi.(b, b2)>- Li/3. Let b e B_I, be B_, and let bl

_
b, b2_ b. Since

(Pt, p2)e (Zi-Z_), we have dm,(b, b)<= L,_/3. Then

dm,(b, b)<-__dm,(b, b)+ dmax(b;)/2+ dmax(b)/2
L_,/3 + k/q2-(i-)Lo
Li.

[’]

We now show that G (V, E) contains a spanning tree whose weight is at most
(1 + e + l/n)WST. Let T be an MST in the complete graph on V. We shall give a
function f: T--> 2 such that the graph (V, [.Jrf(e)) is connected and the sum of the
weights of the edges in U ee’rf(e) is at most (1 + e + 1/n)WMS-r. The function f(e) is
defined as follows.

(1) If ee T and eE, then we letf(e)={e}.
(2) Suppose e((T-E)f’)(Z-Z)). Let e=(p,p2), and let b, b2 be the boxes

in B which contain p, P2, respectively. Then f(e)={(p,r(b)), r(b ), r( b) ),
(r(b:),p2)} and f(e) (YU X). The length of an edge in Y is at most eWMsr/3n
and d(r(b), r(b2)) <= eWus/3n2, so the sum of the lengths of the edges in f(e) is at
most eWs/n2.

(3) Let e e ((T-E)f’l (Z-Z_)), <- 8, and let b, b2 be the boxes in B which
contain the endpoints p, P2, of e. Then by Lemma 3, (r(b), r(b)) X, and hence
(r(b),r(b2))E, We let f(e)={(r(b),r(b2))}. By Lemma 1, d r(b ), r( b:) <-_

(l+e) d(p,,p2).
It remains to be shown that the graph (V, U:rf(e)) is connected. Consider a

partition of V into V and V2. Let e (p, P2), where p V and P2 V2, be the unique
edge in T from V to V2.
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(1) Suppose e (Z-Z). Then f(e) defines a path from Pl to p2.

(2) Suppose e (Zi Zi_), 6, and boxes bl, b2 in Bi contain p, P2, respectively.
Then we must have that (b ( V)

_
V1 and (b2 V)

_
V2. This is seen as follows. Assume

that there is a point p’ in bl V2. As dmin(b,b2)>dma(bl), replacing (p,p2) by
(p, p’) in T gives a spanning tree on V of smaller length which cannot happen. So
(bl V)_ V. It follows similarly that (b2CI V)_ V2. Then the edge (r(b),r(b2))
connects V and V2.

We now show that E contains a linear number of edges. We note that R
_
R2_... _ Ri _..._ R. If there is an edge in Xi between two points in R_I then the

same edge is also present in Xi_, and hence every edge in X-X_ is incident on a
representative point in the set of representatives R-Ri_. There are at most
O((2Cae-) k) edges in X incident on any point in V, and so we get

6 i-1 6

IxI--2 [xi- [’-J xl+lXol--o((2co-’)" Y (IRiI-IR,-,I))
i=1 j=O i=1

O((2ce-’)lRl)= O((2coe-’)kn).
Then since ]Y[<=n, and E=XU Y we get that IE] O((2coe-t)kn) O(e-kn) for
fixed k.

To obtain a fast implementation of Algorithm Sparse-Graph we construct a data
structure which is best described as a tree-of-boxes.

(1) The root of the tree is the box go, and the children of each box b in B are
those boxes in Bi+ which are sub-boxes of b.

(2) The leaf boxes are the boxes in B, and each leaf box contains a list of points
in V that are in the box.

(3) The boxes at each level i, i.e., the boxes in B are linked together in a doubly
linked list.

(4) From each box b in B there are pointers to (i) its father in Bi_, (ii) its sons
in Bi+, (iii) each box b’ in B satisfying dmin(b b’)<-Li, and (iv) the leflmost leaf box
in the subtree rooted at box b.

The tree-of-boxes has O(log n) levels and at most n boxes per level. For each box
b Bi, there are at most O((2cae-) k) boxes b’ in Bi such that drain(b, b’) Li. So the
tree-of-boxes requires O((2cae-)kn log n) storage, and can be constructed in
O((2coe-)kn log n) time by starting from the root and proceeding towards the leaves
level by level.

Once the tree-of-boxes is available, the representatives in boxes may be chosen in
time proportional to IBI- O(n log n). For boxes b and bz, we can find points p b,
pz b2, such that d(p, P2) dmn(b, b) in O(k) time. Utilizing the tree-of-boxes, each
of the edge sets X can be extracted in O(k(2cae-)kn) time, ar.d so G may be extracted
in O(k(2ce-)kn log n) time.

Once we have the sparse graph G (V, E) one of the standard algorithms in [6],
[8], 11 ], 15] may be used to find an MST in G. We thus have an algorithm for finding
an approximate minimum spanning tree on a set V of n points in k-dimensional space.
The running time is O(e-kn log n) for fixed k, and the weight of the approximate
minimum spanning tree obtained is at most (1 + e) times the weight of a minimum
spanning tree.

4. MST algorithm with almost linear expected running time.
4.1. Description. Like the approximate minimum spanning tree algorithm in the

previous section, the algorithm to find a minimum spanning tree in the complete graph
on V also consists of two stages. In the first stage we extract a graph G’= (V, E’)
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which is guaranteed to contain a spanning tree of weight WMSV, and in the second
stage we find a minimum spanning tree in G’. Unlike the graph G in the previous
section, G’ is not necessarily sparse; however, G’ is sparse with high probability under
the assumption that the given points are uniformly and independently distributed in
[0, ].

Let go be the unit k-cube [0, 1 ]k and let gi be a grid that divides go into 2ki identical
cubical boxes. Let B be the set of all the boxes in g (rather than just the set of
occupied boxes) and let B B Define 6 to be [log2n/k] Let L Ce2-i where=0

Ce 12.1k/q for tq metric, q 1, 2, 3,. ., c. Let Z be the set of all the edges in the
complete graph on V and let the edge sets Zi be defined as in 3. We note that Lemma
2 and Lemma 3 in 3 are still valid under these definitions.

For a box b, let/x (b) denote the singleton set containing the center of box b. For
a pair of boxes bl, b2, we define 7r(b, b, i) to be the union of those boxes b which
are such that

(i) bj
(ii) dmax(b./,/x(b)) < dmi,,(b, b2)- dma,,(b, i(b)), and
(iii) dm(b.i,/x(b2)) < dmi,(b, b2)- dm(b2,/x(b)).
We now give an algorithm to extract G’.

ALGORITHM PROBABLY-SPARSE-GRAPH.
C where1. Let C=t.Ji=

C, {(p, p:)" p b, p:z b:, b B, b. Bi, L,/3

<-- drnin(b,, b) =< L,, 7r(b,, b2, i) f/V= }.
2. Let D= {(p,, P:z)" P b,, p2 b2, b, B, b. B, dmi,(b,, b.) <- L}.
3. Let E’=CI,.JD.
end Probably-Sparse-Graph

We have to show that G’= (V, E’) contains a spanning tree which is an MST in
the complete graph on V. Let T be an MST in the complete graph on V and let
e (p, p) be an edge in T.

(1) Suppose e(Z-Z). We have that (Z-Z) D and so eD.
(2) Suppose e (Zi- Zi_), -< 6, and p, p are located in boxes b, b in B. We

shall show that 7r(b, b2, i) is nonempty, so the condition 7r(b, b2, i)("l V-- is not
vacuously true. By Lemma 3 in 3, L/3 -< dmin(b, b2) Li. Let/3 be the center of the
line segment joi.ning the centers of boxes b and b2. It is easily shown that there is a
cubical box b of size 2--) centered at /3, such that dmax(/,/.c(b))<
dm,(b,, b)- dm(b,, ix(b,)), and dma(/, z(b)) < dmn(b,, b)- dmx(b,/z(b2)). As /
must contain a box in Bi we conclude that 7r(b, b, i) is nonempty. Since (p, p) T,
for each point p in V either d (p, p) >_- d (p, P2) or d (p, p2) >_- d (p, p2), and it then
follows that 7r(b, b, i) V must be empty. So e C.
Hence T C(.JD E’.

Algorithm Probably-Sparse-Graph can be implemented in O(]E’]+ k(2ce)n) time
by using a tree-of-boxes, similar to the one in 3 for the boxes in B. We first build a
skeleton for the tree-of-boxes. The skeleton differs from the tree-of-boxes described in
3 in that there are no points in V stored at any of the leaf boxes. The skeleton has

O(n) boxes and can be constructed in O((2Ce)n) time. Once the skeleton is available,
we utilize a radix (bucket) sort 11 ], with radix 2 (= O(n)), to distribute the n points
into the 2 leaf boxes in O(n) time. We note that at this stage the tree-of-boxes contains
all the boxes in B irrespective of whether they do or do not contain a point in V. Then
in O(n) time we delete from the tree-of-boxes all those boxes which do not contain a
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point in V, and add to each occupied box b a pointer to the leftmost leafbox in the
subtree rooted at box b.

Utilizing the tree-of-boxes, we can check whether zr(bl, b2, i) V is empty in
O(k(2Ce)k) time if bl Bi, b2 Bi, and dmin(bi, b2) Li. The edge set C may be extracted
in O([CI + k(2ce)kn) time, for 1," ", 3, and D may be obtained in O([D[ + k(2ce)kn)
time. So Algorithm Probably-Sparse-Graph may be implemented in O([E’[+ k(2ce)kn)
time.

We shall now describe a procedure for finding an MST in the graph G’= (V, E’).
We first try to sort the edges in G’ by employing a fixed number of passes of radix
(bucket). sort [11], with radix (base) 2 [lg2n]o If this approach fails to sort the edges in
G’ we sort them in O(IE’[log IE’[) time using a standard algorithm [11]. After sorting
the edges, we utilize Kruskal’s algorithm [9], [11] to find an MST in G’. The edges
are examined in increasing order of weight and an edge is chosen if and only if it does
not form a cycle with the previously chosen edges. The chosen edges form an MST in
G’. Once a sorted list of edges is available, Kruskal’s algorithm may be implemented
in O([E’[a([E’[, n)) time, where a is the inverse Ackermann function defined in [13].

The algorithm to find an MST in the complete graph on V consists of first extracting
G’ using Algorithm Probably-Sparse-Graph, and then finding an MST in G’ using the
above described procedure. Let us assume that V consists of n random points,
independently and uniformly distributed in the unit k-cube [0, 1] k. Let PL be the
probability that for some i, 0 <-i <= kn7-1, the lengths of at least two edges lie in the
interval [in -7, (i+ 1)n-7]. In 4.2 we show that PL is 0(1/n). So the probability that
eight passes of radix sort, with radix 2 [lgEn], fail to sort the edges in G’ is o(1/n2)
thus the probability that the edges in G’ cannot be sorted in O([E’[) time, using a fixed
number of passes of radix sort, is o(1/n). Let Pc, be the probability that G’ contains
more than cn edges, where c is a constant dependent on the dimension k. In 4.2 we
also show that Pc, is o(1/n). So with probability 1- o(1/n2), the running time of the
algorithm to find an MST in the complete graph on V is O(cna(cn, n)+k(2ce)kn).
The worst case running time of the same algorithm is O(n2 log n). Therefore, when k
is fixed, the expected running time of the algorithm for finding an MST in the complete
graph on V is O(na (cn, n)).

4.2. Probabilistic analysis. We assume that the set V consists of n random points
which are independently and uniformly distributed in the unit k-cube [0, 1] k. Let P/
be the probability that for some i, 0 <- <-_ kn7-1, the lengths of at least two edges lie
in the interval it/-7, (i d- 1)/1-7]. Let Pc, be the probability that G’ contains more than
cn edges, where c is a constant dependent on the dimension k. We have to show that
both Pc’ and P/ are o(1/n:).

We shall first bound P. Fix an ordering on the points in the unit k-cube. Assume
that there are at least two edges el and e whose lengths lie in the interval [in -7, (i +
1)n-7], for some i. Suppose el, e: have an endpoint in common and el =(x,y),
e (y, z). Then the points x and z are restricted to lie in a shell, of thickness n -7 and
radius at most k, around point y, and there are at most n possibilities for triples
(x, y, z), Suppose el, e2 do not have an endpoint in common and e (x, y), e: (z, w).
Without loss of generality let x_-< y and z-< w. Then x is restricted to lie in a shell, of
thickness /1-7 and radius at most k, around y; z must lie in a similar shell around w;
and there are at most n4 choices for tuples (x, y, z, w). We thus have

eL<krt7((c-) FI -- (c-) 4
0

where c and c are constants dependent on dimension k.
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We shall now estimate Pc’. Let us assume that n is a power of 2k. Let mi 2ki,

fli {b: b Bi, (Pl, P2) Ci, either pl b or p2 b},

and

H, {Tr(b, b2, i): b, B,, b2 B,,pl b,p2 b2, (p,p)

We note that the volume of each region in IIi is at least m71. There exists a constant

c5-> 1, dependent on k, such that for each i, i= 1,. ., 6, each region in IIi intersects
at most c5 other regions in Hi. Let c3 (36k + 3) k. There are at most c3mi possibilities
for regions in Hi. We let c6 be the smallest positive integer greater than 16 such that
2c6/C > 2 + 1Oge (C3C5) -I" 6C6 and (76 + 2c6 loge (1 + 2-"6).

We define Pi as follows.
(1) For n! mi > 6c3 logz n, let Pi be the probability that Ci is not empty.
(2) For 2e6 < n/m <- 6c log2 n, let Pi be the probability that Ci contains more than

c3m edges.
(3) For 1-< n/mi <= 2e6, let Pi be the probability that the number of edges in Ci

exceeds c3c7m where c7 2e422%.
Let PD be the probability that the number of edges in D exceeds c3c7rl.

Let the constant c in the definition of Pc, be 4C3C7. If the number of edges in G’
exceeds 4c3c7n then either D contains more than c3c7n edges, or for some i, 1 -< <- 6,
Ci contains more than c3c7m edges. Hence,

i=1

We shall show that each of Pi and Po is o(1/n4) and it then follows that Pc, o(1/n)
as 6 -<_ log n. In order to bound P we consider three cases depending on the value of
r//mi.

Case 1. n/mi > 6e3 log2 n. In this case we show that there is a large empty region
in the unit k-cube [0, 1]k. If C is nonempty there is at least one region in H and this
region does not contain a point in E There are at most c3m possibilities for regions
in H and each of these regions has volume at least (m)-. Hence,

Pi c3m 1- =o

We shall now give a lemma that will be useful for Case 2 and Case 3. Let Po be
the probability that the number of boxes in Bi, which contain at least e22 and at most
e22j+t points in V, exceeds rni/23j.

LEMMA 4. Let U> (n/rn) 1, and (n/rni)<-6c31og n. Then l.ogz,j=jo P0 (1/n4)
Proof Suppose 2 _-> 6c3 log2 n, and 2 => (n/mi). As Po is bounded by the probabil-

ity that there is at least one box in Bi with at least e22 points, we have

Po <- mi e22J (mi)-e22’

e22
FI _e22

<----mi( (mi)

mi e-e22i0 (using Stirling’s approx.)
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Suppose -(n/mi)-<=2 < 6c3 log2 n. We can get a bound on Pii by first choosing mi/23j
boxes in Bi, then choosing eZmi/22i points to be located in the chosen boxes and
letting the remaining points lie anywhere in the unit k-cube. So

mi/23J e2m./2z.i
2

<
(mi) mi2-3i eZm2-2i

2_3jemi2-2
(m;2-3J) (e2m2-2.;)

k] (Stirling’s approx.)

O

The proof of the lemma then follows.
Case 2. 2; < n/m N 6c log n. This case is broken down into two subcases depend-

ing on the number of boxes in . We have

e(l,l> 8mn-) + Pr(lSmn and levi> c3m)
o(1/n4)+ o(1/n)=

If I,t> amen- then there is a large empty region, whereas if Imn- and
C> cm then there is a concentration of points in some region.

7Case 2.1. Suppose t> 8mn There are at least 1/2 regions in H and as a
region in H intersects at most c5 other regions in
disjoint regions in H each of which does not contain any point in M As there are at
most c3mi choices for regions in g, and each region in
we have

( c3mi )e([,! > 8m -6) c mn-6)7,--6tn cmin

<
(cm),’.-
(c;mn_6) (1 c; 6 --6)n.

Using Stirling’s approximation for factorials, taking logarithms and noting that IOge (1
X) --X, for 0 x < 1, we get

1Oge ((1#,1 > 8m, -1 + 1 +log (c3c5) + 61Oge

Thus

C52c6(6C3 log2 n)6"

--6 4).Pr([flit?> 8min )=o(1/n

Case 2.2 Suppose It,l < 8m7 -6
in andlCil>c3mi. Letjo=210g2(n/mi)-l. Apoint

in any box b in Bi is joined to points in at most c3 other boxes in Bi by edges in Ci,
and so we have that

c3 (lb Cl V[) >= [C,I > c3m,
b
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and hence

(lb fq V[)2> (1 --2-c6+l)mi.
bi [hA V[2io

Then for some Lj =Jo( 2 logz (n/rn)- 1),. ., log2 n, the number of boxes in/3i (and
hence Bi), which contain at least e22 and at most e2-i+ points in V, exceeds rail23i.
Then from Lemma 4,

Pr(l,lN8m,n and[Ci[>c3mi)N 2 Po =
=Jo

Case 3. 1 nm U6. Suppose [CI > C3cTmi. A point in box b in B is joined to
points in at most c3 other boxes in B by edges in C, and so we get

c E (Ib Wl)= 1C, > ccm, 2e422%c3m,
bG B

hence,

E (Ib f"l V[)2 > (2e4-1)22C6m,.
be Bi, ]bf’) VI2c6

Then for some j, j c6," , log2 n, the number of boxes in Bi, which contain at least
eZU points and at most e22i+ points in V exceeds mi/23j. Then from Lemma 4 we
can conclude that

Pi--- 2 Pij
j=c

By reasoning in the same manner as in Case 3 above we can show that Pc, o(1/ n4).

5. Conclusions. We have given an O(e-kn log n) algorithm for finding an approxi-
mate minimum spanning tree .on a set V of n points in k-dimensional space, the weight
of the approximate minimum spanning tree is guaranteed to be at most (1 + e) times
the weight of a minimum spanning tree. We have also presented an algorithm for
finding a minimum spanning tree on a set V of n points in k-dimensional space. Under
the assumption that the set V consists of n random points, independently and uniformly
distributed in the unit k-cube [0, 1] k, the expected running time of this minimum
spanning tree algorithm is shown to be O(n(cn, n)) where c is a constant dependent
on k and is the inverse Ackermann function.
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SOME GEOMETRY FOR GENERAL RIVER ROUTING*

ALAN SIEGEL’ AND DANNY DOLEV

Abstract. Efficient solutions are given to compute the optimal placement for a pair of VLSI modules
interconnected by river routing. Specifically, let the (perpendicular) distance between the two modules be
the separation, and call the (transverse) displacement the offset. This paper principally considers the separation
problem: Given an offset and a wiring rule, find the minimum separation permitting a legal wiring. The
design rules might use wires which are exclusively rectilinear, polygonal with a finite number of slopes, or
possibly restricted to some other class of shapes such as circular arcs plus linear pieces.

Techniques are developed which unify a variety of different placement problems, and give efficient
solutions under extremely general conditions. The advantage of these generalizations is not only their
theoretical framework; the results extend naturally to more precise models of real river routing, and the
theory is applicable to placement problems for collections of modules.

Key words. VLSI, river routing, placement

AMS(MOS) subject classifications. F.2.2, B.7.2

1. Introduction. VLSI circuits are often designed in pieces analogous to macros
or subroutines of computer programs. Each piece, called a module, has terminals, which
are connection points for wires distributing signals and power among the modules.
River routing is wiring that has no crossovers; it can essentially be implemented on a
single layer. Although such a routing cannot be used to make arbitrary connections,
it is commonly used wherever practical, since designs with higher percentages of river
routing are often easier to lay out, more compact, and faster than circuits with more
complex interconnections. Two rows of terminals, for example, may be connected by
river routing when the corresponding terminals for each row are in the same order
(but are not necessarily in perfect alignment). Input pads, arrays of identical cells,
PLAs, and bristle block constructions (as defined in [J]) are likely to have interconnec-
tions free from crossovers.

We analyze the problem of efficiently computing optimal placements for a pair
of interconnected modules. The specific definitions of optimality will be given in the
next section. The requirement of efficiency precludes taking the quadratic time necessary
to determine all possible O(n:) coordinates of the interconnection wires; the goal is
to have fast primitives to compute the space required for the wiring.

These utilities would be useful in automated hierarchical design systems. They
can also be used to find optimal solutions to more complicated problems such as
placement for two rows of modules interconnected by river routing [Sil ]. Furthermore,
the iteration of fast primitives, such as the ones presented here, ought to provide
satisfactory solutions to more general placement problems, which are computationally
too complex to solve optimally. Finally, the algorithms and VLSI properties developed
in this paper have application to other problems of placement and routing as well as
to the theory of computational geometry.
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2. The wiring problem. The wiring problem is illustrated in Fig. 2.1. Two rows of
n corresponding terminals, {Pi} and {Qi}, are to be interconnected by wires. The rows
are parallel, and each row represents a rigid module; the inter-terminal spacings between
the Pi are fixed, as are the Q. spacings. A relative placement of the terminals is thus
completely determined by two values: the vertical distance between the rows, which
is the separation, and the horizontal distance between the first pair of terminals Pt and
Q1, which is the offset. The connecting wires will be subject to various constraints
(design rules) described later. These constraints determine the permissible shapes for
wires and the spacing between adjacent wires. Consequently they determine which
offsets and separations are permissible for the modules. As shown, the rows are taken
to be horizontal, with the {Q} above the {P}.

We examine the following.
(1) The Separation Problem. Given an offset and a wiring rule, find the minimum

separation permitting a legal wiring.
The principal conclusion is:

For general curvilinear wiring rules, the separation can be found in O(n log n) time.
Related problems include:

(2) The Optimal Offset Problem. Given a wiring rule, find an offset minimizing
the separation.

(3) The Offset Range Problem. Given a wiring rule and a separation, find all offsets
permitting a legal wiring.

In [Si2], the separation problem is solved in O(n) time for polygonal wiring. In
[Si3], the optimal offset problem is solved in time O(xlr( n) log n) where (n) is the
time to find the separation. The results in this paper, therefore, are directly applicable
to the optimal offset problem. In [Sill, the offset range problem is solved in O(n log n)
time for general curvilinear wiring rules, and in time O(n) for polygonal wiring; the
results are then extended to solve placement problems for ensembles of modules
interconnected by river routing channels.

Tompa examined river routing for two parallel rows of terminals in IT1]. His

work gives a quadratic solution for locating (if possible) the interconnection wires
when the terminals are given fixed positions. This solution is optimal since the wiring
description may have O(n2) coordinates. Although the solution is optimal, it does not

give efficient methods to answer the important questions of finding good module
placements solving the separation or optimal offset problems. Tompa IT2] reports the

separation

offset--- P

FIG. 2.1

Recently, a very elegant O(n) time solution was discovered for the optimal offset problem with
rectilinear wiring, [M].
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existence of an O(n log n) algorithm by Kirkpatrick and Seidel to solve the separation
problem for linear plus circular wiring and states the optimal offset problem as an
open question. The offset range problem is related to the work by Leiserson and Pinter
[LP] which gives an O(n) time solution for rectilinear wiring on an integer grid, and
solves placement problems for two rows of interconnected modules. [Sill includes
generalizations and refinements of results originating in [LP].

In this paper, we develop some of the techniques which unify these problems and
provide efficient solutions under extremely general conditions. The advantage of these
generalizations is not only their theoretical framework; the results extend naturally to
more precise models of real river routing, and the techniques are applicable to other
types of wiring problems and to problems in computational geometry as well. See
[Sill, [Si2], and [Si3] for more of the routing theory.

3. The models. In VLSI design, wires on a given layer satisfy specific constraints.
Wires are frequently required to be composed exclusively of rectilinear segments;
sometimes 45-degree pieces are also permitted. Other fabrication processes allow a
variety of segment slopes. These polygonal wiring rules and, for theoretical interest,
more general wiring shapes will be included in our methods. The minimum distance
between wires is set to 1, and the wire width is taken as 0 for mathematical convenience.

The limitations in the resolution of a fabrication process also affect wire shape.
A circular figure, for example, can be approximated arbitrarily well by sufficiently
small rectilinear segments, but a VLSI wire must be composed of pieces with a fixed
minimum size. Our model can include this restriction by requiring all wire segments
to have endpoints lying on a lattice (which is hereafter called a grid). We examine
integer grids, which are lattices with unit spacing, and fractional grids, which have
fractional spacing. Continuous grids will also be considered.

Given n pairs of terminals, (P, Q),..., (Pn, Qn), define Pi to be both the name
of a terminal on the bottom row and the horizontal position of the terminal, and take
Q to be a similar terminal on the upper row.

Since wires must be separated by unit distance, every routing problem has forbid-
den regions restricting the wiring flow. Specifically, for every terminal P and index s,
there is an sth region (specified later) around P, which cannot be entered by a wire
connecting P+, with Q.+, for Itl >= s. See Fig. 3.1.

With a scheme permitting unrestricted wire shapes, these regions will be concentric
disks centered at the terminals IT1 ]. We require the boundaries to conform to the shapes

{21 02 Q3 Q4

PI P2 P3 P4

FIG. 3.1. Wires restricted by rectangular barriers around P.

More precisely, our models include a variety of wiring schemes defined on lattices. The specific models
are in fact gridless.
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(a) Unrestricted (circular) (b) Rectilinear integer grid

[_[_J

(c) rectilinear quarter-integer grid

FIG. 3.2. Separation barriers.

permitted by the wiring scheme and grid restrictions) In the rectilinear case with an
integer grid they are concentric rectangles. On a quarter-integer grid the separation
barriers are no longer rectangular. See Fig. 3.2. We remark that the boundaries of the
barriers in Fig. 3.2(a), for example, are concave, that is, the curves have a negative
second derivative. The region lying below such a boundary, however, is geometrically
convex, that is, any pair of points lying inside the region defines a line segment which
is contained within the region. To avoid confusion, we shall always refer to this latter
property as geometrical convexity.

In 5 and 6, the separation problem is analyzed principally for families of similar
concave barriers. In 7, the requirements of concavity and similarity will be relaxed
somewhat and the wiring models extended to include virtually all known wiring
schemes. Sections 8 and 9 apply the results to more realistic wiring models.

4. The separation function. It has already been observed that the separation must
be sufficient to allow each terminal Qj to lie outside the [j-i[th barrier emanating
from Pi for all i. The separation, of course must also be at least as high as the highest
point on any wire. These two facts may be used to modify the separation barriers.
Define the jth right separation barrier to be the curve obtained by extending the jth
barrier to the left of its origin continuously as a horizontal line with height (which in
most cases equals) j. Left separation barriers are defined analogously. These new barriers
are monotone, and if the original regions are geometrically convex and similar, then

It is not difficult to show that the boundaries do conform to the wiring shapes for, say, unrestricted
curvilinear, integer-grid-rectilinear, quarter-integer-grid.rectilinear, and half-integer-grid-rectilinear-plus,45-
degree wiring schemes. However, this criterion is not satisfied by design rules having an arbitrary collection
of permissible wire slopes and requiring segments to have endpoints on a given grid. Furthermore, the
solution to the separation problem for these arbitrary wiring rules may require wires which are not even
monotone in x. These and related difficulties are eliminated in 4 by defining wiring rules in terms of
separation barriers. Another advantage of this barrier formulation is that quarter-integer rectilinear wiring,
for example, can be defined for problems where the terminals are not located on a quarter-integer grid.
Moreover, rectilinear-plus-45-degree wiring can be defined not only as in the half-integer-grid scheme, but
also with barriers packed, say, more densely than any model having rational coordinates.
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the new ones are also. Figure 4.1 shows a family of modified right separation barriers.
All barriers are now assumed to be so modified. Now the separation function W(i,j)
can be defined as the height at Qj, for j > {j < i}, of the IJ- ilth right {left} barrier
emanating from Pi. See Fig. 4.2.

Let the family of right barrier curves emanating from the origin be represented
by the functions Hp(x), where p is the index. (Hp is taken to be lower semicontinuous,
that is, Ho(x)= min {y (x, y) is on the curve}.) Note that the convex separation regions
as shown in Fig. 4.2 have concave functions defining their boundaries. The family of
right barriers emanating from Pi are defined by H,(x- P), and the separation function
(for both left and right barriers) is:

/-/_,(Qj-P) ifj> i,
(4.1) W(i,j) 0 ifj= i,

H_(Pi- Q)ifj < i.

It follows that the separation is not less than max. W(i,j). We now show the
following lemma.

LEMMA 1. The solution to the separation problem is max. W(i,j).
Proof. It remains to prove that P and Q can be legally connected with separation

width max.j W(i,j). Suppose Q-< P and Q_I<= P_l. Connect P with Q by running
wire j along the bounding envelope formed from the (j-i)th right barrier emanating
from Pi, i= 1,2,...,j-1. An envelope is illustrated in Fig. 4.3(a). The spacing
requirement between wires is satisfied because any point on wire j-1 (with the
exception of those on the vertical segment ending at Q_ or the horizontal segment
starting at P./_) is by definition on the (j- i- 1)th barrier emanating from P for some
<j while wire j is beyond the (j i)th barrier. It is easy to see that the vertical segment

terminating at Qj_ and the horizontal segment terminating at P_ are at least unit

FIG. 4.1. Similar concave barriers.

Q’i

i+3

W(i,i+3)

FIG. 4.2. A separation from circular barriers.
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06

P6
(a) Interacting barriers

(b) Nonmonotonic separation

FIG. 4.3. The complications of wiring.

distance from wire j. The argument is the same if both inequalities are reversed. The
two remaining possibilities cause wires j and j-1 to run in opposite directions; the
wires are then closest at Q/-1 and Qj or P_l and P.

Note that a barrier envelope may have barrier pieces with endpoints which are
not on a discrete grid for, say, curvilinear barriers. The use of such an envelope as a
wire path, however, is reasonable when positive wire thicknesses are included in the
model, or when practical wiring shapes are considered. Consequently we shall assume
that a wire can indeed follow the boundary of intersecting barriers and rise vertically
when necessary to connect to a terminal Q.. Thus a wiring scheme is determined by
its separation barriers. An alternative assumption is that the wiring scheme permits
legal connections when the placement satisfies the separation constraints. Tompa, for
example, shows how to compute interconnections with wires as short as possible using
unrestricted curvilinear (i.e., circular) barriers IT]. In this case the wires might follow
a path which differs from the envelope, but the legal placements for the two wiring
schemes are the same.

Define a left block to be a maximal sequence of pairs of terminals
(P, Q),’’’, (P./, Q) such that Qk Pk, for i<_-k-<j. This condition says that all the
connection points in the upper row of a left block are located to the left of the
corresponding positions on the lower row. The previous lemma shows that a left block,
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if legally wireable, can be wired so that each wire in the block decreases monotonically
in height from its Q-terminal Qi to its P-terminal Pi. Clearly analogous conclusions
hold for a right block. It follows that a wireable left or right block can be wired within
its rectangular boundary. Consequently, for a fixed offset, the separation is determined
by the worst block. Therefore we may assume that the separation problem is to be
solved for a single left block (which uses right separation barriers). The separation is
in fact determined by the worst strict block, where a strict left block is a maximal
sequence of pairs (Pi, Qi),’", (Pj, Q.i) such that Qk < P, for i<= k =<j.

Lemma 1 shows that separation problem can be solved in O(n) time. For
rectilinear wiring on an integer grid the complexity can be shown to be O(n) [DKSSU].
Figure 4.3 illustrates the difficulties in determining the separation for more complex
wiring schemes; one example shows many wiring barriers interacting with one wire
(P6 to Q6 in this case); the other shows the nonmonotonic behavior of the separation
function.

5. The partitioning property. The barrier families discussed in this paper all satisfy
some fundamental geometric properties. These properties will enable the use of a
divide-and-conquer approach to reduce the time needed to find the separation. The
idea behind the Partitioning Theorem is essentially the following. Consider two line
segments that connect Qj, with Pi, and Q/2 with P2. Suppose i and i2 maximize,
respectively, W(.,j) and W(.,j2). The Partitioning Property then says that the seg-
ments cannot cross. It is then a simple matter to exploit this property to find the
maximum separation in O(n log n) time (Theorem 9): Set j n/ 2 ], and find the index
i*, which is the largest -<_ In/2] maximizing W(i, In/2 ]). The separation problem
will then split into two subproblems, to find maxt,i.j,t,rn/2l W(i,j), and to find

maxt.,n,t.rn/2/l.n W(i,j). The splitting is applied recursively. In this section, we
identify the basic barrier properties which guarantee that the Partitioning Property is
satisfied.

Define l(p, x), for x <= p, to be the horizontal line segment that is bounded by the
curves Ho, and H,_ and that intersects H at (x, Ho(x)). Let l(p, p) have endpoints
(p- 1, 0) and (p, 0), p > 1. Take to be a half-infinite line if it does not intersect H,_
or if intersects the barrier along an infinite ray. (Properties P0c, POd below will ensure
that must otherwise intersect Ho_l in exactly one point.) See Fig. 5.1. Denote the
length of l l(p, w) by I/l, and let Lx(p, w) be the x-coordinate of l’s left endpoint.
We first consider barrier families satisfying the following properties.

P0a: H,(x)=0 for x >= p. This says if terminal Q is at least j-i units to the right
of Pi, then the wiring from Q to P is unaffected by the presence of Pi.

P0b: Ho(x) > Ho_(x for x < p. The barriers emanating from a common point do
not intersect since different wires must not touch.

P0c: H,(x)>= Ho(y for x <= y---p. The barrier functions are nonincreasing.
POd: Ho(x + e)-2Ho(x)+ Ho(x- e) _-_0for e > 0, x + e -<_ p. The H,(x) are concave

for x<-p.
PI: If x <- y---p, then II(p, x)[ _-> If(p, y)l. The length of the horizontal line segment

between Ho and Ho_I does not decrease as a function of the segment’s height.
In other words, the left derivative of Ho at x is no greater than the left
derivative of Ho_ at Lx(p, x).

P2: If x-< p, then If(p-1, x-)l-> If(p, x)l. As a weak consequence, the curves
Ho cut any horizontal line into a sequence of segments having lengths which
do not increase as the sequence is traversed from left to right.

It should be noted that generalizations of these properties will be the basis of Theorems
15, 17, and 18. We avoid unnecessary complication by using properties P0, P1, and
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p-2 x-1 xp

/(p,x)

/(p,y)

p-1 xy9

FIG. 5.1

P2 in this section, and escape repetition by giving proofs, which, mutatis mutandis,
also hold for the more general barriers.

LEMMA 2. Let d>0 and suppose the Hp’s satisfy P0, P1, and P2. Then Ho+(u) >
Hp(u) implies Ho+(,-d)> H(u-d).

Proof. Suppose H,+(,)> H,(u). Then u<p+ 1, and we may assume that u<-p.
Let be the horizontal segment with left endpoint (u, H(u)) and bounded on the
right by H,+. See Fig. 5.2. Let the x-coordinate of/’s right endpoint be z. it is not
necessarily true that l(p + 1, z) since z could equal p + 1 and the barrier H,+ might
be a vertical segment at p + 1. Let x (z + u)/2. Then v < x < z, Lx(p + 1, x) < u and
II(p + 1, x) >-_ Ill. By P0c, Hp+,(,- d) >- Ho+,(x- d). Moreover, Lx(p + 1, x- d)
x-d-II(p+ l,x-a)l<z-d-lll=u-d. So Ho+,(u-d)>_=Ho+,(x-d)>-Ho(Lx(p+
1, x-d))>--H,(u-d). It is not possible that Ho+(u-d)=H+,(x-d)=H,(u-d)
since P0c and POd would then contradict P0b by saying that Hp+ must be flat to the
left ofx- d, which implies that H,+(s) and Ho(s) intersect at s =rain {u d, x-d}.

LEMMA 3. Let r> 0, d > 0, and suppose the Ho’s satisfy P0, PI, and P2. Then
H,+,(u) > H,(u) implies H,+,(v-d)> H(u-d).

FIG. 5.2
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Proof. It suffices to assume that v < p + r, and u p. The proof is by induction on
r. Lemma 2 proves the case r 1. Suppose Lemma 3 is true for r k- 1, and let r k.
Let Xo Lx(p + k, u) and let x, maXx {x: Hp+k_,(x) > Hp(u)}. Let x (x, + Xo)/2.
Then H,+k( u) > Ho+k_,(X) > Ho(u). Thus bythe induction hypothesis, H+k_(X d) >
Hp(u d). Moreover, Ho+k(U-- d) > H+k_,(x-- d). Combining these two inequalities
shows that H,/k(U-d)> Ho(u-d). r

LEMMA 4. Let p > 1 and suppose the Ho’s satisfy P0, P1, and P2. Then Ho+(, >
Hp(u) implies Ho(u-1)> Ho_,(u- 1).

Proof. Again take , < p+ 1, and u<= p. Let be the horizontal segment with
left endpoint (u,H(u)) and bounded by H+t on the right. Let s=Lx(p+l, ,).
See Fig. 5.3. Clearly se[-o,u). P2 says [l(p,u-1)[>_-ll(p+l,u)[, so
Lx(p,,-1)=,-1-ll(p,,-1)l<-_u-ll(t+l,u)]-l=s-l<u-1, and Hp(u-1)=>
H,_,(Lx(p, ,- 1))= Ho_,(u- 1). So

(5.1) H,(v-1) >- H,_t(u-1).
The inequality is made strict with the same trick as Lemma 2. Let z be the x-coordinate
of/’s right endpoint. Let x=(z+ ,)/2. Then x> ,, but Hp+(x)> H(u). Substituting
x for u in (5.1) and noting that x> u gives H(u-1)>-H(x-1)>-Ho_(u-1). If
equality holds everywhere, Hp(,-1)= H(x-1)= H_(u-1). This says that H is
flat to the left of x- 1 and must intersect H_ at min (x- 1, u- 1), which contradicts
P0b. Hence Hp(u- 1) > H_(u 1).

/.(p + 1,v "
s-1 s v-1 u pv xp+l

FIG. 5.3

LEMMA 5. Let r > O, and suppose the Ho’s satisfy P0, P1, and P2. Then Ho+r(,) >
H,(u) implies H,+r_t(u- 1)> H,_(u- 1).

Proof The proof uses an induction argument similar to that for Lemma 3. Once
more , < p + r, and we may assume u =< p. Lemma 4 proves the case r 1. Suppose
Lemma 5 is true for r k- 1, and let r k. Ho/k- must have values greater than Ho(u)
since it cannot intersect the curve Ho(x) for x < p. Since ]l(p + k, u)

_
1, no+k_ must

have values less than Hp/k(’). Choose x so that Ho(u)<Ho+k_l(x)< H,+k(U). Then
by the induction hypothesis, Ho+k-2(x-- 1) > Hp_(u 1). Moreover Ho/k_(u-- 1) >
H,/k-2(x--1). Combining these two inequalities shows that Ho+k-(--l)>
H,_,(u- 1).

We define the Partitioning Property as follows:
Let W(i,j) be the separation function defined by a wiring scheme.
Suppose P, P+, Q., and Q+ are in a left block, where q >= O, r -> O, andj + r > + q.

(5.2) If W(i,j+r)> W(i,j),then W(i+q,j+r)> W(i+q,j).

Lemmas 2, 3, 4, and 5 are summarized in the following.
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THEOREM 6 (The Partitioning Theorem). Let W(i,j) be the separation function
defined by a barrier family satisfying properties P0, P1, and P2. Then W(i,j) has the
Partitioning Property.

Proof Case 1: j > i+ q. We must show that

(5.3) if W(i,j+r)> W(i,j),then W(i+l,j+r)> W(i+l,j),

since induction on q then gives Theorem 6 for all nonnegative integral values of q
where j>i+q. See Fig. 5.4. According to equation (4.1), (5.3) says, suppose
Hj+,._i( Q.+r Pi) > I-I_( Q. P); then I-I+r__l( Q+r P+,) > I-t_i_,(Q Pi+). Let p
j- i, u Q+r- Pi, u Qj- P, and d + 1 P+- P. The unit separation requirement
between terminals ensures that d=>0. We must show that if H,:,+r(U)> H,(u), then
Hp+r_,(u-l-d)>H,_(u-l-d). Since H,+,.(u)>Ho(u), Lemma 5 says that
H+r_,(u- 1) > H_(u- 1). Then by Lemma 3, H,+r_i(u-l-d)> H,_(u-l-d).

Pi Pi+l

aj Qj+I

(j + r- i)th barrier from Pi

(j-i)th barrier from

FIG. 5.4

Case 2: j_-<i+ q. Then W(i / q, j)=0, since Pi+, and Qj belong to a left block.
Thus it suffices to show if W(i, j + r) > 0 then W(i + q, j + r) > 0. Now W(i, j + r) > 0

says that Q+r Pi <j + r i. Therefore Q.+r Pi+q <j + r q, whence Q(i + q, j +
r)>0. [3

Evidently the separation needed between P and Q is the same if determined by
barriers emanating from Pi or (upside down) barriers emanating from Q. Hence
rotating the plane 180 degrees gives an equivalent inequality by interchanging P with
Q, with j+ r and q with -r. This observation, contraposition, and renaming the
variables gives the following corollary.

COROLLARY 7. Suppose Pi, Pi+q, Qj, and Qj+r are in a left block, where q >-O, r >-_ O.

If w is defined by separation barriers satisfying P0, P1, and P2, then:
(1) Forj+r> i+q,

W(i+q,j)>= W(i+q,j+r) W(i,j)>= W(i,j/r).

(2) Forj> i,

W(i,j+r)> W(i+q,j+r)==>W(i,j)> W(i+q,j).

(3) Forj> i,

W(i+q,j) >- W(i,j)W(i+q,j+r)>= W(i,j+r).
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Proof (1) Follows from contraposition. (2) Follows from rotation. (3) Follows
from rotation and contraposition. 13

Consequently, we have the following.
COROLLARY 8. Let W be a separation function having the Partitioning Property,

and suppose that all terminals are in one left block. Let I [x, x2] and J [y, Y2] be
arbitrary subintervals of 1, n]. Given jo J, let ijo I be the maximum value in I fq

[1, max(xl,jo)] satisfying W(ijo,Jo)=maxit W(i, jo). Then theseparation function
attains its maximum on I x J at some (jmax)where either (jmax) <- !io Jo) or
(imax,jmax)’-----(ijo,J0)" The inequalities are understood to hold coordinatewise.

Proof Case 1: W(ijo jo) > 0. Suppose/max < ij andjmax > j0" Then by Corollary 7(2)

W(/max, jmax) > W( ijo jmax) W(/max, jo) 3> W( ijo jo).

Hence the requirement that W(io jo) be maximal for jo fixed is contradicted.
Similarly, if im,x > io and jmax <jo, then

W(/max, jmax) W( !Jo, jmax) W(/max, jo) >- W( ijo jo)

by Corollary 7(3). The requirement that io be maximum is thus contradicted. We have
assumed that/max <jmax since otherwise W(imax,jmax would be zero for this left block.

Case 2: W(ijo,Jo)= 0. Evidently io equals the middle value of xt, jo, and x2. If
x <x2 <jo, for example, then the definition of !Jo requires that it equal x2.

If io=X then for h and k such that k<jo<=Xl<h, it follows that W(h,k)=O
since k < h.

Otherwise W(!’/o- 1,jo) =0, so Qo- P!o- >--,jo- io+ 1 > 0 whence the unit spacing
requirement for terminals ensures that Qk Ph >---- k- h for k _->jo, and h _-< ijo. For these
values of k and h, W(h, k) 0. Similarly, W(h, k) 0 if k <jo and h i. + 1, x2] since
the interval of h’s (is empty or) contains no value smaller than jo. 13

It should be noted that Theorem 6 has an alternate formulation:
Let W( i,j) be the separation function defined by a barrierfamily satisfying properties

P0, P1, and P2. Suppose Pi, Pi+q, Q, and Q+r are in a left block, where q >-_ O, r >-O,
and j + r > + q. Suppose further, that W( i, j + r) > O.

IfW(i,j+r) > W(i,j), then W(i+q,j+r) > W(i+q,j).

The purpose of the strict inequality in Theorem 6 is to establish the positivity of
W(i, j + r). This reformulation can be proved from analogous versions of Lemmas 2-5.
The alternative version of Theorem 6 allows the requirement that io be maximum in
Corollary 8 to be replaced by the condition that it be maximum if maxi1 W(i, jo)--O.
This reformulation, when combined with its analogue to Corollary 7, is also sufficient
to give divide-and-conquer schemes for computing the separation.

6. General wiring. This section contains an O(n log n) time algorithm to solve
the separation problem for wiring schemes having the Partitioning Property. In par-
ticular, wiring rules defining similar concave separation barriers will be shown to satisfy
this property.

TrEOREM 9. Suppose W( i, j) is a separation function which satisfies the Partitioning
Property, and for any and j, W(i, j) can be computed in unit time. Then the separation
can be found in O( n log n) time.

Proof Observe that P and Q can be partitioned into their left and right blocks
in linear time, and the separation problem can be solved independently for each block.
Hence it suffices to assume that P and Q constitute one left block.
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Let j= [n/2], and find irn/21, which is the largest i-<_ In/2] which maximizes
W(i, In Corollary 8 ensures that the maximum separation is among those separ-
ations restricted to the intervals i[1, ir,/21] and j[1, [n/2]], or ie[ir,/21, n], and
j[rn/2]+ l, n]. Repeating this divide-and-conquer step of setting j to be each
Q-subinterval midpoint and allowing to vary over the corresponding P-subinterval
requires [log (n + 1) levels and uses a total of O(n log n) comparisons. The separation
is then max W(/,j).

Theorems 6 and 9 show that the separation problem can be solved in O(n log n)
time for barrier families satisfying P0, P1, and P2. We now show that families of similar
separation barriers have these properties. A family of geometrically similar separation
barriers is defined by its first barrier. For a concentric family emanating from the origin,
the similarity requirement says that

Unrestricted curvilinear wiring, rectilinear wiring on an integer grid, and rectilinear
plus 45-degree wiring on a half-integer grid, for example, have barrier families which
are similar, concentric, and concave. It should be noted that we shall assume the
function H1, (and hence Hp) can be computed in O(1) time. This is certainly the case
if, for example, Ht represents a barrier that is circular, or that is defined piecewise by
a fixed collection of functions, each of which can be evaluated in O(1) time. It then
follows that W(i,j) can be computed in constant time.

THEOREM 10. Let W be defined by a family of similar separation barriers H,(x)=
ph(x/p), where h(x)=0 for x>= 1, and h(x) is concave and nonincreasing for x <- 1.
Then the separation problem can be solved in O(n log n) time.

Proof It suffices to show that H, satisfy P0, P1, and P2.
P0: These properties are trivially satisfied.
PI: Figure 6.1 shows H,, Ha_l, and l(p, y). By similarity, Ho and Hp_ have

parallel tangents at their intersections with the ray from the origin through (y, H,(y)).4
By concavity of H,_, the left endpoint of l(p, y) must have a left tangent with slope

O x p-1 y p

FIG. 6.1

4A more precise statement includes the fact that the separation curves might not have tangents at a
denumerable number of points. Concave curves are not everywhere differentiable, but are everywhere left
differentiable and right differentiable. Define the left tangent of Hp at x to be the line through (x, Hp(x))
with a slope as large (close to 0) as possible which has no point (z, Ho(z)) for z<=p on its right. This slope
equals the left derivative of H, at x. More precisely, then, the ray from the origin to (y, H,(y)) has parallel
left tangents at its intersection points with H,_ and H,.
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rl

O p-2x-1 v 9-1 x p

FIG. 6.2

no less (i.e., no steeper) than the slope of the left tangent at y. Consequently II(p, y)[
cannot decrease as y decreases. Formally, let have endpoints (x(w), w) and (y(w), w).
Then

d d 1 1
dw I/I = ww(Y(w) x(w)) > 0.

Ho(y) Ho-,(x)
P2: Let, as in Fig. 6.2, the ray from the origin intersect Hp-2, Hp_, and Ho at

A, B and C, respectively, and intersect the positive x axis at an angle to. Let D and
E be on H-2 and Ho_ so that/_ECB Z_DBA 0. Let I-1 r2, 1--1 r.

CLAIM. The ray R which runs from the origin through D lies above E.
Proof. If triangle OBD is magnified by p/(p- 1), with O as the fixed point, and

with no rotation, then B is mapped to C, and the ray along BD is mapped onto the
ray along CE. Ray R is mapped onto itself. Note that D is not sent to E, but instead
becomes some point inside barrier Ho_ because the magnification factor is less than
(p- 1)/(p-2). R must therefore intersect H,_ somewhere above the line through C
and E.

The same reasoning as that used for property P1 shows that Ho_2 is no steeper
at D than Ho_ is at E. It is tempting to conclude that (d/dO)r2 > (d/dO)r, but this
inequality need not hold. As shown in Fig. 6.2, let a2 be the angle between the left
tangent to Ho_2 at D and DB. Let at be the analogous angle at E. As observed above,
a c. In fact, r > t2=> a > 0. Elementary trigonometry gives (d/dO)r -r cot a,
(d/dO)r=-r cot a2. When a< r/2, it is possible that (d/dO)r< (d/dO)r. In any
case, (dr2/r2 dO)=-cot a:>=-cot a (dr/r dO). Integrating the differential
inequality as 0 goes from 0 to to gives log (I/(P-1, .)l/IXBI)->_log (ll(p,x)l/I-B-l),
where v is the x-coordinate of B, and x is the x-coordinate of C. Exponentiating shows
that

(6.2)
II(p- 1, ’)l> II(p, x)l

I--1 I-l
Since the similarity properties of Ho guarantee that the lengths of and B are
equal, I/(P 1, ’)l->-I/(P, x)i. The similarity properties also ensure that x- , x/p <= 1.
Hence x 1 =< ,, so [l(la 1, x 1)1 => 1/( 1, u)l, whence ]/(p 1, x 1)l => It(p, x)]. l-1
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The explicit form of the inequality in (6.2) makes the proof directly applicable to
Theorem 18.

Theorem A in the Appendix gives a direct proof that the separation function
defined by similar concave barrier curves enjoys the Partitioning Property. The proof
is slightly stronger since it shows quantitatively "by just how much" the Partitioning
Property is satisfied, that is, it gives a formula for W(i+ q,j + r)- W(i+ q, j).

COROLLARY 11. The separation for a wiring scheme with circular barriers can be
found in O( n log n) time. [3

COROLLARY 12. The separation for a wiring scheme with similar convex polygonal
barriers can be found in O( n log n) time. [3

7. Weakening the similarity and curvature restrictions. Evidently any algorithm
which finds the separation for a particular wiring scheme will, with one proviso, find
the separation for the same wiring scheme where the notion of distance is now redefined.
The proviso is that the new measure of separation distance be a nondecreasing function
cI) of the original distance measure. Then

(7.1) max (W(i,j)) cI)(max W(i,j)).

t[4xJ rectilinear wiring on a quarter-integer grid turns out toUnder the map (x)=
be equivalent to wiring defined by a particular family of similar separation barriers
which are composed of rectilinear plus 45-degree segments. The first barrier has a
45-degree segment connecting rectilinear pieces terminating at (1,) and (, 1). In
concrete terms, given a separation problem for rectilinear wiring on a quarter-integer
grid, one way to find the solution is by using rectilinear plus 45-degree wiring (as
defined by the oversized barrier family described above) to connect P and Q. Then
apply the map (x, y’) (x, L4yJ to each point ofthe wiring pictorial. The new pictorial
(with added requisite vertical segments) is an optimal solution to the original problem.
In particular, the separation is [4wJ, where w is the separation found for the particular
rectilinear plus 45-degree wiring. See Fig. 7.1. It should be noted that this barrier family
is oversized so that the resulting rectilinear barriers are separated by distances of at
least 1.

We have proven the following.
COROLLARY 13. The separation problem for rectilinear wiring on a quarter-integer

grid can be solved in O( n log n) time. [3

For completeness, it should be noted that rectilinear plus 45-degree wiring, in this
model, is the same for quarter-integer and for half-integer grids; the separation barriers
turn out to be identical for the two cases because of the need for neighboring barriers

Pi w+Pi Pi w+Pi

FIG. 7.1
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tO be separated by at least unit distance. Similarly, one-third and one-half integer grid
rectilinear wiring schemes turn out to be the same as integer grid wiring.

It is clear that the separation problem can be solved in O(n log n) time for any
separation problem that can be decomposed into a fixed number of subfamilies which
satisfy the Partitioning Property. The decomposition should be of the form W(i,j)=
maxk Wk(i,j) where W(i,j) is the separation induced bythe/th subfamily. In addition,
if there is a strictly monotone map (I) which transforms one barrier subfamily into
another, then the two subfamilies induce separation problems having the same time
complexity.

The Partitioning Property holds for some barrier families which fail to satisfy P0,
P1, and P2. When all terminals are located on a quarter-integer grid, for example, the
separation function defined by rectilinear wiring on a quarter-integer grid satisfies the
Partitioning Property. Evidently there ought to be criteria for barrier subfamilies which
induce separation problems solvable in O(n log n) time, and the criteria seemingly
ought to be invariant over monotone maps. However, the Partitioning Property need
not hold for a quarter-integer grid rectilinear wiring scheme if the terminals are not
located on gridpoints. More generally, if W has the Partitioning Property, and (I) is
nondecreasing, but not necessarily strictly increasing, then (I)(W) only satisfies a Weak
Partitioning Property" if (W(i,j+r))>(W(i,j)) then (W(i+q,j+r))>=
(W(i+q,j)). It is not evident how this weaker property can be used to give an
O(n log n) time algorithm to find the maximum of cI)(W). Of course max cI)(W) can
be found efficiently by applying Theorem 9 to W.

The inadequacy of the Weak Partitioning Property is made more precise in the
following.

THEOREM 14. Let W be the separation function defined by separation barriers
composed of quarter-integer rectilinear segments. Then the worst-case behavior of any
optimal algorithm to find maxi, W(i,j) based solely on the values of W is (R)(n 2)
comparisons.

Proof It suffices to construct a family of separation barriers that has the Weak
Partitioning Property, and that satisfies the conclusion of this theorem. We use the
barrier family defined by quarter integer rectilinear segments, but allow terminal
locations to be on. a finer grid. The barrier function for a left block is Ho(x)=
[4ph(x/p)J/4, where h(x)= 1 if x<3/4, h(x)=7/4-x if 3/4<=x< 1, and h(x)=0 if

Let Pi=(7/4)i and Q=(7/4)i-(3/4)n+1/8 for i=l,2,...,n. Then the
solution to the separation problem is W(1, n)=(3/4)n-1/4. In fact, for all and j
where 1-<i, j<-_n, and j-i>-(3/4)n, W(i,j)=(1/4)[4((7/4)(j-i)-Q+Pi)]=
(1/4) [4((3/4)n 1/8)] (3/4)n 1/4. Pick any io and any jo where jo- io=> (3/4)n.
Change the problem by letting P (7/4)io+ 3/32 and QJo (7/4)jo-(3/4)n + 1/32.
Call the separation function induced by this new problem W(i,j). Then W(i,j)=
W(i,j) if i# io orj Cjo. Finally, W(io,jo)=(3/4)n. Therefore no algorithm can deter-
mine if a given separation function is W rather than a without testing (n2) pairs
of and j. Clearly n2 is a trivial upper bound on the number of comparisons necessary
to find the separation. [3

It should be noted that the separation problem for quarter-integer rectilinear
separation barriers can be solved in linear time; see [Si2] for the details.

Evidently properties P0, P1, and P2 ought to be extended to characterize a class
ofwiring schemes which is invariant under strictly increasing maps. The prooftechnique
for Theorem 6 shows the following.
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THEOREM 15. Let Hp satisfy:
Q0a: Hp(x)=O for x>=p.
Q0b: H(x) > Ho_l(X) for x < p.
Q0c: no(x)>- no(y for x<-_ y<=p.
Q0d: Ifx < y < p and Ho(x) Ho(y), then Ho(,) Ho(y) for ,<- y. In otherwords,

ifHo is fiat at y, then it must be constant to the left of y.
QI: If x<= y<-_p, then II(o,x)l>-II(o, y)l.
Q2: Ifx<-p, then II(o-l,x-1)l>=ll(o,x)l

Then the separation function W defined by barriers Hp satisfies the Partitioning
Property. [-1

8. A better wiring model. All constructions considered so far implicitly permit
wires to terminate at P or Q in a horizontal direction. If, for example, the wiring in
the integer rectilinear case is required to leave rows P and Q vertically for at least
one unit in length, then the physical separation w is

1 if Pi Qi for all i,
w

2 + max W(i, j) otherwise.

Figure 8.1 illustrates rectilinear wiring with this restriction. The purpose is to avoid

FIG. 8.1. A physical separation--rectilinear wiring avoiding internal wires.

3

Pi- 1 Pi
FIG. 8.2. Barrier modifications.
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unknown wires inside modules P and Q (the black boxes denote possible internal
wires).

More generally, we may imagine, as shown in Fig. 8.2, wiring internal to modules
P and Q located (for left blocks) one unit to the left of Pi and to the right of Qj. Now
the separation induced by terminals Pi and Qj is influenced by a first barrier around
Pi- 1 and a final point at Q + 1. The separation function for a left block is then

max { 1,/-/+2_i(Q + 2- P)} ifj>=i,
(8.1) W(i,j)

0 ifj < i.

The reason the curves Hp are different from the Hp’s is that the imaginary wire
terminating at Q + 1 need not obey the wiring limitations. Its only requirement is it
must be at least one unit away from the preceding wire. Consequently its curve is
described by the locus of points one unit beyond the wireable barrier curve/-//l-(x)
emanating from Pi-1. For polygonal wiring, the locus is a new polygonal barrier
(corresponding in some sense to /-//2_) with corners replaced by tangential circular
arcs of radius 1. For families of similar concave wiring barriers, the unit distance locus
curves are still concave but no longer similar. The Partitioning Property, however, is
nevertheless applicable.

THEOREM 16. Let Ho be the locus ofpoints unit distance beyond barrier Ko_l, p 2,
3," ’’, where the Ko’s are a family ofsimilar barriers satisfying P0. Then the separation
function defined by the Ho satisfies the Partitioning Property.

Proof. It suffices to show that Ho satisfies P0, P1, and P2. The proof, of course,
is similar to the proof of Theorem 10.

P0: These properties are trivially satisfied.
PI" Figure 8.3 shows K-2, Ho-, Ko_, and Ho. Let A, B, C, D, E, and F be as

shown. Let AC, BD be of unit length and perpendicular to Ho_l and (to some local
support line of) Ko_2. EF is parallel to AC, of unit length, and perpendicular to Ho
and (to some local support line of) Kp_l. A and E are on a ray from the origin, and
AE intersects the x-axis at a nonzero angle. D and F are on a horizontal segment;

DF. Since EF has nonnegative slope, F is at least as high as E. E is above A, and

B

C

O,

FIG. 8.3

We have assumed that the presence of unknown wires on other layers within modules P and Q
prevents the modules from being separated by less than unit distance. It is not difficult to include other
minimum separation requirements in this model, or to include additional separation requirements due to

interactions between different layers.
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np

FIG. 8.4

since AC is parallel to EF, D is above C. By POd, AC cannot cross BD, so Bmust
be above A. Hence BD must have a slope at least as large as AC by POd. Thus Hp_l
is no steeper at D than Hp at F. Consequently I11 cannot decrease as F moves up Hp.

P2: Let A, B, C, D, E, F, G, I, J, and L be as shown in Fig. 8.4. K,_3, Hp_2,
K_2, H_I, and K_, Hp are as shown. A, E, and J are on a ray from the origin,
which intersects the positive x-axis at an angle to. The symmetry of K, and the
orthogonality ofunit segments AC, EG, and JL ensure that C, G, and L are a translation
of A, E, and J by AC. BD and FI are unit perpendiculars such that B is on K_3,
D is on Hi,_2, F is on Kt,_2, and I is on Ho_. Let/_DGC =/_ILG 0. Then the ray
from the origin through B lies above F. Consequently Ho_ is at least as steep at I as
Hp_2 is at D. Now [CGI [GL[. Integrating, over 0 e [0, to ], the same kind of differential
inequality as in the proof of Theorem 10 gives log ([ GD[/[ G-I) >-_ log ([L’-[/]-[),
whence P2 must hold. [3

9. Modeling wire thickness. More accurate wiring models should also include wire
thickness. Evidently the solutions to the separation problem are applicable if, say, the
barrier curves represent the outer edges of densely packed wires with positive thickness.
If, as illustrated in Fig. 9.1, these curves Ho are similar, and concave, the wire thickness
is 2/x, and the minimum separation space between wires is 1, the separation function
still has the Partitioning Property. The separation algorithm for these cases need not
be changed. These results also apply to barrier families which model a wire as the set
of points within a fixed distance/x of a skeleton curve. In particular, if the skeleton
curves are similar and convex, Theorem 16 is applicable.

FIG. 9.1. A model including wire thickness.



SOME GEOMETRY FOR GENERAL RIVER ROUTING 601

Separation barriers might also be defined by similar subfamilies when wire thick-
ness depends on the power load. This case is best handled by using real barrier and
terminal indices. Let the terminal indices be pl, p2,"" ", p,, where the pi’s are real.
Let the thickness of wire pi be p- pg-1 1, where p0 is set to 0. Then if the thicknesses
are zero, the indices pi are just 1, 2,. , n. The physical location of a "thick" terminal
Ppi is the right endpoint of the connection interval for the terminal. This location value
is assigned to Ppi. The unit spacing requirement for terminals is formalized by

" Pi Pi-1:> Pi Pi-1, Qo, Qo,_,=(9.1) Poi-Po,_,=

Let l(i, x) be the horizontal line segment bounded on the left by Ho,_ and with
right endpoint (x, Ho, (x)). We define the following properties for the separation barriers
of a left block:

ROa: Ho(x) O for x >- p.
ROb" Hp(x) > H(x) for 6 < p, x < p.
ROe" H,(x) >- Ho(y) for x <-_ y <- p.
ROd" Ho(x+e)-2Ho(x)+Ho(x-e)<=O for e>O, x+e<=p.
RI" If x -<- y =< p, then II(p, x)l >= II(p,
R2" If x<-p, then II(p_l,X--p+p_l)l/(pi_,--p_2)>=ll(pi, x)l/(p--p_l).

This is just the direct generalization of P2.
Suppose, for example, that Po,’s barriers emanate from location Poi, and the

indexing for these barriers is given by Hp,+,_o, Ho,+_o Ho+3_o,,.... Then the proofs
of Lemmas 2, 3, 4, 5 and Theorem 6 show the following.

THEOREM 17. Let {P, Q} be a separation problem satisfying (9.1), and Hp the
separation barriers satisfying R0, R1, and R2. Then the separation function W defined
by the separation barriers has the Partitioning Property. [-]

If the routing wires must avoid unknown wires inside modules P and Q, then

Poi’s barrier family will have an origin at Po,-P + p-l. The barriers will be the locus
of points unit distance beyond the similar family Ko._o. ,, K o.+,_p. ,, Ko.+_o. ,,...,
which emanates from Po,’s family origin. The separatin’uncti)n f-r a let bl-ck will
be given by

(9.2) W(i,j)={ax{l’H+l-’’-l(o’+l-Pp’+pi-pi-’)} ifj>--i’
ifj< i.

It is worth noting that if the wire thickness is zero, i.e., if p--j, then (9.2) reduces to
(8.1).

THEOREM 18. Let H be the locus ofpoints unit distance beyond the similar barrier
family K,-1 (p 1)k(x/(p 1)) for p >-_ 2, where k(x) is nonincreasing and concavefor
x _-< 1, and k(x) 0 for x >-_ 1. Then for terminals satisfying (9.1) the separation function
W defined in (9.2) by the Ho has the Partitioning Property.

Theorem 15 can also be extended to the case of wires with thicknesses.
Notice that the wiring models have in a sense come around full circle; in the most

realistic models of the separation problem as characterized by Theorem 18, the "ter-
minal origins" are idealized points, the wiring barriers have zero width and shapes
which cannot be fabricated, and the barrier indices may not even be integer valued.

10. Appendix. The idea behind the Partitioning Theorem is essentially the follow-
ing. Consider two line segments which connect Q, with Pi, and Qh with Pi. Suppose
il and i2, respectively, maximize W(,,j) and W(,,j). The Partitioning Property then
says that the segments cannot cross. Figure 10.1 illustrates this result in the context of
Theorem A.
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y +s----
Note k =j r ,k:

k+r_---;"

.- x + r - z-

Pi Pi+r

w(,,,)

FIG. 10.1. A left-block separation. Variables in the proof are as shown. Variables between the horizontal
lines are barrier number (p while x, y, z, r, and s are measures of distance. Note that only z can be negative.
We note that k must be positive because of the supposition that the term W(i + r, j), in (10.1), is positive.

The following is a direct proof that the Partitioning Property holds for a separation
function defined by similar concave barriers. Although not as general as the techniques
of 5, the proof may give better insight into the behavior of separation barriers and
their intrinsic properties.

THEOREM A. Let W(i,j) be the separation function defined by similar concave
separation barriers Ho, where H h(x). Suppose Pi, Pi+r, Qj, and Qj+. are in a left
block, where r >= O, s >= O, and j + s > + r.

(10.1) IfW(i,j+s)> W(i,j),then W(i+r,j+s)> W(i+r,j).

Proof. Let

x=Pi+r-Pi-r, y=Qj+,-Qj-s, z=Qj-Pi+r, k=j-i-r.

The wire separation restrictions imply that x => 0 and y-> 0.
Now suppose that all four terms in (10.1) are positive. It suffices to show that

{W(i,j)- W(i,j+s)}-{W(i+r,j)- W(i+r,j+s)}>=O.

Substituting the definition for W gives

L.H.S.={(j-i)h(Qj;.-_)-(j + s- i)h( QJ+’*7-"’S.P-ii)}
j+s-i-r/

This expression is just a weighted difference of h at four points.
If x and y are zero,

(10.2)
+ -(k+r+s)h

k+r+
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Suppose h is twice differentiable. Then the concavity of h says that h"(x)<-_ 0 for
x < 1. The Fundamental Theorem of Calculus says

f’(v) dv =f(s) -f(0).

Using it to express each inner difference in (10.2) as the integral of a derivative gives"

R.H.S. h
k+r+ k+r+v k+r+

(10.3)

+ h q_ +k+v + v

1
+(k-z)

k+r+ v
h’

k+r+ k+v k+

Applying the Fundamental Theorem of Calculus to (10.3) gives

R.H.S.=-
(k+u+ v)h’ k+u+

(10.4)

-1
"- (k z)

(k -q- u -- h’
k+u+

(k+u’+v)3h’’ k+u+

(k+u+v)3h’’ k+u+vV dudv.

The concavity of h and the nonnegativity of r, s, and k ensure that (10.4) is nonnegative.
However, x,~ and y can be p,ositive. The complete proof uses auxiliary points which

correspond to Pi Pi + x and Qj+s Qj+s-y. There follows:

W(i,j)- W(i,j+s)- W(i+r,j)+ W(i+r,j+s)

-{(k+r)h(z+rk+r]
+ +(k+r)h(k+ r)h

k+ kSr;

-(k+r+s)h
k+r+

+ (k+r+s)h
k+r+ k+-r+s

-kh +(k+s)h k+ +s) \k/s/-(k + s)h(Z+ s+Y)s
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The inner terms (in square brackets) are differences, and the remaining terms are
exactly as in (10.2). The Fundamental Theorem of Calculus and (10.4) give

(10.5)

R.H.S. h’
z + r + u

d,r
+ -h’

z+r+s+u z+s+u
du

(kq- u q- ,)
h"

k+u+

h’
z+r+, s+z+r+u

d,-h’

Ion{ (z+s+u)-h’(x+r+z+s+u)} au+ h’
k+s r+k+s

+ ------- "3 h’’ k+u+U dudp.

We have already seen that the last term in (10.5) is nonnegative. The Mean Value
Theorem says that f(b)-f(a) =f’()(b- a) for some : where min (a, b) =< -<_
max (a, b). It follows that the first two integrals in (10.5) can each be replaced by
expressions of the form J h"(()A arg d,. It remains to show that A arg is not positive,
that is,

<---0
k+r s+k+r

and ks r+k+s

The assumption that W(i,j) and W(i+r,j+s) in (10.1) are positive says that
(k + r)h((z + r+ x)/(k + r)) and (k + s)h((z + s+ y)/(k + s)) are positive. Since h(t)=0
for t_>l, it follows that (z+r+x)/(k+r)<l, and (z+s+y)/(k+s)<l. The
denominators are positive. Hence (z+r+u)/(k+r)<l for O<=u<=x, and (z+s+
u)/(k + s) < 1 for 0 <= u <- y. Since the fractions are less than one, adding a nonnegative
quantity such as r or s to both the numerator and denominator of ((z + r+ u)/(k + r))
or ((z+ s+u)/(k+ s)) cannot decrease their values. An additional x in the numerator
has the same result. These operations give ((s+z+r+,)/(s+k+r))>=
((z+r+,)/(k+r)) and ((x+r+z+s+u)/(r+k+s))>-((z+s+u)/(k+s)). Con-
sequently each term in (10.5) is nonnegative.

There remains the possibility that some of the terms in (10.1) could be equal to
zero. These cases are trivial.

It should be noted that the derivation and the nonnegativity of (10.5) hold even
if h is not twice ditterentiable. As explained in, say, [CH], even discontinuous functions
possess generalized derivatives which are usually called distributional derivatives. The
Dirac delta function 6(x) (d/dx)H(x), where H(x) (0 if x < 0 else 1), for example,
is a distributional derivative (which happens to be nonnegative). The concavity require-
ment for separation barriers ensures that on (-, 1 ], h ’’-< 0 in the distributional sense,
and this is sufficient for our purposes. Alternatively, it suffices to observe that Theorem
A is essentially a statement about four points on a concave curve, and any such four
points can be interpolated by a smooth concave function h. [3
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RELATIONS BETWEEN CONCURRENT-WRITE
MODELS OF PARALLEL COMPUTATION*

FAITH E. FICH, PRABHAKAR RAGDE, AND AVI WIGDERSON:

Abstract. Shared memory models of parallel computation (e.g., parallel RAMs) that allow
simultaneous read/write access are very natural and already widely used for parallel algorithm design.
The various models differ from each other in the mechanism by which they resolve write conflicts. To
understand the effect of these communication primitives on the power of parallelism, we extensively
study the relationship between four such models that appear in the literature, and prove nontrivial
separations and simulation results among them.

Key words, parallel computation, lower bounds, parallel random access machines

AMS(MOS) subject classification. 68Q10

1. Introduction. Parallel computation has been the object of intensive study
in recent years. Many models of synchronous parallel computation have been pro-
posed. One important model is the CRCW PRAM (concurrent-read concurrent-write
parallel random access machine, sometimes denoted WRAM). Not only have numer-
ous algorithms been designed for the CRCW PRAM (examples include [Ga], [KMR],
[SV], and [TV]), but it has also been shown to be closely related to unbounded fan-in
circuits and alternating Turing machines ([CSV], [LY2]).

Specifically, a CRCW PRAM consists of a set of processors (i.e., random access
machines) P1, P2,..., Pn together with a shared memory. One step consists of three
phases. In the read phase, every processor may read one shared memory cell. In
the compute phase, every processor may perform computation. In the write phase,
every processor may write into one shared memory cell. Any number of processors
can simultaneously read from the same memory cell, and any number may attempt
to simultaneously write into the same memory cell.

An arbitrary amount of conputation will be allowed in each compute phase.
Although this is unrealistic, it enables us to concentrate on communication between
processors. For all the problems we consider, communication rather than computation
is the limiting factor. In fact, the algorithms presented in this paper actually perform
very little computation at each step. Furthermore, the powerfulness of the model
makes the lower bounds we present very strong.

A fundamental question concerning CRCW PRAMs is how to resolve write con-
flicts. One method is to assign priorities to processors and, if more than one processor
attempts to write to the same memory cell, then the one with the highest priority will
succeed. Without loss of generality (by reordering processors), we can assume that
priorities are assigned in order of processor index, with highest priority given to the
processor of lowest index [Go]. We call this the PRIORITY model.

Other mechanisms for conflict resolution appear in the literature. In the ARBI-
TRARY model, if more than one processor attempts to write to the same memory
cell, an arbitrary one will succeed IV]. Algorithms for the ARBITRARY model must

* Received by the editors October 7, 1986; accepted for publication (in revised form) April 22,
1987. This work was supported by National Science Foundation grants MCS-8120790, MCS-8402676,
and ECS-8110684, Defense Advanced Research Projects Agency contract N00039-82-C-0235, an IBM
Faculty Development Award, the University of Washington Graduate School Research Fund, and a
Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarship.

Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4.

:The Hebrew University, Jerusalem, Israel.
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work regardless of who wins the competition to write at each step. The COMMON
model allows simultaneous writes to the same memory cell only if all processors doing
so are writing a common value [Ku].

When more than one processor attempts to write to the same memory cell in the
COLLISION model, a special collision symbol will appear in that cell. No information
is given about which processors were involved in the collision nor what values they
were trying to write. This write-conflict resolution scheme is a synchronous version of
that used by Ethernet and other multiple access channels [Gr].

Write conflicts can also be avoided by not allowing them; in the concurrent-read
exclusive-write (CREW) PRAM, at most one processor can attempt to write to a
given memory cell at each time step [FW]. An even more restrictive model is the
exclusive-read exclusive-write (EREW) PRAM, in which both reads and writes are
restricted in this manner.

Any algorithm that runs on the ARBITRARY model will run unchanged on
the PRIORITY model; if an algorithm works regardless of who wins a competition to
write, then it will certainly work if the processor of lowest index always wins. Thus the
PRIORITY model is at least as powerful as the ARBITRARY model. Similarly, the
ARBITRARY model is at least as powerful as the COMMON model, the COMMON
and COLLISION models are at least as powerful as the CREW PRAM, and the
CREW PRAM is at least as powerful as the EREW PRAM.

One step of the COLLISION model can be simulated by two steps on the ARBI-
TRARY model, using the same number of processors and shared memory cells. First,
each processor in the ARBITRARY model writes where the corresponding processor
in the COLLISION model wrote. However, it writes its index in addition to the value
originally written. Then each processor reads from the cell to which it has just writ-
ten. If the index written there is not its own, a collision must have occurred during
the previous write step. In this case, the processor writes the collision symbol to the
memory cell.

Our aim is to understand the relative power of these models. Algorithms running
on these models have appeared in the literature, and their expositions often include
attempts to implement them on the most restrictive model possible. Such attempts
are of little value without knowing which of the inclusions described above are strict.

Cook, Dwork, and Reischuk have shown that the CREW PRAM is strictly less
powerful than the CRCW PRAM. In particular, their work [CDR] shows that the
wway OR function, which can be computed in one step on the COMMON model,
requires (log n) steps using a CREW PRAM. By considering the problem of searching
in a sorted list of distinct elements, Snir IS] has shown that the EREW PRAM is
strictly less powerful than the CREW PRAM.

In this paper, we obtain separation results for the four CRCW models as a func-
tion of the number of shared memory cells rn (called the communication width [VW])
when the number of processors is held fixed at n. This is an important restriction, since
one step on the PRIORITY model is easily simulated by two steps on the COMMON
or COLLISION model if the number of processors is squared and sufficient common
memory is allowed [Ku]. When width is restricted, however, the four models are not
equivalent. Restricting width has a meaning in a practical as well as theoretical sense;
a bus or a satellite relay may be considered to be a CRCW PRAM with width 1.

Table 1 summarizes our results on simulations and separations. A particular
model is denoted by its name followed by the number of shared memory cells in
parentheses (e.g., COMMON(I)). The time bound given is the number of steps on
the weaker machine required to simulate one step on the more powerful machine. All
logarithms are to the base 2. The results in 2 and 3 are, for the most part, easy
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adversary arguments; those in the remaining sections are harder and more revealing.
Among the results we consider particularly significant is an information-theoretic lower
bound for computation on COMMON(I) which is applicable in a more general setting
(Theorem 6). The characterization of the global state of information proven in that
theorem also allows us to prove a surprising constant time simulation of COMMON(1)
by COLLISION(I) (Theorem 10).

Simulated
Machines

PRIORITY(l)

PRIORITY(m)

PRIORITcY)(rn)m O(n/

ARBITRARY(I)

PRIORITY(krn)
ARBITRARY(kin)
COLLISION(kin)

PRIORITY(krn)

COLLISION(I)

COMMON(I)

COMMONly)on domain ,1}n

TABLE 1

Simulating
Machines

ARBITRARY(m)
COLLISION(m)
COMMON(m)
ARBITRARY(m)
COLLISION(m)
COMMON(m)
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sections

New lower bound techniques are developed to obtain the results below. We
consider this work as another step (following IS], [CDR], and [VW]) in forming a
foundation of lower bound techniques for parallel computation. Also, as our lower
bounds concern the communication between processors, we believe these techniques
may be applied to distributed (asynchronous) computation as well (e.g., in the Eth-
ernet model). Recently, results have been obtained using more powerful techniques
for models with infinite shared memory ([FMW], [MW]) and an infinite number of
processors [B]. Li and Yesha ([LY1],[LY2]) have extended many of these results to
models with the input ii read-only memory (ROM) and have proved other results on
this related model.

2. Simulating PRIORITY(l) by weaker models. Let us consider how to
simulate one step of an algorithm for PRIORITY(m) on a machine with a weaker write
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conflict resolution method, but with at least as much shared memory. Each processor
in the PRIORITY(m) machine will be simulated by one processor in the simulating
machine. Likewise, the contents of each shared memory cell in the PRIORITY(m)
will appear in a specific shared memory cell. Simulation of the read phase is trivial.
However, in the write phase on the simulating machine, processors must know if they
are the processor of lowest index writing into the cell that they wish to write into. This
requires some extra computation and leads to the definition of the following problem.

m-colour MINIMIZATION.
Before: Each processor Pi, for i 1,..., n, has a colour xi E (0,..., m} known only

to itself.
After: Each processor Pi knows the value ai, where

1 if for allj<i, xixj andxi>0,
ai 0 otherwise.

Thus ai 1 if and only if Pi is the processor of lowest index with colour xi
and xi O.

In the simulation, xi represents the memory cell into which the simulated proces-
sor Pi wishes to write; xi 0 if Pi does not wish to write. Once the problem is solved,
Pi will write if and only if ai 1, thus resolving the write conflict in the fashion that
PRIORITY machine would.

Clearly, the m-colour MINIMIZATION problem takes only one step to solve on

PRIORITY(m).
THEOREM 1. On COMMON(m), the 1-colour MINIMIZATION problem can be

log nsolved in O(log(m+l)) steps.

Proof. Without loss of generality, we may assume m <_ x/-. If m > we only
use the first x/ cells of memory. This is because with m we already achieve
O(1) running time.

Throughout the algorithm, memory cells will contain only l’s and O’s. Note that
for the 1-colour MINIMIZATIONproblem, xi E {0, 1}. We call the processor of lowest
index whose colour is 1 the winner.

The algorithm repeatedly performs the following sequence of steps. First, all
shared memory cells are set to 0 by having processor Pi, for i 1,..., m, write 0
into cell Mi. The processors are divided into m + 1 nearly equal groups, where each
group contains a set of consecutively numbered processors. The first n mod (m + 1)
groups contain [m---] processors and the rest contain n-4-iJ" A processor Pi in the
jth group, where 1 _< j _< m, will write 1 into M. if and only ifxi 1. At this
point, if all memory cells are unchanged (i.e., contain the value 0), the winner is in
the (m + 1)st group; otherwise it is in the group corresponding to the memory cell of
lowest index containing a 1.

We note that a processor does not have to know which group contains the eventual
winner, only whether its group wins. The following subroutines are used to decide
which of the above two cases holds, in constant time.

LEFTMOST ONE IN MEMORY.
Before" Cells Mi, for i- 1,..., m, each contain 1 or 0.
After: Mi contains 1 if and only if all M. for j < i were initially 0, and Mi was

initially 1.
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Procedure: Processor P forms the ordered pair (2’, k) from its name by setting j --(i mod m) + 1 and k i m(j 1). If j < k _< m and M. contains 1,
P writes 0 into Mk.

EMPTY MEMORY (m-way OR).
Before: Cells M, for i 1,..., m, each contain 1 or 0.
After: M1 contains 0 if and only if all Mi were initially 0.

Procedure: Processor Pi will read Mi and, if it contains 1, Pi writes 1 into M1.

After the LEFTMOST ONE IN MEMORY algorithm is applied, the processors in
group i look at Mi to see if they are in the winning group or not (depending on whether
M contains 1 or 0, respectively). Note that this algorithm uses m2 processors; the
assumption m _< x/ ensures that sufficient processors are available. Application of
EMPTY MEMORY will then allow the (m / 1)st group to decide if it is the winning
group or not, by looking at M1.

All processors except the ones in the winning group set ai 0 and stop; the ones
in the winning group repeat the above procedure with n replaced by the size of the
group. This continues until the size of the winning group is equal to 1; at this point,
the winner is determined.

Intuitively, the algorithm cuts the size of the winning group by a factor of m / 1
each time. More precisely, if gt is the size of the set of processors that may still be the
winner after the tth step, then

go =n and

gt-1
gt <_

|m + 1

nIf T >_ logn/log(m + 1), then gT

_
[(m+i)T]

_
1. Thus the algorithm takes at most

lo n[log(m+l) iterations. Since each iteration takes a constant number of steps, we have
the desired upper bound.

COROLLARY 1.1. On ARBITRARY(m) and COLLISION(m), the 1-colour MIN-

(... ’ ) steps.IMIZATION problem can be solved in 0 og(m+)

Proof. The algorithm described in the proof of Theorem 1 will run on ARBI-
TRARY(m). It will also run on COLLISION(m) provided that, before performing
LEFTMOST ONE IN MEMORY, each processor Pi for i 1,..., m, reads memo
cell Mi and, if Mi contains the collision symbol, writes 1 into Mi.

It follows that ARBITRARY(m), COLLISION(m), and COMMON(m) can can

simulate one step of PRIORITY(I) in 0 log(re+l)’ steps. One cell of the simulating

machine (say M1) is designated as being equivalent to the single cell of PRIORITY(I).
Processor Pi then sets zi 1 if it wishes to write at that step, and sets zi 0
otherwise. The algorithm for 1-colour MINIMIZATION is then followed, with the
following change: the value 0 is replaced by the value presently in M, and the value
1 is replaced by some other value. At the end, the winner writes into M the value
that the corresponding processor would have written in the PRIORITY(I) algorithm.

COROLLARY 1.2. COMMON(m), COLLISION(m), and ARBITRARY(m) can
simulate one step of PRIORITY(m) in O(log n) steps.

Proof. The write conflict resolution problems for each of the m memo cells of the
PRIORITY machine can be treated as separate 1-colour MINIMIZATION problems
that are solved simultaneously.



RELATIONS BETWEEN CONCURRENT-WRITE MODELS 611

in the write conflict resolution problem for memory cell M., let xi 1 if the
simulated processor Pi wishes to write into memory cell Mj; otherwise, let xi 0.
This subproblem is solved via the algorithm described in Theorem 1 or Corollary 1.1,
using the single cell M..

in the algorithm, a processor only writes if its colour is 1. Each processor will have
colour 1 for. at most one of the subproblems, namely the subproblem corresponding
to where the processor it is simulating wished to write. In fact, this is the only
subproblem that the processor can win. Thus the processor can ignore the rest of
the subproblems. Although many subproblems are being solved simultaneously, each
processor is required to participate in the solution of at most one. [::]

COROLLARY 1.3. If m O(n/c), then COMMON(cm), COLLISION(cm), and
log nARBITRARY(cm) can simulate one step of PRIORITY(m)in O(log(c+l))steps.

Proof. As in the proof of Corollary 1.2, the write conflict resolution problems
for each of the m memory cells of the PRIORITY machine can be treated as sepa-
rate 1-colour MINIMIZATION problems. Each of these m problems will be solved
simultaneously, with c memory cells devoted to each problem.

Essentially, the algorithm described in Theorem 1 or Corollary 1.1 is used. How-
ever, the allocation of processors is done somewhat differently for the computation
of LEFTMOST ONE IN MEMORY and EMPTY MEMORY. The n processors are
divided into groups of c consecutively numbered processors. Since m O(n/c), each
group is responsible for the solution of a constant number of subproblems.

Unfortunately, the LEFTMOST ONE IN MEMORY algorithm requires c2 pro-
cessors, instead, each processor reads one of the c cells of memory and then they
use the 1-colour MINIMIZATION algorithm again to decide which processor read the
lowest index cell containing the value 1. This takes a constant number of steps, since
the number of memory cells and the number of processors are the same. [::]

Unlike the proof of Corollary 1.2, it is not sufficient to have only those processors
that wish to write into memory cell M. participate in the solution of the 1-colour MIN-
IMIZATION problem associated with M.. There may be far fewer than c processors
wanting to write into some cells. Even if there were a sufficient number of processors
wanting to write into each shared memory cell, a processor would not necessarily know
the identities of the other processors working with it. Therefore, it would not know
what to do during the execution of the LEFTMOST ONE IN MEMORY algorithm.

When m O(n1-) for some constant > 0, choosing c n in Corollary 1.3
provides us with constant time simulations of PRIORITY(m), without increasing the
number of processors.

The following lower bound shows that the algorithm in Theorem 1 is optimal, to
within a constant factor. The proof uses a fairly simple adversary argument, which
we present in detail, as it serves as a paradigm for subsequent proofs.

log(n-}- 1)--THEOREM 2. The 1-color MINIMIZATION problem requires at least lo(m+)
tep to olve on ARBITRARY(m).

Consider an algorithm solving this problem. An input o the algorithm is a
specification of the values of all the colours xi. (Recall that zi {0, 1}.) We will use
an adversary argument, constructing an input on which the algorithm requires this
many steps.

The write action of a particular processor Pi at step t depends only on zi and
the sequence of contents (Ho, H1,... ,Ht-1) of the m shared memory cells. Here Hi
is a specification of the contents of memory cells M1, M2,..., Mm immediately before
step i + 1. We call this sequence the history through time t. Given a fixed history,
we say Pi write into My on value v if it attempts to write to memory cell My when
Xi --’V.
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At each step we will "fix" the values of certain input variables and maintain a set
of allowable inputs. The set of allowable inputs will consist of those inputs in which
each fixed variable has the value to which it was fixed. This will be done in a manner
such that all allowable inputs will produce the same history up to that step.

The term position is used to denote the index of an input variable. A position i
is said to be fixed to a certain value if the corresponding variable xi is fixed to that
value. If the variable xi is not fixed, the position i is said to be free. We will maintain
a set S of fixed positions and a set F of free positions such that S U F {1,..., n}.
Associated with each position in S will be the value to which that position is fixed.
Furthermore, we will ensure that, for each free position in F, there will be no lower
numbered positions fixed to 1.

Suppose there are at least two free positions i and j after some step T, and i < j.
Consider the following two inputs: I., in which x and x. are the only variables in
free positions that equal 1, and I., in which x. is the only variable in a free position
that equals 1. Both these inputs put P. in the same state at the end of step T, since
in both P. sees the same input value and the same history. But, for I., %. 1, and for
Ii., %. 0. Thus P. cannot know the value %. after the Tth step. We can conclude
that, when the algorithm terminates, there is at most one free position.

Initially, S b, H0 is the initial contents of memory, and the conditions stated
above are satisfied. Now suppose that, after the tth step, we have fixed a set of
positions S so that all allowable inputs produce the same history (H0,HI,... ,Ht)
through step t. Furthermore, for any free position in F, there is no lower numbered
position fixed to 1. Let ft denote the number of free positions remaining after step t.

We determine Ht+l by fixing certain free positions, as follows.
1) If position i is fixed before step t + 1 and processor Pi writes to some memory

cell M. at step t + 1, then the contents of M. in Ht+l can be fixed by declaring
Pi to win the competition to write into M.. Notice that we do not need to fix
any additional free positions in this case.

2) For all cells M. into which some processor writes on 0 at step t + 1 given history
(Ho,..., Ht), choose one processor Pi. doing so, fix position i. to 0, and declare

Pi. to win the competition to write into M. at step / 1 for all inputs consistent
with S. This fixes the contents of M. in Ht+l to a unique value.

3) Suppose there are r memory cells not taken care of above. Processors only write
on value 1 into these remaining cells. Let f be the number of remaining free
positions. Divide these free positions into r/ 1 nearly equal groups; the first group

/ !_L_will contain the lowest [r+--lJ positions, the second the next..|r+l| positions, and

-/- free positions. For eachso on. The last f mod (r + 1) groups will contain r+l
such cell M., let Pi. denote the processor of highest index writing on 1 into M.
and associate this cell with the group containing Pi.. Since there are r cells and
r + 1 groups, at least one group will have no cells associated with it. Let G be
such a group and suppose that it comprises free positions k through 1. The idea is
that, for each memory cell, by either forcing no processor to write to it or forcing
the highest index processor wishing to write to it to do so, we can provide no

information about group G.
i) Fix all free positions with index less than k to 0. Consider any cell M.

associated with a group consisting of free positions less than k. All processors
that write into M. at step / 1 only do so on 1. However, they will have all
had their colours xi set to 0. Hence, no processor will write into these cells
at step t / 1 for any allowable input and the contents of these cells in Ht+l
will remain as they were in Hr.
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ii) Fix all free positions with index greater than to 1. For any cell M- associated
with a group consisting of free positions greater than l, we declare Pi. to win
the competition to write into M at step + 1 for every allowable input. This
fixes the contents of M. in Ht+l to a unique value.

4) The remaining cells have no processor writing into them on any allowable input
at step t / 1. The contents of these cells in Ht+l will be the same as they were
in Hr.
Intuitively, the number of free positions is cut down by at most a factor of m + 1

at each step. More precisely, if ft is the number of free positions at time t, then
f >_ ft (m- r) and

-O<r<m r’-t21 m+i

Let T be the total number of steps taken by the algorithm. Since fo n and fT <_ 1,
it follows that T > (1.og(n/l) :-1)

log(m-t-l)

It has been shown IRa] that ft( log n )log(m-t-l) steps are required to solve 1-colour

MINIMIZATION on ARBITRARY(m) even if processors are allowed to make random
choices to determine their behaviour at each step.

3. Simulating ARBITRARY(I) by weaker models. The preceding section
demonstrated a separation between PRIORITY(l) and ARBITRARY(m). We can
show a similar separation between ARBITRARY(l) and COMMON(m) and between
ARBITRARY(l) and COLLISION(m) by considering the following problem.

m-colour REPRESENTATIVE.
Before: Each processor Pi, for i 1,..., n has a colour x E {0,..., m} known only

to itself.
After: Each processor P knows the value a E {0, 1}, where a 1 for exactly one

processor among those with each particular nonzero colour c.

Notice that the m-colour REPRESENTATIVE problem requires only one step on

ARBITRARY(m).
THEOREM 3. On COMMON(m) or COLLISION(m), the 1-colour REPRESEN-

TATIVE problem can be olved in 0 o(m+) tep.
Theorem g, in fact, follows easily from Corollary 1.1, as any solution to the

1-colour MINIMIZATION problem is also a solution to the 1-colour REPRESEN-
TATIVE problem. The following theorem provides the separation between ARBI-
TRARY(I) and COMMON(m).

TI-IEOaEM 4. On COMMON(m), he 1-eolour REPRESENTATIVE problem re-
log nquires at least og(m+l) steps to solve.

Proof. The proof is similar to that of Theorem 2; here we merely sketch the
differences. As before, we maintain a set S of fixed positions, a set F of free positions,
and Ht, a specification of the contents of the m memory cells after step t. In this
proof, we only fix positions to the value 0, but we do not allow the all-zero input. All
other consistent inputs are allowed. The number of free positions is initially n.

Suppose there are at least two free positions i and j after some step T. Consider
the following three inputs: Ii, in which x is the only variable that has value 1, I.,
in which x. is the only variable that has value 1, and I., in which x and x. are the
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only variables that have value 1. Both I and Iij put Pi in the same state at the end
of step T, since in both Pi sees the same input value and the same history. Similarly,
I. and Ii. both put P. in the same state at the end of step T. For Ii, ai 1 and
for I., %. 1. If step T is the last step of the algorithm, then, for Ii., ai a. 1.
This contradicts the fact that the algorithm solves the 1-colour REPRESENTATIVE
problem. We can conclude that, when the algorithm terminates, there is at most one
free position.

Given the set of fixed positions S and the history (Ho, H1,..., Ht), through time
t we need to show how to fix some free positions in a way that defines Ht+. Those
memory cells into which no processors write on either 0 or 1 retain their values.
Memory cells that are written into by some processor on 0 (including any processors
in a fixed position) are handled as in the proof of Theorem 2.

The difficulty occurs for those cells into which processors write only on 1. Let the
set of indices of such cells be denoted C. For j E C, let W. be the set of processors
in the remaining free positions that, at step t + 1, write on 1 into M. and let Wo be
those that do not write on 1 at this step. Note that none of these processors write
into M. on 0 for any j E C.

Now, the number of remaining free positions is at least IFI- (m- ICI). Thus,
for some j C U {0}, it follows that

I%1 > IFI- / ICl > Ir.___l
ICl+l -.,,+1

For one such j, we fix the colours of all processors not in W. to 0. This defines the
contents of all memory cells Mk with k C- {j}. Specifically, their contents in Ht+l
remain as they were in Hr.

Finally, when j C, consider the processors in W. There is an allowable input
in which all these processors have colour l and, thus, they must all write the same
value on 1. Since we prohibited the all 0 input, all allowable inputs result in at least
one processor in W. receiving an input value that causes it to write at this step. Thus
Ht+ is determined, at the cost of cutting down the number of free positions by at
most a factor of m / 1. As before, we can define a recurrence bounding the number
of free positions at step t and conclude that Theorem 4 is true.

A lower bound of fl io’g(r+’l) steps holds for the 1-eolour REPRESENTATIVE
problem on COMMON(m) even if processors are allowed o make random choices IRa].
The following heorem provides an analogous separation between ARBITRARY(I)
and COLLISION(m).
THOR 5. On COLLISION(m), the 1-eolour REPRESENTATIVE problem

log(n+ 1)--log 3requires at least ’log(re’+1) steps to solve.

Proof. The proof of this theorem is very similar to that of Theorems 2 and 4.
We must define the set of consistent inputs to be those with at least two l’s in free
positions, in order to enable us to fix collisions in a history. It is not difficult to reason
that, as long as there are at least three positions left free by the adversary at the
end of the algorithm, there is an input on which the algorithm answers incorrectly.
(The conclusion follows easily from the fact that any processor Pi cannot distinguish
consistent inputs that agree on the private bit of Pi.)

In the course of fixing the history in a cell after a particular step, there are
three cases to consider: where no processors write into that cell, where exactly one
processor writes, and where two or more processors write. The precise details of how
to fix positions are thus slightly more complicated than those of Theorem 4, but no
new techniques are involved. A recurrence for the number of free positions left after
steps can be defined, and the result obtained. W]
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4. A lower bound for COMMON(I) and its applications. We say that a
PRAM with one cell M of shared memory computes a surjective function f {0, 1 }n
R for some range set R if, at the beginning of thecomputation, Pi has the ith argument
(denoted by xi) in its local memory and, at the end of the computation, the value of
f(x, x... Xn) appears in. M.

Our definition can be thought of as public computation, since the answer must
appear in shared memory. The REPRESENTATIVE and MINIMIZATION problems
defined earlier can be thought of as private computation, since each processor is re-
quired to compute a private answer bit ai. A good lower bound for public computation
can lead to a good lower bound for private computation if (al, an,.., an) can be made
public in a small number of steps. For example, in 1-colour MINIMIZATION, the
unique processor with ai 1 can take one more step and write i into M.

The following theorem gives a lower bound on the number of steps required to
publicly compute any function on COMMON(l). The lower bound depends only on
the number of function values that are possible.

THEOREM 6. On COMMON(l), any algorithm that publicly computes a surjec-
tive function f: {0, 1}n ---. R requires at least [log3 IRI] steps for some input.

It is important to notice that Theorem 6 does not apply to private computation.
For example, no communication is required to privately compute the answer bits
(al,....,an) given the input bits (Xl,...,x), where ai zi for i 1,...,n. However,
by Theorem 6, a linear number of steps must be performed to publically compute the
identity function id: {0, 1}n ---+ {0, 1}n on COMMON(l).

Furthermore, Theorem 6 does not apply when the domain is cleft, that is, a proper
subset of {0, 1}n [Re]. Consider the case where inputs are restricted so that in all valid
input, exactly one input variable has value 1 and the function to be computed is the
index of that variable. This function has a range of size n, but only requires a single
step to publicly compute on COMMON(I).

Although the theorem, as stated, applies to the case of a single shared memory
cell, it is powerful enough to use in a more general setting.

LEMMA 6.1. T steps of COMMON(m) can be simulated by mT steps of COM-
MON(l).

Proof. Each processor in COMMON(l) keeps a picture in its local memory of
what shared memory on COMMON(m) would contain at the corresponding step. The
simulation of each step of COMMON(m) proceeds in phases: in the ith phase, the
single cell in the simulating machine takes the role of Mi in the simulated machine. All
processors that would write the value v into Mi on COMMON(m) at this step write
the ordered pair (v,i) into M1 on COMMON(l). Then all processors read M1 and
update the contents of Mi in their picture of the shared memory of COMMON(m).
Each phase takes one step and so one step of COMMON(m) is simulated by rn steps
of COMMON(I). W1

COROLLARY 6.2. On COMMON(m), any algorithm that publicly computes a sur-

function f’{0, 1}n--* R requires at least [(lgIRI)] steps for some input.jective

When COMMON(m) publicly computes a function, we require the value of the
function to appear in shared memory at the end of the computation, but it may be
distributed among the rn shared memory cells. Note that this definition of computa-
tion is particularly weak when rn is large; consider the identity function, whose value
is just an n-tuple consisting of the input bits. When m n, this can be publicly
computed in one step under our definition; but Beame [B] has shown that if the tuple
must appear in a single cell, f(logn) steps are required on PRIORITY(n(1)).

By specifying a particular function to be computed, we can separate the ARBI-
TRARY and COMMON models, with the separation varying as a Mnction of the size
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of shared memory.
COROLLARY 6.3. Simulating one step of COLLISION(km) on COMMON(l) re-

quires (kmlog(n/km)) steps; on COMMON(m), it requires (klog(n/km)) steps.

Proof. Partition the input positions into m groups of size Ln/kmJ or Ln/kmJ + 1,
and consider the function f defined on domain {0, 1}n whose value is an km-tuple
(a,a,... ,akin) such that ai j if x. is the only variable in group i with value 1 and
ai 0 if either no variable or more than one variable in group i has value 1.

This function can be publicly computed in two steps on COLLISION(km), as-
suming each shared memory cell is initialized to 0. In the first step, each processor
Pi in group j writes i into M. on value 1. Each processor Pi, for i 1,..., m, then
reads cell Mi and, if it sees the collision symbol, writes 0 into Mi at the second step.

The function f has at least ([k--J)km possible values. Applying Theorem 6
and Corollary 6.2 give lower bounds of (kmlog(n/km)) and (klog(n/km)) for
COMMON(l) and COMMON(m), respectively.

By letting k 1, Corollary 6.3 proves a separation between COLLISION(m) and
COMMON(m) when rn o(n). In particular, when m O(n1-) for some constant
e > 0, (log n) steps are required.

We introduce some terminology to be used in the proof of Theorem 6. The tree
of possible computations has nodes that intuitively correspond to the different states
that the PRAM can be in during the course of the computation. Formally, with each
node v at depth t, we associate a history (Ho, H,..., Ht) and a set I consisting of
all inputs that generate this history through step t. An input is said to reach node v
if it is a member of I.. The children of v correspond to all possible extensions to the
history at v; each child is labelled with a different extension (Ho, H1,..., Ht, Ht+l).
The last entry in the history associated with a leaf of the tree will be the function
value for all inputs that reach that leaf.

The statement of the theorem has an "information theory" flavour, and if we could
show that the degree of fanout in the computation tree is bounded by a constant, the
result would follow easily. Unfortunately, arbitrarily high fanout is possible, as the
example with cleft domain showed. The intuition behind this theorem is that a node
of high fanout corresponds to a step at which many different values can be written,
depending on the input. Since for a particular input, two processors may not attempt
to write different values, this implies that some knowledge of "mutual exclusion" can
be inferred from the history. In the example with cleft domain, the knowledge that
only one processor had an input variable with value 1 allowed n different values to be
written at step 1, depending on the input. We will show that this "mutual exclusion"
takes time to set up and is not reusable.

With each node v in the computation tree, we can associate a formula f in
conjunctive normal form, whose variables are the private input bits . This formula
will have the property that the set of inputs Iv associated with this node is exactly
the set of inputs that satisfy the formula f.. The construction of these formulas will
proceed by induction on the depth of a node. Formulas will have two types of clauses:
trivial clauses will contain exactly one literal, and nontrivial clauses will contain more
than one literal.

For the root r of the computation tree, we define fr to be the empty formula. Now
suppose we have a node w with associated history (Ho, Hi,..., Ht-1) and associated
formula fw. Suppose, furthermore, that w has a child v and that the history at v is
the history at w extended by the value Hr. This means that for some inputs in Iw,
the content of M after the tth step is the value Hr. The action of any processor at
step t for an input in Iw is completely determined by the history through step t- 1
(the history associated with w, which is the same for all inputs in Iw) and by the
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processor’s private input bit xi. Thus, it is possible to determine which private bit
values would cause processors to write Ht.

For inputs that reach v, at least one processor must have a value that causes it to
write Hr. Thus inputs with history (Ho, HI,..., Ht-1, Ht) must satisfy f and also a
clause consisting of the OR of the literals corresponding to these possible bit values.
For example, if P1 writes Ht when Xl 1, and P:2 does so when x:2 0, then the
added clause would be (Xl V -ff). This is the only (possibly) nontrivial clause that
we add. In two cases we do not add such a clause: when one processor Pi writes
regardless of what its private bit is, and when no processor writes, i.e., Ht Ht-1.
Since there is only one memory cell, each processor reads its content during every read
phase. Therefore, we can assume, without loss of generality, that processors write into
the memory cell M only to change its value.

All possible bit values that would have resulted in something other than Ht being
written will result in additional trivial clauses. For example, if P3 would have written

H (different from Ht) if x3 1, we add the trivial clause (-), since the fact that
Ht and not H was written implies that x3 0. We can also substitute these known
values into other clauses. In our example, a clause containing the literal x3 would have
that literal removed; a clause containing the literal - would be entirely removed. This
simplification is crucial to our proof, as it removes nontrivial clauses.

LEMMA 6.4. If a node w with q children has a formula fw with c nontrivial
clauses, the formula at each child of w has at most c + 3-q nontrivial clauses.

Proof. If q _< 2 this follows from the construction, as at most one nontrivial
clause is added. Thus we may assume q > 2. There are q possible extensions of the
computation history at this node. One of them could correspond to the case where
no one writes (Ht Ht-), but there are at least q- 1 different values that could be
written at the next step.

No processor may write more than one of these values, for otherwise that processor
would always write, and w would have exactly two children. For each value written,
we arbitrarily select one processor that writes it; assume without loss of generality
that for i 1, 2,..., q- 1, value I is written by Pi at this step if literal li is true.
(Note that li is either xi or .)

The formula f implies that at most one of the literals l,l,..., lq-1 is true.
Otherwise, there would exist an input in iw for which two different processors would
attempt to simultaneously write different values, a violation of the COMMON model.

Now consider the formula fv at the child v of w that corresponds to Vq-1 being
written. This is Created by first adjoining one nontrivial clause to f, and also some
trivial clauses as a result of the knowledge that 11,1:2,... ,lq-2 are all false. This
knowledge also results in some substitutions. Let (h,,..., n) be an input
in I which makes/q-1 true. Since I is a subset of iw, the input satisfies f and
makes each of the literals ll, l,..., lq_:2 false.

For j 1,..., q- 2, let be the input obtained from by complementing .
(i.e., P makes both l. and lq-1 true). The input P cannot satisfy f, because it
makes two literals in {l, l,..., lq-1} true. Let C. be some clause in f that P does
not satisfy. Since there exists an input in I which makes l. true, and another that
.makes l. false, C. must be nontrivial. The only difference between and is in the
value of the jth bit. Thus C must contain the literal l.. Furthermore, l. is the only
literal in C. that makes true.

Note that C. contains the literal 1- and i makes l. false. Thus i satisfies C,
but not Ci. Hence, for 1 <_ i < j

_
q- 2, the clauses Ci and C. are distinct.

Consider the creation of fv. The substitutions that follow from the knowledge
that l, l,..., lq_:2 are false will remove the nontrivial clauses Ci, for i = 1,.. ,, q- 2.
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Thus fv can have at most c- (q- 2) + 1 nontrivial clauses, as required. A similar
argument works for the other children of v; in fact, the child that corresponds to the
case when no process writes will have at most c / 2 q nontrivial clauses. [-’]

The importance of Lemma 6.4 is that, although we cannot bound the degree of a
node in the computation tree, high degree requires accumulating and then destroying
nontrivial clauses, and only one nontrivial clause is accumulated per level. We use
this idea to prove the following lemma.

LEMMA 6.5. The maximum number of leaves in a computation tree of height h
is 3h

Proof. Let L(s, h) be the maximum number of leaves in a subtree of height h
whose root formula has s nontrivial clauses. By Lemma 6.4, we have

L(s, 1) _< s + 3 and

L(s h) < max _{q.L(s+3-q,h-1)}.
2_q_s+3

This can be shown by induction on h to satisfy the inequality L(s, h) <_ (3 + s/h)h
The base case is obvious; suppose the statement is true for h < k. Then

L(s,k) < max {q. L(s + 3-q,k-1)}

< max q ;3 +
2(_q_sd-3 k- 1

The quantity inside the curly brackets, considered as a function over real q, can be
shown by elementary calculus to reach its maximum at q 3 + s/k. This yields
L(s, k) _< (3 + s/k) k, as required.

Theorem 6 then follows from the fact that each leaf of the computation tree can
be labelled with at most one function value. All function values must appear, so the
tree has at least IRI leaves. By Lemma 6.5, the computation tree must have height at
least [log3

We can extend this result and obtain a theorem similar to Theorem 6 for prob-
abilistic algorithms. In the probabilistic COMMON model, each processor is allowed
to make random choices to determine its behaviour at each step. We insist that no
sequence of choices results in two processors attempting to write different values into
the same cell at the same time. Theorem 7 gives a bound on the expected number of
steps to compute a function in terms of the size of its range.

THEOREM 7. In the probabilistic COMMON(l) model, any algorithm that pub-
licly computes a surjective function f {0, 1}n -- R has an expected running time of
at least [loga IRIJ steps on some input.

As in Corollary 6.3, we obtain a logarithmic separation between the probabilis-
tic COMMON(m) model and the deterministic ARBITRARY(m) model, for rn
O(n-) where e is a positive constant. In this case, randomization does not help the
COMMON model to simulate the more powerful model.

Theorem 7 is proved using the following two lemmas.
LEMMA 7.1. The sum of the root-leaf distances to any set S of leaves in a tree

of possible computations is at least
Proof. Let us define a tree skeleton to be a tree whose nodes can be labelled with

nonnegative integers, such that the root is labelled with zero, and any node labelled
with s that has q children has each child labelled no higher than s + 3.- q. Lemma 6.5
is actually a statement about tree skeletons; any computation tree leads in a natural
way to a tree skeleton, where the label of a node is just the number of nontrivial
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clauses in its formula. Let S be our set of chosen leaves and let Q be the sum of the
root-leaf distances. We can prune away everything but the root-leaf paths to leaves
in S. This still leaves a tree skeleton, since deleting a node does not invalidate the
labels of its siblings. The pruning also leaves Q unchanged.

We can then transform the tree skeleton in a way that will never increase the sum
of the ro0t-leaf distances to leaves in S. Suppose we can find two leaves Vl and
where vi is at depth ti and tu t

_
2. We add two children v, v to Vl, label them

with the same number as Vl, and delete v. We remove Vl, v from S and add v, v.
Continuing in this fashion, we can obtain a tree skeleton and a set S of leaves,

where IS S’[, and the depths of all leaves in S’ differ by no more than 1. Lemma
6.5 implies that the depth of each leaf is at least [loga S]J. Since the sum of root-leaf
distances to leaves in S’ is less than or equal to Q, the result follows.

LEMMA 7.2. Let T1 be the expected running time for a given probabilistic algo-
rithm solving problem P, maximized over all possible inputs. Let T be the average
running time for a given input distribution, minimized over all possible deterministic
algorithms to solve P. Then T T.

Lemma 7.2 was stated by Yao [Y] in a stronger form; the weak form here can
be proved in a few lines. We can consider a probabilistic algorithm as a probabilistic
distribution of deterministic algorithms. Let A be our set of deterministic algorithms,
and I our set of inputs. Let r[Ai, I] be the running time of algorithm Ai on input I.
Suppose our given probabilistic algorithm chooses to run deterministic algorithm Ai
with probability pi, and that our given input distribution gives probability q to I.
Then

IjI
AA

qJ Pir[Ai,Ijl
II AA

Pi qjr[Ai,
AjA

> min {qjr[Ai,Ij]}AA IjI

T.

We wish to bound T1 from below. By Lemma 7.2, it suffices to bound T2 from
below. To do this, we must specify an input distribution that results in a large average
running time for any algorithm to compute f. This input distribution must depend
on f, but not on a particular program. For each possible value of f, choose one input
that results in that value. This selects a set of IR inputs; our chosen distribution will
give probability 1/IR to each of these.

To bound T from below for this distribution, consider the tree of possible compu-
tations associated with some deterministic algorithm. Our set of inputs reaches some
set of IR leaves. Then the expected running time on the given input distribution is
the average depth of these leaves which, by, Lemma 7.1, is at least [log3 IRIJ. This
proves Theorem 7.

By a more careful analysis, the base of the logarithm in the lower bounds of
Theorems 6 and 7 can be reduced to 1+v/. It is possible to define a somewhat artificial
family of functions {fi} such that fi has range Ri and can be publicly computed in

logz IRi + O(1) steps on COMMON(l), where 1,--2/ IRa].
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5. The relationship between COMMON and COLLISION. It is not im-
mediately obvious whether COMMON is at least as powerful as COLLISION, whether
COLLISION is at least as powerful as COMMON, or whether the power of these two
models are incomparable.

To begin with, consider the following problem.

EXACTLY ONE.
Before: Each processor Pi, for i = 1,..., n, has a bit xi known only to itself.
After: M1 contains the value 1 if and only if exactly one bit xi is initially one.

If M1 is initialized to 0, the EXACTLY ONE problem can be solved on COLLI-
SION(I) by having each processor Pi write the value 1 into M1 when xi 1. However,
in a model without the ability to detect collisions, it can take significantly longer.

loT nTHEOREM 8. The EXACTLY ONE problem requires at least log(m+) steps to
solve on COMMON(m).[::]

The proof of this result is essentially identical to the proof of Theorem 4. It then

( lon )follows that O og(m+) steps on COMMON(m) are needed, in the worst case, to

simulate one step of COLLISION(l). The lower bound comes from Theorem 8, and
the upper bound follows from the simulation of ARBITRARY by COMMON given
in Theorem 1 and the fact that ARBITRARY can simulate COLLISION in constant
time (as observed in 1).

Conversely, consider the following problem which can be solved in a constant
number of steps on COMMON(1).

k-GROUP IDENTIFICATION.
Before: The processors are divided into k groups of size s or s + 1, where s [n/kJ.

Each processor knows the indices of all other processors in its group. Each
processor Pi, for i 1,..., n, has a private bit xi E {0, 1} known only to
itself. Furthermore, for 1 <_ i,j <_ n, if xi x. 1, then Pi and P. are in
the same group.

After: M contains the value a :/= 0 if and only if xi 1 for some processor Pi in
group a. M contains the value 0 if and only if all input variables are 0.

THEOREM 9. On COLLISION(m), the [x/J-GROUP IDENTIFICATION prob-

lem require f log(m-t-i) tep o olve.

Pro@ The proof is similar to that of Theorems 2,4, and 15. In addition to
maintaining a set S of fixed positions, a set F of free positions, and the history
(Ho, HI,...,Ht) through time t, we maintain a set A

_
{1,..., [-]} of groups

whose positions have not yet been completely fixed. Positions are fixed only to 0.
Allowable inputs are consistent with the fixed positions and also with the restriction
mentioned in the tatement of the problem.

At each step of the construction, we not only fix individual positions within groups
to 0, but fix whole groups to 0 as well. It is possible to do this in such a way that if

after step t. Purthermore, if b is a lowerIAI before step t, then it has sie
bound for each a E A, on the number of free positions in group a, then b-1 is & lower
bound afterwards. This is essentially done by associating with each group the cell into
which the most processors in that group write on 1, and then finding the cell that is
associated with the most groups. All groups not associated with that cell are fixed to
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0 and removed from A; all processors in groups associated with that cell that write
on 1 into different cells have their positions fixed to 0. As long as two free positions
remain in two different groups, the algorithm cannot answer. Again, the details are
omitted.

The above result is somewhat unsatisfying. In an essential way, the proof depends
on the fact that the k-GROUP IDENTIFICATION problem has a cleft domain. Re-
call, this means that the input is a proper subset of (0, 1)n. Such an unrealistic
assumption might never arise in the computation of a function defined on the domain
(0, 1}n. Indeed, the following theorem shows that COLLISION(l) is at least as power-
ful as COMMON(l) for computing functions on the domain (0, 1}n. This simulation
result uses the same structure that was used in the lower bound result of Theorem 6.

THEOREM 10. The public computation of any function f’(0, 1}n R requires
at most twice as many steps on COLLISION(l) as it does on COMMON(l).

Proof. We show how to convert any algorithm that publicly computes a function

f {0, 1}n --, R on COMMON(I) into an algorithm, using at most twice as many steps,
that works on COLLISION(I). This new algorithm simulates the original algorithm
in a step by step fashion, using two steps to simulate each step of the COMMON(I)
algorithm.

For any input, the COLLISION(I) algorithm will produce a history (Ho,H,...,
H2t) through step 2t, with the property that (Ho, H,..., H2t) is the history through
step t produced by the COMMON(I) algorithm on that input. Thus, the set of inputs
I, that reach any even depth node v in the tree of possible computations for the
COLLISION(I) algorithm is a subset of Iv, for some node v occurring at the half the
depth in the tree of possible computations for the COMMON(1) algorithm. The node
v’ will be called the COMMON(l) node corresponding to v.

The COLLISION(I) algorithm is obtained from the COMMON(I) algorithm as
follows. At any even depth node in the COLLISION(I) algorithm, each processor P
writes its index i, provided processor Pi writes on the input xi at the corresponding
COMMON(I) node. Without loss of generality, we will assume that all the values
written in every possible execution of the COMMON(I) algorithm are distinct from
the processor indices 1,...,n. If no write takes place, then, at the next step, the
processors do nothing, if the value i appears in the shared memory cell, indicating
that processor Pi was the only processor attempting to write, then processor Pi writes
the value it would have written in the COMMON(I) algorithm. Finally, if a collision
occurred, then processor P writes the value that would have been written into the
shared memory cell in the COMMON(I) algorithm. It remains to show that there is
enough information for processor P1 to determine this value.

As in the proof of Theorem 6, the set of inputs I., that reach a node v’ in the
COMMON(I) tree can be described by a Boolean formula f., in conjunctive normal
form. For each even depth node v in the COLLISION(I) tree, the Boolean formula
f., associated with the corresponding COMMON(I) node v’, is satisfied by each input
in Iv. This is because Iv C_ Iv,. There is additional information about the input that
the COLLISION(I) algorithm also accumulates during the course of the simulation.

CLAIM. For each (nontrivial) clause in f,,, either every input in I, satisfies at
least two literals in that clause (although not necessarily the same literals for different
inputs) or there is a particular literal in that clause which is true for all inputs in I,.

Proof. The proof of this claim proceeds by induction on the depth of the node v.
If v is the root of the COLLISION(I) tree, then the root of the COMMON(I) tree is
its corresponding node. Its associated formula, the empty formula, has no clauses. In
this case, the claim is satisfied.

Now suppose v has depth 2t, where t >_ 1, and assume that the claim is true for
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the grandparent w of v. Let w’ and v’ be the COMMON(I) nodes corresponding to
w and v, respectively.

Consider the history (Ho, H1, H2,..., Ht-1, H2t) through step 2t produced by
the COLLISION(l) algorithm on inputs in Iv. By construction, no write occurs at
step 2t- 1 in the COLLISION(l) algorithm (i.e., Ht-1 H2t-2) if and only if no
write would have occurred at step t in the COMMON(l) algorithm..In this case,
each nontrivial clause in fv, is also a nontrivial clause in f,. Since Iv c_ I, there is
nothing to prove.

Otherwise, node v is the child of w’ arising when the value H2t is written at the
tth step in the COMMON(1) algorithm. Compared to fw,, the formula fv, contains at
most one additional nontrivial clause, consisting of the literals corresponding to those
private bit values that cause processors to write the value Ht.

If H2t-1 is the index of processor Pi, then, for every input in Iv, Pi is the only
processor that writes at step 2t- 1 in the COLLISION(l) algorithm. Thus, the literal
(either x or -/) causing P to write the value H2t at step in the COMMON(l)
algorithm is true for all inputs in Iv. Notice that the additional nontrivial clause in
fv,, if there is one, contains this literal, thereby satisfying the conditions of the claim.

Finally, if H2t-1 is the collision symbol, then, for every input in Iv, at least two
processors write at step 2t- 1 in the COLLISION(l) algorithm and, therefore, would
have written at step t in the COMMON(l) algorithm. Hence at least two literals in
the additional clause are true. This concludes the proof of the claim. [--1

We are now ready to complete the proof of Theorem 10. Let v be a node of
depth 2t in the COLLISION(I) tree and let u be the child corresponding to a collision
occurring at step 2t / 1. We will show that the values written by any processor at the
(t + 1)st step of the COMMON(I) algorithm, for any input in Iv, are all the same.
Hence, P can determine this value from its knowledge of Iv and the programs of the
other processors.

Let a be an input in Iu and assume that there is another input in Iv for which, at
the (t / 1)st step in the COMMON(l) algorithm, a different value is written. Suppose
that P. is a processor writing this other value and that it does so because literal l. 1.

Consider the input b obtained from a by making l. 1. Then b Iv,; otherwise
the COMMON model would be violated. Since a collision occurs, two or more true
literals occurring in a cause a particular value to be written. Thus at least one
processor would write that value at step t / 1 on input b. Since l. 1 in b, P
would simultaneously write another value.

Because a E Iv, and b Iv,, fv,(a) 1 and fv,(b) O. Now fv, is a formula
in conjunctive normal form. Therefore fv, contains a clause g such that g(a) 1
and g(b) O. Since b is obtained from a by changing l. from 0 to 1, l. is the only
literal in g satisfied by a. By the claim, l. 1 is true for all inputs in Iv. This is a
contradiction.

6. Simulating PRIORITY(kin) by ARBITRARY(m). Section 2 consid-
ered the simulation of PRIORITY machines by ARBITRARY machines with more
memory. Here we study the "complementary" problem of simulating PRIORITY ma-
chines by ARBITRARY machines with less memory. As a corollary, we obtain a
separation between PRIORITY and ARBITRARY machines with the same amount
of memory.

Our goal is to solve the km-colour MINIMIZATION problem in the ARBITRA-
RY(m) model. This can clearly be done in time O(k log n), by dividing the colours
into k groups of m colours and solving one group at a time by the algorithm of
Theorem 1. A proof similar to that of Corollary 6.3 shows that the km-colour MIN-
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IMIZATION problem requires f2(kmlog(n/km)) steps on COMMON(l), and thus
ft(k log(n/kin)) steps on COMMON(m). In fact, it is possible to do considerably bet-
ter on ARBITRARY(m), as the following theorem and corollary demonstrate. Hence
ARBITRARY is another example of a computational model in which "mixing" the
computation of several functions on disjoint sets of inputs enhances efficiency. Boolean
and arithmetic circuits also exhibit this property (IF], [U], [AHU]).

THEOREM 11. On ARBITRARY(I), the m-colour MINIMIZATION problem can

be solved in 0 (mlogn) steps.log m

When m O(ne) for some constant e > 0, this upper bound O(m) matches the
trivial lower bound. In comparison with algorithms that solve the problem one colour
at a time, this solution uses an average of O(1) steps per colour. This disproves a
conjecture of Vishkin IV].

The idea is to try to solve the m different problems concurrently, although we
have only one common memory cell. We say that a processor Pi has colour c if x c.
For each colour c, processors maintain an ordered set Sc c {1,..., n} and a "current
winner" wc {1,..., n, x} Sc. If Wc < x, then Wc is the smallest index of any
processor globally known to have colour c. When there is no processor that is globally
known to have colour c, as is the case initially, Wc cx. The set Sc consists of the
indices of those processors that may replace the current winner. In particular, i Sc
implies that i < wc. Initially, Sc {1, 2,..., n}.

The algorithm proceeds in phases. In a single phase, each set S is shrunk by
approximately a factor of m. When Sc for all c, the algorithm can halt.

At the beginning of a phase, each set S is divided into m pieces Sc, Sc2,..., Sm
of size at most [ sm]l, where the processors in S have lower indices than those in Sb

for a < b. The goal in a phase is to publicly determine, for each colour c, the first
group among Sc1, Sc, Sm containing the index of some processor having colour c.
Then Sc is updated appropriately.

Conceptually, these sets are arranged in an m m array; the entry in row c and
column i is Sc/. At each step of the phase, we either eliminate a row or the leftmost
column of the array. The set C will consist of those colours whose rows have not yet
been eliminated in this phase.

If processor P. has colour c and j belongs to the group in the leftmost column
of the row corresponding to colour c, then it attempts to write its index and colour
into memory cell M1. Throughout the phase, the invariant is maintained that for any
colour c C, no processor with that colour lies in Sc for any eliminated column k.
Hence, when (j, c) appears in M1, any processor having colour c and with index lower
than j must be in the group currently in the leftmost column of row c. In this case,
row c is eliminated from the array. If no write occurs at a given step, then none of
the groups in the leftmost column contain the winner for their row and the column
can be eliminated. More formally, the phase proceeds as follows.

C {1,2...m}
i+--1
While C - and i < m do

If j E S. and z E C, processor P. will attempt to write (j, z-) into
M1.
If (j, c) appears in M1

Remove c from C, set wc P, and shrink Sc to {k S k < j}
Otherwise set i i + 1.

At each step, either IcI is decreased by one or i is increased by one. A phase thus
takes at most 2m 1 steps, and any set S which was of size s before the phase is of
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s (logn)phases suffice.size at most Ims-] 1 < at the end of the phase. Thus O log m

COROLLARY 11 1 One step of PRIORITY(kin) can be simulated by 0 log k

steps of ARBITRARY(m), for k > 1.
Proof. Simulating one step of PRIORITY(kin) is equivalent to solving the km-

colour MINIMIZATION problem; divide the colours into m groups of k colours each,
and use the algorithm above to solve each group in parallel.

The following lower bound proves this procedure optimal for km O(nl-e), and
proves a separation between PRIORITY(m) and ARBITRARY(m).

THEOREM 12. The km-colour MINIMIZATION requires log(k-t-l) steps to

solve on ARBITRARY(m).
COROLLARY 12.1. ARBITRARY(m) requires at least (log(n/m)) steps to sim-

ulate one step of PRIORITY (m).
To simplify the proof of Theorem 12, we divide the processors into km groups of

size at least [n/kmJ, and declare that the processors in group i will have colour either
i or 0. Note that we can define this restricted problem over domain {0, 1}’.

We maintain a history Ho, H1..., a set S of fixed positions, and a set F of free
positions. Initially, the processor of highest index in each group has its colour fixed
to 1, and all other positions are free. We maintain the invariant that for any free
position, there are no positions of lower index that are within the group and fixed to
1.

Our measure of the algorithm’s progress against the adversary strategy will be
by means of a potential function. If there are si free positions in group i, then this

kmfunction has value i=l logk+l(Si - 1). Initially, then, the function has value at
least km logk+ (n/km). We shall show that the adversary can fix positions in such a
fashion so that the history is determined through step t and the value of this function
decreases by at most ctm, for some absolute constant c.

As long as there is at least one free position (that is, the value of the potential
function is nonzero), the algorithm has not solved all colours, thus establishing the
lower bound.

Given history Ho, Hi... Ht, and the fact that group i contains si free positions,
we show how to fix Ht+l and cause a drop in the potential function of at most cm.
Initially, the contents of each cell in Ht+l are unfixed. Suppose the free positions in
group i at any point are j, j, is. We define loweri to be the lowest -stl of the
free positions in group i, that is, positions jl through JFs/(k+)]. upperi is defined to
be all free positions in group i not in loweri.
1) If a processor in any fixed position writes at step t + 1 into an unfixed cell, declare

one such processor to win the competition to write into that cell for all allowable
inputs. The value of the potential function does not change. Repeat this step
until all cells are fixed or no such processor exists.

2) If any processor in any free position writes on 0 into an unfixed cell, choose one
such processor, fix its colour to 0, and declare it to win the competition to write
at time t + 1. If it is in group i, then the potential function drops by

1ogk+ 1(Hi + 1) 1ogk+ Si 1ogk+ (1 - <_ logk+ 1(2) <_ 1.

Repeat this step until all cells are fixed or no such processor exists.
3) Once the first two cases are taken care of, then processors write into unfixed cells

only if they receive their colour. If there is a processor P. in a free position in
group i such that P. writes into an unfixed cell on colour i, and j E upperi, then
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fix upperi to colour i and declare P. to win the competition to write into that
cell for all consistent inputs. The potential function drops by at most

lOgk+l(8j + 1)- 1ogk+ k+ 1
1.

Repeat this step until all cells are fixed or no such processor exists.
4) Fix loweri to 0 for all groups. This ensures that no processor writes into any

unfixed cells at this step, for any consistent input. The drop in the potential
function is at most

/m km

((sj+l)) (k-t-l)Z 1ogk+ (Sj + 1) Z 1ogk+ S" + 1 mlog/+l
j=l j=l

k + 1 k

< cm for some constant

Steps 2 and 3 of the adversary argument can be repeated at most m times, since
each step fixes one cell. Hence these steps cause a potential drop of at most m. The
total potential drop is thus at most (c

The proof of Theorem 12 is a generalization of the argument used for the case
m 1 in IRa], and of the similar argument used in [LY2] to prove a weaker lower
bound for the case k 1, when inputs are stored in read-only memory.

7. Conclusions. In this paper, we have thoroughly investigated the problem
of simulating one step of a machine with one shared memory cell by another with m
shared memory cells. If the domains of the functions being computed can be arbitrary,
then either the programs for the first machine can be run directly on the second or

( 18n )19 og’(m/i) steps are required. When the domain of the function i8 {0, 1}n, the

results are, for the most part, the same. The only exception is that, in this case,
COMMON(l) can be simulated by COLLISION(l), and hence by COLLISION(m),
in constant time.

The converse problem of simulating one step of a machine with m shared memory
cells by another with one shared memory cell is not as well understood. The complexity
of simulating PRIORITY(m) by ARBITRARY(l) is 0 (.mogn)ogm For COMMON(l)
simulating PRIORITY(m), ARBITRARY(m), or COLLISION(m) the lower bound
can be improved to t(m log(n/m)). However, our upper bound is O(m log n).

The upper bound for COLLISION(l) simulating PRIORITY(m), ARBITRA-
RY(m), or COMMON(m) is the same, except when COMMON(m) is computing
a function with domain {0, 1}n. In this case, an O(m) upper bound follows from

Lemma 6.1 and Theorem 10. This is clearly optimal The (miogn) lower boundlog m

for simulating PRIORITY(m) on COLLISION(l) is a direct consequence of the lower
bound on ARBITRARY(1).

The case of simulating a model with m cells by another with m cells is also not as
well understood. We have shown that the complexity of simulating COLLISION(m) by
COMMON(m) or simulating PRIORITY(m) by ARBITRARY(m)is 12(log n-log m).
For small values of m, i.e. m O(n-) for some constant e > 0, these results are
tight to within a constant factor. Nothing is known about the complexity of simulating
COMMON(m) by COLLISION(m) (for m > 1) except the upper bounds of O(log n)
(implied by Corollary 1.1) and O(m) (implied by Theorem 10). Is it possible to do
this simulation in O(1) time?
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No other separation between models with the same (finite) amount of shared
memory is known for higher values of m. More work and probably other techniques
are needed to extend these results for all ranges of m. To improve these results, we
must understand in a more fundamental way how processors can use larger amounts
of memory to communicate. Li and Yesha [LY1],[LY2] have made a first step in
this direction by considering concurrent-read concurrent-write PRAM’s with a small
shared memory plus n cells of read-only memory containing the input.

Another relevant result concerns the problem of element distinctness on machines
with an infinite amount of shared memory. In this problem, n integers are stored in
the first n cells of shared memory, and the machine must decide whether or not
there exist two which are equal. In [FMW] it is shown that element distinctness
requires (log log log n) steps on COMMON(x)) but O(1) steps on COLLISION(oc).
The lower bound has been improved to (x/10gn) steps [RSSW]. Both these results
imply the existence of a function f(n) such that the corresponding separation holds
between COMMON(f(n)) and COLLISION(f(n)). For the fl(logloglogn) result,
f(n) 2n(1) but for the fl(x/10gn) result, f(n) grows much more rapidly with n.

We conclude by mentioning a surprising recent result [FRW2], which shows that

(,logn) steps of COMMON(urn)one step of PRIORITY(m) can be simulated by O loglogn

This shows that allowing more memory can lead to improved simulations even if the
number of processors is held fixed, and also that the separation between PRIORI-
TY(cx) and COMMON(oc)is not O(logn).
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Abstract. The construction of term-rewriting systems, specifically by the Knuth-Bendix completion
procedure, is considered. We look for conditions that might ensure the existence of a finite canonical rewriting
system for a given equational theory and that might guarantee that the completion procedure will find it.

We define several notions of equivalence between rewriting systems in the ordinary and modulo case, and

examine uniqueness of systems and the need for backtracking in implementing completion.

Key words, term-rewriting systems, termination, Knuth-Bendix completion procedure, equational
theories, rewriting modulo a congruence
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1. Introduction. Much is known about the theory of term-rewriting systems (see
[15] and [10] for surveys). However, there have been many unanswered questions
about the existence of rewrite systems and the applicability of the Knuth-Bendix
completion procedure (KB) [14], [19] and its extensions [16], [21], [26], [3] for finding
them. In certain cases KB generates a "canonical" term-rewriting system that decides
validity in a given equational theory. In general, the procedure takes a finite set of
equations and an ordering on terms, and either halts with success, aborts (fails), or
loops infinitely. KB completion is being used in many program-specification and
theorem-proving applications (see, for example, [8], [9], [12], [13], [15], [23], [18],
and [6]).

Two basic questions arise: when does a given decidable equational theory have
a decision procedure in the form of a canonical rewrite system, and when does the
Knuth-Bendix procedure generate such a rewrite system for a given equational theory?
As a partial answer, the following facts are discussed in this paper:

1. There are decidable equational theories which require an expanded language
in order to obtain a canonical rewrite system to decide them, and others which
do not have canonical rewrite systems in any language (Examples 1 and 2).

2. For a given reduction ordering KB cannot terminate successfully with two
different systems ([6], [24], Theorem 5).

3. Conditions are given which imply the uniqueness of a term-rewriting system
modulo a congruence ( 4). If any one of these conditions is relaxed, unique-
ness is lost (Corollary 12, Examples 6-11).

4. For a given theory and ordering on terms, KB cannot both succeed and loop,
depending on the choice of equation to orient into a rule ([8], Theorem 17).

5. Given a theory with an equivalent rewrite system, R, and the ordering induced
by R, KB will not abort on the first step, but can abort on a later step (Theorem
2, Example 3).

6. KB can abort with different results (Example 12).

* Received by the editors August 26, 1985; accepted for publication (in revised form) July 13, 1987.
This research was partially supported by the Aerospace Corporation.

t Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
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90009.
Institute of Computer Science, Polish Academy of Sciences, 00-901 Warsaw, Poland.
The numbers refer to theorems and examples in the sections that follow.
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7. KB can succeed or abort, depending on choice of representation for the theory
(Example 4).

8. KB can succeed or abort, depending on the choice of equation to orient, thus
backtracking is necessary (Example 14).

9. Any total monotonic well-ordering on terms allows KB to succeed (without
backtracking) on a ground (variable-free) theory ([20], Theorem 18).

10. Success of KB cannot be guaranteed by adding function symbols to the
language (Example 13).

These results have important implications for the implementation of the Knuth-Bendix
procedure in general, and in the modulo case, for associative commutative theories.

This paper expands on [11], which was originally motivated by a seminar on
term-rewriting systems given by the first author at The Aerospace Corporation in the
summer of 1981.

2. Definitions and notation. If L is an alphabet (denumerable set of function
symbols and constants, signature), T(L, X) denotes the (countably infinite) set of
(first-order) terms constructed from symbols in L and variables from a (fixed denumer-
able) set X. It is well known that T(L, X) with the operations defined in the natural
way constitutes a free L-algebra over X, which we denote by T(L, X) as well. Terms
are usually denoted by small letters ofthe English alphabet: l, r, s, t, etc. A term-rewriting
system (or simply rewrite system) R is a set of ordered pairs of terms called rules,.and
is written l--> r. (We do not insist a priori that all variables in r are also in/.)

If o.:X ---> T(L, X) is a substitution of terms for variables, then Io. denotes the
term with each occurrence of a variable x that appears in replaced by the term xo.
to which x is mapped under o.. We use the notation s c[ u] to indicate that a term s
contains a subterm u within context c; then we refer to the term s with that occurrence
of u replaced by v as c[v]. If a term s contains an instance Io. of the left-hand side
of a rule ---> r R, then s c[ lo.] rewrites to c[ro.] and we write s t. Clearly, 1__>

R R

is closed with respect to substitution and subterm replacement, i.e., s--if> t implies

c[so.]----> c[ to’], for any context c and substitution o.. A derivation in R is a sequence
R

to--if> tl t2--ff> . The notation s -R indicates that there is a (perhaps empty)
+

derivation in R from s to t, and s-- indicates that there is a nonempty derivation
in R from s to t. The notation s indicates that there is a sequence of applicationsR

of-- and between s and t. (In other words, R’R2-> and are the reflexive-transitive,
transitive, and symmetric-reflexive-transitive closures, respectively, of 2.>.)

R
A rewrite system R is (finitely) terminating if there is no infinite R-derivation.

Note that a system containing a rule l---> r with a variable in r but not in is
nonterminating. A term s is in (R-) normal form if there is no (other than perhaps
s) such that s t. (The standard definition of normal form is slightly stronger in that

R

it does not allow a normal form to reduce to itself.) We write s-- if s R and is
in normal form; R(s) denotes the set of normal forms of s. Two terms r and s are
confluent in R if there is a such that r - and s - t, written r SR S. If R is finite and

R R

terminating, then the relation $ is recursive. A rewrite system R is confluent if for
every r and s, r s implies that r and s are confluent in R.

R

Let E be an equational theory, presented as a set of equations between terms in
T(L,X) of the form s =-- t. Thus, s t E means that the given equation actually
appears in the set E, while E - s means that s-= is valid in E, i.e., it follows from
E by equational logic (substitution of equals for equals). Two theories are equivalent



REWRITE SYSTEMS 631

if they give the same set of valid equations. A theory is finitely based if it is presentable
as a finite set of equations. The alphabet L(E) (or L(R)) is the set of function symbols
actually appearing in E (or R). A system R recognizes the equational theory E if
E s if and only if s $ R t; R recognizes E in an expanded language L(R)

_
L(E)

if for all s, T(L(E), X), E s if and only if s R t.
A system R is canonical if it is terminating and confluent. It is canonical for a

theory E if it is terminating and recognizes E. Note that if R recognizes E, then it
must be confluent. If R recognizes E and is finite and terminating, then R decides E.

Let be an arbitrary congruence on T(L, X), closed with respect to substitution.
A set of rules R is a rewrite system modulo a congruence relation if the left and
right sides of the rules in R are ----congruence classes. Operationally, we let the left
and right sides be terms, but allow a term u to reduce to v (mod---) if u.-. u’[hr] and
u’[ rtr]--- v for some r R.z (If l--- l’, r--- r’, then r and l’ r’ are considered
to be the same rule.) Thus for the modulo case, is a binary relation on the quotient

R
algebra T(L, X)/---, closed with respect to substitution and subterm replacement. If

is the identity relation, then R modulo reduces to the case of an ordinary rewrite
system. All the previous definitions, viz. termination, normal form, and confluence,
generalize to modulo systems R.

A prime use for rewrite systems modulo a congruence is in rewrite systems for
associative-commutative theories (see [26]). Notice that in the modulo case, if s---t
and t- u, then s- u; in particular, if s--- then s- t.

R R R

3. Equational theories and .rewrite systems. There are inherent limitations to rewrit-
ing. Not all classes of algebras can be described equationally (e.g., fields). Not all
equational theories are finitely based (e.g., the equational theory of the algebra over
T({., 0, 1,2},X) with binary function satisfying 0. x-- x. 0-=0, 1 1--0, 2 1,
2 2 2 2: see [28]). Not all finitely based equational theories are decidable (e.g.,
some Thue systems; see [7]). Not every decidable equational theory is amenable to
canonical (modulo identity) rewriting (e.g., the commutativity axiom). See [5], [17]
and [25] for related theorems and examples pertaining to string rewriting. Work on
related questions appears in [2].

Example 1. Let E {fgihx =fghx: 0<-_ i,j < w} be atheory over T({f, g, h, a}, {x}).
Then there is no finite rewrite system recognizing E (since all rules must be of the
form fgmhx fgnhx, all but finitely many fgkhx would be irreducible), but there is a
finite rewrite system that recognizes E in an expanded language: R {fgx----fg’x,
g’gx gg’x, g’hx hx} in the language {f, g, h, g’, a} (fgihx fhx)R

Example 2. Not all decidable equational theories have finite recognizing rewrite
systems in extended languages. For example, let E be the theory of one commutative
binary function symbol f Assume R is system in an extended language that recognizes
E. Let fxy and fyx reduce to some normal form N. Then a derivation of N from fyx
can be obtained from the derivation of N from fxy by reversing the roles of x and y.
Thus, N cannot contain the variables x or y. (Either x appears "before" y in N or it
does not.) Therefore N is also derivable from fur, for any variables (or terms) u, v.
But this represents a new equality not valid in E, namely fxy =fuv, a contradiction.

This raises the open question: For which decidable equational theories are there
extended canonical rewrite systems?

Of course, by encoding or ordering variables we may transform a decidable
equational theory to a Turing machine, and that Turing machine to a rewrite system.

A weaker system is obtained by just allowing a rule to be applicable to any term l’--- hr, yielding
a term r’---rr; the congruence cannot be applied in the rest of u. See [26] and [16].
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But that rewrite system does not serve as a canonical system for the original theory.
Next we give some examples of the relation between an equational theory and a finite
canonical rewrite system that recognizes it. First, a lemma in which E and R need not
be related.

LEMMA 1. Let R be any rewrite system and E any equational theory. If E u =-v
for some term v in R-normal form and .any other term u, u v, then there is an axiom
s E such that s or is in R-normal form.

Proof Let u Wo-- Wl -= wn v (n _-> 1) be an equational proof of u v in
E. That is, for each (l_-<i_-<n), Wi_l=C[Sio-] and wi=c[tio’], for some context c,
substitution r, and axiom si-- t (or ti =- si) in E. Since v- wn is in R-normal form, tn
must also be. Hence s,--tn (or t,--s,) is an axiom of E, one side of which (t,) is in
R-normal form.

THEOREM 2. If R is a canonical rewrite system for an equational theory E, and E
is nontrivial, then there is s E such that s - (or - s).

Proof R ( since E is not trivial. Therefore, there is s’--- t’ R such that t’ is
in R-normal form; otherwise R would not be terminating. Now, E I-s’-- t’, and so by
Lemma 1, there is in R-normal form and s such that s--t 6 E. But then it follows

+
that s-- t.

The above theorem however does not generalize to more than one equation.
Instead, we have that even if R is a finite canonical rewrite system for E’U R’
(interpreting the rules in R’ as equations), every term appearing in E’ is in R’-normal

form, E’ is nontrivial, and R’
_

R, there still may be no s --- E’ such that s or s.

Example 3. Let R’={lx--x, xl--x, xx-1-- 1, x-lx-- 1, x-1-1- x,
x(x-ly)-- y, x-l(xy)-- y, (xy)-I - y-ix-l, (xy)z -- x(yz)}, and g R’U {1-1 -- 1}.
Then R is a finite canonical rewrite system for groups (see [15]) and is equivalent to
R’t_J {1-1x x1-1}. (It is sufficient to show that R’t.J {1-1x x1-1} 1-1 1.) The terms

1-x and xl- are in R’-normal form, but 1-x, x1-1 and xl- - 1-1x. (Of course,
R R

both terms rewrite in R to x.)
Even if E {sl-= tl,"" ", s,--t,} has a finite canonical rewrite system, and the

equations in E are independent, there need not be a finite canonical S for E such that
for every i, si -- ti S or t -- si S.

Example 4. Let E be the axiomatization {x(yz) =- (xy)z, xx-=- 1, lx x, xl lx}
of group theory. It can be shown that E is independent, but there can be no finite
canonical rewrite system in which x l -- l x or vice versa.

Even if E has a finite canonical rewrite system, E-sg--t for 1,..., n, and
{s--* tl,’’’, s,-- t,} is terminating, there need not be a canonical R for E with
si -- t R for all i.

Example 5. Let E {a-= b}, in which case E fa =-., gb =-ga. The system R
{fa-. fb, gb ga} is terminating, but cannot be extended to include either a-- b or
b-* a without engendering nontermination.

LEMMA 3. Let S be a finite canonical rewrite system which recognizes an equational
+ +theory E and let R be any system with -- -- that does not recognize E. Then there are
R S

terms s and in R-normal form such that E s and s - t.

Proof If R is terminating (since S is) and does not recognize E, then there must
exist two distinct R-normal forms, u and v, such that E - u-- v. Let be the common
S-normal form of u and v. Then is also in R-normal form. Since u v, we have

+u- or v- (or both).
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4. Uniqueness. In this section we examine various criteria for similarity of rewrite
systems with the goal of characterizing varieties of uniqueness.

First, let us give some informal examples which answer some of the obvious
questions. Must two rewrite systems that decide the same theory be identical? No;
consider R {fx --+ a}, S {fy -+ a}. Must they be the same up to variable renaming ?
No; consider R={a-+ b}, S={b-+ a}. What if RS has no cycles? No" R=
{a --+ b, b -+ c}, S {a -+ c, b -+ c}. What if the right-hand sides are irreducible? No:
R {fx --+ gx, fa -+ c, ga --+ c}, S {fx -+ gx, ga --+ c}. Assume in addition that the
left-hand sides reduce to only one term. Then we do get that R and S have the same

"semantics," i.e., 2+ =2+ (compare Theorem 10). But we still have the example of
R S

R {fa --+ fb, a -- b}, S {a -+ b}. If no rule contains an instance of another, then
R S up to renaming of variables (see Theorem 5).

Let us illustrate additional problems we have to cope with in the case of modulo
systems.

Example 6. The following two different modulo systems decide the same theory
over T({f, g, a, b}, {x}) and satisfy the conditions mentioned above for ordinary
(modulo identity) rewrite systems: R {a -- b}, S {ga --+ gb}, and is presented by
{fgx--. x}.

Example 7. What if no left-hand side is congruent to its own subterm? Still the
systems can be different" Take fghx---fx, R {fx -- a}, S {fgx -+ a}.

As we will see, if no nontrivial instance of a left-hand side is a proper subterm
of a congruent term, then the systems are the same up to renaming and congruence
(see Corollary 12 and Lemma 13).

Now more formally, given rewrite systems R and S, some notions of similarity are"

(1) If R and S satisfy for all l-+ r e R there is a renaming of variables 0 such
that lO- rOe S, we say that R is syntactically contained in S. If S is also
syntactically contained in R, then they are isomorphic, or syntactically
equivalent.

(2) If R and S satisfy for all l--+ re R, 1_+ r, we say that R is semantically
S

contained in S. If S is also semantically contained in R, we say they are
semantically equivalent.

(3) If R and S satisfy for all l--+ re R, l- r (or equivalently: for all and r, if
S

l- r, then _e+ r), we say that R is derivationally contained in S. If also S is
R S

derivationally contained in R, we say they are derivationally equivalent.
(4) If R and S satisfy for all terms s and t, if s SR t, then s Ss t, we say that R is

operationally contained in S. If S is also operationally contained in R, then
they are operationally equivalent.

(5) If R and S satisfy for all terms s and t, if s t, then s <- t, we say that R is
R S

deductively contained in S. If S is also deductively contained in R, then they
are deductively equivalent.

These criteria can be compactly defined as:

(1) R
_
S (up to renaming)

(2) R S

(3) R S

(4) R$S
(5)

R S

(6) R=S
(7) s

syntactic containment,
semantic containment,
derivational containment,
operational containment,
deductive containment,
isomorphism,
semantic equivalence,
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(8) --=R S

(9) $.=
(10) (- =-).

R 8

derivational equivalence,
operational equivalence,
deductive equivalence.

These criteria all apply to rewriting modulo a congruence as well (in which case if
lO l’ and rO r’ for some variable .renaming 0, then - r and l’ -- r’ are considered
the same).

LEMMA 4. The above criteria satisfy: (1) =:> (2) :=> (3) :=> (4) ==> (5), and hence (6) =:>
(7) =:> (8) :::> (9) ::# (10).

Proof All clear, except perhaps (4):::> (5) for which we note that & and - are
R S

the transitive closures of $ and Ss, respectively.
The reverse implications (5) :::> (4) do not hold. The obvious question is: Under

what (interesting) additional conditions do they hold?
For ordinary rewrite systems (mod identify) we say that R is reduced if all

right-hand sides are in R-normal form and all left-hand sides are in normal form with
respect to all other rules in R. Any ordinary canonical system can be reduced to a
deductively equivalent one ([24]; see also [2]).

The following is known.
TI-InORnM 5 (due to M. Ballantyne; mentioned without proof in [6]; a proof is

given in [24]). Iftwo reduced systems R and S both recognize the same equational theory
E, and iffor some strict partia order >,--,- >, then R and S are isomorphic.

We include the proof here for motivation, even though this is a special case of
Corollary 12.

Proof Let R and $ be two canonical rewrite systems that recognize E, and for
+

which --, -_ >. Assume + r e R. Since E r and S recognizes E, there is a
term u such that - u and r - u. Since E r-= u, R recognizes E, and R is reduced,

S S

u- r. Thus we have that r->_ u and u-> r (-> is the reflective closure of >), and so
+

r u. It follows that r.
+

Similarly, l--- r S implies l- r, and thus s .- implies s- t.

Assume now that + r e R but + r S (even up to a renaming of variables). If
+ + +&s t- r for. some t, then t- r. But this contradicts the premise that no rule in

R other than l-- r can reduce I. So it must be that r by a single application of a
S

rule l’--* r’e S such that # l’ (even up to a renaming of variables). But then, too,
l’- r’ would contradict R being reduced.

We can extend and split the definition of reduced for R mod--by using the
following definitions:

(i) R is rhs-reduced ifthe right-hand side of each rule is in R-normal form mod

(ii) R is lhs-reduced if u - r implies r-- u for any left-hand side of a rule
l--- reR;

(iii) R is reduced if it is both rhs-reduced and lhs-reduced.
But the uniqueness theorem does not extend immediately.

Example 8. The following reduced, canonical systems R and S mod---for the
same theory over T({f, g, c, d}, ) are not isomorphic: Let be presented by fgc--- c,
fgd d, and take R { c d}, S {gc gd}.

THWORM 6. Let R be a rewrite system mod---deductively contained in a confluent
system S mod---. Then R is operationally contained in S.

Proof Let s Sn t. Then s s by deductive containment and s +s by confluence
of S.
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COROLLARY 7. For confluent systems R and S mod---, R and S are operationally
equivalent if and only if ,[,s r for all --> r R and $R r for all --> r S.

Proof. If --> r R implies s r, then s --R-> implies s Ss and R is deductively
contained in S.

We say that two rewrite systems mod, R and S, are noninverting if for all terms
s and t, s- s implies s---t.

R S

LEMMA 8. Let R and S be two operationally equivalent systems mod If R and
s ::s"

Proof. We show only one direction; the other follows from symmetry. Let s-- t.
By operational equivalence there is a u such that s - u and -> u. Again, by operationalS S

equivalence, -> v, u v for some v. Since is an R-normal form, we have u -> t.
R R R

By the noninverting property, it must then be that u t, and therefore s t. Suppose
+ S

t- w for some w. As before, we must have w---t. But then is an S-normal form,
since it only reduces to congruent terms.

Example 9. The following pair, R and S, of operationally equivalent rewrite
systems modulo the identity are not derivationally equivalent: R {a--> b, c--> b},
S=R{a--> c}.

THEOREM 9. Let R and S be two rewrite systems mod--for which R is operationally
contained in S, R is rhs-reduced, and every R-normalform is an S.normalform. Then R
is derivationally contained in S.

Note that if-- _-, then trivially any R-normal form is an S-normal form.

Proof. Let l--> re R. Then Ss r. But since R is rhs-reduced and all R-normal
forms are S-normal forms, it follows that -> r.s

Example 10. The following pair, R and S, of derivationally equivalent systems
mod---over T({f, g, a, b}, ) are not semantically equivalent: Let be presented by
{fga a}, g {a --> b, fgb --> b}, S {ga --> gb, fgb --> b}.

THEOREM 10. Let R and S be two reduced rewrite systems mod--- which are deriva-
tionally equivalent. Then R and S are semantically equivalent.

Proof We shall prove that l--> r R implies l- r. Let l--> r R. Since -r and
R is derlvatlonally contained n S, - r. Now assume that __>1 u - r, 17 u. Since S is

S S
derlvatonally contained n R, there is some v such that -R-> v R U ->R /" R is lhs-reduced
so v r, and so r - u. Now using the fact that R is rhs-induced, r u and thus

Were we to veaken the denition of reduced to allow trivial rules 1--> r, where
0,1 0,1

l.--r, then we would only get R s >, which is slightly weaker than semantic
equivalence.

Example 11. The following pair, R and S, of systems mod over T({f, g, c}, {x})
are semantically equivalent, but not isomorphic: Let be presented by fx.--fghx, and
take R {fx --> c}, S {fgx --> c}.

A rewrite system R is minimal if no left-hand side of a rule in R contains a
proper instance of a left-hand side l’ of a (not necessarily different) rule in R, that is,

c[l’tr] for any nonempty context c or substitution tr that is more than a renaming
of variables in l’.

THEOREM 11. Suppose R and S are semantically equivalent rewrite systems mod .-.
IfR and S are both minimal, then R and S are isomorphic.

Proof. Let --> r R. Then u[ l’tr] 2_> u[ r’tr] r for some l’ --> r’ S. Similarly,S

l"-- v[ l-/ 1_.> v[ g/z r’ for some ]--> R. That is, u[ v[ ’/z ]tr] and r u[ v[R

By minimality, u and v are empty and tr and/z are no more than renamings (on the
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appropriate sets of variables, /. on variables of 1, tr on variables of 1). Hence,
u[ l’cr] l’ and r u[ r’o’] r’ as desired up to renaming. [3

COROLLARY 12. Let R and S be deductively equivalent confluent rewrite systems
mod If R and S are noninverting and R and S are each reduced and minimal, then
R and S are isomorphic.

This extends a result of Lankford and Ballantyne [22] in which they assume that
the ----congruence classes are finite. None of the conditions can be omitted.

LEMMA 13. A rewrite system R mod--- is minimal if no left-hand side is reducible
by another rule, and if c[ ltr] for any nonernpty context c or substitution tr that is more
than renaming.

Proof Straightforward from the definition of minimality. [3

LEMMA 14. A terminating rewrite system R mod is reduced if it is minimal and
no .rule applies to either the left- or right-hand side of another rule.

Proof Let r R. We are given that no other rule applies to and by minimality,
does not create any nontrivial way for to apply to itself. Furthermore, the right-hand

side r must be a normal form, since no other rule applies, and were to apply, the
system would not be terminating. Hence R is reduced, [3

COROLLARY 15. A rewrite system R mod---is minimal if no left-hand side is

reducible by another rule and generates only finite congruence classes.
Proof Were l.--c[ltr] for nonempty context c, then there would be an infinite

congruence class l.--c[lcr] c[ c[ ltr]tr] Suppose, then, that l---ltr. If either or
lr contains a variable x not in the other, then by substituting terms for x we would
obtain an infinite set of congruent terms. So were tr not a renaming it would have to
map some variable to a nonvariable, in which case l- ltr---ltrtr would be an
infinite congruence class. [3

It is however undecidable if---congruence classes are finite, even if is presented
by a finite, canonical rewrite system. If, however, is presented by a finite set of
ground equations, then finiteness is decidable (see [27]).

5. Completion. In this section we consider the relationship between the Knuth-
Bendix completion procedure 19] and the existence of a finite canonical rewrite system
for an equational theory. The procedure has been extended to the modulo case by
[16], [21], [26], [3], and [4], although we shall not consider that more complicated
procedure here.

Let l- r and l’-- r’ be two (not necessarily distinct) rules in R whose variables
have been renamed, if necessary, so that they are distinct. Assume l’ overlaps l, that
is, c[v] for some context c and nonvariable subterm v such that vtr-- l’tr for some
(most general) substitution tr for the variables of and l’. Then the overlapped term
ltr (= cr[l’tr]) can be rewritten as either rtr or ctr[r’r]. These two possibilities are
called a critical pair.

The Knuth-Bendix completion procedure (KB(E, >) or just KB) takes as input a
finite set E of equations and (a program to compute) a well-founded ordering > that
is closed with respect to substitution and subterm replacement, i.e., a well-founded
partial order on T(L(E), X) such that c[sr]> c[to-]where s > t, for any context c,
substitution r, and terms s and t.

The procedure consists of the following steps:

Repeat as long as equations are left in E. If none remain, terminate successfully.
(1) Remove an equation s--t (or t--s) from E such that s > t. If none exists,

terminate with failure (abort).
(2) Add the rule s to R.
(3) Use R to reduce the right-hand sides of existing rules.
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(4) Add to E all critical pairs formed using the new rule.
(5) Remove from R all other rules whose left-hand side contains an instance of s.
(6) Use R to reduce both sides of equations in E. Remove any equation whose

reduced sides are identical.
We use the notation R U E R’U E’ to indicate the effect of one iteration of

the above procedure. For an abstract version see [4]. The procedure can be optimized
in various ways that do not concern us here.

THEOREM 16 [19], [14]. If KB terminates successfully for input equations E, then
it returns as output a finite canonical system R for E.

The completion procedure may fail in one of two fashions: it may be unable to
add any rule because s and are incomparable under the given ordering > for all
equations s in E; or it may go on generating an infinite number of new rules without
ever finding a finite canonical system. In the former case, we will say that the procedure
aborts, in the latter that it loops. Clearly, KB(E, >) only generates rules -- r that are
true in the theory E, i.e., E l-- r, and for which r.

THEOREM 17 ([8], based on 14]). Let R be a reducedfinite canonical rewrite system
for a finite equational theory E, and let KB be implemented by a "fair" scheduler, i.e.,
no critical pair that persists is ignored indefinitely. Then KB(E,--) will generate R if it

R
does not abort.

Proof. Assume KB does not abort. Then in the limit (i.e., considering only those
rules which persist from some point on) a reduced canonical system S will be generated
for E (see [14] and [3]). By Theorem 5, R- S. KB terminates once R is generated,
since critical pairs must now reduce to triviality.

+Even if R is a reduced finite canonical rewrite system for E, KB(E, -R) need not

generate R since it might abort. By Theorem 2, KB(E, -) will not abort on the first step.
Example 12. Despite the existence of R (m -- c, n -- c, fc -- c), KB({fn c,

fm =- m, m n),-) aborts on all paths (see also [1]R

Example 13. As pointed out in [19], varying the procedure by expanding the
language (adding rules s - h(g) and -- h(g), where h is a new function symbol and
g are the variables in an unorientable equation s-= t) may sometimes circumvent the
abort case of completion. However, the following example shows that such expansions
may also cause KB to become nonterminating: {fm =- m, fn =- c, rn =- n} KB {fh h,
fh---c, m-- h, n--- h} ---s {fh --- h, h=-c, m--- h, n-- h }--.ff {fk=-k, c-- k, h--- k,
m-- k, n k} KB’’’’ KB; {fl--= l, k-- l,’" "} KB’’’" (using the subterm ordering
for >).

We now show that backtracking is sometimes necessary, that is, there are E and
> for which KB(E, >) can either abort or succeed depending on the sequence in which
the equations are chosen for orienting.

Example 14. Given the theory

E {k=- m, k=- n, fm=- m, fk=- c}

and the ordering

k > m, n,

m,n, fm, fn, fc>c,

fll >

#(m, n, fc), #(k, fm, fn, fc), etc. (#designates pairwise incomparability)
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Knuth-Bendix can either succeed and find"

E -U {k--- m, m=- n, fm=- m, fm=- c}--U {k-- m, m=- n, fm -- m, m=- c}
{k--c,n--c, fc---c,m--c}KB

or else it can fail (abort) along the path:

E --u {n= m, k-- n, fm--- m, fn=- c} K --- {n=- m, k-- n, fm-- m,fn-- c}KB

Hence, KB should backtrack to try alternative choices, even for ground systems.
Note that if in the previous example n and k were incomparable or the given order
were extended to include either m > n or n > m, then KB would succeed along every
path.

In general, we have Theorem 18.
THEOREM 18. If the set of terms T(L, X) is totally ordered by >, then KB(E, >)

does not need to backtrack.
Proof Obviously, KB cannot abort, and we have already seen (Theorem 17) that

KB cannot both succeed and loop.
As pointed out in [20], there is always such a total ordering for ground systems.

As pointed out in [15], there need not be such an ordering for nonground systems.

6. Conclusion. We have discussed the question of when a given decidable
equational theory possesses a canonical rewrite system in the original or expanded
language. We have pointed to some inherent limitations in the ability of the Knuth-
Bendix completion procedure to discover appropriate rewrite systems, even if the
procedure is extended to backtrack upon failure or to introduce new function symbols.
These limitations can be partially circumvented by allowing more deduction in the
procedure (see [20], [3], [4]). In practice completion is frequently quite effective. We
have shown that barring failure (and under reasonable conditions) the procedure will
find the same rewrite system regardless of the choices made.

One of the remaining open questions is" Suppose there exists some finite canonical
system for an equational theory E. Must there exist an ordering > for which the
completion algorithm, given E and >, has a successful outcome. Another area worth
investigating is the extent to which systems that rewrite modulo a congruence (whose
classes are all finite) are sure to exist for decidable E.

Acknowledgments. The authors gratefully acknowledge discussions with Dallas
Lankford and Pierre Lescanne.
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A NEW LOWER BOUND FOR THE SET-PARTITIONING PROBLEM*

JOHN WELLIAVEETIL JOHN?

Abstract. Let S be a set of n elements that allows all possible total ordering and on which a total order
exists that is initially not known. The problem of determining the largest elements of S using binary
comparisons between elements of S is the set-partitioning problem. In this paper we establish a new lower
bound on the number of comparisons required for the set-partitioning problem. For sufficiently large n, our
lower bound improves on all previous lower bounds for this problem for almost all values of t. Our technique
is based on estimating the number of leaves of a decision tree, say T, for the problem. Let P denote the set

of total orderings allowed on S. Let P, P,..., P’,, be a partition of P such that the set of leaves of T
corresponding to P is disjoint from those corresponding to Pj whenever ij. We determine subsets

P1, P2, ", Pr of P and an integer k, such that for each i, <- _<- m, PI fq P holds for at most k distinct

P’s. For each subset P, <=j =< r, we establish a lower bound, say t, on the number of leaves of a decision
tree for the set-partitioning problem when S is restricted to a total order from p/. Then T has at least= tj/k leaves.

Key words, analysis of algorithm, decision tree, lower bounds, partitioning problem
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1. Introduction. Let S be the set of elements {al,a2,..., an} that allows all
possible total ordering and on which a total order exists that is initially not known.
The problem of determining the set of largest elements of S is the set-partitioning
problem. We measure the complexity of this problem in terms of the number of binary
comparisons required to determine the set of largest elements of S. The minimax
complexity of the set-partitioning problem, denoted by U,(n), is the number of
comparisons which is minimum over all permissible algorithms and maximum over
all inputs of n elements for each algorithm. Since the complexity of finding the set of
largest elements of S is the same as that of finding the set of smallest elements of

S, we restrict ourselves to -< [n/2J.
A problem that is closely related to the set-partitioning problem is the selection

problem, where we are required to determine the tth largest element of S. The minimax
complexity of the selection problem is denoted by Vt(n). Since after determining the
tth largest element of S, we know the largest elements of S [12, Problem 2, 5.3.3],
we conclude that V,(n)>-U,(n). Both these problems have been extensively studied
[1]-[12], [14]-[18] and the advances made in establishing upper and lower bounds
for V,(n) are given in [8], while those for U,(n) are given in 11]. A new lower bound
for the selection problem is given in [8]. Here it is shown that

/I

where lg denotes logarithm to the base 2.
The best general lower bound for the set-partitioning problem is due to Kirkpatrick.

From 11] we can establish that for all => 2
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(1)

3n + tj2
-3, 2t<-n<3t,

U,(n)>-
n+ t-3+ lg

=o +j
n>--3t.

For small values of t, the Hadian-Sobel algorithm [6] for determining V,(n) may
be modified to determine U,(n). This modification yields the upper bound

Ut(n) < n-t+(t- 1)[lg (n-t+ 1)].

Several modifications of the Hadian-Sobel algorithm for V,(n) have been proposed
[8], [10], [16] and these in turn may be adapted to give improved upper bounds for
U,(n) for a wide range of values of n and t. For large t, the algorithm of Sch6nhage
et al. [17] gives the bound

Ut(n) -< Vt(n)<=3n+o(n).

In this paper we establish a new lower bound for the set-partitioning problem. In
3 we establish that

U,(n)>=J(n)= n+ h

where h lg (’) 2x lg (t(n t) + 1) and x is the least positive integer greater than
[lg (’)-lg (t(n t)+ 1)] 1/2. We further show that J,(n) is an improvement over (1) for
all > c lg n and n > no for some c > 0 and no a positive integer. We establish that the
improvement over this range is greater than c’t for some c’> 0. In particular, when
t= [n/2J, J,(n) gives an improvement of n/4-O(x/-) comparisons over (1).

2. Definitions. Comparison-based algorithms may be represented by a binary tree.
We call such a tree a decision tree for the algorithm. Let T be a decision tree for the
set-partitioning problem. Each internal node of T is labelled by a pair of elements
from S. Let u be an internal node of T carrying the label e :f, where e and f belong
to S. Then u denotes the comparison between e and f and one of the branches leading
from u represents the relation e >f and the other the relation e <f. The depth of a
node v is the number of internal nodes that precede v on the path from the root to v
and hence by our .definition the root has depth 0. The height of T is the maximum of
the depth of any leaf of T. The tree T is optimum if it has the least height among all
decision trees representing valid algorithms for the problem. The height of an optimal
tree is denoted by Ut(n).

Let u be a node of T. Define Pu to be the set of relations corresponding to the
branches on the path from the root to u. Thus a decision tree T for a problem is a
binary tree such that if v is a leaf of T, then from Pv and the hypothesis on the allowed
orders on S we can deduce a solution to the problem. Let Hu be the directed graph,
whose vertices correspond to the elements of S, with the edge (e,f) in H if and only
if the relation e >f belongs to P. The directed graph H is weakly connected if the
corresponding undirected graph, obtained by ignoring the direction of the edges in
H, is connected.

Let Q be a set of leaves of T. Then T’(Q) is the subtree of T such that a node
in T belongs to T’(Q) if and only if it lies on a path from the root to a leaf in Q.
Consider a node that has only one child. The outcome of the comparison corresponding
to this node may be deduced from the comparisons already made by the algorithm
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and the restriction that the order on S be consistent with the partial order associated
with a leaf in Q. If u is a node with one child, say v, then we delete u from T’(Q)
and replace it with v. Repeating this process as many times as possible results in the
decision tree T(Q) that distinguishes between two partial orders on S corresponding
to two distinct leaves in Q. We call T(Q) the subtree of T defined by Q.

Let W be a set of relations consistent with the total ordering on S and let C be
a subset of S. Then W C is the subset of W restricted to the elements of C. An element
e of C is maximal (minimal) in C, with respect to W C, if and only if there is no
element f in C such that f> e (f< e) is in W C. Since a total order is assumed on S,
every subset of it may be totally ordered. Let C[k] denote the kth largest element of
C with respect to the total order on S.

3. A lower bound for the general set-partitioning problem. In this section we present
our construction that yields a new lower bound for the set-partitioning problem. We
establish a lower bound on the number of leaves of T, from which a lower bound on
the height of T is obtained. In order to simplify our calculation, we denote the height
of T by n / h. Our task then is to establish a lower bound on h. We shall consider
values of greater than 1, which implies from (1) that h is greater than 0 for sufficiently
large n. Let C be a t-subset of S. To illustrate our construction, assume without loss
of generality that C is the set (al, a2, , a,). For 1 <-j <- t, let AJ c -{a) and let

B- S-A. From the definition of T it follows that if v is a leaf of T then from
we can deduce the set of largest elements of S. Let L(C) denote the set of leaves of
T that correspond to C being the set of largest elements of S. Now consider the set
of leaves of T denoted by Q, where Q/- (v v L(Aj {a)) ^ a B.. The following
lemma is useful in establishing a lower bound on

LEMMA 3.1. If A belongs to the set of largest elements of S, then T(Q) is a
decision tree that determines the largest element of B.

Proof. it is sufficient to show that if v’ is a leaf of T(Q) then we can deduce from
Pv, the largest element of B assuming A belongs to the set of largest elements of S.
Note that for every leaf v’ of T(Q) thereis a corresponding leaf v in L(Aj{a’}) for
some a’ belonging to B. If u is an internal node of T on the path from the root to v
then by our construction of T(Q/), u is in T(Q) only if the outcome of the comparison
corresponding to u cannot be deduced from Pu and the hypothesis that A belongs to
the set of largest elements of S. From P we can deduce that a’ belongs to the set
of largest elements of S. Hence from P, we can deduce that a’ is the largest element
of B assuming that A belongs to the set of largest elements of S.

We next consider the set of permissible orders on S for which the elements of C,
with the possible exception of one, belong to the set of largest elements of S. More
precisely we consider the orders on S for which C[t-1]>(S-C) [2]. Let Q=
U l<:i<:t Q(i).

LEMMA 3.2. Under the hypothesis C[t-1]>(S-C)[2], T(Q) is a decision tree
that determines the set of largest elements of S as C-{min(C)}
{max ({min (C)} U S- C)}.

Proof. Let v" be a leaf in T(Q) and let v be the corresponding leaf in Q for some
j, 1 <-j_-< r Let v’ be the leaf in T(Q) corresponding to v. Our construction of T(Q)
implies that P, is contained in P,,. Note that v corresponds to A belonging to the set
of largest elements of S. This implies that Pv and hence P,, do not contain the relation
a<b for anya inA and binS-C.

We first consider the case when v corresponds to a belonging to the set of
largest elements of S. This implies that min (C)- max (min (C)U S-C) and from Pv
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we can deduce C as the set of largest elements of S. Let u be an internal node of T
lying on the path from the root to v. Since P, does not contain the relation a < b for
any a in C and b in $- C, the definition of Q implies that both the left subtree and
the right subtree of u have leaves belonging to Q. Hence u belongs to T(Q). This
implies that P,,= P and hence from P,, we can deduce C as the set of largest
elements of S.

Now consider the case where v corresponds to a; not belonging to the set of
largest elements of S. Thus P contains the relation a; < b for some b in S-C. Let u
be the internal node of minimum depth on the path from the root to v that corresponds
to the comparison between a; and b for some b in S- C such that a; < b is in P. By
our choice of u, Pu does not contain the relation a < b for any a in C and b in S- C.
Thus u belongs to T(Q) and hence aj < b is in P,,. Now a; < b and C[t- 1]> (S- C)[2]
implies that A; belongs to the set of largest elements of S and a; min (C). Hence
the largest elements of S are A;U{max (B;)}. By Lemma 3.1 we can deduce max
(Bj) from P, and the hypothesis AJ belongs to the set of largest elements of S.
Since P, is a subset of P,,, we can deduce max (B;) from P,, and the hypothesis
C[t-1]>(S-C)[2]. Hence from Po,, we can deduce the largest elements of
S as A; U {max (B;)} C-{min (C)}U {max (min (C)U S-C)} assuming C[t-1]>
(s- c)[2].

Next we turn to the task of establishing a lower bound on 101. This is realized by
establishing a lower bound on the number of leaves of T(0) a decision tree of height
at most n + h that determines C -{min (C)} U {max ({min (C)} U $- C)} as the set of
largest elements of S under the hypothesis C[t-1]> (S- C)[2].

Let u be a node of T(Q) such that Hu does not contain an edge directed from
an element of S-C to an element of C. The next four lemmas establish certain
properties of u that are used in proving Theorem 3.7. This theorem establishes a lower
bound on the number of leaves of T(0) and hence a lowerbound on 10[. We define
a straddle as an edge in H, from an element in C to an element in S-C. Let m, be
the set of minimal elements of C with respect to P, IC and let M, be the set of maximal
elements of S-C with respect to P, IS-C. With each node u associate a function Eu
with domain as mu and whose range is the power set of Mu. For each e in m, define
E,(e)={flf M, ^ (e,f) H,} and let eu be an element in m such that
[E,(e)[ for all e belonging to m,. Now let x be the least positive integer satisfying the
inequality x- 2x_-> h. Our assumption of h > 0 implies that x is greater than 1. The
following lemma establishes an upper bound on [E,(eu)[.

LEMMA 3.3. _flml=x, then IU(e)l_-<x.
Proof. Since P does not contain the relation a < b for any a in C and b in S- C,

the subtree rooted at u contains leaves from L(C). Since e is a minimal element of
PIC there exists a leaf, say v, among these leaves of L(C) for which eu is a minimal
element of C with respect to PIC. From P we can deduce that e max ({e } U S- C).
Hence the subgraph of H induced by {e} U S-C is weakly connected and must have
at least n- edges. The subgraph of Hu induced by C has at most x components and
hence has at least t-x edges in it. If IE,(e,)l > x, then m-{e} must have more than
x(x- 1) straddles between them. This implies that H has more than (n- t)+(t-x)+
x(x-1) n + x-2x >-_ n + h edges. Since each edge in H results from a comparison
corresponding to a nodein T(Q) we conclude that T(Q) has height greater than n + h,
contradicting our assumption on the height of T(Q). Hence IE,(eu)l<-x.

We next turn to the problem of estimating the number of leaves in the subtree
rooted at node u of the decision tree. The following lemma helps in establishing a
lower bound for this problem.
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LEMMA 3.4. The subtree rooted at u may be pruned such that each leafof the pruned
tree has depth at least

Proof Let e correspond to a, where k {1 t}. The node u belongs to T(Q)
which, by Lemma 3.1, determines the largest element of B {e}LJ S-C assuming
A C-{e} belongs to the set of largest elements of S. The maximal elements of
{e} U S- C in P is the set M t_J {e}- E(e) and hence the subgraph of H induced
by M t.J{e}-E(e) contains only singletons. Let T denote the subtree of T(Q)
rooted at u. Let Q’ be the set of leaves of T such that v belongs to Q’ if and only if

P does not contain the relation a (b for any a in A and b in B. Hence if v belongs
to Q’ then from P we can deduce the largest element of the set M {e}-E(e)
without assuming C-{e} belongs to the set of largest elements of S. Hence the
subgraph of H induced by M t_J {e}-E(e) is weakly connected and has at least
[M {e}-E(e)I- 1 edges. Since each of these edges correspond to a comparison
we conclude that each leaf of T(Q’), the subtree of T defined by the set of leaves
Q’, has depth at least I//, t_J {e}-E(e)[-1. The lemma follows from the fact that
T(Q’) is a subtree of T.

From the symmetry of the problem, T(Q) is a decision tree that identifies the set
(S- C)-{max (S- C)} U {min ({max (S- C)}U C)} as the n-t smallest elements of
S. This allows us to state the following two lemmas that may be proved along the lines
of Lemmas 3.3 and 3.4 and hence their proofs are omitted here. As before, with each
node u of T(Q) we associate a function E with domain as M and whose range is
the power set of m. For each f in M define /(f) {e e m ^ (e, f) H} and let
f, be an element in M, such that [(,(f)[ <_-[/,(/)[ for all f belonging to M,.

LEMMA 3.5. If [M,[ x, then x.
LEMMA 3.6. The subtree rooted at u may be pruned to obtain a decision tree each

leaf of which has depth at least

We are now ready to establish a lower bound on the number of leaves in T(Q).
THEOREM 3.7. The decision tree T( Q) has at least 2 "-2’ leaves.
Proof If x => then ]Eoot(e)=01 for all e belonging to C and IMroot] IS-C]

n t. By Lemma 3.4, T(Q) may be pruned to obtain a decision tree each leaf of which
has depth at least IS-C]. In this case T(Q) has at least 2"-’ leaves which are greater
than 2 "-’.

Now assume x < t. We will prune T(Q) so that every leaf of the resulting tree has
depth at least n- 2x. We start with the root and use a depth-first strategy to examine
the nodes of T(Q). Let u be a node of T(Q) examined during the pruning strategy.
Our pruning is based on the value of ]m,] and ]M, I. For nodes with both Im l > x and
[M,]> x, the strategy given by case (a) is followed while case (b) deals with a node u
for which [m.I- x and case (c) for a node with IM.I x. Now [Mroot n -t, Imrootl--
and t=< [n/2J implies that IMrootl >_-Imootl- > x. Hence case (a) of the pruning strategy
is applicable to the root.

(a) If Iml> x and IM I> x then the pruning strategy retains a child u’ of u if
and only if P., does not contain the relation a < b for any a in C and b in S-C.
Furthermore, the number of minimal elements in m., (number of maximal elements
in M.,) is at most one less than in m. (M.). More specifically, we distinguish the
following two cases:

(a.1) Let u denote the comparison between e and f belonging to S. If e belongs
to C andfbelongs to S- C then delete the subtree ofthe branch correspond-
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ing to the outcome e <f and retain u and the branch corresponding to the
outcome e >f Since u has only one child we do not regard u as an internal
node of the pruned tree. Note that if u’ is the child of u then m, m,, and
M, M,,. We next apply the pruning procedure to u’.

(a.2) In all other cases retain the node u. The pruning procedure is applied to
each of the children of u.

(b) If Im.l= x then by Lemma 3.4, m, has an element e, with IE,(e,)l<-x. Let
y IM.I. At least t-x internal nodes corresponding to comparisons between elements
in C and n-t-y nodes corresponding to comparisons between elements in S-C
must have preceded u in the pruned tree and these nodes resulted from case (a.2)
given above. Hence each of these nodes has two children. Lemma 3.4 allows us to
prune the subtree rooted at u such that each leaf of the resulting tree, say T’, has
depth at least IM, U {eu}- E,(e,)[- 1 with respect to u as the root. Since the depth of
u in T(Q) is at least t-x + n- t-y n-x- y, the depth of each leaf of T’, in T(Q)
is at least n-x-y+lM, U{e,}-E,(eu)l-l>=n-x-y+y-x=n-2x.

(c) The case IM.I x is similar to case (b) given above. From Lemmas 3.5 and
3.6 we conclude that the subtree rooted at u may be pruned such that each leaf in the
pruned subtree has depth at least n- 2x.

Note that case (a) will never encounter a leaf node. This follows from the
observation that if u is a child of u" then the pruning procedure will retain u if and
only if P, does not contain the relation a < b for any a in C and b in S-C. Hence
if u is a leaf then at least t-lm, l+ n-t-IM,l+[m, lM, comparisons must have
preceded u since each element in m, must have been compared with each element in
M,. If [m,[ > x and IM I > x, then since x > 1, the leaf u has depth at least n + Im.I IM I-
Im.I- IM I > n / x=- 2x_>- n / h, contradicting our assumption on the height of T. Hence
the pruning strategy will eventually encounter an internal node for which either Iml- x

Thus the pruning strategy produces a tree for which every leaf has depth at least
n-2x. Hence T(Q) has at least 2 "--2x leaves. 71

Having computed a lower bound on the number of leaves in Q, we get an estimate
on the number of leaves of T from the number of distinct Q’s and the number of
times a specific leaf occurs in the different Q’s. We can choose the t-subset C in (7)
ways. With each C is associated a T(Q) with at least 2 "-2x leaves. The total number
of leaves accounted for in this way is at least (7)2 n-2x. However we must compensate
for a leaf being counted more than once. Observe that if C and C’ are distinct t-subsets
of S corresponding to the decision trees T(Q) and T(Q’), respectively, of Lemma 3.2,
then Q and Q’ will have a leaf in common if and only if C and C’ have exactly t- 1
elements in common. For a given C there are t(n-t) distinct t-subsets of S, each
different from C, that satisfy this property. Hence a leaf is counted at most t(n t)+ 1
times in the summation over all t-subsets of S. This implies that T has at least

t(n-t)/l

leaves. Since the height of T is n + h, we conclude that

--t(n-t)+l
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To summarize, if J,(n) denotes our lower bound, then we have shown that

U(n)>-J(n)=n+h

=n+lg(7) -2x-lg(t(n-t)+l)
where x is the least positive integer satisfying X2- 2x >_-h. This implies that x is the
least positive integer greater than or equal to [lg (7)-lg (t(n-t)+ 1)] /2. Thus

for f(lg n).

4. Comparison with Kirkpatrick’s bounds. We next establish that J,(n) improves
on Kirkpatrick’s lower bounds as given by (1) for > c lg n and n > no where no is an
integer and c a positive constant. We further show that for in this range the
improvement is c’t comparisons for some c’> 0. Using Stirling’s approximation for
In n !, a routine calculation establishes that

lg(7)--t(lgn-lgt)-(n-t)(lg(n-t)-lgn)+O(logt).
Setting z t/n we find that over the interval 2t-1 _-< n <3t, the difference between
J,(n) and Kirkpatrick’s bound as given by (1) is n(-zlgz-(1-z) lg(1-z)-
(l+z)/2)+O(x/-ff) The function -zlgz-(1-z) lg(1-z)-(l+z)/2 is convex over
the region _= z and its minimum value over this interval is 0.25. This implies that
our lower bound improves on Kirkpatrick’s bound by at least 0.50t + O(x/) for and
n satisfying 2t -<_ n < 3 t. For n _-> 3 we consider the sum

(2) lg
.j--o +j

in (1). Let 2k be the largest power of 2 that divides n t. Then n 2(1 + a), where
0_-< a < and the summand in (2) is less than or equal to k+ 1. We note that the
summand in (2) can take the value k + 1 only when j < ta. This in turn implies that
(2) is less than ta( k + 1 + k( 2 ta + t( k + a) k < t( k + a). Hence the difference
between J,(n) and Kirkpatrick’s lower bound for n _-> 3t is greater than

(3) (t lg n lg t- tk- ta)+((n t)(lg n -lg (n t))- t)+ O lg

Since n 2kt(1 +a) the term (t lg n- lg t- tk- ta) in (3) reduces to t(lg (1 +a)-a)
which is nonnegative for 0=<a<l. Since In (1-t/n)=-t/n-t2/(2n2)-O(t3/n3)for
t/n<=3, the term ((n-t)(lgn-lg(n-t))-t) is greater than ((n-t)/ln2)

Ctt[t/n+t2/(2n2)]-twhichisgreaterthanc"tfort/n<=,where is a positive constant.
Since lg (7) O(t log n) we conclude that (3) is greater than c’t for > c lg n and n > no
for some c’> 0, c > 0 and no a positiTe integer.
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Abstract. This paper analyzes the expected performance of a simplified version BM’ ofthe Boyer-Moore
string-matching algorithm. A probabilistic automaton A, which models the expected behavior of BM’, is
set up under the assumption that both text and pattern are generated by a source which emits independent
and uncorrelated symbols with an arbitrary distribution of probabilities. Formal developments lead then to
the conclusion that A takes expected sublinear time in a variety of situations. The sublinear behavior can
be quantitatively predicted by simple formulae involving the pattern length rn and the alphabet’s probabilistic
properties. Finally, empirical evidence is provided which is in satisfactory accordance with the theory.
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1. The problem. Let be a finite alphabet, I1 =: n, and suppose strings

T tl tN, ti , l <-- <= N (the "text"),

S s s,, si , 1 -<_ <= tn <= N (the "pattern")

are given. To avoid formal difficulties in later discussions, we assume S to be expanded
to the left by "jokers," i.e., characters that match any other character from .

To determine the leftmost occurrence of S as a substring of T means then:

Find the smallest j, m =<j <= N, such that s,_i t_i for 0 <= -< m 1, or output
that no such j exists.

To solve this problem, Boyer and Moore [2] defined an algorithm of the following form:

j:= m; k:=0;
REPEAT
{At this stage, k characters match: t_i s,,_i, 0=<i-< k-1}

IF t-k S,,-k

THEN k:= k+l
ELSE BEGIN

j :=j + MOVE (m, k, t-k);
k:=0
END

UNTIL (k= m) OR (j> N);
IF k m THEN output (Pattern is found at position j)
ELSE output (No occurrence of pattern in text);

Variations of this algorithm depend on the function

MOVE (m, k INTEGER; CHARACTER) INTEGER
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which determines how many positions S may be moved forward along T to the next
position where S can occur as a substring of T. In case k 0, i.e., if the text character

tj does not match the last pattern character s,, the pattern can be moved along the
text as long as does not occur within the pattern:

(1) MOVE(m,O,t):=min{pll<-p<=m,s,_p=t}.
For k> 0 there are k matching characters S,-k+I"’’S, tj-k+’’" tj and we know
that s,_k # tj_k. The simplest way to shift the pattern is to ignore most ofthis information
and to match tj_k+ s,-k+ with the next possible occurrence in the pattern:

(2) MOVE(m,k,.):=MOVE(O,m-k+l,s,_k+) (l=<k<m).
We use the notation BM’ for the Boyer-Moore algorithm using (1) and (2) and consider
the j-increment given by the MOVE function as the progress of the algorithm.

The original Boyer-Moore algorithm, BM, tries to match the whole subpattern
s,_k+l’"s, with its rightmost recurrence in the pattern; an additional condition
makes sure that the unsuccessful subpattern s,_k" s, does not occur again:

{ l<=p<=m,s,_i=Sm_p_i,O<=i<=k-1} (l<_k<m).MOVE* (m, k, ):= min p
s,_k # s,-p_k if p + k < m

These definitions of MOVE formally require the pattern s to be expanded to the left
by max (1, m 1) jokers.

Since more progress may be possible when matching the rightmost occurrence of
tj_ k in the subpattern sl Sm_k, BM finally takes the maximum ofMOVE* (m, k,

and MOVE (m k, 0, t) to define MOVE (m, k, t). The effective construction of lookup
tables for the implementation of MOVE is treated in the cited literature (e.g., [6]).

The worst-case performance of BM increases linearly with N, measured by the
number of pairwise character comparisons. Knuth, Morris, and Pratt [6] first proved
the bound 7N in case the pattern does not occur in the text. This bound has been
improved to 4N by Guibas and Odlyzko [5], while the lower bound N- m + 1 for any
algorithm was established by Rivest [7]. The case of r occurrences of the pattern in
the text led to the bound 7N+ 8rm 14r in [6] (see also [4]), and Galil [4] introduced
a variation of BM to get the bound 14N for any r. Finally, Apostolico and Giancarlo
[1] proved the bound 2N for their variation of BM.

In this paper we neglect the problem of multiple occurrences of the pattern in the
text and do not incorporate the corresponding variations of [4] and [1]. These are
extensions for handling multiple occurrences and could be added on, if necessary.
Since the occurrence of a large random pattern in a large random text is a highly
improbable event, a study of the expected behavior of BM for large patterns can
neglect multiple occurrences altogether.

The expected behavior of BM was studied only for the very special case of equally
probable characters. The sublinearity (i.e., the expected number of character com-
parisons is less than N) was proved in the original paper [2] by Boyer and Moore,
while Knuth, Morris, and Pratt [6] gave a variation with expected (N/(m log m))
character comparisons. This behavior is optimal due to results of Yao [8].

This paper tries to eliminate the assumption of equally probable characters and
to bridge the gap between theory and applications. For patterns and texts from natural
languages the observed average behavior of BM and BM’ is clearly sublinear, and we
give useful formulae that predict this behavior.

In addition, the (Y(N/(m log m)) result of [6] is carried over to the general case
of arbitrary character probabilities, while a blocked variation ofthe simplified algorithm
BM’ will need O(N/(m log2 m)) comparisons.
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2. Probabilistic assumptions. In the sequel, we consider an alphabet 54 with
characters c having probabilities

(3) O<p(c)<l, p(c)=l.

We use q to denote the probability Y... p2(c) that two randomly chosen characters
match.

We switch now from BM’ to a completely randomized model algorithm by assuming
that

(1) any reference to some character of the text or the pattern will produce a
(possibly new) random character;

(2) the MOVE (m, k, t) function is replaced by its expected value M(m, k) for
all characters and patterns S e 54".

The first assumption means that each reference to some t.-k or S"-k acts like a
procedure call that generates a random character independent of S, T, k, and j.

This seems to be quite restrictive and unrealistic at first glance, but we shall see
later that the progress of the algorithm is so large that multiple references to text
characters are rare events under a variety of circumstances. Therefore, the randomized
algorithm can be expected to perform on its random data sources in the same way as
the deterministic version of BM’ performs on an input that is randomly chosen before
execution. Furthermore, later results will show that for alphabets with the probabilistic
properties of natural languages, the algorithm BM’ spends most of the time comparing
the last pattern character s" with text characters ti for values of that are far away
from each other. Then the randomized algorithm will model the behavior of the
deterministic algorithm quite well even for natural languages, since natural language
characters sampled over large intervals can be considered as random characters with
fixed probabilities.

Our randomized algorithm replaces the comparison of b-k with S"-k with a random
decision between two alternatives with probabilities q and 1 q, respectively. Moreover,
the terminating conditions of BM’ (including detection of the pattern and exhaustion
of the text) are completely ignored in order to simplify the following discussion. Thus,
we get the following algorithm A:

j:= m; k:=0;
REPEAT
With probability q" k := k + 1
ELSE (with probability 1- q)
BEGIN
j:=j+M(m,k)
k:=0
END

UNTIL FALSE;

The variable k in the algorithm A denotes a "state" corresponding to the situation of
k matches in BM and BM’. In this sense A is a probabilistic automaton with an
unbounded number of states. Transitions from state k to state k+ 1 occur with the
probability q of a match, yielding no progress in j. With the probability 1-q of a
mismatch, transitions from state k to state zero with progress M(m, k) occur. Reaching
state m corresponds to an occurrence of the pattern in the text; higher states of A are
purely formal. Each REPEAT-cycle will be called a step, and since BM has one
character comparison for each step, we have one unit of "cost" per step in A. Expected
sublinearity means then that the expected progress per step is larger than one.
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3. Theoretical considerations. The expected behavior of A is described by the
following.

LEMMA 3.1. The probability l,rk that A is in state k after r steps is

P.rk =qk(1--q) for all r> k>-O.

The expected progress counted in states up to m- 1 is

m--l

(4) E,,,=(1-q)2 qkM(.m,k)
k=O

after at least m steps.
Proof Algorithm A starts in state 0 with probability one. Then the probability [dl,rk

of A being in state k after r steps is

[3,rk qk(1-- q), 0=<k< r,

Y’rr:q

[Ul,rk O, k > r,

as is easily seen by induction. After k steps, transitions from state k to state 0 occur
with probabilities (1-q)2qk, and these lead to the progress M(m,k). Summing up
gives (4).

The lemma implies the following:
The transient start phase of algorithm A to reach a step-independent probability

for states 0.-. m- 1 is short (m steps).
The finiteness of the number m / 1 of actual states of BM and BM’ as opposite

to the infinite number of states of A, does not matter much because choosing small
values of q ensures that higher states of A are very improbable.

We now evaluate M(m, k).
LEMMA 3.2. If S is a random string of length m (with a joker So added) and c is a

random character, the random function

has the expected value

(5)

Furthermore,

f.(c, S)=min (kll <= k <- m, S,.-k C}

Z (1-p(c))"..
M(m,O)=F,,,

(6) M(m, k)= F,_k+, (1 <= k < m),

M m, k) 0 otherwise.

Proof. Clearly, f, has the expected value

F,,= ., i. (1-p(c))i-’.p2(c)+m . (1--p(c))m-’p(C),
i-= .q

because the progress i, 1 _-< < m, implies (i- 1) mismatches and one match, while m
implies m- 1 mismatches (note that we ignore sin). A little calculation gives (5), and
(1), (2) imply (6). [3
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We can now write (4) as

(7) Em (1 q)2 Fm q_ 2 qkFm-k+l
k=l

where the values Fk are available from (5).
For small values of m we can use (7) and (5) directly to estimate the efficiency

of the algorithm A. Using the probability distributions of characters of natural
languages, we can tabulate (7) and (5) via (3)..For example, Table 1 exhibits the
corresponding values for the distribution of the 26 characters of the English language
(data from [3]). Since later examples will show that A closely resembles BM and BM’
even for natural languages, the user can easily estimate the expectable progress of BM
and BM’ by looking at such a table. Average patterns S of length 20 will, for instance,
be moved forward about 11 characters per single-character comparison, when searched
for in average English texts.

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

TABLE
F,, and E,, for the English alphabet, q 0.0658, n [A 26.

F,, E,, m F,,, E,,,

1.0000 0.8728 21 12.1401 11.3402
1.9342 1.7992 22 12.4420 11.6224
2.8081 2.6193 23 12.7304 11.8918
3.6263 3.3842 24 13.0059 12.1493
4.3935 4.1012 25 13.2695 12.3956
5.1136 4.7741 26 13.5218 12.6314
5.7902 5.4065 27 13.7636 12.8573
6.4268 6.0013 28 13.9954 13.0739
7.0263 6.5616 29 14.2178 13.2817
7.5915 7.0898 30 14.4313 13.4812
8.1250 7.5883 31 14.6366 13.6730
8.6291 8.0594 32 14.8339 13.8574
9.1059 8.5049 33 15.0238 14.0349
9.5573 8.9267 34 15.2067 14.2057
9.9851 9.3265 35 15.3829 14.3704
10.3911 9.7058 36 15.5528 14.5292
10.7765 10.0661 37 15.7168 14.6823
11.1429 10.4084 38 15.8750 14.8302
11.4916 10.7342 39 16.0279 14.9730
11.8236 11.0445 40 16.1756 15.1111

We now prove some lower bounds of F,,. First we concentrate on the case of
small patterns.

LEMMA 3.3. For m <--_ 1/ q,

(8) F,,,>=m-m2q/2>=m/2.

Proof. For any real number x->_ 0 we have

k
1 (1 x) k >= e -kx >= kx ---x

2

and (8) follows from (5).
The progress of A for small patterns from large alphabets with small values of q

(this occurs for natural languages) can be predicted by a useful rule of thumb.
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THEOREM 3.1. The algorithm A has expected progress

E,, -> (1 q)(1 q2)(m m2q/2) >- (1 q)(1 qe)m/2,

E,, m/2 for small q

per character comparison, provided that 2 <= m <= 1/q.
Proof Combine the two major terms of (7) with (8). [3

In Table 1, 1/q 15.2, so Theorem 3.1 is applicable for pattern lengths up to 15,
when the probability distribution of characters in English texts is assumed. Within this
range, expected progress is at least about m!2. This observation for a series of practical
cases was the starting point for our investigation.

We now treat the case of large m but still keep the alphabet fixed. Our main result
in this direction is the following.

THEOREM 3.2. A distribution of n character probabilities pi leads to sublinearity of
A for sufficiently large pattern lengths m, if q i= p2i satisfies

This is the case, if

n(1-q)> 1.

1
(9) q < t,, := 1---

The proof will be a consequence of the lemma following below, if m is large
enough. If we sort the characters of in the form

1 >p_->p2 _->. >_-pn>0,

then there is some 3’ satisfying

(10)

and we get the following.
LEMMA 3.4.

q< 3/<1, 1 -p, __--< y,

(11) E,>-_n(1-q) 1-q --qyProof. Equation (5) implies

(12)

Using this in (7) gives

(13)

F,,, -> n(1 (1 --pn)m) >- n(1 y’).

m--1

E _-> (1 q)2 q kF.,_k
k=O

m-1

=>(1-q)2n Y. qk(1--y-)
k=0

l__q
=(l-q)2 n

1-q

>=n(1-q)(1-q"
Expected sublinearity of A means that the expected progress Em per character com-
parison is greater than one. Equation (11) shows that for large patterns the product
n(1-q) occurs as the maximal expected progress; this proves Theorem 3.2. [3



654 R. SCHABACK

Remarks. (1) The model and the algorithm are in state 0 with probability circa
1- q. Higher states k have probability qk(1- q) and are very improbable indeed for
small values of q.

(2) In state 0 the algorithms BM and BM’ coincide. If A models BM’ in state
0, then it models BM in that state, too.

(3) In state 0 the last character s, of S is responsible for the progress. In case of
sublinearity this character is tested against different characters from T in the major
part of the character comparisons, Then the probabilistic assumptions are not very
restrictive; the model A will closely resemble BM’ (and BM) in state 0 (and in general,
because other states are improbable). Furthermore, the behavior of the model A and
the algorithm BM’ then is independent of the probability of pairs of characters; the
single-character probabilities are sufficient to describe the situation, even for natural
language strings.

(4) A value of q spoils the performance of A and the quality of A as a model
of BM’, while a large alphabet size n I and a large pattern size m act favorably.

(5) Inequality (11) shows that the size of the alphabet times the probability of a
mismatch is the limiting factor for the efficiency of A for large patterns. This indicates
that further speedup requires large alphabets or blocking strategies that let /increase
with m.

(6) The case q 1 would imply that a single character must have a probability
close to one. Since always q_-> 1/n in an n-character alphabet, the case of a binary
alphabet cannot lead to an efficiency larger than one and attains efficiency one only
if both characters have equal probabilities. In this case, blocking will improve the
performance of the algorithm (see below).

(7) Uniformly distributed character probabilities lead to q i/n and the condi-
tions m <_- n and n > 2 in Theorems 3.1 and 3.2, respectively.

(8) For states k => 1 the efficiency of BM will exceed that of BM’ (and A) locally,
because it makes at least the progress of BM’ after any single specific comparison.
However, BM is not superior for every text and pattern, because it may run into
unfavorable regions of the text which the simplified version may happen to avoid.

To get a further speedup of the pattern-matching process, large alphabets with
small values of q are needed. Therefore, we consider a b-fold blocking of the alphabet, I,1- n, 1 _-< b < m and study first the blocked BM version proposed by Knuth,
Morris, and Pratt ([6, p. 341]). Their result (and proof technique) can be generalized
as follows.

THEOREM 3.3. There is an algorithm for pattern matching that inspects
(N(logl/qre characters in a random text with arbitrarily distributed characters.

Proof. We follow [6] to combine steps of BM with an arbitrary linear worst-case
algorithm. Each iteration shifts the pattern at least m-b positions to the right and
consists of the following elementary steps"

(1) The last b characters of the pattern are compared with a block B of b text
characters.

(2) In case of match, proceed to (4).
In case of mismatch, a function similar to (1) can be used to decide

whether B occurs in the pattern at all.
If this is not the case, the pattern can be moved m-b positions along

the text and the next iteration can be started.
Otherwise proceed to (3).

(3) In this case two blocks of pattern and text match somewhere; we ignore the
possible shift given by step (2) and proceed to (4).
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(4) Use a linear worst-case algorithm to move the pattern at least m- b positions
to the right (including the determination of possible occurrences of the pattern
in the text) and perform another iteration. This step ignores the fact that there
is some match of certain blocks of the pattern and the text.

Note that (1) and (2) are the BM part of the algorithm; they are equivalent to a state
zero step of A on the blocked alphabet. Steps (3) and (4) use no more than 2m
characters of the text and therefore require an amount c. m of work.

For small b and large m there will be no overlap of text blocks sampled in step
(1) of the iteration. We can therefore assume that these parts of text and pattern are
stochastically independent.

LEMMA 3.5. The probability to match a random block B of b characters with an
arbitrary block of b characters in a random pattern of m >-b characters does not exceed
(m-b+l)qb.

Proof. There are m- b + 1 possible positions for B to occur as a block within the
pattern. The probability of occurring at a fixed position is qb. The product of these
numbers is a crude upper bound for the situation in the assertion. [3

The expected progress of the algorithm in each iteration cycle is at least m- b,
and the expected number of character comparisons is at most

(m-b+ l). q. cm+ l b

where we simply took the upper bound 1 for the probability of a mismatch of a random
block. Now we use

b := [2 log/q mJ
to get q b m -2, and the expected efficiency will be

m-b

const. + b
G(m/logt/q m). [3

We do not lose too much if we simply apply the following blocked version of A.
THEOREM 3.4. If A works on b-fold blocks in b parallel versions with b log/q m,

the expected number of single-character comparisons is (N/m log/q m).
Proof. We apply former results for the alphabet sb and first use (8) to get

for r blocks of b characters. We ignore the higher-order terms in Er and find the lower
bound

Er>=(1-qb)2Fr>-r(1-qb)2 1--q

Now consider a string of length m < q-’ over A and a blocking factor b with

m <--g, i.e., b >- [lOgl/qm],
q

l<_b<_m.

For simplicity, we can then define r => 1 by

rb =< m < (r+ 1)b
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and consider r blocked steps in our efficiency measure, since the efficiency is monotonic
with respect to pattern length. Then

->- 1-

using

r 1rqb <m<__<__ 1,
rn b

is a lower bound of our efficiency measure progress/cost in both block-by-block or
character-by-character units. Since we need b versions of the algorithm, one for each
block alignment, the total efficiency E,,,b will be at least

(14) Em,b >--_ -- - 1--

For b*= [lOgl/q m] we have b*<= 1 +log/q rn and get

Era,b* > 1
2 1 + log/q m 1 + log/q m

_m ) for m-oo,0
lOglz/q rn

without any restrictions on n, rn, and q except rn < q-", which is always satisfied for
large m.

The blocking strategy depends on rn and q; for instance, equal probabilities for
0 and 1 in the binary alphabet give q 1/2 and b*= Flog2 m]. We can use (14) for the
usual blocking factors b 4, 8, 16, 32, provided that rn < q-b holds.

4. Empirical observations. To check the validity of our model algorithm A we
tested A, BM, and BM’ on a variety of inputs. For a fixed alphabet 1 with a specified
character distribution we generated large samples of random strings S and T for values
of m between 2 and 40. For each m we plotted the expected efficiency (4) of A versus
the means of the observed efficiencies of BM and BM’ (see Figs. 1-3). For a binary
alphabet (see Fig. 1) BM exceeds BM’ and A in efficiency. This is due to the fact that
the efficiency of BM may well exceed the value of (1- q) [s 0.49374.2 0.98748,
which essentially bounds the efficiency of its competitors. But our theoretical results
indicate that blocking should be used to avoid rn >> I11, and therefore this example is
of minor significance.

For larger alphabets (1[ 8 in Fig. 2, I1 26 in Fig. 3) the efficiency as modeled
by A does resemble the actual efficiency of both versions of the Boyer-Moore algorithm
quite well (the vertical lines denote confidence intervals at the 1 percent error level),
but there is a small systematic overestimation of the efficiency of the simplified version
that may be credited to multiple evaluations.

For the comparison on natural language strings we used a text of 4785 ASCII
characters from a LATEX source of part of a chapter of a course in computer science,
written in German. We chose a random sample of patterns occurring in the text (Fig.
4) and in a different chapter of the same course (Fig. 5). Then we plotted the expected
efficiency of A against the observed efficiencies of BM and BM’ as before. The results
indicate once again that A closely describes the behavior of BM and BM’. Of course
the examples with occurring patterns (Fig. 4) show an overestimation of the efficiency
of A, because unexpectedly high states occur.



BOYER-MOORE ALGORITHM 657

Pattern Length
SimpLified Ba -lla
RuLamaLan mode
Or,iginaL Boger,-flaar,e

0.50626 Ftl 2

FG.

t’xl-

Pattern Length
SimpLified 8aer-Haare
RuLamatan model
Original Baer-Haare
cl. O. 14224 IFII 8

FIG. 2

Pattern Length
Simplified Bager,-Naope
uLamaLan model
Or,iginaL Boger,-Nooce

0.0770 IRI 26

Pattern Length
Simplified Booer-Moore
RutamaLan model
Or,iginaL Bager,-Maar,e

0.05995 RI 66
N 4785

FG. 3 FG. 4
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PaLtern LengLh
SimpLified Ooyer-Hoore
AuLamaLan model
Original Oager-Haare
q O. 05gg5 IAI 66
N 4785

FIG. 5
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LOCALITY, COMMUNICATION, AND INTERCONNECT LENGTH
IN MULTICOMPUTERS*

PAUL M. B. VITANYI

Abstract. We derive a lower bound on the average interconnect (edge) length in d-dimensional embed-
dings of arbitrary graphs, expressed in terms of diameter and symmetry. It is optimal for all graph topologies
we have examined, including complete graph, star, binary n-cube, cube-connected cycles, complete binary
tree, and mesh with wraparound (e.g., torus, ring). The lower bound is technology independent, and shows
that many interconnection topologies of today’s multicomputers do not scale well in the physical world
(d 3). The new proof technique is simple, geometrical, and works for wires with zero volume, e.g., for
optical (fibre) or photonic (fibreless, laser) communication networks. Apparently, while getting rid of the
"yon Neumann" bottleneck in the shift from sequential to nonsequential computation, a new communication
bottleneck arises because of the interplay between locality of computation, communication, and the number
of dimensions of physical space. As a consequence, realistic models for nonsequential computation should
charge extra for communication, in terms of time and space.

Key words, multicomputers, complexity of computation, locality, communication, wire length, general
communication network, edge-symmetric graph, binary n-cube, cube-connected cycles, tree, Euclidean
embedding, scalability, optical computing
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1. The tyranny of physical space. In many areas of the theory of parallel computa-
tion we meet graph-structured computational models. These models encourage the
design of parallel algorithms where the cost of communication is largely ignored. Yet
it is well known that the cost of computation--in both time and space--vanishes with
respect to the cost of communication in parallel or distributed computing. As multipro-
cessor systems with really large numbers of processors start to be constructed, this
effect becomes more and more apparent. Thinking Machines Corporation of Cam-
bridge, Massachusetts, has just marketed the "Connection Machine," a massive multi-
processor parallel computer. The prototype contains microscopically fine-grained pro-
cessor/memory cells, 65,536"of them, each with 4,096 bits of memory and a simple
arithmetical unit. The communication network connecting the processors is packet-
switched and based on the binary 16-cube. (A binary n-cube network consists of 2
nodes, each node identified by an n-bit name, and an edge between nodes which differ
in a single bit.) This is implemented by packing a cluster of 16 processors and one
router circuit on a single chip. The 4,096 touters (in casu chips) are connected by
24,576 bidirectional wires in the pattern of the binary 12-cube. The last chapter of [3],
"New Computer Architectures and their Relationship to Physics or, Why Computer
Science is No Good," expresses the dissatisfaction of the designers with traditional
computer science, "which abstracts the wire away into a costless and volumeless
idealized connection. [The] old models do not impose a locality of connection, even
though the real world does In classical computation the wire is not even considered.
In current engineering it may be the most important thing." Here we shall argue that,

* Received by the editors February 13, 1987; accepted for publication (in revised form) September 16,
1987. This work was supported in part by the Office of Naval Research under contract N00014-85-K-0168,
by the Office of Army Research under contract DAAG29-84-K-0058, by the National Science Foundation
under grant DCR-83-02391, and by the Defense Advanced Research Projects Agency under contract
N00014-83-K-0125. Preliminary results were reported in VLSI Algorithms and Architectures, Lecture Notes
in Computer Science 227, Springer-Verlag, Berlin, New York, 1986.

t Massachusetts Institute of Technology, Laboratory for Computer Science, Cambridge, Massachusetts
02139 and Centrum voor Wiskunde en Informatica, Kruislaan 413, 1098 SJ Amsterdam, the Netherlands.

659



660 PAUL M. B. VITANYI

while getting rid of the so-called "von Neumann" bottleneck, in the shift from serial
to nonserial computing, we run into a new communication bottleneck due to the
three-dimensionality of physical space.

Models of parallel computation that allow processors to randomly access a large
shared memory, such as PRAMs, or rapidly access a large number of processors, such
as NC computations, can provide new insights in the inherent parallelizability of
algorithms to solve certain problems. For instance, in the form of distributing copies
of the entire problem instance, or pieces of the problem instance, among an exponential
number of processors in a linear number of steps (i.e., the number of steps in the
longest causal chain is linear). Or, as in NC, among a polynomial number of processors
in a polylogarithmic number of steps. This sometimes leads to the obscure thought
that VLSI technology opens the way to implement tree machines which solve NP-
complete problems in linear time. Now, the way a problem instance can be divided
and partial answers put together may give genuine insight into its parallelizability.
However, it cannot give a reduction from an asymptotic exponential time best algorithm
in the sequential case to an asymptotic polynomial time algorithm in any parallel case.
At least, if by "time" we mean time. This is a folklore fact dictated by the Laws of
Nature. Namely, if the parallel algorithm uses 2 processing elements, regardless of
whether the computational model assumes bounded fan-in and fan-out or not, it cannot
run in time polynomial in n, because physical space has us in its tyranny. Namely, if
we use 2 processing elements of, say, unit size each, then the tightest they can be
packed is in a three-dimensional sphere of volume N 2". Assuming that the units
have no "funny" shapes, e.g., are spherical themselves, no unit in the enveloping sphere
can be closer to all other units than a distance of radius R (Fig. 1),

(1.1) R=

FIG.

When the operations of a computation are executed serially in a single Central Processing Unit (CPU),
each one entails a "fetch data from memory to CPU; execute operation in CPU; store data in memory"
cycle. The cost of this cycle, and therefore of the total computation, is dominated by the cost of the memory
accesses which are essentially operation-independent. This is called the "von Neumann" bottleneck, after
the brilliant Hungarian mathematician John von Neumann.

For example, in [10] it is demonstrated that any program that requires T steps on a CRCW PRAM
with n processors and m shared variables (m polynomial in n) can be simulated by a bounded degree
network of n processors such as the Ultracomputer [7] that runs in deterministic "time" O(T(log n)
log log n) steps.
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Unless there is a major advance in physics, it is impossible to transport signals over
2 (a > 0) distance in polynomial p(n) time. In fact, the assumption of the bounded
speed of light says that the lower time bound on any computation using 2 processing
elements is 1(2"/3) outright. Or, for the case of NC computations which use n
processors, a > 0, the lower bound on the computation time is (na/3).3 Science fiction
buffs may want to keep open the option of embedding circuits in hyper dimensions.
Counter to intuition, this does not helpmat least, not all the way (see the Appendix).
The situation is worse than it appears. At present, many popular multicomputer
architectures are based on highly symmetric communication networks with small
diameter. Like all networks with small diameter, such networks will suffer from the
communication bottleneck above, i.e., they necessarily contain some long interconnects
(embedded edges). However, the desirable fast permutation properties of symmetric
networks do not come free, since they require that the average of all interconnects is
long. (Note that "embedded edge," "wire," and "interconnect" are used synony-
mously.) This brings us to the main topic of this paper, the analysis of the amount of
wire required. To prevent arguments that the results have little practical importance
because they hold only asymptotically, or because processors are huge and wires thin,
we calculate precisely without hidden constants4 and assume that wires have length
but no volume and can pass through everything. The key Theorem 2 in the next section
gives a lower bound on the average edge length for arbitrary graphs that is arguably
optimal.

Let us illustrate the novel approach with a popular architecture, say the binary
n-cube. Recall that this is the network with N 2" nodes, each of which is identified
by an n-bit name. There is a two-way communication link between two nodes if their
identifiers differ by a single bit. The network is represented by an undirected graph
C=(V,E), with V the set of nodes and E_VV the set of edges, each edge
corresponding with a communication link. There are n2"- edges in C. Let C be
embedded in three-dimensional Euclidean space, each node as a sphere with unit
volume. The distance between two nodes is the Euclidean distance between their
centers. Let x be any node of C. There are at most 2"/8 nodes within Euclidean
distance R/2 of x, with R as in (1.1). Then, there are _>-7.2n/8 nodes at Euclidean
distance >-_R/2 from.x (Fig. 2). Construct a spanning tree Tx in C of depth n with
node x as the root. Since the binary n-cube has diameter n, such a shallow tree exists.
There are N nodes in Tx, and N-1 paths from root x to another node in T. Let P
be such a path, and let PI be the number of edges in P. Then PI-<_ n. Let length(P)
denote the Euclidean length of the embedding of P. Since 7/Sth of all nodes are at
Euclidean distance at least R/2 of root x, the average of length(P) satisfies

7R
(N-l)-1 length(P)>=.

pT 16

The average Euclidean length of an embedded edge in a path P is bounded below as
follows:

(1.2) (N-l)-’ Y IPI-’ Y length(e) >=
Pr.,. eP 16n

It is sometimes argued that this effect is significant for large values of n only, and therefore can safely
be ignored. However, in the theory of computation many results are of asymptotic nature, i.e., they hold
only for large values of n, so the effect is especially relevant there.

4- is used sometimes to simplify notation. The constant of proportionality can be reconstructed easily
in all cases, and is never very small.
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FIG. 2. At most 1/8th of all nodes in the large sphere are also contained in the small sphere centered on x.

This does not give a lower bound on the average Euclidean length of an edge, the
average taken over all edges in Tx. To see this, note that if the edges incident with x
have Euclidean length 7R/16, then the average edge length in each path from the root
x to a node in Tx is >=7R/16n, even if all edges not incident with x have length 0.
However, the average edge length in the tree is dominated by the many short edges
near the leaves, rather than the few long edges near the root. In contrast, in the case
of the binary n-cube, because of its symmetry, if we squeeze a subset of nodes together
to decrease local edge length, then other nodes are pushed farther apart increasing
edge length again. We can make this intuition precise.

LEMMA 1. The average Euclidean length of the edges in the three-space embedding
of C is at least 7R/(16n).

Proof. Denote a node a in C by an n-bit string aa2"" an, and an edge (a, b)
between nodes a and b differing in the kth bit by

(a" ak_lakak+’’’ an, a. ak_(aktl)ak+

where 03 denotes modulo 2 addition. Since C is an undirected graph, an edge e (a, b)
has two representations, namely (a, b) and (b, a). Consider the set A of automorphisms
a, of C consisting of

(1) modulo 2 addition of a binary n-vector v to the node representation, followed
by

(2) a cyclic rotation over distance j.
Formally, let v=vlv2’’’ vn, with vi=0, 1 (1_-< i=< n), and letj be an integer l<=j<=n.
Then av..j: V+ V is defined by

a,,.i(a) b.+,’’’ b,b,.." b
with bi ai @ for all i, 1 -< _-< n.

Consider the spanning trees a(T,,) isomorphic to T,,, a e A. The argument used
to obtain (1.2) implies that for each a in A separately, in each path a(P) from root
c(x) to a node in a(Tx), the average of length(a(e)) over all edges a(e) in a(P) is
at least 7R/16n. Averaging (1.2) additionally over all a in A, the same lower bound
applies"

(1.3) (Nlog N)-’ (N-l)-’ IPI- 2 length ((e)) >-.
A PT eeP 16n
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Now fix a particular edge e in T.. We sum length (a(e)) over all a in A, and
show that this sum equals twice the total edge length. Together with (1.3), this will
yield the desired result. For each edge f in C there are eel, a2A, a # a2, such that
a(e) a2(e) =f, and for all a A-{al, a}, a(e) #f. (For e (a, b) and f= (c, d)
we have al(a)= c, a(b)= d, and c(a)= d, a2(b)= c.) Therefore, for each e E,

length (a (e)) 2 length (f).
A .]’ E

Then, for any path P in C,

(1.4) E E length (a(e))= 21PI Y length (f).
P aA f E

Rearranging the summation order of (1.3), and substituting (1.4), yields the lemma.

2. Interconnect length in Euclidean space. Deriving the total required wire length
for embeddings of networks in Euclidean space, will not make any assumptions
about the volume of a wire of unit length, or the way they are embedded in space.
Compare this with previous VLSI-related arguments (see e.g., [9]) whic are the only
other ones on this issue known to me. It is consistent with our results that wires have
zero volume, and that infinitely many wires pass through a unit area. Concretely, the
problem is posed as follows. Let G V, E) be a finite undirected graph, without loops
or multiple edges, embedded in Euclidean d-space. (For the physical space in which
we put our computers, d 3.) Let each embedded node have unit volume. For con-
venience of the argument, each node is embedded as a sphere, and is represented by
the single point in the center. The distance between a pair of nodes is the Euclidean
distance between the points representing them. The length of the embedding of an
edge between two nodes is the distance between the nodes. How large does the average
edge length need to be7

Theorem 2 expresses a lower bound on this quantity for any graph, in terms of
certain symmetries and diameter. The new argument is based on graph automorphism,
graph topology, and Euclidean metric. For each graph topology have examined, the
resulting lower bound turned out to be sharp. This includes the binary n-cube,
cube-connected cycles (CCC), complete graph, star, complete binary tree, and meshes
with wraparound such as ring and torus. It could be that the lower bound is optimal
in general. All mentioned graphs, except the cube-connected cycles and tree, exhibit
a type of symmetry called edge-symmetry. Because of the significance of this class of
graphs, in Corollary 4 we set off a lower bound on the average interconnect length for
edge-symmetric graphs in general.

2.1. Lower bound based on symmetry anti diameter. What symmetry of a graph
yields large edge length? Not that of the complete binary tree. There the diameter is
small, yet the average Euclidean length of an embedded edge is O(1). This is borne
out by the familiar H-tree layout [9], where the average edge length is less than 3 or
4. The symmetry property we are after is "edge-symmetry." We recall the definitions
from [2]. Let G (V, E) be a simple undirected graph, and let F be the automorphism
group of G. Two edges e (u, v) and e2 (u2, 02) of G are similar if there is an
automorphism 3’ of G such that 3’({ut, v})= {u2, v2}. We consider only connected
graphs. The relation "similar" is an equivalence relation, and partitions E into non-
empty equivalence classes, called orbits, Et,..., E,,. We say that F acts transitively
on each Ei, 1,. ., m. A graph is edge-symmetric if every pair of edges are similar
(m 1). The following property of orbits is obvious.
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Property. For each pair of edges e, e2 Ei, the set {TF: T(e)=e2} has ]F]/IE[
elements, i-1,...,m. (Hint: Let 0Ei and Fo-- {y F: 7(0) 0}. For e, fEi,
define Yej F by Te(e)--f. Fix e and f arbitrarily. Then T TeoFoTo.t if and only if

-’%/ ro
We need the following notions. Let D < be the diameter of G. If x and y are

nodes, then d(x, y) denotes the number of edges in a shortest path between them. For
1,. ., m, define d(x, y) as follows. If (x, y) is an edge in E then di(x, y)= 1, and

if (x, y) is an edge not in E then d(x, y) O. Let H be the set of shortest paths between
x and y. If x and y are not incident with the same edge, then di(x,y)=
[HI -1 Ep,, Ep d,(e). Clearly,

(2.1) d,(x, y)+. .+ d,,(x, y)= d(x, y)<- D.

Denote[V] by N. The ith orbit frequency is

N-2 5"
di(x, y)., v d (x, y)’

1,..’, m. Finally, define the orbit skew coefficient of G as M
min {[Ei[/[E I" 1 <=i<= rn}. Consider a d-space embedding of G, with embedded nodes,
distance between nodes, and edge length as above. Let R be the radius of a d-space
sphere with volume N, e.g., (1.1) for d 3. We are now ready to state the main result.
Just in case the reader does not notice, (i) is the most general form.

THEOREM 2. Let graph G be embedded in d-space with the parameters above, and
let C (2a 1)/2d+

(i) Let ti=[E[-ec., l(e) be the average length of the edges in orbit E, i=

1, , m. en, ’li<=r It >= <i<, 61 >= CRD-.
(ii) Let l= IE[- Y l(e) be the avr[ge length ofan edge in E. Then, 1>= CRMD-.
Proof Without loss of generality, we give the proof for the physically relevant

case d 3. If x and y are nodes, let l(x, y) be the Euclidean distance between x and
y in three-space. For 1,. ., m, define l(x, y) as follows. If (x, y) is an edge in Ei,
then li(x, y) l(x, y), and if (x, y) is an edge not in Ei, then li(x, y)= 0. If x and y are
not incident with the same edge, then l(x, y) [HI- PcU YeP l(e), with H as above.
By the triangle inequality,

(2.2) l(x, y) <- l,(x, y) +. + l,,(x, y).

Consider Fig. 2 again. Let x be any node of G. There are at most N/8 nodes
within distance R/2 of x, with R given by (1.1). Therefore, there are >=7N/8 nodes
at distance >-R/2 from x, for N large enough. Thus, the sum of all l(x, y), taken over
all node pairs x, y, satisfies

7RN
(2.3) Z l(x, y) >-_

,,y v 16

Using (2.1) and (2.2), we obtain from (2.3),

l(x, y) 7RN
(2.4) ,. li(x, y)

> y >
, _v i: d(x, y)-, v d(x, y)= 16D

This constant C can be improved. For d 3, C 7/16 is the value of c(1 c3) for c 2-. This function
reaches its optimum value (3/4)2 -2/3 for c 2 -2/3. By refining the argument we can improve the constant

to43-. Namely, to obtain (2.3), sum (c, c+dc]R(x, y) with 6(x, y) if cR < l(x, y) and 6(x, y) 0 otherwise,
with c ranging from 0to 1, for each pair of nodes x, y. This replaces C 7/16 in (2.3) by C to (1 e3)de =.
Similarly, in two dimensions we can improve C from 3/8 to 2/3.



INTERCONNECT LENGTH IN MULTICOMPUTERS 665

Now fix a particular edge e in some Ei. We average l(y(e)) over all y in F. By the
property above, there are precisely IFI/IEil distinct automorphisms in F that map edge
e onto edge f, for each pair e, f Ei. Therefore, the sum of l(y(e)) over all y in F
equals precisely IFI/IEil times the sum of the lengths of all edges in Ei. Formally,

Ir1-1 l(y(e))=lEil-’ Y’. l(f) for eacheEi, i=l,...,m,
ycl fc Ei

and therefore, for all x, y V,

(2.5) [rl -’ li(’y(x), "y(y)):lEi[-di(x,y) ., l(f)
y I" ,f E

for i=1,. ., m.

We now finish the argument. Averaging (2.4) additionally over all y in F, leaves the
lower bound invariant:

(2.6) IFI_ y 1,(y(x), y(y)) 7RN2

-x,ycv i---, d(y(x), y(y))- 16D

By rearranging the summation order in (2.6), and substitution of (2.5), we obtain

y y di(x, y) 7RN2

= x,y v d(x, y) IEil-1
eeEi’ l(e) >=16D

That is, li, 6I>-7R/(16D) Since 6<-1, i=1,...,m, this proves (i). For the
average edge length l, this yields t=,_i, ([E[/[E[)li >= M ,,im li, which proves
(ii). ]

Example 1. Binary n-cube. Let F be an automorphism group ofthe binary n-cube,
e.g., A in the proof of Lemma 1. Let N 2n. The orbit of each edge under F is E.
Substituting R, D, m 1, and d 3 in Theorem 2(i) proves Lemma 1. Denote by L
the total edge length Y.rc l(f) in the three-space embedding of C. Then

7RN
(2.7) L=>_.

32

Recapitulating, the sum total of the lengths of the edges is 1(N4/3), and the average
length of an edge is I(N/3 log- N). (In two dimensions we obtain in a similar way
-(N3/2) and l’l(N/2 log- N), respectively.)

Example 2. Cube-connected cycles. The binary n-cube has the drawback of
unbounded node degree. Therefore, in the fixed-degree version of it, each node is
replaced by a cycle of n trivalent nodes [9]; whence the name cube-connected cycles
or CCC. If N n2n, then the CCC version, say CCC (V, E), of the binary n-cube
has N nodes, 3N/2 edges, and diameter D < 2.5n.

COROLLARY 3. The average Euclidean length of edges in a three-space embedding
of CCC is at least 7R/(120n).

Proof Denote a node a by an n-bit string with one marked bit, a=
a...a_aa+l...an. There is an edge (a, b) between nodes a

a ai-laai+ an and b= a ai_b.iai+ an, ifeither i=-j+/- l(mod n), ai bi
and a b./ (edges in cycles), or i=j and ai b (edges between cycles). Consider the
set A of automorphisms a., with v v’’’vn a binary n-vector and j an integer
1 _-<j _-< n, such that

a,(a, ai_,aZai+," an)=b+," bnb," b,
with bi- aivi and b agVk for k i, 1-< k_-< n. Clearly, A is a subgroup of the
automorphism group of CCC. The similarity relation induced by A partitions E in
two orbits" the set of cycle edges and the set of noncycle edges. Since there are N/2
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noncycle edges, N cycle edges, and 3N/2 edges altogether, the orbit skew coefficient
M is 1/2. Substitution of R, D, M, and d- 3 in Theorem 2(ii) yields the corollary.

That is, the total edge length is i’(N4/3 log- N) and the average edge length is
12(N/3 log-1 N). (In two dimensions f(N3/2 log- N) and I-I(N/2 log-1 N), respec-
tively.) Similar lower bounds are expected to hold for other fast permutation networks
like the butterfly, shuffle-exchange, and de Bruijn graphs.

Example 3. Edge-symmetric graphs. Recall that a graph G=(V, E) is edge-
symmetric if each edge is mapped to every other edge by an automorphism in F. We
set off this case especially, since it covers an important class of graphs. (It includes
the binary n-cube but excludes CCC.) Let]V[- N and D < be the diameter of G.
Substituting R, m--1, and d- 3 in Theorem 2(i) we obtain the following.

COROLLARY 4. The average Euclidean length of edges in a three-space embedding
of an edge-symmetric graph is at least 7R/ 16D).

For the complete graph Kv, this results in an average wire length of _->7R/16.
That is, the average wire length is (N1/3), and the total wire length is -(N7/3).

For the complete bigraph K.N- (the star graph on N nodes) we obtain an average
wire length of _->7R/32. That is, the average wire length is Iq(NI/3), and the total wire
length is (N4/3).

For an N-node g-dimensional mesh with wraparound (e.g., a ring for t 1, and
a torus for 8- 2; for a formal definition see Appendix), this results in an average wire
length of >-7R/(88N/). That is, the average wire length is [’(t-lN(5-3)/3), and the
total wire length is -(N(4-3)/3).

To give some indication of the scope of Corollary 4, we note that every edge-
symmetric graph with no isolated nodes is node-symmetric or bipartite, by a theorem
attributed to Elayne Dauber [2], and that every Cayley graph is symmetric [1]. (A
graph is symmetric if it is both node-symmetric and edge-symmetric. A graph is
node-symmetric if for each pair of nodes there is an automorphism that maps one to
the other.)

Example 4. Complete binary tree. The complete binary tree T, on N-1 nodes
(N 2n) has n-1 orbits El,’’" En_. Here Ei is the set of edges at level of the
tree, with E is the set of edges incident with the leaves, and E,_t is the set of edges
incident with the root. Let li and be as in Theorem 2 with m n 1. Then ]E]- 2"-

i=1,...,n-1, the orbit skew coefficient M=2/(2-2), and we conclude from
Theorem 2(ii) that is (N-2/3 log-1 N) for d 3. This is consistent with the known
fact is O(1). However, we obtain significantly stronger bounds using the more general
part (i) of Theorem 2. In fact, we can show that one-space embeddings of complete
binary trees with o(log N) average edge length are impossible.6

COROLLARY 5. The average Euclidean length of edges in a d-space embedding of a
complete binary tree is 12(1) for d -2, 3, and El(log N) for d 1.

Proof. Consider d-space embeddings of T,, d {1, 2, 3} and n > 1. By Theorem 2,
n-!

(2.8) l e CRD-’.
i-I

CLAIM. t <__-- (/’/-- 1)-1, for 1, , n 1.

Proof of claim. The proof is by induction on n. Denote by 61 n) the ith orbit
frequency of T,, the complete binary tree with 2"-1 nodes. Note that Tn+
consists of two copies of T,, with the roots attached to a root node that is in neither

Using i="- li >= CRD- instead of (2.8), also yields is fl(1) for d =2, 3, but only is fl(iog log N)
for d=l.
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of them. Set "-’i
’s() =0 for i>-_j. For n 2 the claim holds trivially. Assume the claim

holds for n-> 2. Then we prove it holds for n + 1, as follows. We obtain (2"+!- 1)2(
by dividing Y,,yv di(x, y)/d(x, y) in two parts" with both nodes x, y in the same T,
subtree and with nodes x, y in different subtrees. The first subsum equals 2(2" 1)261").
To obtain the second subsum, we sum di(x, y)/d(x, y) with x and y ranging over the
consecutive levels of different T,-subtrees (so the shortest path between x and y
contains the root of T,/). This yields the following recurrences, for each i= 1,..., n
(with 6(,") 0)"

2k-(’+) 2(2" 1 )2(In) -- 2(2"+ 1)26i
.j=o k=,-i+ k +j

Evaluating the double sum for n, and substituting 61 ")-< (n 1)-, we find after due
computation, 6"+)_-< n-. [3

Substitution of [E], [E], rn in the expression for in Theorem 2 gives
n-1

(2.9) I= (2"-2)-’ 2"-il,.
i-----i

Substitute in (2.8) the values of C, R (depending on d) and D=2(n-1). Next,
substitute (n 1)- for 6i and multiply both sides with n 1. Use the resulting expression
to substitute in (2.9), after rearranging the summation, as follows:

(2"-2) -1 U- i+ l e lI 2 -(1-/a)" Y 2 (l-’/a)i

\j=l i=1 j=l

Therefore, for d 2, 3, we obtain is (1). However, for d 1, is fl(log N). 71

2.2. Optimality conjecture. There is evidence that the lower bound of Theorem 2
is optimal. Namely, it is within a constant multiplicative factor of an upper bound for
several example graphs of various diameters. Consider only three-dimensional
Euclidean embeddings, and recall the assumption that wires have length but no volume,
and can pass through nodes. For the complete graph KN with diameter 1, the lower
bound on the average wire length is 7R/16, while 2R is a trivial upper bound. For
the star graph on N nodes the bounds are 7R/32 and 2R, respectively. The upper
bound on the total wire length to embed the binary n-cube requires more work. Let
iV --2".

The construction is straightforward. For convenience we assume now that each
node is embedded as a three-space cube of volume 1. Recursively, embed the binary
n-cube in a cube of three-dimensional Euclidean space with sides of length S,. Use
eight copies of binary (n- 3)-cubes embedded in Euclidean S,_3 x S,-3 x S,-3 cubes,
with S,_3 S,/2. Place the eight small cubes into the large cube by fitting each small
cube into an octant of the large cube. First connect the copies pairwise along the first
coordinate to form four binary (n- 2) cubes. Connect these four pairwise along the
second coordinate to form two binary (n- 1) cubes, which in turn are connected along
the third coordinate into one binary n-cube. This requires no more than 4.2"-3 wires
of length at most 3x//2. S,, another 2.2"-2 wires of length at most 3S,/2 and 2"-
wires of length at most x/" S,. Assume S 1 and n-1 is a multiple of 3. Since
S =2S_3, we have S =2(-)/3. The total wire length L(n) required to embed the
binary n-cube is

L(n) 2"-’(+3/2 +)S, + 8L(n -3)
(n-l)/3

i=1

24i" 2n-’-3i(x/’/2 q- 3/2 + x/).
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Substitute i= -j + (n- 1)/3 and round off the bracketed sum to 5 to obtain

(n --4)/3

L(n) < 5 24(n-1)/3 2 2-J.
j=0

2- yields an upper bound L(n) < 4N4/3. TogetherSumming the infinite series
with Lemma 1, the optimum of the average interconnect length for the binary n-cube
is in between 7R/16n and 8Nl/3/n.

For the cube-connected cycles with N n2 nodes, we derive an upper bound by
the same argument. Squeeze the n nodes of each cycle in a three-space cube of volume
n in the obvious way. This takes, say, about L1 < n2 total interconnect length for the
cycle edges. Recall that each such cycle corresponds to a particular node of the binary
n-cube above. Apply the same construction as for the binary n-cube with S n 1/3.
Then obtain L2 < 4.24n/3n /3 total interconnect length for the edges between cycles.
Together with Corollary 3, we obtain that the optimum of the average interconnect
length for the cube-connected cycles is in between 7R/120n and 8N/3/(3n)+2/3.
For 6-dimensional meshes with wraparound, with 6 1, 2, 3 and diameter 2-N/a, a
lower bound of 1(1) follows from Corollary 4, and the upper bound is O(1) by the
obvious embedding. Note that 6 is the ring and 6 2 is the torus. For the complete
binary tree, for d 2, 3, the H-tree construction gives an average edge length O(1)
[9], matching the (1) lower bound. In the one-dimensional case, the obvious embed-
ding gives O(log N) average edge length, matching the lower bound (log N) of
Corollary 5.

2.3. Robustness. Theorem 2 is robust in the sense that if G’-- V’, E’) is a subgraph
of G (V, E), and the theorem holds for either one of them, then a related lower
bound holds for the other. Essentially, this results from the relation between the orbit
frequencies of G, G’. Let us look at some examples, with d 3.

Let a graph G have the binary n-cube C as a subgraph and N 2". Let G have
N’ <= 8N nodes and at most N’ log N’ edges. The lower bound on the total wire length
L(G) of a three-space embedding of G follows trivially from L(G)>= L(C), with
L(C) >-7RN/32 the total wire length of the binary n-cube. Therefore, expressing the
lower bounds in N’ and radius R’ of a sphere with volume N’ yields L(G) >= 7R’N’/512,
and the average edge length of G is at least 7R’/(512 log N’).

Let the binary n-cube C have a subgraph G with n2"-1-2"-5 edges. The lower
bound on the total wire length L(G) of a three-space embedding of G follows from
the observation that each deleted edge of C has length at most twice the diameter R
of (1.1). That is, L(G) => L(C) 2"-4R with L(C) as above. Note that G has N’=>
2-(2"-6/n) nodes. Therefore, expressing the lower bounds in N’ and radius R’ of
a sphere with volume N’ yields L(G)>-5RN/32>-5R’N’/32, and the average edge
length of G is at least 5R/16n---5R’/(16 log N’).

3. Interconnect length and volume. An effect that becomes increasingly important
at the present time is that most space in the device executing the computation is taken
up by the wires. Under very conservative estimates that the unit length of a wire has
a volume which is a constant fraction of that of a component it connects, we can see
above that in three-dimensional layouts for binary n-cubes, the volume of the N 2"
components performing the actual computation operations is an asymptotic fastly
vanishing fraction of the volume of the wires needed for communication:

volume computing components
o(N-/3)

volume communication wires
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If we charge a constant fraction of the unit volume for a unit wire length and add
the volume of the wires to the volume of the nodes, then the volume necessary to
embed the binary n-cube is 1(N4/3). However, this lower bound ignores the fact that
the added volume of the wires pushes the nodes further apart, thus necessitating longer
wires again. How far does this go? A rigorous analysis is complicated and is not
important here. The following intuitive argument indicates well enough what we can
expect. Denote the volume taken by the nodes as Vn and the volume taken by the
wires as Vw. The total volume taken by the embedding of the cube is V, Vn +
The total wire length required to lay out a binary n-cube as a function of the volume
taken by the embedding is, substituting V, 4rR3/3 in (2.7),

7N(3V /3

L( v, >--
\ :

Since limn_.oo Vn/Vw- 0, assuming unit wire length of unit volume, we set L(V,)--- V.
This results in a better estimate of O(N3/2) for the volume needed to embed the binary
n-cube. When we want to investigate an upper bound to embed the binary n-cube
under the current assumption, we have a problem with the unbounded degree of unit
volume nodes. There is no room for the wires to come together at a node. For
comparison, therefore, consider the fixed-degree version of the binary n-cube, the CCC
(see above), with N n2 trivalent nodes and 3N/2 edges. The same argument yields
f(N3/ log-3/ N) for the volume required to embed CCC with unit volume per unit
length wire. It is known, that every small degree N-vertex graph, e.g., CCC, can be
laid out in a three-dimensional grid with volume O(N/) using a unit volume per
unit wire length assumption [5]. This neatly matches the lower bound.

Because of current limitations to layered VLSI technology, previous investigations
have focused on embeddings of graphs in.two-space (with unit length wires of unit
volume). We observe that the above analysis for two dimensions leads to O(Ne) and
f(Ne log-2 N) volumes for the binary n-cube and the cube-connected cycles, respec-
tively. These lower bounds have been obtained before, using bisection-width arguments
and are known to be optimal [9]. It can be even worse, namely, in [6], [12] it is shown
that we cannot always assume that a unit length of wire has O(1) volume (for instance,
if we want to drive the signals to very high speed on chip).

4. Conclusion. In contrast to other investigations, my goal here was to derive hard
lower bounds on the total wire length independent of the ratio between the volume of
a unit length wire and the volume of a processing element. Clearly this is desirable,
since this ratio changes with different technologies and granularity of computing
components. The arguments we have developed are purely geometrical, apply to any
graph, and give optimal lower bounds in all cases we have examined.

Such technology-independent, but huge, lower bounds are a theoretical prelude
to many wiring problems currently starting to plague computer designers and chip
designers alike. Formerly, a wire had magical properties oftransmitting data "instantly"
from one place to another (or better, to many other places). A wire did not take room,
did not dissipate heat, and did not cost anything--at least, not enough to worry about.
This was the situation when the number of wires was low, somewhere in the hundreds.
Current designs use many millions of wires (on chip), or possibly billions of wires (on
wafers). In a computation of parallel nature, most of the time seems to be spent on
communication--transporting signals over wires. Thus, thinking that the yon Neumann
bottleneck has been conquered by nonsequential computation, we are unaware that a
non yon Neumann communication bottleneck looms large. The following innominate
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quote covers this matter admirably:

Without me they fly they think;
But when they fly am the wings.

It is clear that these communication mishaps will influence the architecture and
the algorithms to be designed for the massive multiprocessors of the future, just like
existing algorithms influenced (or were inspired by) the novel architectures of today.
What is needed, therefore, are realistic formal models for nonsequential computation.
In particular, we need to formulate the appropriate cost measures for multicomputer
computations. Such costs must account for the communication overhead in (physical)
time due to the computer aggregates used in the computation and the overhead in
space due to the topology of those aggregates. That is beyond the scope of this paper.

Mesh-connected architectures may be the ultimate solution for interconnecting
the extremely large (in numbers) computer complexes of the future. Mesh architectures
have desirable properties of scalability, modular extensibility, and uniformity, when
embedded in physical space. These notions are generally used in a very loose fashion,
and with a great deal of intuition, so I do not try to define them here. Circuits with
lower bound f(N), f(N) -* c for N c, on the average interconnect length do not
scale well. (N is the number of nodes.) Namely, composing a larger such circuit from
smaller ones, the average wire length needs to increase. Thus, embeddings of such
circuits are not uniformly modular extensible. This positive dependency of the intercon-
nect length on the number of nodes to be connected we call nonscalability.

Nonscalability. No edge-symmetric graph on N nodes with a diameter o(N1/3)
is scalable (i.e., uniformly modular extensible) when embedded in physical space.

Tomorrow, optical communication will be used in multicomputers, either wireless
by means of lasers/infrared light or by using virtually unlimited bandwidth optical
fiber or integrated waveguides [8]. In the currentjargon" we can obtain three-dimensional
mesh interconnect structures by stacking wafer circuit boards and providing optical
interconnections vertically between wafers over the entire wafer in addition to planar
connections. This may use hybrid mounting of optical components, combined with
integrated optical waveguides and lenses on a large area silicon wafer-scale integrated
(WSI) electronic circuit combining electronic and photonic functions [4]. However, it
is unlikely that any clever scheme or technology will free us from practical communica-
tion problems forever. Even though Nature is not malicious, she is subtle.

Appendix A. What happens with embeddings in higher-dimensional spaces? Lest
the reader conclude that I indulge in the same avoidance of reality that I decry in
others, I have delegated this digression to the Appendix. These mathematical curiosities
have no more bearing on realistic formal models for multicomputers than space warps
have on the theory of propulsion of space vehicles.

A.I. Communication and interconnect length in higher dimensions. Assume that a
node (processor) has unit volume, say spherical, in any number d of dimensions we
care to consider. This is in order to obtain comparable reasoning to the physical
relevant case of three dimensions. Our intuition about higher-dimensional Euclidean
geometry turns out to be quite unreliable. The Euclidean volume Vd of a d-dimensional
sphere of radius Rd is

Rd dT"fd
F(l+d/2)’
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with F the gamma function providing a natural generalization of the factorial function.
With radius 1 this gives, for dimensions d 1, 2,. ., the volumes 2, 3.14, 4.18, 4.93,
5.26, 4.72, 4.06,. . The volume of the unit radius sphere comes to a maximum for
d 5 and falls off rather rapidly toward zero as d approaches infinity. On the other
hand, d can be chosen to minimize the radius of a d-dimensional sphere of volume
N. However, even with the optimal d (a function of N) the radius is f(log/2 N).
Namely, setting Vd N and d 2k, we have

N= -. (R2k)-k=
Tr(R2k)2) k

k

By Stirling’s approximation,

l/k

Observe that the lower bound in Theorem 2(i) is therefore f(N/d

/ rnintiating, we find that R2k reaches its minimum --2k for

k- log N,

where log denotes the natural logarithm Therefore, with NTM N

for k-, we obtain

.log N2k

d/2D-). Ditteren-

e, and (27rk) 1/k 1

We may think that it is the unfortunate accident of having a physical space of only
three dimensions that makes it hard to embed edge-symmetric graphs with small
diameter. However, this is not the case. By this analysis and Theorem 2, to embed
edge-symmetric graphs of diameter o(log1/2 N) requires the average length of an
embedded edge to rise unbounded with N, independent of the number of dimensions.
As another curiosity, the average edge length of the complete binary tree in d > 1
dimensions is not O(1), but turns out to be f(d/2). That is, in higher dimensions the
H-tree construction increasingly loses efficiency.

A.2. Meshes in higher dimensions. Let N n s, n a positive integer. Define a
6-dimensional mesh with wraparound as a set of nodes (i,. ., is), !j =0,. ., N/- 1
(1-<j=< 6). Node (i,..., is) is connected by an edge with node (j,... ,is), if they
are equal in all coordinates except one where they differ by 1 mod N/s.

Again assume that a node (processor) has unit volume in any number d of
dimensions we care to consider. For d-dimensional embeddings of N-node, 6-
dimensional meshes with wraparound we have an average interconnect length
(2d- 1)Rd/(2dtN/). This lower bound is a small positive constant for d-> 6 and
d is small (this is necessary because of the curious behavior of the ratio between
volume and radius in higher dimensions). Since the lower bound can be matched by
an upper bound, such meshes are feasible architectures for large N. However, since
the average Euclidean interconnect length exceeds

--l N(S-d)/dS
d

27re’
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it rises unbounded with N for 6 > d. (It also rises unbounded with d for fixed N
and 6.)
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ISOMORPHISM TESTING OF UNARY ALGEBRAS*
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Abstract. Two problems are said to be polynomially equivalent if each is polynomially reducible to
the other. A problem is said to be isomorphism-complete if it is polynomially equivalent to the graph
isomorphism problem. We prove that the isomorphism problem in any variety of unary algebras is either
isomorphism-complete, or solvable in polynomial time. We formulate a condition C under which the
isomorphism problem in a variety V of unary algebras can be solved in polynomial time. We present an

algorithm that can be applied to any pair of unary algebras with the same number of operations and decides
whether the algebras are isomorphic or not in O(n 3) time, provided one of them belongs to a variety
satisfying C. The validity of the last condition is tested by the algorithm in linear time.

Key words, isomorphism testing, isomorphism-complete, unary algebras

AMS(MOS) subject classifications. 68C25, 08A60

1. Introduction. The problem of the complexity of isomorphism testing of different
mathematical structures has recently received much attention [17] because it is one of
the most important problems in the class NP which is not known to be either NP-
complete, or to belong to the class NP (’1 coNP or even to the class P of polynomial-time
computable problems. Originally the problem was to decide the question about the
existence of an isomorphism of two graphs. It is known [7] that the isomorphism
testing of any finite algebraic or relational structure can be reduced to the graph
isomorphism in the sense of either Cook [5] or Karp [10]. Based on this, it was shown
that the general graph isomorphism problem is equivalent (in the sense of mutual
polynomial-time reducibility) to the isomorphism problem for many other structures,
e.g., bipartite graphs, semigroups, automata etc. (see [4]). The problem with the
computational complexity equivalent to the complexity of the graph isomorphism
problem is usually called isomorphism-complete.

As in the theory of NP-completeness, we want to know under what constraints
different problems remain isomorphism complete. This approach has already been
used in the case of graphs, and the isomorphism completeness of a number of special
classes of graphs has been proved. On the other hand, there exist highly nontrivial
polynomial-time algorithms solving the isomorphism problem in several interesting
classes of graphs (e.g., planar graphs [9], graphs of bounded genus [16], graphs of
bounded degree [14] or graphs of bounded eigenvalue multiplicity [3]).

A disadvantage of graphs is that there is no natural and general procedure designed
to generate special classes of them in a unified and organic way. From this point of
view, there is a more suitable situation in universal algebra. Starting from the class of
all universal algebras of a given type (which is known to be isomorphism-complete
whenever the type consists of at least two unary operations or at least one n-ary
operation, n >-2 [7]), we can specialize the class by imposing equalities, i.e., creating
varieties, to obtain a wide scale of various naturally defined classes of algebraic
structures. Unlike the case of graphs, we know algebraic varieties in which the isomor-
phism problem could be simpler than any that is isomorphism-complete, and yet not
computable in a polynomially bounded time. For example, the best-known algorithm
to solve the group isomorphism problem runs in n O(lgn) time [15], while all known
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algorithms for the general graph isomorphism problem need time (exp (x/cn log n))
[2]. However, all such varieties involve at least binary operations. In the present paper
we will show that no matter how rich and wide the scale of varieties of universal
algebras is, there are just two degrees of complexity of isomorphism testing in unary
algebras, namely isomorphism-completeness and polynomial-time computability
(which, of course, can coincide if, e.g., P= NP).

We present the following results:
(i) In any variety of unary algebras, the isomorphism problem is either isomor-

phism complete or can be solved in polynomially bounded time;
(ii) A condition C on varieties of unary algebras is formulated such that if a

variety V satisfies C then the isomorphism problem in V is polynomial-time solvable,
else the problem is isomorphism-complete;

(iii) An algorithm is given that tests in linear time for two arbitrary unary algebras
with the same number of operations whether at least one of them belongs to a variety
satisfying C. If so, then it decides in O(n3) time the existence or nonexistence of an
isomorphism of the given algebras.

2. Varieties of unary algebras. A unary algebra with k operations is a tuple
(X, f, ,j), where X is a set and eachf is a mapping ofX into itself. The operations
of a unary algebra A (X, fl," ",fk), being mappings ofX into itself, can be composed
and any word w =f,...f,,, is a unary operation again (the empty word is the identity
map).

We denote by ALG(k) the class of all unary algebras with k operations. A variety
in ALG(k) is a subclass V of ALG(k) which can be determined by a system of
equations. Let us discuss this in more detail.

Denote by f* the set of all words over the set {fl,... ,fk} of operation names.
Then V ALG(k) is a variety if and only if there are sets P, P, and collections
{(wp, w’p)lp P}, {(Wp, W’p)lp/5} of pairs of elements off* such that V is precisely
the class of all algebras (X,f,... ,fk) which fulfill the equations (1) and (2) below"

(1) Wp(X)=W’p(X) forallxeX, peP,

(2) Wp(X) W’p(y) for all x, y e X, p e P

(where we denote by the same letter the operation name and the actual operation on
an algebra).

If V can be presented by equations of the type (1) only (i.e., P is empty), it is
called a regular variety.

Let us present another description of varieties in ALG(k). Let M be a monoid
(i.e., binary associative operation on M is given with a unit 1 e M, i.e., 1 m rn 1 rn
for all mM). Let G,..., Gk be a k-tuple of generators of M. Then
(M, {G,. ., Gk}) determines the following two varieties V(M, {G,. .., Gk}) and
Vo(M, { GI,. ., Gk}) in ALG(k).

Define a monoid homomorphism H’f* M by H(f)= Gi for i= 1,..., k.
V(M, {G,..., Gk}) is a regular variety defined by the following system of

equations"

(3) w(x) w’(x) whenever H(w)= H(w’).

Vo(M, {G,..., Gk}) is a variety given by all the equations of the system (3)
together with all equations of the following form"

(4)
w(x)=w(y) whenever H(w) is a left zero of M

(i.e., H(w) m H(w) for all m e M).
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Now, let a variety V in ALG(k) be given. Denote by M(V) the monoid f*/=,
where is the following congruence"

(5)
w w’ if and only if w(x) w’(x) for each algebra

(X, f,. ., fk) in V and each x e X.

Denote by H :f* f*/= M(V) the corresponding monoid-homomorphism. Put
Gi H(f), i= 1,..., k and M M(V). Then, clearly,

Vc V,(M, {G,, G,}).

We show that

either V=V(M,{G,...,Gk}),

or V= Vo(M, (G,. ., Gk}).

First suppose that V is a regular variety given by equations wp(x)= w(x) for
p P. Then the above equivalence (5) on f* is the smallest congruence on f* for which

for allpP.WpWp

This implies that V= V(M, {G,..., Gk}) (with M =f*/= and G,= H(f), of
course). Next, if V is not regular, it is given by equations (1) plus some equations (2)
Wp(X)-w’p(y) pc P. However, the monoid M(V)=f*/=- is defined by (5) as in the
previous case. We show that V= Vo(M,{G,’’’, Gk}) with M and G,..., Gk as
above.

Replace any equation

wp(x)= W’p(y)
in the defining system by the following two equations"

w,(x) w’p(x) and wp(x) wp(y).
The first can be added to the system (1) and this does not influence the definition of

in (5), so we can suppose that the system (2) is formed by equations of the form
Wp(X) Wp(y). For any such wv

wv(x wp(v(x)) for all x X and all v f*,

so that wp =- Wp v for each v e f*. Consequently, H(wp) is a left zero of the monoid
M(V) f*/=-. Hence

Vo(M, {Gl," ", Gk}) V.

Conversely, let A (X, f,..., fk) be an algebra in V and let H(w) be a left zero
of M(V)=f*/=. Then w= wo v for all vf*; hence w(x)=w(v(x)) for all x6X.
Since at least one equation of the form

wp(x)=wv(y)
is valid in A (for all x, y X), we have

w(x) w(wp(x))= W(Wp(y))= w(y)

so that w(x)= w(y) is valid in the algebra A, and hence, A Vo(M, {G,..., Gk}).
Thus V Vo(M, {G, , Gk }). We conclude that any variety V in ALG(k) determines
uniquely a monoid M M(V) and a set {G,. ., Gk} of generators of M. Moreover,

either V= V(M, {G, ., Gk} (if Vis regular),

or V Vo(M, { G,,. ., G}).
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Let us mention explicitly that if M has no left zeros, then VI(M, {GI,..., Ok})=
Vo(M, {G, , Gk}). If M has at least one left zero, the two varieties are distinct. In
the latter case, Vo(M, {G, ., Gk}) is precisely the class of all connected algebras in
V(M, {G,. Gk}). Let us recall that an algebra (X,f,... ,fk) is called connected
if, for every x, y 6 X, there are elements x Xo, xl,"" ", xs =y in X and words wj, vj
in f*, j 1," ., s, such that

(6) w.(x_) v(xj) for allj 1,. ., s.

Indeed, if A (X, f, , fk) is in V0(M, {G, , Gk }) and H(w) M is a left zero
of M, then

w(x) w(y) in A for all x, y X,

and hence A is connected. Conversely, let A be a connected algebra in
V(M,{G,..., Gk}). If H(w) m is a left zero, then w(x)= w(v(x)) for all x X
and all v f*. Since A is connected, we can find x Xo,"" ", xL =y and w, vj, which
fulfill (6) for all x, y X. Then

w(x) w(w(xo))= w(v(x)) w(w(x_))

=w(v.(x))=w(),

which implies A Vo(M, { G,. , Gk}).

3. Isomorphism-complete varieties in ALG(k). Given a monoid M, its left ideal is
a subset A c M such that

mM and aA impliesmoa6A.

Following [18], we call a monoid linear if and only if the set of its left ideals is
linearly ordered by inclusion, i.e., if A and A’ are left ideals of M, then

eitherAcA’ or A’cA.

Otherwise, M is called nonlinear. Clearly, M is nonlinear if and only if there exist
too, ml M such that both mo M m and m M mo. In fact, if such mo, m exist,
then A M mo and A’= M m are incompatible left ideals. Conversely, if A, A’ are
incompatible left ideals, then any mo A A’ and ml A’- A have the above property.

Examples. (a).Let V be the variety in ALG(2) given by the following equations"

L(x)=f,L(x), fL(x)=ff(y), f(x)=ff(x).

Then M M(V) {1, G, G2, G1 G2} is the monoid with two generators G, G2 and
the defining relations

G=GoG, G2oG=GoG, G=GoG.
The element G G2 is the unique left zero of M. This monoid is not linear because

G M Gz and G2 M G.
(b) Let V be the variety in ALG(2) given by the following equations"

f,(x) =ff(x) =f2f (x), fz(x) =fzfz(x) =ffz(x).

Then M M(V)={1, G, G} is the monoid with two generators G, G and the
defining relations

GI G1 ,O! --G2 G, G2-- 02 G2 G1 G.
This monoid has no left zero. It is also nonlinear because G M G and Gz M G.
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(C) On the other hand, if V is the variety in ALG(2) given by the following
equations:

L(x) =AL(x) =AL(y), A(x) =AA(x) =LA(y),

then the following equations can be derived:

L(x) =Af,(x) =AL(y) =f,(y),

A(x) f,A(x) f,A(y) =A(y).

Hence, (with the choice y=f2(x))

f,(x) =LA(x) =A(x),

and M(V) {1, G} (with G G G, G G) is linear.
(d) The monoid M M(V) of the variety V in ALG(2) given by the following

equation:

AA(x) =f,(x),

though infinite, is also linear. Indeed, M={GkoGln, k=O, 1,2,...}; if mo--
-o G2k,o G’,, then G2ko G"-"G2ko G m ml mo for no> n and G2k-k, m mo

for ko> k, no n.
The following theorem is proved implicitly in [18].
SICHLER’S THEOREM. Let Vbe an arbitrary variety in ALG(k). If its rnonoid M(V)

is nonlinear and finite, then V is isomorphism-complete.
Let us present an outline of the proof. Let G (X, E) be an undirected finite

graph, i.e., the vertex set X is finite and E is a set of two-element subsets of X. Call
a graph (X, E)-complete if E is the set of all two-element subsets of X. The degree
deg (v) of a vertex v of (X, E) is the number of edges (i.e., elements of E) containing
v. Let GRA denote the class of all finite undirected incomplete connected graphs with
all vertices of degree greater than two. It is easy to see that the isomorphism problem
in GRA is isomorphism-complete. The proof of the isomorphism completeness of any
variety Vc ALG(k) with a finite nonlinear monoid M(V) proceeds as follows: we
construct, for each G GRA, an algebra b(G) V such that

(1) the size of b(G) is bounded by a polynomial in the size of G,
(2) graphs G, G’ GRA are isomorphic if and only if 4(G) and &(G’) are

isomorphic.
We sketch the construction presented in [18]. First, a graph G (X, E) GRA is

represented as (Re, Po, P), where Rc X x E consists of all pairs (v, e) with v e;
for r=(v, e)

po(r)=v and pl(r)=e.

It is easy to verify that if G, G’GRA are represented as (R,po,p) and
(Re,, p, p’), then each isomorphism q G - G’ determines a bijection f: Re - Re,
such that, for i=0, 1,

(7) pi(r) pi(s) pl(f(r)) pl(f(s))

and vice versa: each bijectionf: Re Re,, which fulfills (7) determines an isomorphism
:G- G’. (Given q, f is defined by f((v, {v, v’}))= (q(v), {q(v), o(v’)}).)

Now, let V be a variety in ALG(k) with nonlinear M(V)= M. There are m0,

rn M such that mo M rn and m M mo. The idea of the construction of the
algebra 4(G) V is to use the operations m0, m in the role of the above maps Po and
p on Re. Hence, given a graph G (X, E) GRA, let F(R) be the algebra generated
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freely in V by the set Re and let 0 denote the least congruence on F(Re) containing
all the pairs"

(i) (mo(r), mo(s)) for r, s R with po(r)=po(s);
(ii) (m(r), m(s)) for r, s Re with p(r)=pl(s); and, for technical reasons, also

pairs
(iii) (r, b(r)) for r Re, b B, where B c M is the set of all invertible elements

b with mib, miob-lMom, i=O, 1.
Then we put

&(O)= F(Ro)/Oo.

Let us mention explicitly that if M is finite, the size of F(Ro) (hence of &(G)) is
bounded by a polynomial depending on the size of G. Indeed, for a regular variety
V, the elements of F(Ro) are in one-to-one correspondence with the elements of M x R
(under the bijection (m, r)-> re(r)) and if V= Vo(M, {G,. ., Gk}), we identify every
rn(r) with every rn(s), r, s Re, whenever m is a left zero of M.

The algebras b(G) V have the following property: for every G, G’ GRA, G
and G’ are isomorphic if and only if b(G) and &(G’) are isomorphic.

The proof of the implication

G G’ =:> d: G - 4, G’)
is quite easy. If G and G’ are isomorphic, then there is a bijection f" Re--> Re,, which
fulfills (7). This implies that its free extension F(f) F(Ro --> F(Ro,) preserves the
congruences 0, 0, and the same is true for F(f-):F(Ro,)--> F(Ro), so that F(f)
determines an isomorphism of &(G) onto &(G’).

The proof of the converse, i.e.,

&( G)- 4( G’)==> G- G’

is more delicate and we illustrate the idea in the above examples (a), (b) of varieties
in ALG(2).

(a) Since M {1, G, G2, G Ga}, no element distinct from is invertible so that
the condition (iii) in the definition of 0c is trivial. Since GI G2 is a left zero of M,
F(R)={r,f(r),fz(r)]r R}LI{r}, where r=ffz(r)=f2fl(r) for all
Hence, for each pair of edges with a common vertex in G, say e {v, v’}, e’= {v’, v"},
we have elements r {v, e}, r’= {v’, e}, s {v’, e’}, s’= {v", e’} in Re; hence elements
r, r’, s, s’, f(r), f(r’), f(s), f(s’) (i= 1, 2) and cr in F(R). Let us take fl as mo and
f2 as m. Then the congruence 0 gives the following identifications:

L(r)
[=v]

If h b(G) th(G’) is an isomorphism, then necessarily h(tr) try, because tr is the
unique point of b(G) with f(tr)=fz(o,)= o- and similarly try, in &(G’). Then h
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has to map any point x b(G) with f2(x)=re x onto a point x’ b(G’) with
f2(x’) re, x’. This defines a bijection of the vertex set of G onto the vertex set of
G’. It can be easily seen from the above diagram that this bijection is an isomorphism
of G onto G’.

(b) Since M {1, G, G2}, the condition (iii) in the definition of 0e is trivial
again; F(Re) consists of {r,f(r),f(r)lr Re}. Hence, for every pair of edges e=
{v, v’}, e= {v’, v"} with a common vertex we have r= {v, e}, r’= {v’, e}, s= {v’, e’},
s’= {v", e’} in Re as before; and r, r’, s, s’, f(v), f(r’), f(s), f(s’), i= 1, 2 in F(Re).
The congruence 0e identifies them as follows:

fl A f, A f, A f, A fl A

v e # e’ level

st level

r=(v, e) r’=(v’, e) s=(v’, e’) s’=(v", e’)

If h (G) (G’) is an isomorphism, it maps any x (G) with f(x) =f(x) x to
a point x’ (G’) with the analogous property; hence h preserves the "levels." Since
h has also to preserve the following propey:

There is y x withf (y) x,

it defines a bijection of the vertex set of G onto the vertex set of G’. This b jection is
an isomorphism of G onto G’ because the following property"

There is y x with f2(Y) x

has also to be preserved by h.
If the monoid M is more complicated, the construction is less lucid, but the above

two "levels" appear in b(G) always and their points cannot be glued together by
0emthis is caused by the nonlinearity of M. The assumptions about graphs in GRA
make it possible "to recognize these two levels in b(G)" in the general case. The
general proof is rather technical and difficult, and the reader is kindly referred to 18].
An outline of the proof of Sichler’s Theorem has been presented to emphasize some
properties of the construction (above all the finiteness), which were not explicitly stated
in the original paper.

4. Algorithms for isomorphism testing of unary algebras. Before we describe our
algorithm, we introduce some notation, and prove some lemmas.

Given an algebra A (X,f,... ,fk), we denote by n the number of elements of
X and by M the smallest set of mappings of X into itself containing the identity
mapping of X, and mappings f, , fk, which is closed under the composition. Given
x X, define tr (x) {f(x) If M} and TR (x) tr (x) (.J {y If(y) x for some f M}.

Let us write x y if f(x) y for some f M, and x--- y if both x --> y and y x.
Notice that - is a reflexive and transitive relation, and is an equivalence.

Denote by X X/.-- the set of all equivalence classes of---. Then x, y a X
implies tr (x) =tr (y) and TR (x) =TR (y). Sometimes, we write tr (a) instead oftr (x),
and similarly for TR (a). Given a, b X, let us write a ==> b if x--> y for some x a,
y b, a b if a =:> b, a b, and a ==> c :=> b for no c different from a, b.

LEMMA. ==> is the smallest transitive and reflexive relation on X containing .
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We say that an algebra A is linear if for every a 6 X there exists at most one b X
such that a b. The linearity of unary algebras is related to the previously defined
concept of linearity of monoids as follows.

LEMMA. Let V be a variety in ALG(k). If the monoid M(V) is linear, then any
algebra A V is linear.

Proof Let A (X,f,... ,fk) be an element of V and a, bl, b2 be elements of X
such that a bi, 1, 2. There are x a, y bl, Y2 G b2 such that x y, x Y2 and
therefore y=w(x), y2--Wz(X for some wl, w2f*. Let m, m2, respectively be
elements of M(V), determined by w, w2, respectively, and denote L M(V) mi for
i= 1, 2. 11 and I2 are left ideals of M(V) and therefore if M(V) is linear, then either
I c I2 or 12 c 11. Suppose, without loss of generality, that 11 c 12. Since m 11, ml is
equal to m m2 for some m V and therefore

y Wl(X)--- w(w2(x))-- w(y2) for some w f*.
In this case we have y2y, ab2b and hence b2--bl, because a b
and a # b [3

Our algorithm is based on the solution of the following two problems"
PROBLEM 1. Given an algebra A, decide whether A is linear.
PROBLEM 2. Given two linear algebras A, B, decide whether A and B are

isomorphic.
If two algebras A, B are given, our algorithm first uses the procedure solving

Problem 1 and applies it to both A and B. There are three possibilities"
(1) Neither A nor B is linear. In this case the algorithm reports that it is not able

to solve the problem, and it stops.
(2) Just one of the algebras A, B is linear. In this case A and B are not isomorphic.
(3) Both A and B are linear, and the second procedure is applied to solve the

isomorphic problem.
In the next section, we shall show that the algorithm has the properties announced

in the Introduction. Now, let us turn to Problem 1. Given x, y X, a, b e X, we shall
write x-y if y =f(x) for some i= 1,..., k, and a ; b if a # b and x-y for some
xa, y6b.

LEMMA. = is the smallest reflexive and transitive relation containing .
LEMMA. If a , b, then a 3# b.
Proof Consider a, b X. If a b, then a b and a :: b. Since =:> is the reflexive

and transitive closure of 3=>, there is a sequence a ao 3=> a 3=> a,, b such that
m_->l and aiCaj for i#j.

If m > 1 then a =:> a :=> b, a al # b, which contradicts the definition of . [3

LEMMA. 3 is an aeyelic relation.
Proof If ao;>... 3: a,, 3=> ao, then there are xi, yi a such that x_-y for

1, , m and x, Yo. Since x--- y for all i, Xo y xl y, x,,, Yo - Xo
and therefore Xo x x,, which is a contradiction because it implies ao
am. [3

LEMMA. Let A be a linear algebra and suppose that the set X is topologically ordered
with respect to )e, i.e., elements of X are denoted by al,"’, a, in such a way that
a ; a implies <j. Then a b if and only if

b a where I min { a ; ai}.

Proof Denote Y {i a a}. The set Y is nonempty if and only if there exists
c X such that a ,, c, because a c implies a e, and the relations , and 3=> have
the same reflexive and transitive closure (equal to 3). Since A is linear, if there is b



ISOMORPHISM TESTING OF UNARY ALGEBRAS 681

such that a , b, then b is unique. Hence, it is sufficient to prove that if Y is nonempty
and I= min (Y), then a , al.

Since a al, we have a :=> al and a al. If there is c such that a c al and
aca, then there are j,...,jp such that a=ajo,aj,C,...;x:>ai,=e, which
implies j <=jp < I and we obtain a contradiction with the definition of L [3

We are now ready to formulate the following algorithm.

ALGORITHM FOR PROBLEM 1.
1. Determine the relation
2. Determine the equivalence classes of by finding strong components of the

relation .
3. Determine the relation
4. Find a topological ordering of X with respect to the relation ), (the ordering

exists because the relation is acyclic).
5. For any a , find the minimum of the set {b[a b} with respect to the

topological ordering constructed in 4, and denote it by ma (ma is undefined if
a ): b for no b X). Denote by’ the relation consisting of all arrows a ’ m.
(Note that if A is linear, then ’ is equal to .)

6. The relation ’ is a forest whose connected components are trees directed to
their roots. Using the depth-first search (see, e.g., 19]), determine whether the
following is true"

for every edge a =:> b, the element b belongs to the path from a to the
root of the component of the relation ,’ containing a.

7. Use the fact that the condition given in 6 is valid if and only if the investigated
algebra is linear.

LEMMA. The running time of the algorithm for Problem 1 is O(nk).
Proof The number of edges of the relation is at most nk. The relation , cannot

have more edges than the relation . The possibility to perform the computation in
the time O(nk) is obvious for parts 1, 3, 5 of the algorithm and follows from [19] or
11], respectively, for parts 2, 4, respectively. The relation ’ has at most n edges and

therefore time O(n) is sufficient to search it. At any moment of the search we know
which vertices belong to the path from the current vertex to the root of the component,
and therefore the testing of the condition given in 6 needs O(nk) time. [3

As a by-product of the computation, we have constructed the relation , provided
A is linear. The relation will be used in further computation.

Our solution of Problem 2 is based on a canonical encoding of the sets tr (x). By
a canonical encoding we mean a mapping C from the class of all pairs (A, x), where
A ALG(k) and x is an element of A, into the class of all finite sequences of natural
numbers such that C(A, x) C(B, y) if and only if there exists a bijection F:trA (x)-
trR (y) with the following property:

F(x) y, F(f(z)) gi(F(z)) for each z tra (X) and 1,. ., k,

where f,. ., g,. ., respectively, denote the operation of A, B, respectively.
We shall deal with the following canonical encoding: Let < be a linear ordering

of f* defined as follows: w < w2 if either the length of w is less than the length of
w2, or the length of w and w2 are equal and Wl is lexicographically smaller than we
(we suppose that fl <f2 <" <fk).

In other words, 1f -. "fk <ff4. .ffk f2f "" ff2""
ff-f,fL-"
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C(A, x) is determined as follows.
Canonical encoding of the sets tr (x).
(1) Given y tr (x), denote by w(y) the smallest element w off* with respect to

such that y w(x).
(2) Order elements oftr (x) as y,. , y,, in such a way that w(y) w(y2)- -w(y,.).
(3) The encoding C(A, x) is the unique sequence

ell, el,k, Cn, Cm,k

such that fj(Yi)=Yc,.., for i= 1,..., rn, j= 1,..., k.
It is easy to see that C is really a canonical encoding because the sequence C(A, x)

is, in fact, a description of the restrictions of the operations f,... ,fk of the algebra
A to the set tr (x), rewritten with respect to the isomorphism-invariant ordering
y,..., y,, of tr (x). Moreover, this encoding can be easily computed because the
ordering of tr (x) can be found by the next algorithm (where Q is a first-in-first-out
queue and M is a subset of tr (x)).

begin
Q := the queue containing x; M := {x}; := 1; y := x;
while Q is nonempty do

begin remove the first element of Q from Q and denote it by z;
forj := 1 to k do iffj(z) : M then

begin i:= + 1; yi :=f./(z); M := M I..J {fj(z)};
insert fj(z) at the end of the queue Q end

end
end; l-]

We conclude the following lemma.
LEMMA. There exists a canonical encoding C such that C(A, x) is a sequence of at

most nk natural numbers not greater than n and C(A, x) can be computed in time O(nk),
where n (k, respectively) is the number of elements (operations, respectively) of the
algebra A.

ALGORITHM FOR PROBLEM 2. We can suppose without loss of generality that the
given algebras are connected. The first part of the algorithm consists of an application
of the above encoding procedure to all elements of both algebras, sorting the elements
lexicographically according the values C(A, x) or C(B, x), and partitioning them in
such a way that two elements are in the same class if and only if their encodings are
equal. The encoding of all elements can be clearly computed in O(n2k) time. The
same time bound applies to the sorting and the partitioning if nk-pass radix sort is
used (see 12]).

As a result of the first part of the algorithm, we relabel all elements of both algebras
in such a way that x and y obtain the same label if and only if their encodings are
equal, i.e., there is an isomorphism of tr (x) onto tr (y) which maps x onto y. We
denote the label of x by A (x).

We can suppose that during the test of linearity of algebras we choose xa.b e a
and Fa.b {f," ,fk} for any couple of elements a, b of X such that a , b in such
a way that F.b (X..b) b.

The second part of the algorithm is based on the recursive function 0(x, a, b),
where x a X, b Y, which returns the set of all y b such that there exists an
isomorphism 4)" Tr (x)--)TR (y) for which b(x)- y. It is evident that the answer to
Problem 2 can be obtained by calling if(x, ao, bo), where ao, bo, respectively, are
roots of the relation of the tested algebras, and x is an arbitrary element of ao. (Since
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we have supposed that A, B are connected linear algebras, the roots ao, bo are uniquely
determined.)

The function is given by the next algorithm:

O. function d(x, a, b);
1. begin
2. find all a,..., arX such that ai a and denote
3. find all b, , bs Y such that bi b;
4. if r s then return the empty set else go to 5;
5. Z := the set of all y b such that A (x) A (y);
6. if r 0 or Z then return the set Z;
7. for i:= to r do forj := 1 to r do Zi,j :-- I(xi, ai, bj);
8. for i:= 1 to r do
9. begin find natural numbers jo,"’,jp such that Fa,.,=fo and

x;
10. for all z b (.J U br do Gi(z):= g./. go(Z)
11. end;
12. for all y Z do
13. begin
14. for i:= 1 to r do for j := 1 to r do

W, := the set of all z Z, such that G(z) y;
15. /f there exists no permutation r of {1,. ., r} such that

Wm,,,) for every rn 1, , r
then delete y from Z

16. end
17. end;

First, we have to prove the correctness of @. We do it by induction on the length
H of the longest sequence of the form Co c , c, a, Co, , c, X.

Let us suppose that y @(x, a, b); hence (x)= A (y). As we have already shown,
there exists an isomorphism 4o" tr (x) tr (y) such that bo(X)= y. If H--0, then r 0,
tr (x) TR (x) and tr (y) TR (y), and the correctness of the algorithm is proved. Let
us suppose that H > 0, i.e., r > 0, and @ is correct for H 1. We know that there exists
a permutation r of {1,. ., r} and elements yi @(x, a, b)) such that G(y) y. By
the induction hypothesis, there exists isomorphisms qSi’TR (x)-TR (y) such that
b(x) =yi. If jo,’’’,jp are numbers obtained in line 9 for a given value i, then we
know that b,(x)= f)i(f.jp’’" fjo(Xi)) g,,’’" g.io(Ch,(x,)) G,(y,) y bo(X) and there-
fore, b and bo coincide on tr (x).

Put

6(z)
/

h,(z) if z TR (xi),

\
bo(Z) if z tr (x).

This formula gives an isomorphism of TR (x) onto TR (y) such that b(x)= y,
provided b is defined correctly. Thus, it is sufficient to prove that

tr (x) c TR (x,), TR (x) TR (x) U. t_J TR (xr) and

TR(x,)fqTR(xi)=tr(x) for j.

The proof follows immediately from the fact that, given c X, tr (c) is a union of c
with all successors of c with respect to the relation , TR (c) is a union of c with all
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successors and predecessors of c with respect to , and al," , ar form the set of all
immediate predecessors of a with respect to .

Conversely, let us suppose that there exists an isomorphism b:TR (a)--> TR (b)
such that b(x) b. We want to prove that b(x) is an element of q(x, a, b). In line 5,
b(x) is inserted into Z, and therefore, if H=0, then ch(x)Z=O(x, a, b). Suppose
that H > 0. It is evident that, in this case, r s > 0 in lines 2, 3 and according to the
induction hypothesis, we know that there exists a permutation r of {1,." ", r} such
that Wm.m) for every tn 1,. ., r when lines 12-17 are performed for y
namely, the permutation determined by d(Xm) b=(,,,). It follows that th(x) is not
deleted from Z and is an element of the resulting O(x, a, b).

Given x a X, let us denote the number of elements of the set {f-l(x)If M}
(TR (x) -tr (x)) U a by nx. Our last task is to prove that there exists a constant Co such
that 0(x, a, b) can be computed in at most con3 steps, provided and A are given.
Again, we proceed by the induction of the number H.

It is easy to show that O(n,) steps are sufficient to perform the lines 1-6. Thus,
our proposition is true for H--0. Let us denote the number of elements of a by no
and use ni instead of ni.

If our time bound is true for H- 1, then the line 7 requires
at most

_
CO CO nii-- /’/i Co(nl + + n,.) (n, + + nr)

i=lj=l i--1 j=l

<= Co?lx

steps if we ignore terms of smaller order.
To perform line 9, it is sufficient to find a path from F,,(x) to x in the set a

with respect to the relation defined in the first part of the section. Thus, O(no) steps
are sufficient (see e.g., [1]) and p O(no). It follows that the total time spent on line
is O(nor)= O(no(n +" "+ n)).

An efficient search for a permutation in line 15 can be based on the next lemma.
LMMA. If W,w, W.,w, W.,z are nonempty for some u, v, w, z, then the set W..z is

also nonempty.
Proof If W.,w is nonempty, then there exists an isomorphism ."TR (u) TR (w)

such that G.(..w(X.))=y, which implies y= G..w(X.)=.,w,,...o(X.)=..w(X).
Similarly, we can suppose that there are isomorphisms &,,w’TR (v)TR (w) and

.’TR (v)TR (z) such that .w(X)=.,z(X)=y.
Now, the mapping &.,&,..w’TR(u)TR(z) is also an isomorphism which

maps x into y. Since .,z(X.) Z..z (x., a., b) and G(.,z(X.)) y, it is easy to see
that W..z O.

It follows from the above lemma that a permutation , if it exists, can be found
by putting

(m) an arbitrary element j of the set { 1,. ., r} { (1),. ., (m 1)} such
that W,. # 0,

for m 1,. -., r. It follows that O(r) steps are sufficient to decide the existence of .
It is easy to see that lines 1-6 and 8-17 require at most cno(n+’’ "+n) steps

for some constant c. If Co has been chosen so that Co c, then $ can be computed in
at most

cno(n +" + n) + co(n +" + n) co(no+" + n) Con
steps.
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Combining the computation of A and q,, we obtain the following theorem.
THFOREM. The existence of an isomorphism of two linear unary algebras with n

elements and k operations can be tested in time O(n2k+ n3).
If we work in a fixed variety of algebras then k is fixed, and we obtain the O(rt 3)

time bound.

5. Main results. The next two theorems are the main results of the present paper.
THEORZM 1. There exists an algorithm sd such that, given two unary algebras A

and B with n elements and k operations, either sfails after O(nk) steps, this occurs only
if each variety V containing either A or B is isomorphism-complete, or sd decides the
existence of an isomorphism ofA and B after O(n2(n+ k)) steps.

THeOReM 2. Let V be a variety of unary algebras. If M(V) has a finite nonlinear

factor-monoid then the isomorphism problem in V is isomorphism-complete, else we can
solve the isomorphism problem in V in a polynomially bounded time (hence the condition
C, mentioned in the abstract, is that every finite factor-monoid of M(V) is linear).

Proof of Theorems. Let A (X,f,... ,fk) be a unary algebra and let MA be the
monoid of maps X X generated by the operations f,. ,fk. If A is not linear (in
the sense of 4), then Ma is also not linear (in the sense of 3). Now, we show that
the algorithm described in 4 satisfies Theorem 1. Indeed, given two unary algebras
A and B with n elements and k operations, it decides after O(nk) steps whether they
are linear or not. If both A and B are nonlinear, then both varieties VA and VB in
ALG(k), generated by A and by B have nonlinear finite monoids M(Va) and M(VB),
because M(VA) is isomorphic to MA, and analogously for B (see [6]); hence VA and
Vn are isomorphism-complete in view of the Sichler Theorem. Any variety with A V
contains VA, and hence, it is also isomorphism-complete, and analogously for B. Thus,
if V is a variety such that either A V or B V, then V is isomorphism-complete.

If M(V) has a finite nonlinear factor-monoid M’, then V(M’)c V and V(M’) is
isomorphism complete, by the Sichler Theorem. It follows that V is also isomorphism
complete. If M(V) has no finite nonlinear factor-monoid, then any finite algebra A V
must be linear, because the monoid MA, being a finite factor-monoid of M(V), is
linear. Thus, the algorithm described in 4 solves the isomorphism problem in V in
the polynomially bounded time.

Acknowledgment. We are indebted to J. Sichler for fruitful correspondence and
for turning our attention to the nonlinear monoids and to paper [18].
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Abstract. A new parallel algorithm is given to evaluate a straight-line program. The algorithm evaluates
a program over a commutative semi-ring R of degree d and size n in time O((Iog n)(log nd)) using M(n)
processors, where M(n) is the number of processors required for multiplying n x n matrices over the

semi-ring R in O(log n)time.
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1. Introduction. In this paper, we consider the problem of dynamic evaluation of
a straight-line program in parallel. This is a generalization of the result of Valiant,
Skyum, Berkowitz, and Rackoff [VSBR]. They consider the problem of taking a

straight-line program and transforming it into a program of "shallow" depth. Their
transformation is performed by a sequential polynomial time algorithm. We show how
to construct this "shallow" program with at most the same size and the same time
bounds on-line, no preprocessing, as their off-line algorithm.

We consider two basically equivalent models of evaluation over a semi-ring:
straight-line programs and arithmetic circuits. In the introduction we will restrict our
discussion to the former model while most of the rest of the paper will deal with the
latter model. A straight-line program over a commutative semi-ring R (R, +, x, 0, 1)
is a sequence of assignment statements of the form a <- b + c or a - b x c, where b and
c are either elements of R or previously assigned variables. We will assume that the
semi-ring operations can be performed in unit time. Let M(n) denote the number of
processors required to multiply two n x n matrices in log n time over the semi-ring R
[AHU], [CWb].

A special case of a straight-line program is a Boolean circuit. Ladner has shown
that the Boolean circuit evaluation problem is P-complete [Lad]. It is therefore believed
that this evaluation problem is not in NC [Coo]. In this paper, we show that circuits
of degree d and size n (we define the degree of a circuit in Definition 2.3) can be
evaluated in time O(log n(log nd)) using M(n) processors. The crucial difference
between this result and the result in Valiant, Skyum, Berkowitz, and Rackoff [VSBR]
is that our algorithm need not know the degree of the circuit in advance. As a nontrivial
application of our procedure we can also compute the degree of a circuit in the above
time and processor bounds. This follows because the operations of maximum and sum
form a commutative semi-ring over the nonnegative integers. We know of no other
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parallel algorithm for computing the degree that satisfies the above time and processor
bounds.

2. Preliminaries. We view a straight-line program as a special case of a more
general object, an arithmetic circuit. Our results are more easily applied to arithmetic
circuits:

DEFINITION 2.1. An arithmetic circuit is an edge-weighted directed acyclic graph
(DAG) (where the weights on the edges are from the semi-ring R) satisfying the
following conditions:

Each node is labeled as one of three types: a leaf, a multiplication node, or an
addition node.
Leaves are assigned a value in R, denoted value (v) for a leaf v.
The indegree of a leaf node is zero, a multiplication node is two, and an addition
node is nonzero.
All edges are directed away from leaves.
There are no edges from multiplication nodes to multiplication nodes.

Note that any circuit can be modified to satisfy the last condition by simply adding
a dummy addition node of indegree and outdegree 1 in the middle of each edge that
connects two multiplication nodes. We say an edge is a plus-plus edge if it connects
two addition nodes. The size of an arithmetic circuit U is the number of nodes in U.
The subcircuit evaluating v, denoted by U, is the subcircuit induced by all nodes that
are contained on some path to v. A node w is a child of v if there exists an edge from
w to v. A node of outdegree 0 is called an output node.

DEFINITION 2.2. We define the value of each node v in an arithmetic circuit U
by induction on the size of U. The value for a leaf is given by the definition of an
arithmetic circuit. If the node v is an additional node with children vl,"’, Vk then
the value of v is defined by:

value (v) Y value (vi). U(vi, v),
i=1

where U(v;, v) is the weight on the edge from v; to v. If, on the hand, v is a multiplication
node with children v and v2, then

value (v) value (v,) value (v2) U(v, v) U(v2, v).
We will restrict our attention to circuits where any edge entering a multiplication node
has weight 1. All the algorithms in this paper preserve this restriction. Thus, the value
of the multiplication node v is value (v). value (v2). The value of a circuit is a vector
of all its node values.

Given a straight-line program, we obtain its arithmetic circuit by constructing a
node for each statement and for each input variable, and an edge from node to node
j if j is a statement that uses the variable evaluated at statement i. All edge weights
are set to 1, and nodes corresponding to input variables are given values assigned to
the corresponding variables.

DEFINITION 2.3. The (algebraic) degree of a node in an arithmetic circuit is defined
inductively: a leaf has degree 1, an addition node has degree equal to the maximum
degree of its children, and a multiplication node has degree equal to the sum of the
degree of its children. The degree of an arithmetic circuit is the maximum over the
degree of its nodes.

3. The algorithm. In this section, we describe our algorithm for arithmetic circuit
evaluation. The value of the circuit will be obtained by repeated application of a
procedure called Phase. This procedure takes as input an arithmetic circuit and returns
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a new circuit with the same nodes such that every node will have the same value as
before. Repeated application of Phase will eventually return with the value ofthe circuit.

In a natural way an arithmetic circuit can be viewed as an upper-triangular matrix
U with zero diagonal, where the entry U0 is the weight on the edge from node vi to
node vj if the edge exists; it is zero otherwise. We need three submatrices derived from
U:

o if vi and v. are addition nodes
U(+, +) 0 0 otherwise,

Uo if vj an addition node
U(X, +) 0 0 otherwise,

u(x, x)o o
if vi or vj is not an addition node

otherwise.

The matrix U(+, +) corresponds to the subcircuit containing only plus-plus edges,
while U(X, +) corresponds to the subcircuit containing any edge terminating at an
addition mode. While the matrix U(X, X) corresponds to the subcircuit containing
those only edges such that at least one end node is not an addition node. Thus,
U(+, +)+ U(X, X)= U. We can now define the procedure Matrix Multiply (MM).
The procedure uses one matrix multiplication and one matrix addition over the
semi-ring R. Thus, it can be performed in O(log n) time using O(n 2"49) processors for
many semi-rings. In Fig. 1, we give an example of procedure MM.

Procedure MM(U)

u - u(x, +). u(+, +)+ u(x, x)

We need two more procedures called Plus Evaluate (Eval+, see Fig. 2), and
Multiplication Evaluate or Shunt (Eval, see Fig. 3). The first of these procedures
simply evaluates an addition node if all its children ha ,e been evaluated. The first part
of the second procedure evaluates a multiplication node if both its children have been
evaluated. The new idea is the second part of the procedure which we call Shunt. Here
we do partial evaluation of a multiplication node when only one of its two arguments

a

+bS+c

FIG. 1. An arithmetic circuit before and after an application ofprocedure MM.
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has been evaluated. Figure 4 shows the effect of applying Evalx to a circuit. Leaves
are denoted by square boxes and nonleaves by circles. The value of each leaf is written
in its box and the weight of an edge is written alongside it. The left circuit is before
Eval and the right is after Evalx. Zero weight edges have been removed.

The procedures Eval+, Evalx, and MM can all be performed on a PRAM in
O(log n) time. The processor count for MM is the number of processors required for
matrix multiplication for the particular semi-ring of the circuit. Procedures Eval+ and
Eval need only O(n 2) processors. To see that Evalx can be performed with O(n2)
processors, note that the number of terms Foi in line (*) is at most the number of
edges. Thus, we simply sort these terms on their key (l, i) using say a randomized
parallel bucket sort [Rei] or a deterministic comparison-based sorting algorithm [Col],
[AKS] and then sum the terms using parallel list-ranking [MR], [Vis], [CV], [AM].

It is interesting to point out a strong analogy betweeen the procedures Rake and
Compress used to evaluate expression trees, see [MR], and our new procedures. One
can view Eval+ and Evalx as removing the leaves of an arithmetic circuit, i.e., Rake;
while Matrix Multiplication, MM, "compresses" addition chains, a natural generaliz-
ation of Compress [MR]. In fact, the Eval is a combination of a Rake and a Compress
step since it removes leaves in the first part and does a partial compress in the second
part.

Another analogy can be made between Top-Down algorithms and Bottom-Up ones.
Brent gave a Top-Down parallel algorithm for expression evaluation [Bre], while Miller
and Reif gave a Bottom-Up parallel algorithm for the problem [MR]. On the other
hand, Valiant, Skyum, Berkowitz, and Rackoff gave a Top-Down parallel algorithm
for arithmetic circuit evaluation [VSBR]; in this paper, we give a Bottom-Up parallel
algorithm for this problem.

Procedure Eval+ U
for all addition nodes vj whose children are leaves do

value (Vj)’-Eti’=I value (Vi) Uii
set vi to a leaf

Ui.-O for ic{1,...,n}
od

FIG. 2. The procedure plus evaluation.

Procedure Evalx (U)
for all multiplication nodes vj with children vh and vt, both of which are leaves,
do

value (vj) value (vt) value
Set vi to a leaf

Ut,iO and UiO
od
for all Uii where vi is a multiplication node with children

and v is a leaf and vt is not

Fti value (v)
o8
for all pairs (1, i) do

Ui Ui + Wi
Uii 0

od

FIG. 3. The procedure multiplication evaluation or shunt.

(.)
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FIG. 4. An arithmetic circuit before and after an application ofprocedure Eval.

We combine these three procedures, MM, Eval+, and Eval, into a single pro-
cedure Phase that we will repeatedly apply until the value of the arithmetic circuit is
returned:

Proeetlure Phase (U)
rio

U ,- MM (U)
U Eval+(U)
U Eval(U)

otl
To show that Phase is correct (sound) it will suffice to prove the following lemma.
LEMMA 3.1. The procedures MM, Eval+, and Eval applied to an arithmetic circuit

return new circuits with the same value.
The proof of the lemma follows, by a straightforward proof by induction on the

size of U, using the associative, commutative, and distributive properties of R.
In Fig. 5, we show the effect of applying the different procedures to a circuit. We

represent leaves by square boxes and addition or multiplication nodes by circles. All
isolated nodes have been deleted and edge weights have been ignored. We start with
the circuit (a) and apply procedure MM obtaining circuit (b), to which circuit (b) we
apply procedure Eval+ obtaining circuit (c), to which we then apply Eval obtaining
circuit (d).

4. The height of an arithmetic circuit. In this section, we define the height of a
node. This notion is the main tool we shall use to analyse the procedure Phase. In
Theorem 4.2, we will prove an upper bound on the height in terms of the size and the
degree of a circuit. We will show in the next section that every application of Phase
reduces the height of the circuit by a factor of approximately one half. The above two
facts prove the main theorem of this paper.

DEFINITION 4.1. The height of a node is defined inductively:
(1) A leaf has height 1.
(2) A multiplication node has height equal to the sum of the heights of its children.
(3) If v is an addition node then the height of v equals max (a + 1/2, m), where

a equals the maximum height of any child of v which is an addition node,
and m equals the maximum of the heights of the children which are either a
leaf or a multiplication node.

The height of a circuit U is the maximum height of any node in U.
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9 i0

1
2 4

8

9 i0

(a) (b)

4

4

3 4

3

9 0 8

(c) (d)

FIG. 5. An arithmetic circuit after successive application of the procedures: MM, Eval+, and Eval.

We say a child w of an addition node v is dominant if either w is a multiplication
node and h (v) h (w) or it is an addition node and h (v) h (w) + 5, i.e., the height of
w determines the height of v. We can now prove the upper bound on the height of a
circuit.

THEOREM 4.2. If U is an arithmetic circuit of degree d and e is the number of
plus-plus edges, then the height of U<=se’d+d.

Proof The proof is by induction on the number of nodes n in the subcircuit U.
We start with subcircuits of size one, leaves. The height of a leaf is one which is clearly
less than or equal to e + 1. Suppose the theorem is true for subcircuits of size =< n. We
show the theorem holds for circuits of size n + 1. Let U be a subcircuit with n + 1
nodes. Let v,..., vk be the children of v having degrees d,..., dk and heights
hi, , hk, respectively. The subcircuits evaluating vl , Vk are of size --<_ n. Therefore,
by induction hi <-- 1/2e’di + di, for 1 _- <_- k, where e’ is the number of plus-plus edges in
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Uvi. There are two cases: v is either an addition node or a multiplication node. We
treat the two cases separately.

First, suppose that v is a multiplication node. The degree d of v equals d +. + dk
and the height, by induction, is <-= 5e di + di, which is equal to 1/2e d + d. Thus, the
theorem holds in this case, since e’_< e. Second, suppose that v is an addition node.
Again, there are two cases: either a dominant child is an addition node or it is a

multiplication node. The most interesting case is the first case. Suppose that v is a
dominant addition node, i.e., h _-> hi, _<-i<= k. Here the degree d of v will be greater

< 1/2e’d + d + <e d + d + Since wethan or equal to d, while the height h h+=
have at least one new plus-plus edge we know that e’<=e-1. Thus, h<=
(e- 1)d + d + 1/2ed -1/2d + d + . Using the fact that d > 1 we get the desired estimate,
h<=1/2ed+e.

5. Analysis of the algorithm. In this section we use the height of a circuit to analyse
the number of applications of Phase needed to evaluate a circuit of height h. We start
by stating and proving the main technical lemma from which the main theorem will
follow. Recall that all procedures defined so far take circuits to circuits. They modify
the edge structure but map nodes to nodes in a one-to-one way. Thus, we may view
the procedures as maps of circuits to circuits which are themselves surjective on nodes.
Throughout this section let U be a circuit and U’ its image under the transformation
Phase. Similarly, if v is a node of U then its image under Phase will be denoted by v’.

LEMMA 5.1. If U and U’ are arithmetic circuits as above and v’ is a node of U’
which is not a leaf and not an output node, then the height of v is at least twice the height
of v r.

Proof Let v’ be a node of U’ which is neither a leaf nor an output node. The
proof will be by induction on the size of the subcircuit U’v,. We begin with the case
when all the children of v’ are leaves. There are two subcases: either v’ is an addition
node or it is a multiplication node. First, suppose that v’ is an addition node. We must
show that the height of v is at least 2, where v is the preimage of v’. Suppose by way
of a contradiction that the height of v is <2. Now, v cannot be of height because a
height node must either be a leaf or all its children are leaves. Thus, one application
of Eval+ will transform v into a leaf, a contradiction. If, on the other hand, the height
is 3/2 then all the dominant children of v are addition nodes whose children are leaves.
Thus, after MM and Eval+ the node v will be a leaf, and hence v’ will be a leaf. This
proves the case when v’ is an addition node of height 1.

We next consider the more interesting case when v’ is a multiplication node with
both its children leaves. It will suffice to show that both children of v have height at
least 2. Suppose that one child w has height less than 2. In this case, after MM and
Eval+ the node w will be a leaf. Thus, after Eval the vertex v will be either a leaf or
an output node, depending on whether the other child of v is a leaf or not after Eval+,
a contradiction. This proves the initial cases of the induction.

The inductive case for multiplication nodes is rather straightforward. The only
difficulty arises when one of the two children of v’ is a leaf. We handle this by noting
that in the last paragraph we actually proved something slightly stronger. Namely, if
v’ is a multiplication node which is not an output node and w’ is a child of v’ which
is a leaf then the height of w is at least 2. Thus, induction for the multiplication nodes
follows. We have only to prove the induction for addition nodes.

Suppose that v’ is an addition node. Let w’ be a dominant child of v’. If w’ is a
multiplication node the theorem follows easily. Thus, we may assume that w’ is an
addition node. It will suffice to prove the following claim.

CLAIM. The height of w is _-< the height of v minus 1, i.e., h(w)<-_ h(v)-1.
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Proof of claim. Note that both v and w are addition nodes. If there is a path in
U from w to v containing two or more edges, then the claim follows by the definition
of height. Thus, the only path from w to v is a singleton edge. But this is a contradiction,
since procedure MM will then remove this edge and the procedures Eval+ and Eval
cannot replace it since there are now no paths from w to v. This proves the claim and
the theorem. [3

By Lemma 5.1, after [log_ hi applications of Phase to a circuit of height h the
resulting circuit will contain only leaves and output nodes. Thus, in one more applica-
tion of Phase (only Eval+ and Eval are needed) all nodes will be leaves; the circuit
has been evaluated. With a slightly more careful analysis the number of applications
can be bounded by [log2 hJ + 1. We state this fact as a theorem.

THEOREM 5.2. If U is an arithmetic circuit with height h, then after [log_ h +
applications of Phase, all nodes of U are evaluated.

The upper bounds given in Theorem 5.2 are optimal for our procedure Phase. In
Fig. 6 we exhibit a circuit Ck, for k > 2, of height 2k -- which requires 2 applications
of Phase. It is not hard to see that C2 requires 2 applications of Phase; and the subcircuit
evaluating v contained in Phase (C+) equals C, for k-> 2.

We can now prove the main theorem of the paper.
THEOREM 5.3. If U is an arithmetic circuit of degree d and size n then the value

can be computed in parallel in time O((log n)(log nd)) using at most M(n) processors.

2k_1

Vk- 1 Vk

FIG. 6. The arithmetic circuit Ck a worst-case example for Phase.

Proof By Theorem 5.2, procedure Phase need only be applied [log h + 1 times,
where h is the height of U. By Theorem 4.2, h O(e. d). Thus, Phase is applied
O(log nd) times. Now, each application of Phase requires only log n parallel time.
The processor-expensive step is the matrix multiplication in MM, which can be
performed using O(M(n)) processors.

We give a few simple corollaries to Theorem 5.3. We say a function g(n) is
pseudopolynomial in n if g(n)= O(ng") for some constant k. That is log (g(n))
O((log n)+’).

COROLLARY 5.4. To determine if a straight-line program has pseudopolynomial
degree is in NCfor each constant k.
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COROLLARY 5.5. The value of a straight-line program ofpseudopolynomial degree
can be computed in NC for each constant k where the input values are integers and
operations are addition and multiplication.

To see the last corollary we observe that the output of a straight-line program of
pseudopolynomial degree has polynomial size in binary in terms of the size of the
program.

6. Open questions. We know of no similar results for noncommutative rings. We
note that for arithmetic circuits over the ring of n x n matrices one can expand the
matrix operations into the underlying commutative ring operations and apply the
methods of this paper.

Extension of this work to rings with division would also be interesting.
Several new related results have occurred since the original writing of this paper.

Matrix multiplication can now be performed using O(n 2376) processors, [CWa]. The
ideas in this paper have been extended to more complex domains, [MT]. Finally, an
analysis of the main theorem has been found that does not use the height metric, [May].
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THE COMPLEXITY OF NEAR-OPTIMAL PROGRAMMABLE LOGIC ARRAY
FOLDING*

S. S. RAVI’ AND ERROL L. LLOYD$

Abstract. The problem of optimally folding a Programmable Logic Array (PLA) is known to be
NP-complete. Motivated by the practical importance of this problem, we address the question of obtaining
good, though not necessarily optimal, foldings. Two sets of results are presented. First, we show that three
natural variants of the folding problem are equivalent with respect to approximation, in the sense that either

they are all efficiently approximable or none of them is efficiently approximable. Next, we show for one of
the variants (optimal bipartite folding) that if there is a polynomial time approximation algorithm (heuristic)
which, for every PLA, produces a folding that is within a fixed factor of an optimal folding, then for any
constant e > 0, there is a heuristic which, for every PLA, produces a folding that is within a factor of (1 + e)
of the optimal folding. This result strongly suggests that the optimal folding problem is not efficiently
approximable for arbitrary PLAs. In a companion paper, we have presented efficient heuristics for certain

restricted classes of PLAs.

Key words. NP-complete, approximation, heuristics, PLA, folding, VLSI

AMS(MOS) subject classification. 68Q25

1. Introduction. Programmable Logic Arrays (PLAs) are used extensively in VLSI
systems to implement combinational logic functions [MC80]. The regularity in the
structure of PLAs facilitates the automatic generation and compaction of their layouts.
A PLA consists of two matrices of circuit elements, called the AND and OR planes.
The inputs to the PLA are combined in the AND plane to produce the necessary
product terms. These product terms are then combined in the OR plane to produce
the required outputs. For details regarding the implementation of a PLA, we refer the
reader to [MCS0]. For our purposes, a schematic diagram (Fig. 1) is adequate. In Fig.
1, the inputs and the outputs are along the columns and the product terms are along
the rows. The area of a PLA is proportional to the product of the number of rows and
columns. The logic function implemented by a PLA is determined by the personalized
row-column intersections (these have been indicated by dark circles in Fig. 1). The
other row-column intersections have no electrical significance.

In practice, it is often the case that only 10 percent of the intersections are
personalized [EL84], [HNS82]. For such sparse PLAs, if the structure shown in Fig.
1 is implemented directly, a considerable amount of chip area will be wasted. To
reduce the area, a technique called folding is commonly used [W79], [HNS82], [EL84].
This technique combines two electrical lines (rows or columns) and makes them share
the same physical line. The two electrical lines are, however, disconnected by placing
a cut. We obtain column folding or row folding depending upon whether we combine
columns or rows. Due to the symmetry in the structure of a PLA, algorithms used to
perform column folding can be directly used to perform row folding. In view of this
observation, we present our results in terms of column folding.

Received by the editors April 29, 1985; accepted for publication (in revised form) September 1, 1987.
This research was supported in part by the National Science Foundation under grants MCS-8103713 and
DCI-8603318.

Department of Computer Science, State University of New York, Albany, New York 12222.
$ Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.

It is possible to perform both row and column folding on the same PLA [HNS82].
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FIG. 1. Schematic diagram of a PLA.
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FIG,. 2. A column-folded PLA.
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A column-folded version of the PLA of Fig. is shown in Fig. 2. Notice that when
a pair of columns is folded, one of the columns is introduced from the top and the
other from the bottom. By folding pairs of columns, the number of columns (and
hence also the area) of a PLA is reduced. Thus, the larger the number of columns
folded, the smaller the area of the PLA. However, two constraints restrict the number
of column pairs that can be folded. First, a pair of columns can be folded only if they
are not both personalized along the same row. Second, since folding permutes the
rows (see Fig. 2), we can physically implement the folding of a given set of column
pairs only if there is some permutation of the rows that allows all of the pairs in the
set to be folded. For a detailed discussion of these constraints, the reader is referred
to [HNS82] and [R84]. We say that a set of folding pairs is implementable if and only
if it satisfies both of the above constraints. The optimal folding problem is to find a
largest implementable set of folding pairs. This problem has been shown to be NP-
complete in [LV82]. Only exponential time algorithms are currently known for NP-
complete problems and it is widely believed that polynomial time algorithms do not
exist for such problems [GJ79]. However, exponential time algorithms may not be
suitable for the optimal folding problem since PLAs with a few hundred lines arise in
practice [HNS82], [EL84]. This motivates the study of heuristics for the optimal folding
problem. In this paper, we present results which suggest strongly that the optimal
folding problem is not efficiently approximable for arbitrary PLAs. In a companion
paper [RL84b], we have presented efficient heuristics for certain restricted classes of
PLAs.

The remainder of this paper has been organized as follows. Section 2 provides a
brief description of the graph theoretic model (due to Hachtel et al. [HNS82]) for the
optimal folding problem. Section 3 discusses a restricted form of folding, namely
bipartite folding (proposed by Egan and Liu [EL84]). In that section, it is shown that
the optimal bipartite folding problem is just as hard to approximate as the unrestricted
folding problem. It is also shown that if there is a polynomial time approximation
algorithm for the optimal bipartite folding problem that approaches the optimal value
to within any constant factor K for an arbitrary PLA, then for every e > 0, there is a
heuristic which approaches the optimal value to within (1 + e). Section 4 discusses a
constrained form of bipartite folding. In that section, it is shown that the constrained
bipartite folding problem is just as hard to approximate as the unrestricted folding
and the bipartite folding problems. Section 5 offers conclusions and suggestions for
further research.

2. Graph theoretic model for folding. The formulation of the PLA folding problem
in graph theoretic terms is due to Hachtel, Newton, and Sangiovanni-Vincentelli
[HNS82]. In this formulation, each PLA is represented by an undirected graph
G( V, E), called its intersection graph. Each node in this graph corresponds to a column
of the PLA. There is an edge between nodes and j if columns and j of the PLA
are both personalized along the same row (i.e., columns and j cannot be folded with
each other). A pair of distinct columns p, q which can be folded with each other forms
an unordered folding pair. An ordered folding pair (p, q) specifies that the columns p
and q are to be folded in such a way that p is above q. A set S of ordered folding
pairs which has the property that each line of the PLA appears in at most one element
of each pair in S, forms an ordered folding set. Throughout this paper, we use the term
"folding set" to mean an ordered folding set. Each ordered pair in S is represented

We do not allow "self-loops" in undirected graphs.
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in the intersection graph by a directed edge. If columns p and q have been folded
with column p above column q, we add the directed edge from p to q. Thus, we obtain
a mixed graph M(V, E, A), where A is the set of directed edges. Since each column
is folded at most once, notice that the edges in A form a matching (i.e., no two edges
in A are incident on the same node).

The advantage of the mixed graph representation is that it is possible to provide
a graph theoretic characterization of the implementability of a folding set [HNS82].
In order to state that result, we need to introduce the notion of an alternating cycle in
a mixed graph. Informally, an alternating cycle is a cycle in which directed and
undirected edges are traversed alternately. Formally, an alternating cycle C in the
mixed graph M(V, E, A) is a sequence of edges ((v, v2), {v2, v3}, (v3, V4)," ",

{vzk-:, v:k_}, (v__, v2), {v2, v}) such that each directed edge in C is in A and each
undirected edge in C is in E. With this definition, we can state the theorem characterizing
the implementability of a folding set.

TWEOREM 1. Given an intersection graph G( V, E) and an orderedfolding set S, the
set S is implementable if and only if the mixed graph M V, E, A) obtained from G and
S does not contain an alternating cycle.

For a proof of this theorem, we refer the reader to [HNS82]. We observe that the
above result makes it possible for us to study the PLA folding problem as a problem
on mixed graphs.

As pointed out in 1, the optimal folding problem has been shown to be NP-
complete in [LV82]. In that paper, the authors have also shown that the problem
remains NP-complete even when only one of the planes of the PLA is to be folded.
In view of that result, we assume throughout this paper that there is only one plane
to be folded. Thus, we use the words "PLA" and "one plane of a PLA" interchangeably.
In this paper, our goal is to study the complexity of obtaining "near-optimal" folding
sets. We now provide a formal definition of a near-optimal folding set. We assume
that an instance of a folding problem is specified by an undirected graph G(V, E),
with IV n. The term heuristic is used to refer to any polynomial time algorithm that
produces implementable folding sets. Let OPT(G) and H(G) denote, respectively, the
number of folding pairs in an optimal folding set and in a folding set produced by a
heuristic H. The folding ratio of the heuristic H is the maximum value of the ratio
OPT( G)/H( G), where the maximization is carried out over all intersection graphs
with at most n nodes. Thus, the folding ratio of a heuristic is a worst-case measure of
its performance. The smaller the folding ratio, the better the performance of the
heuristic. In general, the folding ratio of a heuristic is a function of n. However, if the
ratio grows with n, we can make the performance of the heuristic arbitrarily poor by
choosing a sufficiently large n. Therefore, we will investigate whether there is a heuristic
whose folding ratio is a constant K independent of n. Such a heuristic will be referred
to as a good heuristic.

We should point out that there are numerous NP-complete problems for which
constant worst-case ratios are obtainable in polynomial time. Examples of such prob-
lems include vertex cover, bin packing, and the traveling salesman problem with triangle
inequality [GJ79]. On the other hand, for some problems such as the traveling salesman
problem without triangle inequality [GJ79] and the augmented set basis problem
[GM82], it has been shown that constant worst-case ratios cannot be obtained in
polynomial time if the complexity classes P and NP are different.

Approximation algorithms for PLA folding have also been considered in [LV82].
They proved the following theorem which shows a relationship between the bandwidth
minimization problem [GJ79] and the optimal folding problem.
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THEOREM 2. Let G be an intersection graph with n nodes. Then G has an ordered
and implementable folding set of k pairs if and only if the bandwidth of G is strictly less
than n k.

The authors of [LV82] point out that the above result makes it possible for us to
obtain a heuristic for the optimal folding problem from a heuristic for the bandwidth
problem. In fact, such a folding heuristic was implemented by Elaine Eschen (Master’s
Thesis, University of California, Berkeley) and was found to compare favorably with
industrial codes. From a worst-case standpoint, however, it is not clear from Theorem
2 whether a good heuristic for the bandwidth problem can be used directly to obtain
good folding sets. Elaborating on this question, we assume for a moment that there is
a heuristic B for the bandwidth problem, which is guaranteed to approach the optimal
bandwidth to within a factor of (say) 2. Consider an undirected graph G with n nodes,
whose bandwidth is n/2 (assume also that n is even). By Theorem 2, the size of an
optimal folding set for the corresponding PLA is a large as n/2- 1. When we run the
heuristic B on G, it is possible that B might report the bandwidth of G as n- 1. Thus
according to Theorem 2, we may not be able to select any folding pair. Hence, the
existence of a good heuristic for the bandwidth problem does not necessarily imply
the existence of a good heuristic for the folding problem. Analogously, the results
presented in this paper do not have any obvious impact on the approximability of the
bandwidth problem.

In the sequel, we address the near-optimal folding problem and two of its variants.
In this context, a problem is efficiently approximable if there is a good heuristic for it.
Two problems are eluivalent with respect to aplroximatioa if the existence of a good
heuristic for one implies the existence of a good heuristic for the other and vice versa.
This notion allows us to build a class of problems which has the property that either
all. of the problems in the class are efficiently approximable or none ofthem is efficiently
approximable.

Throughout this paper we use undirected graphs to represent PLAs. Our choice
is justified by the following observation.

OBSERVATION 1. Every undirected graph G(V, E) is the intersection graph of
some PLA.

Proof Let IV[ n and [E[- m. Assume without the loss of generality that V--
{l, 2, 3,..., n} and that the nodesl,2, 3,...,t of G are isolatel nobles. (If G does
not have isolated nodes, then t- 0.) We will construct a PLA P with m / rows
(numbered 1 through m+ t) and n columns (numbered 1 through n) such that G is
the intersection graph of P. The first rows of the PLA are personalized to correspond
to the isolated nodes. This is done by personalizing only the intersection of row with
column i, for i- 1, 2,. ., t. Each of the remaining m rows of the PLA will represent
one edge of G. We arbitrarily label the edges of G with the numbers 1 through m. If
the edge numbered k is incident on nodes and j, we personalize the intersections of
columns and j with row k. It is easy to verify that G is the intersection graph of the
resulting PLA. [3

In view of Theorem 1 and Observation 1, it is possible to study the complexity
of the near-optimal folding problem in the graph theoretic domain. The subsequent
sections of this paper describe how certain restricted forms of folding can be character-
ized in terms of properties of undirected graphs and how the near-optimal versions of
all of these problems are related.

We thank one of the referees for providing this information.
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3. Bipartite folding. Thus far, we have discussed a general (unrestricted) form of
folding. In this section, we examine a restricted form of folding, called bipartite folding.
We prove that the bipartite folding problem can also be formulated as a graph problem.
Moreover, the graph problem does not involve directed edges and so the condition
for a bipartite folding set to be implementable is much simpler than the corresponding
condition for an unrestricted folding set. Using this restricted form of folding, we
prove results which strongly suggest that good heuristics do not exist for the optimal
unrestricted and bipartite folding problems unless P NP.

3.1. Characteristics of bipartite folding. Bipartite folding was introduced by Egan
and Liu [EL84]. The unrestricted form of folding places the cuts (separating the two
electrical lines) at various heights. In a bipartite folding, all of the cuts are required
to be at the same height. Thus, the folding shown in Fig. 2 is not a bipartite folding.
A bipartite-folded version of the PLA of Fig. 1 appears in Fig. 3. A bipartite folding
set S is implementable if and only if there is some arrangement of the product terms
that satisfies the constraints induced by each folding pair in S and allows all of the
cuts to be placed at the same height. Bipartite folding derives its name from the fact
that it partitions the set of product terms into only two sets, those above the cut level
and those below.

A A C C D D E

R3 :

R5

B B F

AND OR
FIG. 3. A bipartite-folded PLA.

< Cut

Bipartite folding is attractive in practice due to the ease with which a row folding
can be carried out after a bipartite column folding. This row folding is easier because
after a bipartite column folding, we can treat the two halves of the PLA as two separate
PLAs and carry out row folding. Again, we can use the same algorithm to perform
both row and column folding. Further, the following result from [EL84] points out
that we can effectively bound the loss due to this restricted form of folding.

THEOREM 3. Let OPT and OPTB denote, respectively, the sizes of an optimal
unrestricted folding set and an optimal bipartite folding set for a PLA. Then OPTB _->

[OPT/2].
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Egan and Liu found experimentally that an optimal bipartite folding set is usually
much larger than the lower bound given by the above theorem. They also showed that
the optimal bipartite folding problem is NP-complete. Thus, the restriction to bipartite
folding does not convert the NP-complete optimal folding problem into an easy
(polynomial time solvable) problem. More importantly, it presents an interesting
approximation problem, namely the problem of obtaining near-optimal bipartite fold-
ing sets. Theorem 3 indicates that the approximation problems for unrestricted folding
and bipartite folding may actually be related to each other. We will examine the nature
of this relationship in the subsequent sections. To begin, we show how the bipartite
folding problem may be expressed as a graph problem.

3.2. Graph theoretic characterization. In 2, we saw that the optimal folding
problem may be phrased as a problem on mixed graphs. In this section, we show that
the optimal bipartite folding problem can also be phrased as a graph theoretic problem.
This formulation is useful in studying the problem of obtaining near-optimal bipartite
folding sets.

OBSERVATION 2. Let G(V, E) be the intersection graph of a PLA and let S
{(Pi, qi): 1 <-i<-_ r} be an ordered and implementable folding set for G. Then, S is an
implementable bipartite folding set if and only if for all and j, 1 _<-i,j-< r, the edge
{Pi, qj} is not in E.

Sketch ofproof
IF. Suppose that for all i,j, <-_ i,j <- r, the edge {Pi, qj} is not in E. It follows that

the set T, of rows personalized along any of the columns p, P2,"" ", Pr and the set
T( of rows personalized along any of the columns q, q2,’’’, qr must be disjoint.
Therefore, we can obtain a bipartite folding by placing all of the rows in Tv (in any
order) followed by all of the rows in To The cuts are made between the last row in
Tv and the first row in To. The lines p, p2,..., pr are run from the top and the lines
q, qz,..., q,. are run from the bottom.

ONLY IF. Suppose S is an implementable bipartite folding set, yet the edge
{pi, qj} is in E for some and j. Clearly C j, because (Pi, qg) is a folding pair. Since
the edge {pi, qj} is in E, there is some row tk which is personalized along both Pi and
qj. However, since Pi is run from the top and qj is run from the bottom, it is easy to
see that the position of tk with respect to the cut level cannot be specified unambiguously.
This contradicts the implementability of S.

The above observation leads to the following definition of implementable bipartite
folding sets.

DEFINIrIOr. Let G(V, E) be the intersection graph of a PLA. Suppose P and Q
are subsets of V. The bipartite folding formed by P and Q (denoted by [P, Q]) is
implementable if and only if the following conditions hold:

(i) The sets P and Q are disjoint.
(ii) For every nodepEPand qEQ, the edge {p, q} is not in E.

The size of a bipartite folding [P, Q] is defined as

SIZE ([P, Q])= Min {[P[, ]Q[},
where [PI and [Q[ denote the cardinalities of sets P and Q, respectively. For convenience,
we allow the cardinalities of the sets P and Q to be different. However, the size of an
implementable bipartite folding set is the smaller of [PI and IQI. Notice that every
implementable bipartite folding set is (trivially) also an implementable unrestricted
folding set.

The optimal bipartite folding problem requires that we find an implementable
bipartite folding set of largest size. As indicated in 3.1, this problem is NP-complete.
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Thus, it is interesting to consider heuristics for this problem. The performance measure
is again the folding ratio, except that we define the folding ratio with respect to the
size of an optimal bipartite folding set. In particular, we are interested in examining
whether there is a good heuristic for the bipartite folding problem.

In [EL84], Egan and Liu have discussed an exponential time (backtracking)
algorithm that produces optimal bipartite folding sets. However, they report that for
a PLA with about 100 lines, the folding program took about 23 minutes of CPU time.
Such a program may not be desirable in an interactive chip design environment. For
these applications, a fast heuristic which produces near-optimal bipartite folding sets
would be more suitable. No results on heuristics for bipartite folding are currently
available so it is not clear whether we need to resort to exponential time algorithms.
Finally, in addition to its practical importance, the approximation problem for bipartite
folding has an impact on the approximation problem for unrestricted folding as
discussed in the next section.

3.3. Near-optimal bipartite folding. In this section, we prove that the optimal
unrestricted folding problem and the optimal bipartite folding problem are equivalent
with respect to approximation. This is accomplished by showing how a good heuristic
for one problem may be converted into a good heuristic for the other problem. Before
we can do this, however, we need to discuss an efficient method to convert an
unrestricted folding set into a bipartite folding set without losing too many folding pairs.

3.3.1. Obtaining bipartite folding sets from unrestricted folding sets. Given an
implementable unrestricted folding set S of size r, we can find an implementable
bipartite folding set of size at least [r/2] in the following manner:

(1) Find an implementation of the given folding set S. This step requires us to
find an arrangement of the rows that satisfies all of the constraints induced by the
folding pairs. This can be done in polynomial time as discussed in [HNS82].

(2) Arrange the folding pairs in S such that the heights of the cuts are in
nonincreasing order. Note that this does not require any rearrangement of the rows.

(3) Form a bipartite folding set [P, Q] with the first It/2] upper lines as the set
P and the last [r/2] lower lines as the set Q.
The correctness of this procedure is obvious and from the above comments it is seen
that the procedure can be implemented in polynomial time. Fig. 4 illustrates this
conversion procedure. Fig. 4(a) shows a set of folding pairs arranged according to the
heights of their cuts and Fig. 4(b) shows the resulting bipartite folding set.

A graph theoretic method to carry out the above conversion appears in [RL84a].
3.3.2. Relationship between near-optimal unrestricted folding and near-optimal

bipartite folding. We are now ready to relate the near-optimal unrestricted folding and
the near-optimal bipartite folding problems. In this section, we prove that these two
problems are equivalent with respect to approximation. The next section examines the
complexity of near-optimal bipartite folding.

THEOREM 4. The optimal unrestricted folding problem and the optimal bipartite
folding problem are equivalent with respect to approximation.

Proof The proof is in two parts. In Part 1, we assume that there is a good heuristic
for the optimal bipartite folding problem and prove that there is a good heuristic for
the unrestricted folding problem. In Part 2, we assume that the unrestricted folding
problem has a good heuristic and show how we can obtain a good heuristic for the
bipartite folding problem.

Part 1. Suppose that there is a good heuristic HR for the optimal bipartite folding
problem. We claim that HR is also a good heuristic for the optimal unrestricted folding
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FIG. 4. Obtaining a bipartite folding set from an unrestricted folding set.

problem. To see this, let R denote the folding ratio of HB. (Note that R is defined
with respect to an optimal bipartite folding set.) Let G be an arbitrary iritersection
graph. We use OPT(G) and OPTB(G) to denote the sizes of an optimal unrestricted
folding set and an optimal bipartite folding set for G, respectively. Suppose that HB
produces a bipartite folding set [P, Q] of size r for G. Since the folding ratio of HB
is R, we must have

(1)
OPTB(G)

_-< R.

We can produce an "unrestricted" folding set of size r from [P, Q] by arbitrarily
pairing up a node in P with a node in Q. Therefore, the folding ratio R’ of H/ with
respect to an optimal unrestricted folding set would be given by

OPT(G)

However, by Theorem 3, OPTB (G)_-> [OPT (G)/2] orOPT (G)=<20PTB (G). Hence,

(2) R’-<2
OPTB (G)
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From inequalities (1) and (2) we see that R’-<_2R. Hence, the folding ratio for
when used for the unrestricted folding problem, is bounded by another constant,
namely 2R.

Part 2. Suppose Hu is a good heuristic for the unrestricted folding problem, with
a folding ratio of R. Consider the following heuristic Ha for the bipartite folding
problem:

(1) Run Hu on the given intersection graph G. Let S {(pi, qi): 1 _-< -< r} be the
implementable folding set of size r produced by He.

(2) Produce a bipartite folding set [P, Q] of size at least [r/2] from S, using the
conversion procedure discussed in 3.3.1.
Since conversion procedure runs in polynomial time, H/ is a polynomial time heuristic.
By proceeding in a manner analogous to Part 1, it is easy to show that Ha has a folding
ratio of at most 2R. Thus, Ha is a good heuristic for the bipartite folding problem.
This completes the proof of Part 2 and also that of Theorem 4.

3.3.3. On the complexity of near-optimal bipartite folding. Theorem 4 shows that
obtaining a good heuristic for the unrestricted folding problem is at least as hard as
obtaining a good heuristic for the bipartite folding problem. We now prove an important
result which provides substantial evidence for us to conclude that the bipartite folding
problem (and hence also the unrestricted folding problem) is hard to approximate.
The essence of this result is the following" if there is a heuristic H for the optimal
bipartite folding problem with a folding ratio of K (a constant), however large K may
be, we can find a heuristic H’ whose folding ratio is arbitrarily close to 1. In this
section, we present a proof of this result and then examine its significance. We begin
with a lemma which forms the basis for the above result.

LEMMA 1. Suppose Ha is a polynomial time heuristicfor the optimal bipartitefolding
problem, with a constant folding ratio K > 1. Then there is a polynomial time heuristic

H’ for the optimal bipartite folding problem, for which the folding ratio is at most x/.
Proof Let G( V, E) be an arbitrary intersection graph. Given the heuristic

the steps of heuristic H are as follows:
(1) Transform the graph G( V, E) into another graph G’( V’, E’). This transforma-

tion is such that if an optimal bipartite folding set for G is of size b, the size of an
optimal bipartite folding set for G’ is at least b2.

(2) Execute H/ on G’. Let [P’, Q’] be the bipartite folding set produced, with
SIZE([P’, Q’])= r. Since Ha has a folding ratio of K, notice that r >-bZ/K.

(3) Tragsform the bipartite folding set [P’, Q’] of size r for G’ into a bipartite
folding set [P, Q] for G with SIZE ([P, Q])>= [x/]. The heuristic H outputs [P, Q].
Suppose we assume, for a moment, that the transformations in steps (1) and (3) above
can be carried out in polynomial time. Then H would be a polynomial time heuristic.
Further, the size of the folding set [P, Q] produced by H satisfies the inequality

1/2" b

Thus, the folding ratio for H is at most b/(b/x/-)=x/. Therefore, we have only
to prove that the transformations in steps (1) and (3) can be carried out in polynomial
time to complete the proof of this lemma. Let us denote these transformations by T1
and T2, respectively. We now present the details of T1 and T2.

TRANSFORMATION T1. Let V {1, 2, 3, , n}. The graph G’( V’, E’) is obtained
as follows:

V’= {(i,j): 1 <- n, 1 _-<j <- n},
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E’={{(i,j),(k,l)}’{i,j}{k,I} or {i,k}E or {i,l}E or {j,k}E or {j,I}E}.

Since G’ has only n nodes, and hence only O(n4) edges, it is clear that the above
transformation can be carried out in polynomial time. We now prove that the graph
G’ has the required property.

CLAIM 1. Let [P, Q] be an implementable bipartite folding set of size b for G.4

Suppose P {p, P2," ", Pb} and Q {q, q,. , %}. Define sets P’ and Q’ by

P’= {(Pi, P./): 1 -<_ b, 1 _-<j _-< b}, O’= {(q,, q;)" 1-< i_<- b, l-j-< b}.

Then, [P’, Q’] is an implementable bipartite folding set of size b for G’.
Proof Since P’ and Q’ contain b nodes each, we need only prove that [P’, Q’]

is an implementable bipartite folding set for G’. We begin by noting that since P and
Q are disjoint, P’ and Q’ are also disjoint. Thus if [P’, Q’] is not implementable, by
Observation 2, we must have (p,, Pv) in P’ and (q,, qy) in Q’ (for some u, v, x, y) such
that the edge e= {(p,, pv), (qx, qy)} is in E’. However, by our construction of G’, it
follows that at least one of the edges {Pu, q}, {P,, qy}, {P, qx}, and {p, q,} must be
in E and that contradicts the implementability of [P, Q]. Therefore, [P’, Q’] must be
implementable. This completes the proof of Claim 1.

TRANSFORMATION T2. Transformation T2 produces a bipartite folding set of an
appropriate size for G, starting from a bipartite folding set for G’. We present the
details of transformation T2 in the proof of the following claim.

CLAIM 2. Let [P’, Q’] be an implementable bipartite folding set of size r for G’.
Then, we can find, in polynomial time, an implementable bipartite folding set of size
at least [v/-] for G.

Proof Suppose that P’= {(Pi, qi): -< _-< r} and Q’= {(xi, y): 1 _-< _-< r}. Define

P {Pi" (P;, qi) P’ or (qi, Pi) P’ for some i, 1 <- _-< r},

Q {xi. (x, y;) Q’ or (y;, x) Q’ for some i, 1 -<_ <_- R}.

It is easy to see that IPI -> [x/] and ]Q]-> [x/-]. Further, it is straightforward to verify
that [P, Q] is an implementable bipartite folding set for G. This completes the proof
of Claim 2 as well as that of Lemma 1.

THEOREM 5. Suppose H is a polynomial time heuristic for the optimal bipartite
folding problem, with a folding ratio of K (a constant). Then for every e > O, there is a
polynomial time heuristic H with a folding ratio of at most 1 + e.

Proof The idea is to apply Lemma 1 an appropriate number of times. In particular,
given an e > 0, choose the smallest integer which satisfies the inequality

(3) 2’>=
log2 K

log2 (1 + e)"

Since K and e are constants, is also a constant. For convenience, we let x 2’. From
inequality (3) it is easy to see that

(4) K/<=(l+e).

If either P or Q contains more than b nodes, we arbitrarily discard the extra nodes. Hence from now

on, we will assume that unless otherwise specified, both of the sets in a bipartite folding contain the same
number of nodes.
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Let G(V, E) be an arbitrary intersection graph with an optimal bipartite folding
set of size b. We transform G into a graph G’ by successively applying transformation
T1, times. Since is a constant and T1 is a polynomial time transformation, the
construction of G’ can be done in polynomial time. Let OPTB (G’) denote the size
of an optimal bipartite folding set for G’. Since every application of T1 at least squares
the size of an optimal folding set (Claim 1 in Lemma 1), it follows that

(5) OPTB (G’)>- b2’=

We use G’ as the input to H. Since H has a folding ratio of K, H must obtain a
bipartite folding set of size at least bX!K.

From this folding set, however, we can obtain a folding set for G by applying
transformation T2, also times. Clearly, this can also be done in polynomial time.
From Claim 2 of Lemma 1, it is easy to see that the resulting bipartite folding set has
a size s given by

(6) s>=

We let H. output this folding set. Hence the folding ratio of H is at most bs <= K/ <=
(1 + e) from inequality (4).

Therefore, assuming that H is given, we have found a heuristic H which has a
folding ratio of at most (1 + e). This completes the proof of Theorem 5.

We believe that Theorem 5 is an important contribution of this paper. It suggests
strongly that any search for a good heuristic for bipartite folding is unlikely to succeed.
Theorem 5 in conjunction with Theorem 4 indicates that a similar search for the
unrestricted folding problem is also likely to be futile. We now expand on these
observations.

Since the optimal bipartite folding problem is not a number problem, the NP-
completeness result of [EL84] implies that the problem is NP-complete in the strong
sense [GJ79]. Further, since the size of an optimal bipartite folding set is at most n/2,
it follows from a result of Garey and Johnson [GJ79, pp. 140-141] that there is no
fully polynomial time approximation scheme (i.e., an approximation algorithm whose
running time is a polynomial function of both n and 1/e) for this problem. This does
not, however, rule out the possibility of a polynomial time approximation scheme (i.e.,
an approximation algorithm whose running time is a polynomial in n, but the exponent
is a function of l/e). Theorem 5 indicates that if there is a heuristic with a constant
folding ratio K, irrespective of how large K is, we have a polynomial time approxima-
tion scheme for the bipartite folding problem. No such approximation scheme is
currently known for any problem which is not a number problem. Worse yet, Theorem
5 also shows that if we can prove that approaching the optimal value to within a factor
of 1 + e is hard, however small e may be, achieving any constant factor is hard. A
result similar to Theorem 5 is known for the maximum clique problem. In view of that
result, it is widely believed that the clique problem does not have a good heuristic
[GJ79]. The same appears to be true for the bipartite folding problem.

3.4. Constrained bipartite folding. What makes the bipartite folding problem
difficult? It is tempting to conclude that the difficulty lies in deciding the position of
a column with respect to the cut level (i.e., whether a column is to be placed above
or below the cut level). We now consider a variation of the bipartite folding problem
in which the position of each column is known a priori. We are simply required to
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find the largest implementable bipartite folding set. We call this the constrained bipartite
folding problem. Our motivation in studying this problem was to investigate whether
this constrained version ofthe bipartite folding problem is easier than the unconstrained
version. The results presented in this section provide a negative answer to this question.

The graph model for the constrained bipartite folding problem is the following:
We are given a bipartite intersection graph G(V1, V2, E), where V1 corresponds to
the set of columns to be placed on one side of (say, above) the cut and V2 corresponds
to the set of columns to be placed on the other side of the cut. Given such a graph,
the optimum constrained bipartite folding problem requires us to find node sets P and
Q such that

(a) P
_
V1 and Q V2,

(b) for every p P and q Q, the edge {p, q} is not in E, and
(c) Min {[P[, [QI} is maximized.

The above problem is known as the maximum balanced independent set problem, and
(as can be expected) is NP-complete [GJ79]. In view of this result, it is interesting to
investigate whether there are good heuristics for this problem. However, our next
theorem shows that the constrained bipartite folding problem is no easier to approxi-
mate than the (unconstrained) bipartite folding problem.

THEOREM 6. The constrained bipartite folding problem and the (unconstrained)
bipartite folding problem are equivalent with respect to approximation.

Proof The proof is again in two parts.
Part 1. Suppose there is a good heuristic Hc for the constrained bipartite folding

problem.
Let R be the folding ratio for He. We now show that we can devise a heuristic

HB (which also has a folding ratio of R) for the unconstrained bipartite folding
problem. Let G(V, E) be an arbitrary intersection graph. The heuristic HB consists of
two steps"

(i) Transform the graph G( V, E) into a bipartite graph G’( V1, V2, E’) as follows.
Assume that V {1, 2, 3,. , n}. Let V1 {VII VI2 Vln } and V2
{v2, v22," ", Vzn}. For each i, 1 =<i<_-n, we add the edge {vi, v2i} to E’. Further, for
every edge {i,j} in E, we add the edges {vi, v2} and {vu, Vzi} to E’.

(ii) Execute Hc on G’. From the folding set produced by Hc, construct a folding
set for G, as described in the following claim.

CLAIM 1, Suppose [P’, Q’] is any implementable bipartite folding set for G’, with
P’= {vii,, vii2," ", vii,,,} and Q’= {VZjl, V2j2, ", VZj,,,}. Define P= {il, i2," ", ira} and
Q= {j,j:,... ,j,,}. Then [P, Q] is an implementable bipartite folding set for G.

Proofof Claim 1. First, we note that the sets P and Q are disjoint. This is because
if ix =jy, for some x and y, the construction would have added the edge {vli., v2:.} to
E’. This would contradict the implementability of [P’, Q’].

Also, if for some ix in P and some jy in Q the edge {ix,L} is in E, then in the
course of constructing G’, we would have added the edge {vl.,., v2:.} to E’, and this
again contradicts the implementability of [P’, Q’]. This completes the proof of
Claim 1.

Observe that the size of the folding set produced by Hs is the same as that
produced by Hc. In order to prove that the folding ratio of H is the same as that of
Hc, we need the following result.

CLAIM 2. The graph G’ has an implementable bipartite folding set of size rn if
and only if G has an implementable bipartite folding set of size rn.

Proof of Claim 2. The "only if" part is precisely Claim 1. So, we prove only the
"if" part. Suppose [P, Q] is an implementable bipartite folding set of size rn for G.
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Let P= {il, i2,""", ira} and Q {jl,j2,""" ,j,,}. Define,

Notice that p’c_ V1 and Q’c__ V2. It is easy to verify that [P’, Q’] is an implementable
bipartite folding set for G’. This completes the proof of Claim 2.

From Claim 2 it follows immediately that the sizes of the optimal bipartite folding
sets for G and G’ are equal. Claim shows that the size of the bipartite folding set
for G produced by HR is exactly equal to the size of the bipartite folding set for G’
produced by Hc. Hence the folding ratio for HR is equal to that of Hc. Thus, HR is
also a good heuristic.

Part 2. Suppose there is a good heuristic HB for the unconstrained bipartite folding
problem. We now describe how to obtain a heuristic Hc for the constrained bipartite
folding problem. Further, Hc will have the same folding ratio as HB.

Given G(V1, V2, E), we construct G’(V’, E’) as follows. Let V’= V1 w V2. The
nodes in V1 are connected together to form a clique, as are the nodes in V2. The edge
set E’ consists of all the edges in E and the clique edges just added. It is straightforward
to verify (using Observation 2) that any nonempty implementable bipartite folding set
[P, Q] for G’ is such that P_ V1 and Q

_
V2. Since the set of edges between V1 and

V2 is the same in G and G’, it follows that any implementable bipartite folding set
for G’ is also an implementable bipartite folding set for G and vice versa. In particular,
optimal bipartite folding sets for G and G’ are identical.

The heuristic Hc constructs G’ and runs HR on G’. Then Hc outputs the bipartite
folding set produced by HR. It is immediate that the folding ratios for Hc and HR are
equal. Hence Hc is a good heuristic for the constrained bipartite folding problem.
This completes the proof of Theorem 6.

The following corollary is a direct consequence of Theorems 4 and 6.
COROLLARY 1. The unrestrictedfolding problem, the unconstrained bipartite folding

problem and the constrained bipartite folding problem are all equivalent with respect to

approximation.
It also follows from the proof of Theorem 6 that a result identical to Theorem 5

holds for the constrained bipartite folding problem. That is, if there is a heuristic for
the constrained bipartite folding problem with a constant folding ratio, then there is
a heuristic with a folding ratio arbitrarily close to 1.

4. Conclusions. In this paper, we addressed the problem of obtaining near-optimal
folding sets. With respect to this problem, we showed that three versions of the optimal
folding problems are equivalent. We also presented results which strongly suggest that
there are no good heuristics for the optimal folding problem.

The main problem left open by our work is to actually prove that the approximation
problem is NP-hard. Theorem 5 suggests an approach towards solving this problem:
For some e > 0 (probably very small), show that the problem of obtaining a folding
ratio of (1 + e) is NP-hard. A proof of this result might suggest a way to attack the
similar question for the clique problem. It will also be interesting to examine whether
the clique problem and the bipartite folding problem are equivalent with respect to
approximation. (The currently known reduction from the clique problem to the con-
strained bipartite folding problem [J83] does not preserve approximations.) As far as
we have been able to ascertain, the bipartite folding problem is only the second
"bonafide" member (the first being the clique or the independent set problem) of the
class of nonnumber problems for which a result similar to Theorem 5 has been proven.
It will be interesting to investigate whether there are other problems in this class.
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PARALLEL ALGORITHMS FOR TERM MATCHING*

CYNTHIA DWORK, PARIS C. KANELLAKIS, AND LARRY STOCKMEYER

Abstract. We present a randomized parallel algorithm for term matching. Let n be the number of nodes
of the directed acyclic graphs (dags) representing the terms to be matched. Then our algorithm uses O(log n)
parallel time and M(n) processors, where M(n) is the complexity of n x n matrix multiplication. The
randomized algorithm is of the Las Vegas type, that is, the answer is always correct, although with small
probability the algorithm might fail to produce an answer. The number of processors is a significant
improvement over previously known bounds. Under various syntactic restrictions on the form of the input
dags, only O(n 2) processors are required in order to achieve deterministic O(log n) parallel time. Further-
more, we reduce directed graph reachability to term matching using constant parallel time and O(n)
processors. This is evidence that no deterministic algorithm can significantly beat the processor bound of
our randomized algorithm. We also improve the P-completeness result of Dwork, Kanellakis, and Mitchell
on the unification problem, showing that unification is P-complete even if both input terms are linear, i.e.,
no variable appears more than once in each term.

Key words, unification, term matching, parallel algorithms, logic programming

AMS(MOS) subject classification. 68Q

1. Introduction. Unification of terms is an important step in resolution theorem
proving [14], with applications to a variety of symbolic computation problems. In
particular, unification is used in PROLOG interpreters [2], [7], type inference
algorithms [10] and term-rewriting systems [6]. Informally, two symbolic terms s and
are unifiable if there exists a substitution of additional terms for variables in s and
such that under the substitution the two terms are syntactically identical. For example,

the terms f(x, x) andf(g(y), g(g(z))) are unified by substituting g(z) for y and g(g(z))
for x.

Unification was defined in 1964 by Robinson in his seminal paper "A Machine
Oriented Logic Based on the Resolution Principle" [14]. Robinson’s unification
algorithm required time exponential in the size of the terms. The following years saw
a sequence of improved unification algorithms, culminating in 1976 with the linear
time algorithm of Paterson and Wegman 12]. A general interest in parallel computing,
together with specific interest in parallelizing PROLOG, led Dwork, Kanellakis, and
Mitchell to search for a fast (time polynomial in log n) processor efficient (polynomially
many processors) parallel unification algorithm [4]. Their results were negative: they
proved that unification is complete for polynomial time, even if the input terms are
represented as trees. A similar result was independently derived by Yasuura 18]. (The
result in [18] is slightly weaker because it proves completeness for a more restricted
class of inputs.) Thus, the existence of a fast,, efficient parallel algorithm is popularly
unlikely, in that it would contradict the popularly believed complexity theoretic conjec-
ture that P, the class of problems solvable sequentially in polynomial time, is not

* Received by the editors July 28, 1986; accepted for publication (in revised form) June 24, 1987. This
is a revised and expanded version of the paper "Parallel Algorithms for Term Matching," appearing in the
Proceedings of the 8th International Conference on Automated Deduction, July 1986, Oxford, United
Kingdom, Lecture Notes in Computer Science, Vol. 230, pp. 416-430, (C) 1986 by Springer-Verlag.
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t Computer Science Department, Brown University, Providence, Rhode Island 02912 and Laboratory

for Computer Science, Massachusetts Institute ofTechnology, Cambridge, Massachusetts 02139. The research
of this author was supported in part by an IBM Faculty Development Award and in part by National
Science Foundation grant MCS-8210830.
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contained in NC, the class of problems solvable in polylogarithmic time using poly-
nomially many processors. However, Dwork et al. [4] found that term matching, a
special case of unification in which one of the terms contains no variables, is in NC.
Term s matches term if there exists a substitution cr mapping variables in s to terms,
such that tr(s), the term obtained by replacing each occurrence of each variable x in
s by tr(x), is syntactically equal to t. Dwork et al. [4] obtained a matching algorithm
requiring O(log n) time and about O(n 5) processors. Motivated by I-4] some research-
ers interested in parallelizing PROLOG examined extant PROLOG programs to see
whether in practice unification can be replaced by term matching. Preliminary results
show that "often" the full power of general unification is not needed, and that term
matching indeed suffices [9].

Let NCk(f(n)) be the class of problems solvable in time O(logk n) using f(n)
processors on inputs of size n. Similarly, let RNCk(f(n)) be the class of problems
solvable by a randomized algorithm in time O(logk n) using f(n) processors on inputs
of size n. In defining these classes, our model of computation is the Concurrent-Read
Exclusive-Write Parallel RAM (PRAM) [5], with word size O(log n) on inputs of size n.

The algorithm of [4] shows that term matching is in NC2(M(n2)), where M(m)
is the number of arithmetic operations required for m m matrix multiplication.
Coppersmith and Winograd [3] show that M(m)= O(m25), so the algorithm of [4]
uses about n processors. The current paper provides substantially improved upper
bounds on processors for the term-matching problem at no asymptotic cost in running
time. However, the new algorithm is randomized, in that the individual processors
make random choices (flip coins). It is a Las Vegas algorithm" an answer is always
correct, but there is some small probability (taken over the set of coin tosses) that an
execution of the algorithm will fail to produce an answer. In that case the algorithm
can be run again. Our approach will be to show how to test two terms for syntactic
equivalence in RNC2(M(n)), where n is the total number ofnodes in the dag representa,
tions of the two terms. This is the only randomized portion of the algorithm. We then
show that term matching reduces to equivalence testing, and the reduction can be
performed in NC2(n-). Since M(n)>= n2 the principal result for term matching then
follows as an easy corollary.

The remainder of the paper is organized as follows. Section 2 contains results on
testing two terms for syntactic equivalence. In addition, this section contains some
"evidence" that M(n) is a lower bound on the number of processors needed for NC
solutions to both term matching and equivalence, by showing that the directed acylic
graph reachability problem reduces to testing for equivalence by an NC(n2) reduction.
Section 3.1 describes the reduction from term matching to equivalence testing. For
certain special cases we can improve on the time and/or processor bounds obtained
in the general case when both terms are represented by arbitrary dags. These results
are described in 3.2. Finally, 4 strengthens the known P-completeness results for
unification, showing that unification is P-complete even if both terms are linear (each
variable appears at most once in each term) and are represented by trees, but where
there can be sharing of variables. (In contrast, if there is no sharing of variables and
one of the terms is linear, then the problem can be solved in NC as we show in 3.3.)
The proof of P-completeness of unification of linear terms is quite different from
and more intricate than that of [4], and in a sense provides a strongest possible
P-completeness result for a restricted form of unification.

2. Testing for equivalence of terms. A term is defined recursively as follows. A
variable symbol is a term; iff is a k-ary function symbol, k => 0 (0-ary function symbols
correspond to constants), and tl," ", tk are terms, then f(tl,. ., tk) is a term.
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A dag is a directed acyclic graph. If G is a dag and u is a node of G, then the
subdag rooted at u is the subdag consisting of all nodes and edges reachable from u.
A term can be represented by a labeled dag in a very natural way. If is a constant
or a variable, then the representation is just a single node labeled t. When
f(tl, , tk), k >- 1, can be represented by a dag consisting of a node labeled f with
k outedges, labeled, respectively, 1 through k, such that the head of the edge labeled

is the root of a subdag representing ti, for each 1,..., k. Figure 1 shows some
examples of labeled dags and their corresponding terms. Note that if the term contains
a repeated subexpression then its corresponding dag is not unique; for example, a
term g(t, t) may be represented by using a single dag for both occurrences of or by
using a separate dag for each occurrence. A node u of a dag is a root if there are no
edges directed into u, and u is a leaf if there are no edges directed out of u (each leaf
must be labeled by either a constant or a variable). A term is linear if no variable
appears more than once in the term. If the term is linear and if G is any dag
representation of t, then for each variable x occurring in there is exactly one path
in G from the root to a node labeled x. Let u and v be nodes of outdegree k, and let
ui (respectively, vi) denote the head of the edge from u (respectively, v) with label i,
i= 1,..., k. Then we say u (vi) is the ith child of u (respectively, of v), and we say
u and v are corresponding children of u and v.

2 2

3 2

o *, o
x a b x

g(f(x,x),h(x,a,b)) g(f(x,x),f(x,x))

FIG. 1. Some examples of term dags.

Two rooted dags G and H are said to be equivalent, written G H, if they represent
the same term. An instance of the equivalence problem is a triple (D, r, r2), where D
is a labeled dag with two roots r and r2. The two terms to be tested for equivalence
are the terms represented by the subdags rooted at the two roots. (D could consist

of two connected components, one with root rl and the other with root r2. In general,
we allow the dags rooted at rl and r2 to share nodes since our equivalence algorithm
handles this smoothly.) The time and processor complexities of our algorithms are

expressed as functions of n, the size of an instance, defined to be the maximum of the
number of nodes of D and the maximum outdegree of any node of D. Since in most

applications the number of nodes will dominate the maximum outdegree, there is no

harm in viewing n as the number of nodes. For cases where the maximum outdegree
dominates, it is easy to express the complexities of our algorithms as functions of two

separate parameters, the number of nodes and the maximum outdegree.
All logarithms in this paper are to the base 2.

2.1. ALas Vegas algorithm for testing equivalence of terms. Let M(n) be an upper
bound of the form cn, for constants c > 0 and to > 2, on the number of arithmetic
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operations in a straight-line algorithm which computes n x n matrix multiplication
where the algorithm contains no divisions and where all scalars (i.e., numerical
constants) are integers. The Coppersmith-Winograd algorithm [3] is of this form, so
M(n) O(n25).

Consider an instance (D’, rl, r2) of the equivalence problem and let n be its size.
Let G’ and H’ be the dags rooted at rl and r2, respectively. Since two terms are equal
if and only if they are equal when we substitute constants for variables, we may assume
that D’ contains no variables. This will simplify matters in this section since we will
want to use "variable" to refer to polynomial variables rather than term variables.
Briefly, our approach is to represent G’ and H’ by multivariate polynomials Pc, and
PH’ in such a way that G’ and H’ are equivalent if and only if the .corresponding
polynomials are equivalent. We then use a randomized algorithm of Schwartz 15] to
check the equivalence of the polynomials. Since Schwartz’s result deals with sequential
algorithms, we have some additional work to prove that the algorithm can be modified
to run in RNC2(M(n)).

In defining the polynomials, it is useful to first perform some modifications to the
dag as follows. Given a labeled dag D’, we first add a new node z to D’, and add
edges from every node in D’ to the new node z, making z the unique leaf of the
resulting dag, call it D. Each new edge (v, .z) is D labeled with the outdegree of v in
D. This process of adding a new leaf, connecting it to all nodes in the original dag,
and labeling the new edges, is called preparing the dag, and D is said to be prepared.
We view D as a term dag with the single constant symbol z; the arity of each function
symbol labeling a node of D (except the new node) is one more than the arity of the
function symbol labeling the corresponding node of D’. If G and H are the prepared
dags rooted at r and r, respectively, in D then it is obvious that G and H are
equivalent if and only if G’ and H’ are equivalent. Therefore, we shall work with
prepared dags in the remainder of this section.

Given a labeled prepared dag G, we define the corresponding polynomial Pc as
follows. Our intention is to assign variables to edges; in 2.1, "variable" means a
variable of some polynomial Pc. Each path from the root to the leaf will then yield
a monomial defined as the product of the variables assigned to the edges along the
path. The final polynomial will then be the sum over all paths p from root to leaf of
the monomial corresponding to p. We will show that two dags are equivalent if and
only if their corresponding polynomials are equivalent. Reducing equivalence testing
for term dags, which is in NC, to testing equivalence of polynomials, which is not
even known to be in P, is not obviously progress. However, we will then apply the
algorithm of Schwartz, modified to run in RNC, testing equivalence of the polynomials
at a randomly selected point. A negative answer to this test is a proof of inequivalence.
As we will see, a positive answer can sometimes be turned into a proof of equivalence.
Sometimes a positive result will be inconclusive, in which case the algorithm can be
run again.

We now describe the selection of the variables. Consider an arbitrary path from
the root to the leaf. In selecting the variables corresponding to the edges of the path,
care must be taken that the ordering information is not lost. In other words, given the
monomial corresponding to the path we must be able to reconstruct the path. To this
end, for each node v we compute the number of paths from v to z in G. Note that
since G is prepared, if v is a proper ancestor of u then the number of paths from v
to z exceeds the number from u to z; this fact will play an important role in the proof
of Lemma 1.

VARIABLE NAMING RULE. Let v be a node of G labeled with the k-ary function
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symbol f, and let m be the number of paths from v to the leaf z. Then for each
j {1,..., k}, f is the variable assigned to the edge from v labeled j.

For each path p directed from the root of G to z, let the monomial/x(p) be the
product of all the variables corresponding to the edges of p. Then PG Yp /x(p).

LEMMA 1. Two prepared term dags G and H are equivalent if and only if PG and
P, are equivalent polynomials.

Proofi We begin with the if direction. Let the degree of a polynomial denote the
maximum number of variables in any monomial of the polynomial. Then
implies that the two polynomials are of the same degree. The proof proceeds by
induction on k, the degree of the polynomials.

k 1. In this case the two polynomials each consist of a single monomial (this is
because of the way we defined a prepared dag). Thus, for some unary function symbols
g and h we have PG g and PH--h 11. Clearly, these polynomials can be equivalent
if and only if g ll--h 11, so the symbols g and h must be identical.

k > 1. We assume the result inductively for polynomials of degree less than k and
prove it for k. Let g (respectively, h) be the label of the root of G (respectively, H)
and let (respectively, j) be the number of paths from the root of G (respectively, H)
to the leaf z. Write PG--- -’=1 gxtx and PH --b,= hxs where the superscripts in the
t and sx are less than and j, respectively. Then i-j, as otherwise the maximum
superscripts of the two sets of variables differ. Thus, none of the t contain any variable

and similarly, no sx contains any gy. Because the only functionname of the form hy
symbol superscripted with in PH is h, it follows that g h, whence a b. Rewriting
PH with g replacing h yields PH a=1 g’s. For any x{1,..., a}, setting gy to 0
for all y#x yields gtx g’s, whence tx s,. Since the degree of t, is strictly less
than k, we see by the inductive hypothesis that the term represented by t, is equivalent
to the term represented by sx. Let r and r2 be the roots of G and H, respectively.
Since g- h both roots are labeled with the same function symbol. Further, t, =sx for
all x, so the corresponding arguments of g are the same in the two dags. Thus, the
two dags are equivalent.

We now prove that if the two prepared dags are equivalent then the corresponding
polynomials are equivalent. Because the height of a dag corresponds to the maximum
depth of nesting of parentheses in the term it represents, if G-- H then the two dags
are of the same height. The proof proceeds by induction on k, the height of the dags.
We strengthen the induction hypothesis, showing that if two dags are equivalent then
the number of paths from the root to the leaf is the same in the two dags.

k 1. All prepared dags of height 1 contain a unique edge, from root to leaf, so
the corresponding terms are just 1-ary function symbols. Thus, G-- H implies the two
dags are identical, whence they give rise to the same polynomial.

k > 1. We assume the result inductively for dags of height less than k and prove
it for k. Let rl and r2 be the roots of G and H, respectively. If G-= H then the two
roots are labeled with the same function symbol, say g, whence both roots have the
same outdegree, say a. Further, because the dags are equivalent, for each { 1, , a},
the subdag rooted at the ith child of r is equivalent to the subdag rooted at the ith
child of r2. Since these subdags are of height strictly less than k we see by the inductive
hypothesis the polynomials corresponding to the subdags rooted at the ith children
of the roots are equivalent, and the number of paths from the ith child of rl to the
leaf is equal to the number of paths from the ith child of r2 to the leaf, for all i. Thus,
the total number of root-leaf paths is the same in the two dags. Let m denote this
number. Let P denote the polynomial corresponding to the subdag rooted at the ith
child of either root. Then P g’P1 /’’" / g’Pa, and this is precisely PH.



716 C:. DWORK, P. C. KANELLAKIS, AND L. STOCKMEYER

Remarks. (1) Ifthe variables were not superscripted with the path numbers Lemma
1 would not hold. This is because the variables fl and f2 commute, i.e., ff2 =f2f, but
the directed paths labeled ff2 and f2f are not the same in a dag.

(2) Two very natural approaches to handling the commutativity problem do not
work. Affixing c c matrices to the edges, for some constant c, cannot work. This
follows from a theorem of Amitsur and Levitzki [1] which states that there are
polynomials Q(x, , X2c and Q2(x, , X2c with zero-one coefficients, involving
noncommuting variables Xl, , x2,., such that Q and Q2 are not equivalent in general,
but Q1 and Q are equivalent over the ring of c x c matrices. A second approach,
computing for each node v the maximum distance from v to z (instead of the number
of paths) requires a special kind of matrix multiplication, in which the inner operation
is + and the outer operation is max. It is not known how to compute the "product"
of two n x n matrices in M(n) steps using this definition of multiplication.

In order to use Lemma 1 to test for equivalence of term dags, we must address
several issues.

The number of paths from a node to the leaf may be as large as n"-l, even though
the outdegree of each node is bounded by n. Since the word size of our parallel random
access machine (PRAM) is at most logarithmic in n we cannot actually compute these
numbers. Similarly, we cannot evaluate the polynomials PG and P/, as for many
possible choices of values for the variables the values of the polynomials will be too
large to handle. We use modular arithmetic to handle these problems, performing all
arithmetic modulo random primes, which in turn raises the question of how to obtain
a random prime.

Testing equivalence of multivariate polynomials is not even known to be solvable
in polynomial time, let alone in NC, even when we can actually evaluate the poly-
nomials, much less when we cannot. For this we resort to a modification of Schwartz’s
randomized algorithm.

The Schwartz algorithm is Monte Carlo, in that an answer of "inequivalent" is
always correct, but an answer of "equivalent" is correct only with high probability.
Thus, the final issue is that of deriving a proof of equivalence when Schwartz’s algorithm
tells us two polynomials are equivalent..If the polynomials are arbitrary this problem
is open. Our polynomials are not arbitrary; they are constructed from term dags. This
can sometimes be exploited to obtain a proof of equivalence.

LEMMA 2. For each constant k, there is an RNCZ(log n) algorithm that, on input
n, with probability at least 1 n -k produces a random prime q I {2, , n k}.

Proof Our approach is to choose r random numbers, ql,’", qr I where r=
d logZn for an appropriate constant d. Each qi is tested for primality (k+2)log n
times in parallel using Rabin’s randomized test [13]. Of those qi having passed all
tests one is selected at random. Rabin’s algorithm runs in time O(log2 n) on inputs
from L When given a prime, the algorithm always answers "prime"; when given a
composite, it answers "composite" with probability at least 1/2.

There are two ways in which the algorithm could fail to produce a prime. It may
be that none of the qi are prime. The Prime Number Theorem implies that for some
constant c, independent of n, the probability that all r are composite is at most
(1-c/log n) r, which is at most n-k if r= d log2 n, for some constant d independent
of n. If at least one qi is actually prime, it is still possible that a composite will be
chosen. However, since Rabin’s algorithm errs with probability at most 1/2, the probability
that a composite passes all (k + 2)log n tests is at most rl -k-2. Thus, the probability
that even one composite passes all tests is at most nn -k-z, which is less than n-k
for sufficiently large n.
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The first source of error in our randomized protocol for testing equivalence of
term dags is in the selection of q, because our algorithm may fail to produce a prime.
However, even if a prime q is produced, performing arithmetic modulo q introduces
a second source of error, as distinct numbers r and s may be congruent mod q. Thus,
when computing the superscripts for the variables mod q, two variables assigned to
edges from nodes with differing numbers of paths to the leaf may receive the same
superscript. We must therefore choose q from a range sufficiently large as to make this
event unlikely.

DEFINITION. Integer m is bad for the pair of integers (r, s) if r s but r and s
are congruent mod m.

LEMMA 3. For every pair of distinct numbers r, s <= n" there are at most n log n bad
primes.

Proof Let {p,...,px} be the set of primes bad for (r, s). Then the product
r=plp2"’’px is also bad for (r, s). Since r, s <- n" it must be that 7r=< n" (otherwise
the two numbers could not be congruent mod 7r). On the other hand, since each pi--> 2
we have 2 -<_ 7r. Thus, T’ =< r =< n n, whence x =< n log n, as was to be shown. [3

Let us say a prime q is bad for a prepared dag if there exist two nodes u and v
in the dag such that r and s are the number of paths to the leaf from u and v,
respectively, r s, and q is bad for r, s.

COROLLARY 4. Let D be a prepared dag with n nodes in which each node has
outdegree at most n. Then a random prime q drawn from [2, n k] is bad for D with
probability at most O(rl3-k log2 n) for any fixed k >-3.

Proof. There are at most n 2 pairs of nodes, and for each pair there are at most
n log n bad primes, so there are at most n log n primes bad for D. By the Prime
Number Theorem there are l-l(nk/(k log n)) primes in [2, rig]. Thus, if a prime is
selected uniformly at random from this range, then the probability that the chosen
prime is bad for D is at most

k log n)O n: log n nk O(n3-k log n).

Let Q be a polynomial in variables with integer coefficients. An assignment for
Q is a (t + 1)-tuple of integers A (il,..., i,, p). We define

Q(A)=Q(il," .,i,) (mod p).

An assignment A is a modular zero of Q if Q(A)=0. We let maxv (Q, m) denote the
maximum value attained by Q over the rectangle in which the absolute value of each
variable is bounded by m.

In order to bound the probability of error in testing the polynomials for equality,
we appeal to the following theorem due to .Schwartz [15].

THEOREM (Schwartz). Let 2m + >- c. deg (Q), let Ibe the set ofintegers ofabsolute
value <-_m, let J be a set ofprimes, and suppose that the product of the c-llJI + 1 smallest
primes in J exceeds maxv Q, m ). Then if Q is not identically equal to zero, the number
of elements of I’ J which are modular zeros of Q is at most 2c-lll’lJI.

The Q we will be considering is Pc PH, which is of degree at most n (the number
of nodes in the union of the two dags), and contains -<_ n variables. Suppose we wish
to bound the probability of choosing a modular zero by n -k. We apply Schwartz’s
Theorem as follows. Let b -> k + 1 and m rib. Let J be the set of primes in [2, n2b],
and I I--rib, rib], where J is the set from which we select our random prime p and
I is the interval from which each of our variables is chosen. Each term in Q is the
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product of at most n variables, and Q contains at most n terms, so

maxv(Q, nb)<_nb"n n.
To satisfy the conditions of the theorem we take c (2n b + 1)/n. Estimating the number
of primes in J to be dn2b/2b log n, for some constant d, the condition that the product
of the c-llJl+ 1 smallest primes exceeds maxv (Q, m) is clearly satisfied if

dn2b+
>- n(b+ l) log n

(2n b + 1)2b log n

(because each prime is no smaller than 2). This reduces to

dn2b >= 2b(b + 1)(2n b + 1)(log n)2,
which is clearly true for all sufficiently large b, assuming n ->_ 2. We therefore have the
following corollary.

COROrLARV 5. Let Q be a polynomial of degree n >= 2 such that Q O. For any
fixed k there is a constant b, depending only on k, such that by choosing a random
assignment A for Q by choosing a random prime in the interval [2, n 2b] and randomly
selecting values for the variables in Q from I=[-n b, rib], Pr[Q(A)=O]<= n -k.

When our polynomial Q is formed from two term dags it is obvious how we obtain
a proof of inequality (Q(A) 0), while if Q(A)= 0 we may have hit a modular zero
at A. However, in some cases we can actually obtain a proof of equivalence. In part
this is due to the fact that when we evaluate the polynomials corresponding to the two
roots of our dags, we simultaneously evaluate all n polynomials corresponding to the
subdags rooted at each of the n nodes, just as when testing directed graph reachability
by computing the transitive closure of the adjacency matrix we obtain reachability
information for all pairs of points.

Let D be a prepared dag with two roots, and let G and H be the subdags rooted
at these roots. Choose variables for the edges according to the Variable Naming Rule.
For each node v, let P be the polynomial induced by the subdag rooted at v. By
convention, P is the identically zero polynomial where z is the unique leaf added
when the dag was prepared. Running our parallelized version of Schwartz’s algorithm
with a particular assignment A to the variables induces an equivalence relation on the
nodes of D, where distinct nodes x and y are in the same class if and only if the
algorithm tells us P(A)= P(A). Let us denote this relation by xA Y" For each pair
of -=a nodes we check two things. First, we verify that both nodes are labeled with
the same function symbol. Second, we check that the corresponding children of each
pair of ----A nodes are also --a We claim that if both these tests are passed for all pairs
of ’a nodes then the subdags rooted at x and y are equivalent.

LEMMA 6. Let D and A be as above. Let x and y be nodes ofD satisfying x =--A Y"
Iffor all u, v such that u -A ) and u and v both belong to the union ofthe subdags induced
by x and y, it is the ease that the labels of u and v agree and each pair of corresponding
children of u and v are =--a then the subdags rooted at x and y are equivalent.

Proof The proof is by induction on k, the length of the longest path from x to
the leaf z.

k 0. In this case x z, which has the label z. If the conditions of the lemma are
satisfied then y has label z, so y z as well.

k > 0. Assume the result inductively for k- 1, and assume the conditions of the
lemma hold. Then the labels of x and y agree. Further, corresponding children of x
and y are A Thus, by induction, the subdags rooted at their corresponding children
are equivalent. It follows immediately that the subdags rooted at x and y are
equivalent.
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Lemma 6 says it is sometimes possible to prove equivalence of polynomials
generated from term dags. In particular, this can be done when for every pair of
nodes, the subdags rooted at the two nodes are actually equivalent. It is possible that
two nodes labeled with different function symbols are "equivalent" under =,. In this
case we can prove nothing about the ancestors of these nodes and we must run the
algorithm again.

THEOREM 7. The problem of testing equivalence of two term dags can be solved by
a Las Vegas algorithm in RNC2(M(n)). For any fixed k the probability that no answer
is produced can be bounded above by n -k.

Proof The algorithm is as follows. The algorithm involves an integer parameter
k’ which is chosen depending on k. Let (D’, rl, r2) be an instance of the equivalence
problem, consisting of a dag D’ and two roots.

1. Prepare D’ by adding a new leaf z, adding an edge from each node to z, and
labeling the added edges. Let D denote the resulting dag.

2. Choose a random prime q [2, nk’].
3. For each node v compute the number (mod q) of paths from v to z.
4. For each edge e compute the name of the associated variable according to the

Variable Naming Rule.
5. Sort the variable names and remove duplicates from the sorted list.
6. Choose an assignment A by choosing random values from the range [-n k’, n k’]

for the variables in the list produced at the previous step and by choosing a
random prime p [2, n2k’].

7. For each node v in D evaluate P, the polynomial corresponding to the subdag
rooted at v, at the point A chosen in step 6. If rl A r2 then output "inequivalent"
and halt.

8. if r =_ A r2 then try to prove equivalence by the method ofLemma 6. If successful,
output "equivalent," else output "?".

We now describe steps 3, 7, and 8 in more detail.
For simplicity, let n denote the number of nodes in the prepared dag D (the

original dag plus the new leaf). To perform step 3, we define an n x n matrix E whose
ij entry is the number of edges from to j (mod q). In other words, Ei is the number
(mod q) of paths of length 1 from to j (diagonal entries are 0). In general, (Ek)i is
the number (mod q) of paths of length k from to j. Since we are interested in all
paths of all lengths from each node to z, we compute the sum of all powers of E from
E to E"- where n _<- m < 2n and rn is a power of 2. To do this we use the well-known
identity

] + E + E2 + E +... + E m-1 (I + E)(I + E2)(I + E4) (I +
Multiplication of m x m matrices can be computed in NC(M(n)) (see, e.g., Pan and
Reif [11, Appendix A]). Therefore, the powers of E needed to compute the rhs can
be computed in NC2(M(n)) by repeated squaring. All arithmetic is done mod q. Since
the rhs contains at most log n terms the product can also be computed in NC2(M(n))
once the powers of E are computed. Let E*-i=o E (mod q). Then for each node
v, E*z is the number (mod q) of paths from v to z.

The evaluations of the polynomials P proceed in a similar fashion. Thus, to
perform step 7 we define a matrix B whose ij entry is the sum of the values chosen
for the variables assigned to the edges from to j. Viewed differently, Bi2 is the value
of the polynomial corresponding to the subdag containing paths of length 1 from to
j. In general, (Bk)0 is the value of the polynomial which is the sum of the monomials
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corresponding to all paths of length k from to j. As in the case of the computation
of path numbers, we are interested in B*= I + B + Be+ B3+ + B"-. This is com-
puted as described above, all arithmetic being performed mod p. Then Bv*z Pv(A).
For any two nodes x and y we have

X=_A y C=) B* *Byz.

To perform step 8, the verification of equivalence, we proceed as follows. For all
nodes x and y such that X------A Y we check that the labels of x and y are equal (if they
are not then we can prove nothing, and the algorithm outputs "?"). Given that they
are equal, we wish to check that corresponding children of ------a nodes are themselves

A" Let e=(u, v) be an edge with label i. Corresponding to e there is a triple
(B*z, i, B*z) (Pu (A), i, P(A)). The set of triples corresponding to all the edges of the
prepared dag are sorted lexicographically. We then examine the sorted list for a
pair of adjacent triples whose first and second components match but whose third
components differ. If no such pair exists the algorithm outputs "equivalent," else it
outputs "?."

This completes the description of the algorithm. It remains to prove correctness
when the random choices are good and to analyze the probability of making a bad
random choice. Let G and H be the subdags rooted at r and r2, respectively.

By Lemma 1, G-= H implies Pc -= P/, and in the absence of a bad random choice
in step 2, G H implies Pc PH. If Pc PH, then in the absence of a bad choice for
the assignment A at step 6, r A re, SO we have a proof that G H. If Pc Pn, then,
in the absence of a bad choice for A, for all pairs of nodes u, v such that u =A V it is
the case that the subdags rooted at u and v represent the same terms, in which case
we have a proof of equivalence by Lemma 6.

This proves correctness in the absence of bad choices. We now bound the probabil-
ity of making a bad choice.

As shown in Lemma 2 and Corollary 4, we can bound the probability of a bad
choice in step 2 by n -k for any fixed k. We now examine the probability of obtaining
a "?" output given that no bad choice was made in step 2.

A "?" will be produced if for some pair of nodes u and v, the subdags rooted at
the nodes are inequivalent but U--=A V. By Lemma 2 and Corollaries 4 and 5 the
probability of this occurring for a particular pair of nodes can be bounded above by
n -k for any fixed k. As there are only n 2 pairs of nodes, the probability of this event
occurring for any pair of nodes can be similarly bounded.

This completes the proof of Theorem 7. Iq

2.2. Directed reachability reduces to equivalence testing. The dag reachability prob-
lem is: Given a dag D and two distinguished nodes s and of D, does there exist a
path from s to ? The size of the instance is the number of nodes in D. While directed
reachability is known to be complete for NSPACE(log n) with respect to logspace
reductions, and therefore to be in NC, little is known about the number of processors
needed to solve this problem in polylog time. In fact, all known NC or RNC algorithms
compute the transitive closure of the adjacency matrix for D by repeated squaring
and therefore use M(n) processors (to within logarithmic factors). Thus, while reducing
directed reachability to term equivalence does not yield a lower bound :n the number
of processors needed to test for equivalence in NC, it does provide some "evidence"
that M(n), the processor bound obtained in Theorem 7, cannot be significantly
improved.

THEOREM 8. The directed acyclic graph reachability problem is NC(n2) reducible
to the equivalence testing problem.
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Proof Given a dag D with distinguished nodes s and t we will construct a pair
of term dags El and Ee which will be equivalent if and only if there is no path from
sl to tl in D. The construction is illustrated in Fig. 2.

Without loss of generality we assume D has a unique root (if this is not the case
then create a new root with edges to each of the original roots). We begin by turning
D into a term dag. For each k, 0-< k-< n, and for each node v of D1 with outdegree
k, label v with the function symbol fk. Label the outedges from 1 to k in arbitrary order.

abel(t 1) label(t2)

D D2

D D2

FIG. 2. The dags constructed in the proof of Theorem 8.

Create a copy De of D, identical to D1 but with t2, the De copy of tl, labeled
with a new function symbol g. Let s2 be the D2 copy of s. There is a path from s to

t if and only if s and s2 are the roots of inequivalent subdags. However, we are not
done, since the s nodes are internal, and we have been assuming that an equivalence
algorithm takes as input two roots and determines whether the dags rooted at these
roots represent equivalent terms.

We next create a new dag E composed of D1 and De by creating a new root r
and making the roots of D and D2 first and second children, respectively, of q. Let
s be the third child of q. The edges from r to its children are labeled accordingly,
and r is labeled with function symbol f3.

Finally, we create a copy E of El, identical to E but with the 3-edge of re, the
root of E2, pointing to the Ez copy of se (instead of to the copy of sl). The subdags
rooted at the first and second children of the two roots are identical by construction.
Thus, the two dags are equivalent if and only if the subdags rooted at the third children
are equivalent. As observed above, this holds if and only if there is no path from s
to t in D.

If D contains n nodes then the four copies can be constructed in O(1) time using
n 2 processors (one per edge). The two new roots and six additional edges are added
in constant time as well. [3

3. Reducing term matching to equivalence testing. In 2.1, we showed that two
term dags can be tested for equivalence in RNCe(M(n)). We now show that these
bounds apply to the term-matching problem as well. Recall that term s matches term

if and only if there exists a o- mapping variables to terms such that r(s)-- t. Note
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that matching is not a symmetric relation. An instance of the term-matching problem
is a pair of disjoint labeled term dags representing the terms s and to be matched.
The size of the instance is the number of nodes in the union of the two dags. Although
our matching algorithm requires the two dags to be disjoint, nondisjoint instances can
be transformed to disjoint instances by performing a reachability computation from
the two roots; as in the proof of Theorem 7, this can be done in NC2(M(n)). In
particular, disjointness is not needed in Corollary 10. Both term matching and
equivalence testing are special cases of the unification problem. In the term-matching
problem one of the terms (the second one) is considered constant: r is not applied to
the second term. In the equivalence problem, both terms are considered constant.

In 3.1, we describe our results for general dags. Special cases are discussed in 3.2.

3.1. Term matching on general dags. In this section we will prove the following
theorem.

THEOREM 9. Term matching reduces to testing for equivalence in NC2(n2).
From Theorems 7 and 9 we obtain our main result.
COROLLARY 10. Term matching can be solved by a Las Vegas algorithm in

RNC(M(n)).
As mentioned in the Introduction we also have some specialized algorithms for

term matching which depend on the form of the constant term. However, the general
outline of the algorithm is the same in all cases. For ease of exposition we break the
algorithm into four main steps. Since the first term, henceforth s, will always be
represented by an arbitrary dag G, we may assume without loss of generality that each
variable of s is the label of exactly one node of G (multiple copies of x can be merged
into one copy).

Steps 1-4 below outline all our matching algorithms. Let G and H denote the
dags representing s and t, respectively.

Match ((, n).
1. A processor is assigned to each node of G. A spanning tree T of G is formed

by having the processor assigned to each node v of G (except the root) arbitrarily
choose one of the edges directed into v.

For each node v in G, there is a unique sequence of spanning tree edges from
the root of G to v. We use p(v) to denote the sequence of edge labels along this path.
An embedding is a mapping d from nodes of G to nodes of H such that d maps the
root of T to the root of H and if v and u satisfy p(v)= p(u). then there is an edge
labeled from d(u) to d(v). In other words, d(u) is that node in H reached by
following the edge sequence p(u) from the root of H. If T cannot be embedded in H
then there is a sequence of edge labels present in G but absent from H; hence G does
not match H.

2. Embed T in H, if possible, and let d be the resulting embedding. Check that
for all nodes u of T, u and d(u) are labeled by the same function symbol. If
there is no embedding or if the check fails, then output "no match."

3. For each node v of G labeled by a variable, say x, let tr(x) be the term rooted
at d (v) in H. Apply the substitution tr to G by replacing all edges of the form
(u, v) by (u, d (v)). Let C tr(G) denote the dag obtained from G by performing
the substitution.

4. Test dags C and H for equivalence. G matches H if and only if C-- H.

Note that the mapping tr can be described by specifying, for each variable x
labeling a node v of G, the pair (x, d(v)).

To prove correctness of the algorithm we need the following lemma.
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LEMMA 11. Let G, H, and C be as in Algorithm Match. Then G matches H if and
only if C =- H.

Proof. Clearly, if C--H then G matches H, as then C--tr(G)--H, where tr is
the substitution described in step 3.

To prove the opposite direction we note that if G matches H, then the substitution
tr found by the algorithm is the only one possible. Suppose otherwise that there was
some other tr’ such that tr’(G)= H. Let x be any variable of G and let v be the node
labeled by x. Since the roots of tr’(G) and H are equivalent, the two nodes reached
by following the path p(v) from both roots must be equivalent. These nodes are v in
G and d(v) in H, where d is the embedding found by the algorithm. Therefore,
’(x) (x).

To prove Theorem 9 we need only prove we can perform the embedding (step 2)
in NC2(n2). To do this, we will need a few lemmas.

LEMMA 12. Given a directed path p with n nodes whose nodes are labeled with

function symbols and whose edges are labeled with integers, and given a term dag H with
k nodes (k >-n), there is an algorithm which checks whether p can be embedded in H
(and produces an embedding if there is one) in Nel(kn).

Proof We form the product graph Z =p x H whose nodes are all pairs of nodes
(u, v) where u e p and v e H. There is an edge labeled from (u, v) to (u’, v’) in Z if
and only if there are edges (u, u’) in p and (v, v’) in H both labeled i. Let p and p,
be the initial and final nodes of p, respectively, and let r be the root of H. Then p can
be embedded in H if and only if there is a path in Z from (Pl, r) to (Pn, W) for some
node w of H.

Note that since p is a path, each node in the product graph Z has outdegree at
most 1. We can therefore apply the standard technique of "pointer chasing." We assign
a processor to each node of Z. These processors initialize two arrays; a bit array E
which indicates whether a node is known to be reachable from (p, r) (should one
exist), and a successor array S.

1. Initialization:
If a (p, r) then E(a):= 1, else E(a):= 0.
If there is an edge of Z from a to b, then S(a):= b.
For all nodes w in H, S((pn, w)):= (pn, w).

2. Repeat [log n times"
If E(a)= 1 then E(S(a)):= 1;
S(a):=S(S(a)).

3. Test for embedding:
If S((pl, r))= 0 then output "No embedding" and halt.

4. Find embedding given that one exists:
If E((u, v))= 1 then v is the embedding of u.

The number of nodes a for which E(a)= 1 doubles at each step until all nodes
reachable from (p, r) are found. Thus, after execution of the algorithm E(a)= 1 if
and only if a is reachable from (p, r). Moreover, after execution of the algorithm
S((p, r)) 0 if and only if a node of the form (p,, w) is reachable from (p, r). l-1

LEMMA 13 (Tarjan and Vishkin [16]). Let The a tree ofsize m. There are NC(m)
algorithms which produce (a) the depth-first numbering of T and, (b) for each node u of
T, the number of nodes in the subtree rooted at u.

The following lemma shows that the embedding of a tree in a dag can be
accomplished in NC2(n2), completing the proof of Theorem 9.
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LEMMA 14. The problem of embedding a tree T having m nodes in a dag H having
k nodes is in NCZ(km).

Proof The embedding is done by a recursive divide-and-conquer approach.

1. For each node v T compute the size of the subtree rooted at v. This can be
done in NCI(m) by Lemma 13(b). Let the weight of a directed edge (u, v) be
the size of the subtree rooted at v. Consider any path originating at the root
of T defined by selecting the heaviest edge out of each node to be in the path
(ties are broken arbitrarily). Let us call such a path a heavy path.

2. Embed the heavy path. This can be done in NCl(km), by Lemma 12.
3. For each node v in the heavy path embedded in step 2, embed all the children

of v. This can be accomplished in NC(km).
4. For each node u embedded in step 3, embed the subtree rooted at u in the

subdag rooted at d(u) where d is the embedding constructed in step 3. These
embeddings are performed recursively in parallel.

Although the number of nodes not embedded by the end of step 3 may be quite
large, each remaining subtree contains at most m/,2 nodes. Letting Time(m) be the
parallel time to embed a tree of size m, this yields the recurrence relation

Time(m c log m + Time(m/2),
which has solution O(log m). Since the subtrees embedded in step 4 are pairwise
disjoint, it is easy to see that km processors suffice to do all these embeddings in
parallel.

3.2. Special cases of term matching. In this. section, we describe algorithms for
checking equivalence of constant dags C and H (as obtained in step 3 of Algorithm
Match) when H is of a special form. When used in step 4 of Algorithm Match these
yield improved results for term matching. We assume as in 3.1 that the two input
dags are disjoint.

Let u and v be nodes of a term dag. We say u v if the term represented by the
subdag rooted at u equals the term represented by the subdag rooted at v. A dag is
compact if u v ==> u v, for all nodes u and v.

The proof of the following lemma is straightforward.
LEMMA 15. Let G be an arbitrary dag with spanning tree T. Let H be a second dag

and let d be an embedding oft in tt. Then G matches H if and only if the following two
conditions are satisfied.

(a) For each node v ofG not labeled with a variable name, the label of v equals the
label of d (v).

(b) For each edge e= (u, v) in G but not in the spanning tree T, d(u)i=- d(v), where
is the label of e and d (u)i denotes the ith child of d (u) in H. 0

Lemma 15 implies term matching is particularly easy when H is a compact dag,
for in that case checking conditions of the form d(u)i d(v) reduces to checking
d(u),=d(v).

COOItARV 16. The problem of determining wketker an arbitrary dag matckes a
compact dag is in NC(n). l-]

A slightly harder case is when H is a tree. However, since the tree representation
of a term is unique, testing equivalence of trees (as required by Condition (b) of
Lemma 15) reduces to checking that the trees are identical, and while this is more
difficult than checking equality of nodes we can solve it efficiently using some of the
results of Tarjan and Vishkin stated in Lemma 13. In effect, we will change H into a
compact dag by determining, for all nodes u and v of H, whether u-= v.
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The following uses the depth-first numbering produced by Lemma 13(a). This
numbering respects the edge labels, in the sense that for each node v the numbers in
the subtree rooted at the ith child of v are smaller than those assigned to nodes in the
subtree rooted at the (i+ 1)st child.

LEMMA 17. Checking equivalence of trees of size n is in NCl(n).
Proof We will show that the depth-first numbers and node labels of the nodes in

a tree completely specify the tree. The lemma then follows by Lemma 13(a).
Given a tree T of size n we show by induction on k that the subtree consisting

of the first k nodes in the depth-first numbering of T can be recreated from the
depth-first numbers and labels of these nodes. In the following, let "node i" denote
the node in T with depth-first number i.

The basis k- 1 is trivial, since the root is always labeled 1.
k > 1. We assume the result for subtrees of size k-1 and prove it for k. Given

the subtree S consisting of the first k- 1 nodes of T, we find the largest -<_ k such that
m, the number of children of node in S, is less than the arity of the label of node i.
Then node k is the (m + 1)st child of node i. Clearly, k cannot be the child of any
node with depth-first number greater than i, since all of these have all their children
in S. On the other hand, node k cannot be the child of any node with depth-first
number less than i. To see this, assume for the sake of contradiction that node k is
the child of a node u, where u < i. Let w be the least common ancestor of u and i. Let
j be the label of the edge from w on the path to i. By the inductive hypothesis, w was
correctly given its first j children in the construction of S. In particular, the jth child
of w is added only if the subtrees rooted at the first j-1 children are complete. Thus,
if u does not have all its children in S it must be that u-w. In this case, the first
available slot for another child of u is the (j + 1)st. But all descendants of the jth child
of u must have numbers smaller than that of the (j + 1)st, so if does not have all its
children in S, k cannot be a child of u.

Our approach to matching a general dag with a tree is to find all equivalent nodes,
thereby effectively turning the tree into a compact dag. We first eliminate many pairs
of nodes from consideration since they are obviously not equivalent, and then apply
Lemma 17 in parallel to the remaining pairs.

The size of a node v, denoted size(v), is the number of nodes in the subtree rooted
at v. Clearly, nodes u and v can be equivalent only if size(u) size(v), but the converse
is false. However, this observation allows us to bound the total cost of checking the
subtree equivalences to yield the following.

LEMMA 18. The problem ofdetermining all equivalent nodes ofa tree is in NC(n2),
where n is the size of the tree.

Proof The general idea is to apply Lemma 17 in parallel to all pairs of nodes u,
v for which size(u)= size(v). However, we must be careful, as a brute force analysis
leads to a processor bound of O(n3). For each i, 1 =<i_-< n, let ni denote the number
ofnodes of size i. By Lemma 17, the number ofprocessors sufficient to check equivalence
of all pairs u, v of nodes of size is in2. Thus, the total number of processors needed
to find all equivalent nodes is i i"

Now, i ni =< n, and for each i, in <= n. Multiplying each side of the last inequality
by n yields in <= nn. Putting all this together we obtain

in2< nni< < 2
i= =n ni=n [-I

Applying the algorithm of Lemma 18 and then using the approach of Lemma 15
proves that testing whether an arbitrary dag matches a tree is in NC(n). In fact we
can do better in terms of time.
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THEOREM 19. Term matching for a general dag G and a constant tree H can be
done in NCI(n2).

Proof We only have to argue for O(log n) instead of O(log2 n) parallel time.
In the case that H is a tree, the only part of the algorithm which uses time log2 n

is the embedding of the spanning tree T in the tree H. Since T and H are both trees,
the embedding can be done in time O(log n) as follows.

Construct the product graph Z whose nodes are all pairs (u, v) such that u is a
node of T and v is a node of H. There is an edge labeled directed from (u, v) to
(u’, v’) if there is an edge labeled from u to u’ in T and an edge labeled from v to
v’ in H. Since T and H are both rooted trees, it is easy to see that Z is a forest of
rooted trees. Letting r and r2 be the roots of T and H, respectively, we want to find
all nodes of Z which are reachable from (rl, r2) since the embedding maps u to v if
and only if (u, v) is reachable from (rl, r2). Since Z contains at most m n nodes
this can be done in NCI(n) as follows.

We first transform Z from a forest of trees to a single tree by creating a new root
and creating an edge from the new root to each of the roots in Z. For simplicity, let
Z denote the resulting tree. We then compute a depth-first numbering of Z and size(a)
for each node a in Z. By Lemma 13 these tasks can be accomplished in NC (m). Let
a be a node of Z and let k be the depth-first number of a. Then the descendants of
a are those nodes with depth-first numbers k,..., k+ size(a)-1. 1-1

Verma, Krishnaprasad, and Ramakrishnan [17] have recently shown that term
matching of two trees is in NC2(n) (whereas NC(n2) is a corollary of Theorem 19).

3.3. Another special case of unification in NC. In this section, we examine
unification of two terms in the special case that the terms share no variables and at
least one of the terms is linear. In performing unification on term dags we need a way
of representing the result. In general, two terms are unifiable if and only if a certain
type of equivalence relation can be constructed on the nodes of the labeled dag
representing these terms. Given this relation, we can define the reduced graph, obtained
by coalescing all equivalent nodes into a single node. We can extract a unifier tr from
the reduced graph by taking tr(x) to be the term in the reduced graph that is represented
by the node formed from the equivalence class of x.

A relation R on the nodes of a term dag is a correspondence relation if for all
pairs of nodes u, v in the dag

uRv :::> uiRvi,

where ui and v are corresponding children, respectively, of u and v. A correspondence
relation that is also an equivalence relation will be called a c-e relation.
A relation R on the nodes of a term dag is homogeneous if for all pairs of nodes

u, v which are labeled by function symbols we have

uRv label(u) label(v).

An equivalence relation R on the nodes of a dag is acyclic if the R-equivalence
classes are partially ordered by the arcs of the dag. Paterson and Wegman [12] have
shown that if u and v are nodes of a labeled dag G then the terms represented by the
subdags with roots u and v, respectively, are unifiable if and only if there exists an
acyclic homogeneous c-e relation R on the nodes of the dags satisfying uRv. Since we
are considering the special case where one of the terms is linear and the two terms do
not have any variables in common, it is easy to see that cyclic c-e relations cannot
arise, so we do not mention the acyclicity condition further.
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A substitution tr is more general than a substitution " if there exists a substitution
p with " p tr. If R is the minimal c-e relation with uRv then the unifying substitution
obtained from the reduced graph defined by R as described above is the most general
unifier. The size of the most general unifier is the number of nodes in the reduced
graph obtained by coalescing nodes equivalent under R, where R is minimal.

LEMMA 20. Unification of two linear terms represented by trees with no shared
variables can be solved in NC(n). Moreover, the most general unifier is linear and has
size at most the sum of the sizes of the original trees.

Proof. Let T and T be trees representing linear terms with no shared variables,
and n be the size of the instance. As in the proof of Theorem 19, we construct the
product graph Z whose nodes are all pairs of the form (u, v), where u is a node of
T and v is a node of T. There is an edge labeled directed from (u, v) to (u’, v’) in
Z if there are edges labeled i from u to u’ in T and from v to v’ in T. As in the
proof of Theorem 19, letting r and r denote the roots of the two trees, respectively,
we find all nodes in the product graph reachable from (r, rE). We do not repeat the
details here. Let R be the relation on nodes of T [_J T defined by: uRv if and only if
(u, v) is reachable in Z from (r, r). For all pairs of internal nodes u, v we see that
uRvuiRv, where u and v are corresponding children of u and v, respectively. It
is also clear that because each node in the union of the original trees is related to at
most one other node, R is an equivalence relation (trivially). We note that R is the
minimal c-e relation in which the two roots are related. Once we have constructed Z
and determined R, we can easily check R for homogeneity. If so, then as shown in
[ 12], the two trees are unifiable. We construct the reduced graph and, from it, the most
general unifier, as described in the beginning of this section.

Because Z contains at most n nodes, this can all be done in NC(n). Further,
because the reduced graph, contains no more nodes than the union of T and T, the
most general unifier has size at most the sum of the sizes of the two trees. Finally, the
most general unifier is linear since it is obtained by a substitution which maps each
variable to a linear term such that different variables are mapped to linear terms
involving disjoint sets of variables.

Using Lemma 20 we can now prove the main result of this section.
THEOREM 21. Let T be a tree representing a linear term and H be an arbitrary

rooted dag sharing no variables with T. Then the unification problem for T and H can be
solved in NC(n).

Sketch of Proof Without loss of generality we assume that for each variable x
there is at most one node of H labeled with x. Let r and r be the roots of T and H,
respectively. Again we are searching for the minimal c-e relation R on the nodes of
T LI H such that rRr2. We first modify the recursive embedding technique of Lemma
14 to handle the embedding of a tree in a dag when the dag is not necessarily constant,
as in the present case. Thus, there could be some nodes of T that cannot be embedded
in H because some path in H ends with a node labeled by a variable while the
corresponding path in T continues. As in the case of Lemma 14, the modified algorithm
is in NC2(n2). We define R to be the reflexive transitive closure of R’, where uR’v if
u is mapped to v by the embedding. Check R for homogeneity.

If uRv where u is a node of T and v is a node of H, and u is labeled by a variable
x, then we define tr(x) to be the term represented by the subdag rooted at v. Because
there is a unique path to a node labeled x in T there is nothing to check. More
interesting is the case when there exist several nodes u,. ., Uk in T and a node v in
H labeled with a variable y such that uiRv, i= 1,. ., k. This can happen if there are
k paths to v in H. In this case we must unify all k trees rooted at the ui. However,
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because T is linear these subtrees share no variables, so we can apply Lemma 20. In
order to perform all the unifications quickly in parallel, we split the subtrees into at
most k/2 pairs, and unify all pairs in parallel. By Lemma 20 the size of the most
general unifier for each pair is no larger than the sum of the sizes of the original trees.
We can therefore apply the lemma recursively on the -< [k/2 remaining trees. Because
k-< n and each application of Lemma 20 can be performed in NCI(n2) the entire
procedure is in NCe(n2).

Remark. By modifications to the proofs of Lemma 20 and Theorem 21, it is easy
to see that unification of a linear term with an arbitrary term can be done in NC even
if both terms are represented by general dags. An outline of the algorithm follows. Let
G and H be the given dags with roots rl and r2, respectively, where G represents a
linear term and H represents an arbitrary term. Form the product graph Z as in the
proof of Lemma 20, and solve a reachability problem (in NCZ(M(nZ))) to find all
nodes of Z reachable from (rl, r2). Let R be the reflexive transitive closure of the
relation R’ defined by uR’v if and only if (u, v) is reachable from (rl, r2). Proceeding
as in the proof of Theorem 21, the only difference is the case where there are several
nodes ul,"" ", uk in G and a node v in H labeled with a variable such that uiRv for
all i. Now the ui are roots of subdags which represent linear terms; as before, these
subdags share no variables. By again solving a reachability problem on a product
graph, the unification problem for two linear terms which do not share variables and
which are represented by general dags can be solved in NC. As before, the most general
unifier is linear and its size is at most the size of the union of the two dags (nodes
which appear in both dags are counted only once in the union).

4. Unification of linear terms is complete for P. Recall that a term is linear if no
variable appears more than once in the term.

THEOREM 22. Unification is P-complete even ifboth terms are linear, are represented
by trees, and have all function symbols with arity <-_2.

Proof The proof is by a reduction from the circuit value problem (CVP) which
was proved P-complete by Ladner [8]. Because of the nature of our reduction, it is
useful to require that instances of CVP be in a particular form described next. An
instance of CVP is a dag whose nodes are of four types. An input node has no edges
directed in and one edge directed out; this edge is called an input edge. An output node
has one edge directed in and no edges directed out; each dag has exactly one output
node and the edge directed into this node is called the output edge. A NAND node
has two edges directed in and one edge directed out. A fan-out node has one edge
directed in and any nonzero number of edges directed out. In addition, each input
edge is labeled with a Boolean value, either 0 (false) or (true). Given the assignments
of Boolean values to the input edges, Boolean values are associated with all the other
edges in.the obvious way: the value of the edge directed out of a NAND-node is the
Boolean NAND of the values of the two edges directed in; the value of all edges
directed out of a fan-out node is the same as the value of the edge directed in. The
problem CVP is to recognize the set of instances such that the output edge has value
1. (Although Ladner’s proof of the P-completeness of CVP uses Boolean functions
other than NAND, any such function can be built from a small number of NANDs
and Boolean constants, so CVP as defined above is P-complete.)

Given an instance G of CVP, we transform it to a pair of linear tree terms, T1
and Te, with roots r and re, respectively. For simplicity, we let the two trees have
function symbols with arities greater than 2. The trees can then be further transformed
by replacing each subterm f<k)(t, te,"’, t) involving a k-ary function symbol by
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the term f(t,f(t2,. f(tk_, tk)) ") involving the 2-ary function symbol f In
addition to the two roots, T has nodes Ae and Be and T2 has nodes Ce and De for
each edge e of G. Unifications among these four nodes encode the Boolean value of
e as follows (in this proof we indicate a unification between two nodes by writing
between them): if e has value 0, then Ae"-De and Be’--Ce; if e has value 1, then
Ae"-Ce and Be-- De. The appropriate unifications of nodes corresponding to input
edges are forced by making these nodes be corresponding children of the roots. For
example, if e is the ith input edge and if e is assigned value 1, then there is an edge
labeled 2i-1 from r to Ae, an edge labeled 2i-1 from r2 to Ce, an edge labeled 2i
from r to Be, and an edge labeled 2i from r to D

For each fan-out node and NAND node of G, edges and nodes are added to the
trees to force the unifications encoding Boolean values to be propagated correctly. For
each fan-out node of G, if the node has edge e directed in and edges e, , ek directed
out, then for each with 1 =< =< k, there is an edge labeled from Ae to Ae,, from Be
to Be,, from Ce to Ce,, and from De to De,. For each NAND node, with edges e’ and
e" directed in and edge e directed out, the trees contain the nodes and edges shown
in Fig. 3 (to simplify notation, A’ is written for Ae, etc.).

0 0
A B C D

FG. 3. The transformation of a NAND node used in the proof of Theorem 22. Nodes of T (resp., T2)
are drawn as open circles resp., solid circles). Edges of T resp., T2) are drawn as solid lines resp., dashed
lines). Common leaves which are labeled by variables are drawn as solid squares.

We must also define the labeling of tree nodes. Each nonleaf node is labeled by
the function symbol fk) where k is the outdegree of the node. The leaves which are
drawn as squares in Fig. 3 are each labeled by a different variable symbol. If p is the
output edge of G, then An and Cp are labeled with the constant symbol g, and Bp and
Dp are labeled with a different constant symbol h. This completes the description of
the transformation.

We must argue that the output edge of G has value 1 if and only if T and T2
are unifiable. To do this it is sufficient to show that the transformations of fan-out
nodes and NAND nodes correctly propagate Boolean values according to the encoding
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of values by unifications described above. For fan-out nodes this is obvious. To verify
this for the NAND construction in Fig. 3, it is helpful to break the construction into
two parts. The first part, which consists of the part of the figure above the nodes marked
a, b, c, u, v, w (including these six nodes), computes the numerical sum of the two
input values, viewing these values as integers rather than Boolean values. The three
possible sums, 0, 1, and 2, are encoded by unifications among a, b, c, u, v, w. It is easy
to check that the four possible values for e’ and e" force unifications among a, b, c,
u, v, w as follows:

e’= 0 and e"= 0 implies a--u, b---v, c--- w,

e’= 0 and e" 1 implies a--- v, b-- w, c--- u,

e’= 1 and e"= 0 implies a---v, b--- w, c---u,

e’= 1 and e"= 1 implies a--- w, b-- u, c---v.

We can now forget about the top half of Fig. 3 and just check that these three
possible unifications among a, b, c, u, v, w force the proper unifications among A, B,
C, D. The verification of the following is again straightforward:

a u, b v, c--- w implies A--- C and B-- D (e 1),

a v, b w, c u implies A--- C and B--- D (e 1),

a--- w, b u, c--- v implies A D and B---- C (e 0).

If the output edge p of G has value 0, then an attempt to unify the roots r and r2
will force the unification of two nodes Ap and Dp labeled with different constant
symbols. On the other hand, if the output edge has value 1, then the two roots can be
unified.

In the case that the two terms do not share any variables, we have noted in 3.3
that unification can be solved in NC if one of the terms is linear. The following easy
corollary of Theorem 22 shows that this is in some sense the best possible, since if
both terms are barely nonlinear the problem becomes P-complete.

THEOREM 23. Unification is P-complete even if both terms are represented by trees,
no variable appears in both terms, each variable appears at most twice in some term and
allfunction symbols have arity <-_2.

Proof. As in the previous proof, we allow function symbols with large arities. The
proof is by a reduction from the unification problem for linear trees. Let T and T2
be a given pair of trees representing linear terms, and let x, x, , x, be the variables
which appear in both trees. For each with 1 _-< _<- m, replace the single occurrence of
xi in T by a new variable Xil and replace the single occurrence of X in T2 by Xi2o For
each i, we can force xi and xi: to be equal by increasing the arity of the roots from
2 to 2 + m, adding a new edge labeled + 2 from the root of T1 to a new node labeled
xi, and adding a new edge labeled i+2 from the root of T to a new node labeled
x2. Clearly, the transformed trees are unifiable if and only if T and T are unifiable.
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THE PROBABILISTIC ANALYSIS OF A HEURISTIC FOR THE
ASSIGNMENT PROBLEM*

DAVID AVIS? AND C. W. LAI’$

Abstract. We present a heuristic to solve the m m assignment problem in O(m2) time. The assignment
problem is formulated as a weighted complete bipartite graph G (S, T,/), ISI TI m. For convenience
we assume that m is even. The main procedure in the heuristic is to construct a graph Ga (S, T, t) which
is a subgraph of G, IlE,l=4dn, n m/2, such that we can find a perfect matching in G with probability
at least 1-1/2(d/n) a2-4a-. An O(ISII;EI) exact algorithm is used to find a minimum weight matching M in

G. Any unmatched vertices in G relative to M are then matched by a greedy algorithm. The expected
value of the total cost of the matching found by the heuristic is shown to be less than six if the costs are
independent and identically distributed uniformly in the unit interval. Further, with the above probability,
the heuristic produces a solution which is at most six times the optimal solution.

Key words, assignment problem, heuristics, probabilistic analysis of algorithms, weighted matchings

AMS(MOS) subject classifications. 68Q25, 68R05

1. Introduction. Let G (S, T, E) be the complete bipartite graph with vertex sets
S and T, each of cardinality m, and E the set of edges between S and T. Associated
with each edge (i,j) there is a weight ci,.j. A matching M in G is a set of edges such
that no two edges in M are incident to the same vertex of G. The matching is perfect
if each vertex in G is adjacent to some edge in M. A minimum weight perfect matching
for G is a perfect matching for which the sum of the edge weights is minimum. The
assignment problem is to find such a minimum weight matching.

There are exact algorithms to solve the assignment problem in O(tn3) time [10].
Karp [7] has found an algorithm that finds an optimal solution in expected time
O(m log tn). Several heuristics exist for the assignment problem [8], [6], [1], [2]. A
survey of heuristics for the weighted matching problem and some applications is
contained in [3]. In order to evaluate the solutions produced by these heuristics, it is
natural to ask what is the expected size of the optimal solution, given a probability
distribution for the e,dge weights. If the edge weights are independently distributed on
the unit interval, Walkup [12] has proved that this expected value is bounded above
by the constant 3, for all m, a very remarkable result. The idea behind Walkup’s proof
is the construction of a sparse subgraph of G in which the edges all have low weight.
He defines a subgraph Ga, for some small integer d, by choosing d edges randomly
from each vertex in S and T. In [13] it is shown that with probability approaching
one as m tends to infinity, this graph has a perfect matching. The natural candidate
for such a subgraph would be to choose for each vertex, the d smallest weight edges
that are incident with it. Unfortunately this will not work, since the edges chosen in
such a way will not be independent. Consider, for example, the minimum weight edge
in G. It will be chosen twice, once by a vertex in S and once by a vertex in T. Wa|kup
avoids this problem by using a probabilistic trick: each edge is replaced by two directed
edges with opposite directions. The weights on the directed edges are chosen from
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distributions such that the minimum of the two edge weights still has uniform distribu-
tion on the unit interval. This is sufficient for proving the result stated, but does not
provide a constructive method that can be used to produce a heuristic.

In this paper, we avoid the dependency problem by constructing a different kind
of random graph. We prove analogues of Walkup’s results for this new graph. It is
shown to almost surely have a perfect matching, and it is shown how to construct this
graph directly from the given edge weights. We prove that the perfect matching thus
found has expected weight at most 6. The heuristic runs in O(m2) time and produces
a solution which, with probability approaching one, is at most 6 times the optimum
value. This is the only known heuristic with a constant ratio bound, with probability
approaching one. In 2 the heuristic is presented along with a complexity analysis.
In 3 we show that the random graph constructed by the heuristic has a perfect
matching with probability approaching one. This is followed in 4 by a proof that the
expected weight of the matching produced is less than 6. The results given in this
paper were first published in the second author’s Master’s thesis [9]. This thesis also
contains extensive numerical results.

2. The heuristic. For convenience we assume that m is even and set n m/2. The
heuristic is supplied with an integer parameter d which must be at least 5. This
parameter controls the quality of the solution and the cost of the computation. In
practice, setting d 5 appears to be most satisfactory. The algorithm consists of three
steps: the construction of a sparse directed random graph Ga with 4dn edges; the
solution ofthe maximum cardinality minimum weight matching problem in the undirec-
ted graph obtained by ignoring the directions on edges of Ga; and the matching of
any unmatched vertices in G using a greedy heuristic.

Step 1. (Construction of a directed graph Gd--($1 I,.J $2, T1 (_J T2, Ed) with 4dn
edges; see Fig. 1.)

Partition S and T into subsets $1, $2 and T1 T2, each of cardinality n.

T
2

Indicates Allowable Edges

FIG. 1. Illustrating the construction of Ga.
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ForveSi, i=1,2

N(v)= {we Tlcv.w is one of the d smallest edge weights from T incident v}.

For we T, i= 1,2

N(w) {v e S3-il Cv.w is one of the d smallest edge weights from $3_ incident w}.

Set Ed={(v, w)lveSiU Ti, weN(v),i=l,2}.
Step 2. (Find a minimum weight matching in Gal.)
Apply an O(ISIIEI) minimum weight matching algorithm to Gd, ignoring the

directions on the edges. Let Md be the resulting matching.
Step 3. (Match the unmatched vertices in Gd by a greedy algorithm.)

S* {unmatched vertices in S relative Md}

T* {unmatched vertices in T relative Md }.

while IS*l >- 1 do
Choose a vertex s e S* and find a vertex e T* such that

c..,=min{cs,vlve T*), S*=S*-s, T*= T*-t, Md=MaU(s,t).

end.

Step 1 involves at most O(2dlSI) operations, Step 2 needs O(ISIIEI)--O(]Sl=)
operations and Step 3 requires at most O(ISI2) operations. The memory space required
by G and Gd is o(Isl2) and O(2dlSI), respectively. There are exact algorithms for
Step 2 that require O(ISI) space. Therefore the overall time and space requirements
for the algorithm are O(m2).

3. Probability of a perfect matching in Gd. In this section, we show that with
probability approaching one, the graph Gd (S, T, Ed) constructed by the heuristic
contains a perfect matching. It is convenient to consider the following random graph
model for a random 2n x 2n directed bipartite graph with vertex sets ($1, $2; T1, T2),
]Si T] n, 1, 2. For 1, 2 and each vertex v e Si, select d neighbours at random
in T. For i= 1, 2 and each vertex W e T, select d neighbours at random in S3-i. A
graph constructed in such a way will arise with equal probability by an application of
Step 1 of the heuristic. This follows from the fact that selecting the d smallest from a
set of n independent and identically distributed random variables gives a uniform
random subset of d of the random variables. In this section, we deal with the equivalent
formulation mentioned above which does not involve edge weights. Finally, in 4 we
reintroduce the edge weights to prove our main result. We will apply the Konig-Hall
Theorem (see, for example, Bondy and Murty [4]), to show that Gd almost surely has
a perfect matching. We require the following definitions.

Let k be a positive integer, satisfying d + 1 <-k_-< 2n- d, let A be a subset of T
with cardinality k- 1 and let B be a subset of S with cardinality k. Set

A,=Tf’IA, a,=lAl, i=1,2,

B,=S, nB, h,=IB, I, i=1,2.

For any subset U of vertices, let

F(U) ={w: (v, w)e Ea for some ve U}.

We say that (A, B) is a blocking k-pair in Gd if the following hold (see Fig. 2):

F(B,)
_

A,, F(T A,)
_
$3-,- B3_,, i= 1, 2.
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s
2

T
2

Indicates Forbidden Edges

FIG. 2. Illustrating a blocking k-pair in Gal.

It can be seen from the construction that certain values of ai place restrictions on the
corresponding values of bi. In particular;

(i) Ifai<dthenbi=0;
(ii) Ifai=0thend+l<-k<=n-d;
(iii) if al, a2 >- d then bl, b2 =< n d; and
(iv) al+a2=k-1, bl+b2=k.

We say that the 4-tuple is valid if it is consistent with (i)-(iv) above.
By the Konig-Hall Theorem, Gd has a perfect matching if and only if it has no

blocking k-pair. Let o<d) k) be the probability that (A, B) is a blocking k-pair in Gal.al,bl\

This notation is justified by observing that the probability of the algorithm creating a
blocking k-pair (A, B) is determined only by the cardinalities a, a,_, b, b2. Since a2
and b are determined once a and b are fixed, we omit them as subscripts of P. Then
if al, b satisfy the above conditions for a blocking k.pair,

(1)

a n 2 lel b

(d) d d d
Pa,,b,(k)

d d

We denote by fl(d)(k) the expected number of blocking k-pairs. Then we have

(2) fl(d)(k) , ( n )( n )( n )( n ) (d) k)
bl+bE=k al+a2=k-1 ________ala2 bl b2 lal’bl"

Our main result is the following. Let /3 d) denote the expected number of blocking
pairs in Gd.

TEOREM 1. For n 2d 10
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The theorem proves the claim that Gd almost certainly has a perfect matching,
since by the Markov inequality,

P{ Gd has no perfect matching} =< fl(d).
In order to prove this result we need a series of combinatorial lemmas.
LEMMA 1 (see [11])). For positive integers k, m with k <m,

(b) <=kk(m_k)(,,_).
LEMMA 2.

(;)/(:.) O<--j<--p<--q.

LEMMA 3. For 2 <= d + 1 <- k < n, every valid 4-tuple (a,, a2, b,, b2) satisfies"

(n__nb)n-,,( b)n-a2 (n_k),-g(b) n,,- <_

(c) ()b, ()b2 (n-bn 2.)"-"’(n-b,n )"-’ <-_ ()d.
(d) If, in addition, k <- n d then

Proof The various parts of the lemma are proved in more or less the same way.
We just outline their proof, leaving the details to the interested reader.

(a) This is an immediate consequence of the arithmetic-geometric mean inequality
(see 11, p. 76]).

(b) Set a a2, b b, a k a 1, and b2 k b. We first assume that a,, a2 --> d.
Then, using elementary calculus,

n-’(n b,)"-’(n b2)"-"’ <= (n b)"-O(n k + b)

(n-a)"-’(n-k+a) "-k+’

<__(n-d)"-d(n-k+d) "-k+d

<_n’,(n_k) ’,-k.

Now, suppose that al < d. Since a, a2, b, bz is valid, b 0; hence b2--k. Then the
left-hand side of b reduces to

as required. The case a2 < d is symmetric.
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(c) Let h denote the left-hand side. Then from the third inequality in the proof
of (b), part (a), and elementary calculus, we obtain

(d) The proof follows from elementary calculus. [3

The following rather technical lemma will be required in the proof of Lemma 6,
but can be skipped without loss of continuity.

LEMMA4. If l<=n/4<=k/2<=a<k-1 anda<b-<-k<--n, then

h ab-a-l(k 1 a)a-b+l(n b)("+)-k(n k + b)k-("+)_<= 1.

and

Proof Using standard inequalities for logarithms 11] we obtain

1
log (2 k-

a \ 2a-k+ 1
)1-a k-1

l(2a-k+l (2a-k+l

2 n-b 2n-k"
An elementary calculation shows that

2a k + 1 2b- k
(b-a-l)

k-1
-(a+b-k)

2n_k_

Therefore,

llogh< -(a
2 = (b-a-1)log

k-l-a

<-(b-a-I)[ k-1

2b-k
-(a+b-k)2n_k
(2a-k+l)(2a-k+2)

3k

<__
(2a k + l)(2a k + 2)

-1+

=<0,

(2a-k+l)(2a-k+2)
3k

+ b k) lg ( n k + b)b

(b a 1) (2a k + 1)(2a k + 2)
3 2ak(2k-2a -2)

(b-a-1)(2a-k+l))4a(k-a-1)

since 2a k + 1 >- 1, k- a 1 => b a and 2a > 2a k + 1. Therefore h -<_ 1, proving
the lemma. [3

We are now ready to proceed with the evaluation of (1). By Lemma 2,

[abla2(n_ b),,-a,(n b )-]dod k) < --a ,bl\ al, a2 > 0.

Applying Lemma 3(c) repeatedly, we obtain the following set of inequalities
parameterized by i:

(3) Po,,,(k)<-_ n;,--Ti

al, a>O, i=0, 1,..., d.
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The following bound holds for all at, a2. If a 0 or a2 =0 it follows from Lemmas
2 and 3(d). Otherwise it follows from Lemma 3(a), (b), (c):

(4) o(d) tk) < i=0, 1, d.a ,hi\

We are now able to derive upper bounds for the expected number of blocking k-pairs.
We divide the proof into two parts, depending on whether k is less than or greater
than n/ 2.

LEMMA 5. If 5 <- d <- k <= n /2 then

()(k) <--k
Proof. From (1) and (4) with i=4 we obtain

(d)( k) ()d(d-4) ()4k ( n k)n bl+b2=k al+a2=k-1

Now an elementary calculation shows that

a+a2=k- a a2 k- 1

and

Therefore,

(e() _<

2n-k+1

(5) =< 1
27rk

=< 2-2k e-2k (2e)2k

2rk

(anl)(an)(bn)(bn)

1

27rk

Inequality (5) follows from Lemma (la). This completes the proof of Lemma 5.
LEMMA 6. If 5 <- d <- n/2 <- k <-_ n then

fl(d)( k) <=

Proof. At first we assume that a > 0, a2 > 0, and 0 < b -< b2 < n. Let

aa2( n b),-,,( n b),-%
f= bbbb2(n a)(,,-,)(n a2)’-a2

and

(6) g
ab,ab22(n b2)(n-a’)(n b,) (n-a2) 1

a,a’2(n b2)(’-b2)(n b,)(’-b,) n2"
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Applying Lemma l(b) and (3) with i= 2, we see that

al a2 bl b2
P,,.b,(k) <- fg.

We will show that f-< e-2 and g <- 1.
The bound for f is obtained by applying the inequality (1 +y/x) <-ey to the

expression. Therefore,

as bl+b2=kanda+a2=k-1.
The bound for g is lengthier. We begin by eliminating two variables from (6). Set

a2 a, a k- 1 a, b2 b, b k- b. Then we have

(7) g=
a n-k+b n2

By our initial assumptions d _<- a _-< k- d 1, k/2 b k < n. We consider two main
cases.

Case 1. a (k 1)/2. Since a and b are integers, a + b k. Clearly

k-l-a n-b
1 and 1.

a n-k+b-

If a-> b then the first exponent of (7) is also greater than one and we are done. If
a (k-1)/2 we are also done because the first term is equal to one. The remaining
case, a >= k/2, b > k/2, is settled by Lemma 4. Hence g =< 1.

Case 2. a < (k- 1)/2. In this case

k-l-a n-b
>1, -<1 and a-b+l<O.

a n-k+b-

If in addition, a + b- k => 0 or b k/2 we are done. immediately. Otherwise we have

a-b+l<-a+b-k and b-a<-k-2a-1.

Therefore, from (7) we obtain

A simple calculation shows that

Hence, g -<_ 1.
We now show that the initial assumptions can be lifted. We first observe that f

and g are symmetric in the subscripts 1 and 2. Hence the above results hold if b > b2.
Next, consider the degenerate case when al =0 and hence a2 k-1, b =0, b2 k.
The case a2 0 is identical. A simple argument based on Lemma l(b) and equation
(4) with i= 2 shows that

n P(odo)(k <-k-1

(k- 1-a)(n-b)-a(n-k+ b)=(k-2a- 1)n+b-(b-a)k>-0.
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The lemma now follows from the definition of fl(d)(k) in equation (2) and the
observation that the double sum involves at most k2- k terms.

We may now prove the main result of this section.
Proof of Theorem 1. Suppose (A, B) is a blocking k-pair with [B[ k> n. Then

(S B, T A) is a blocking (2n k + 1)-pair in the graph Gd* T, S, Ed), and 2n k +
1 -< n. Therefore, the expected number of blocking pairs is bounded by

fl(d)<__2 fl(d)(k)+ (d)(k)
k= +1 k=n/2

-< 2 / -k= +1 27rk k=n/2

-<2
4zrd 2e

(__) d2-4d-1 {4 ()2d+l 1 3)-<_2 + e2

This completes the proof of the theorem.

4. Expected value of the heuristic solution. In this section, we derive an upper
bound on the expected value of the heuristic solution to the assignment problem
described in 2. Suppose initially that Gd contains a perfect matching Md. We estimate
the expected weight of a randomly chosen edge from Gal. We first recall that the
expected value of the rth-order statistic from n uniform independent random variables
in [0, 1] is r/(n/ 1) [5]. Therefore, the d directed edges selected from each vertex by
the heuristic have expected weights 1 / (n / 1), 2/(n / 1),. , d/(n / 1). An arbitrarily
selected edge therefore has expected weight (d + 1)/2(n/ 1). If Gd has a perfect
matching, then such a matching chosen at random without regard to edge weights will
have expected weight n(d + 1)/(n / 1). The minimum weight perfect matching in such
a graph therefore has expected weight bounded above by this amount. Let Zd be the
cost of the matching found by the heuristic. Then we have

E(Za[Gd has a perfect matching)-<n(d+l)
n+l

However, Gd may not have a perfect matching. In this case, we take the trivial upper
bound of 2n for Zd. Hence,

E(Za)-< E(Za ]Gd has a perfect matching)

+ E(ZdIGd has no perfect matching)P( Ga has no perfect matching)

n(d + l) +2n(_)
a2-4a-

n+l 3

by Theorem 1. Setting d 5 we obtain

E(Zd)-<
n+l 3

-<6 if n => 11.
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Since Ga is a subgraph of Ga+, any matching in Ga exists also in Gd+l. Therefore,

E(Zd/,)<=E(Za).

Thus, we have proved the following theorem.
THEOREM 2. If n>--_ 11, and d>-5 then E(Za)<=6.
We remark that the bound holds for d 5 if the heuristic is modified to simply

find any maximum cardinality matching in Step 2, rather than one of minimum weight.
Such a heuristic is considerably simpler to implement.

Acknowledgment. We thank an anonymous referee for a careful reading resulting
in, we hope, many clarifications.
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THE STRUCTURE OF THE STABLE ROOMMATE
PROBLEM: EFFICIENT REPRESENTATION AND
ENUMERATION OF ALL STABLE ASSIGNMENTS*

DAN GUSFIELD

Abstract. The stable roommates problem is a well-known problem of matching 2n people into disjoint
pairs to achieve a certain type of stability. The problem strictly generalizes the better-known stable marriage
problem. It has been previously shown [Irving and Leather, SIAM J. Comput., 15 (1986), pp. 655-667], that
the set of stable marriages, for a given instance, can be compactly represented and this representation has
been exploited to yield a number of very efficient algorithms concerned with stable marriage [Irving, Leather,
and Gusfield, J. Assoc. Comput. Mach., 34 (1987), pp. 532-543], [Gusfield, SlAM J. Comput., 16 (1987),
pp. 111-128], [Gusfield et al., J. Combin. Theory, Ser A., (1987), pp. 304-309]. In this paper, we generalize
the structure of the stable marriages to obtain two efficiently computed, small, implicit representations of
the set of all stable roommate assignments, for any given instance. One representation is a partial order H
on O(n2) elements such that the stable assignments are in one-one correspondence with certain easily
recognized subsets of rl. Partial order H is a strict generalization of the stable marriage representation of
[Irving and Leather, SlAM J. Comput., 15 (1986), pp. 655-667]. The second representation is an efficiently
constructed, undirected graph G with O(n2) nodes, such that there exists a one-one correspondence between
the maximal (not maximum) independent sets of G and the stable roommate assignments. In either
representation, G or II, given a set representing a stable assignment, the assignment itself can be constructed
in O(n2) time. We also give an algorithm to generate each stable assignment for any given instance in O(n 2)
time per assignment. The efficiency of this method depends heavily on special properties of the stable
assignment problem developed in this paper. Finally, we give a succinct characterization of the set of all
"stable pairs," those pairs of people who are roommates in at least one stable assignment, and we give an
O(n log n) time algorithm to find them all.

Key words, stable roommates, stable marriage, matChing, enumeration, combinatorial algorithm, partial
order

AMS(MOS) subject classifications. 90C27, 68R10, 68Q25, 06A10

1. Introduction. The stable roommates problem is a well-known problem ofmatch-
ing 2n people into disjoint pairs to achieve a certain type of stability. The input to the
problem is a set of 2n preference lists, one for each person i, where person i’s list is
a rank ordering (most preferred first) of the 2n- 1 people other than i. A roommate
assignment A is a pairing of the 2n people into n disjoint pairs. Assignment A is said
to be unstable if there are two people who are not paired together in A, but who each
prefer the other to their respective mates in A; such a pair is said to block assignment
A. An assignment which is not unstable is called stable. An instance of the stable
roommates problem is called solvable if there is at least one stable assignment. It is
known [GS], ILl, [K], [PTW] that there are unsolvable instances ofthe stable roommate
problem; the problem of finding an efficient algorithm to determine if an instance is
solvable was proposed by Knuth [K] and only recently solved by Irving [I].

The stable roommates problem is closely related to, and is a strict generalization
of, another well-known problem, the stable marriage problem. In the stable marriage
problem, the 2n people consist of n men and n women, and each pair is constrained
to consist of a man and a woman. Each man ranks only the women and each woman

* Received by the editors December 31, 1986; accepted for publication (in revised form) August 3,
1987. This research was funded in part by Office of Naval Research grant N00012-82-K-0184 and National
Science Foundation grant MCS-81/05894.

t Department of Electrical and Computer Engineering, Division of Computer Science, University of
California, Davis, California 95616.
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ranks only the men, and an assignment in this problem is called a marriage (from here
on, the word "assignment" will be used only for roommate assignment). A marriage
M is unstable if there is a man and a woman who are not married to each other in
M, but who mutually prefer each other to their respective mates in M. It is easy to
reduce an instance ofthe stable marriage problem to an instance ofthe stable roommates
problem. However, in contrast to the stable roommates problem, it is well known [GS]
that every instance of the stable marriage problem is solvable, i.e., has at least one
stable marriage, and for any instance, one stable marriage is easy to find.

For a given instance of the stable marriage problem, there may be many distinct
stable marriages, and as a function of n, the numbers of stable marriages can grow
exponentially [K]. Despite this exponential growth, for any given problem instance,
there exists an extremely small, efficiently computed, implicit representation of the set
of all stable marriages for the instance, where any particular stable marriage can be
extracted from the representation very quickly. The structure of the stable marriages
which gives rise to this implicit representation was first made explicit by Irving and
Leather [IL], and, as pointed out in [GILS], can also be seen via a more algebraic
approach based on the theory of distributive lattices. This efficiently constructed
representation of the set of all stable marriages was exploited in [IL], [ILG], [G],
[GILS] to solve a number of problems related to stable marriage. For example, for
any given instance of the stable marriage problem, the implicit representation of all
the stable marriages can be constructed in O(n2) time, and thereafter, each stable
marriage can be generated from the representation in O(n) time per marriage [G],
which is time optimal.

In this paper, we generalize the structure of the stable marriages to obtain two
efficiently computed, small, implicit representations of the set of all stable roommate
assignments, for any given instance. One representation is a partial order H on O(n2)
elements such that the stable assignments are in one-one correspondence with certain
easily recognized subsets of H. Partial order II is a strict generalization of the stable
marriage representation given in [IL] and [GILS]. The second representation is an
efficiently constructed, undirected graph G with O(n2) nodes, such that there exists a
one-one correspondence between the maximal (not maximum) independent sets of G
and the stable roommate assignments. In either representation, G or H, given a set
representing a stable assignment, the assignment itself can be constructed in O(n2)
time. We then give an algorithm to generate each stable assignment for any given
instance in O(n2) time per assignment. This compares favorably to the O(n3) time,
per marriage, method given by Knuth [K] to generate all stable marriages. The faster
method given in this paper does not follow immediately from the representations
above, since the fastest known time to generate maximal independent sets in a general
graph on O(n2) nodes runs in O(n4) time per independent set, and methods based on
general partial orders appear even less efficient. Finally, we give a succinct characteri-
zation of the set of all "stable pairs," those pairs of people who are roommates in at
least one stable assignment, and we give an O(n log n) time Algorithm to find all the
stable pairs.

The results and algorithms in this paper are obtained by close examination of
Irving’s algorithm [I] which finds one stable assignment if there is one, or reports that
no stable assignment exists. Hence we will begin by describing Algorithm 1.

2. Algorithm I and its execution tree D.
2.1. Algorithm I. Algorithm I successively deletes entries from preference lists

until either each person has only one entry on its list, or until someone has no entries.
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In the first case, the entries specify a stable roommate assignment, and in the second
case, there are no stable assignments; the algorithm runs in time O(n2). The algorithm
is divided into two phases. In Phase 1, entries are removed from lists, but no stable
assignments are affected, i.e., if j is removed from i’s list, then (i, j) is a pair in no
stable assignment. In Phase 2, the removed entries may affect stable assignments, but
the invariant is maintained at each iteration, that if there is a stable assignment in the
lists before the current iteration of removals, then there is a stable assignment in the
lists resulting from the iteration of removals. Hence if any list becomes empty in either
phase, there can be no stable assignment. Before describing the algorithm, we need
the following definitions.

DEFiNiTiON. The current set of lists at any point in the algorithm is called a table.
DEFiNiTiON. Let ei denote a person. At any point in the algorithm, hi will denote

the current head of person ei’s list, and si will denote the current second entry on ei’s
list.

DEFiNiTiON. At any point in Algorithm I, a person ei is said to be semi-engaged
to hi if and only if ei is the bottom entry on hi’s list. A person who is not semi-engaged
is called free. A person may alternate between being free and semi-engaged.

Note that semi-engagement is not a symmetric relation. However, if everyone is
semi-engaged, then it follows easily that the set of list heads is a permutation of the
2n people. We now describe Algorithm I.

PHASE of Algorithm I iterates the following:
1. Ifthere is an empty list, then terminate Algorithm I; there is no stable assignment.
2. Else, if everyone is semi-engaged, then go to Phase 2.
3. Else, pick an arbitrary free person ei, and execute the following operations for

each person k who is ranked below ei on hi’s list in T: remove k from hi’s list,
and remove hi from k’s list.

Note that throughout Phase 1, person is on j’s list if and only if j is on i’s list.
Hence in a step where ei becomes semi-engaged to hi, if there is a person p who is
semi-engaged to hi just before that step, then p is (automatically) not semi-engaged
to hi after that step. This follows since at the start of the step, p must be below ei on
hi’s list, so during that step, p is removed from hi’s list, and hi is removed from p’s
list. After the step, p might be free, or it might have become (automatically) semi-
engaged to the new head of its list.

The set of lists at the end of Phase 1 is called the Phase 1 table. It is proved in
[I] that if j is missing from i’s list in the Phase 1 table, then there are no stable
assignments which pair to j. Hence if some list in the Phase 1 table is empty, there
are no stable assignments. Otherwise, when Phase terminates with everyone semi-
engaged, j is the head of i’s list if and only if is the bottom ofj’s list, and so the set
of head entries of the Phase table are a permutation of the 2n people.

Figure l(a) gives an instance of the stable roommate problem, and l(b) shows
the three stable assignments for the table. Figure 2(a) shows the Phase 1 table for the
example.

PHASE 2. Throughout Phase 2 all the people remain semi-engaged, although who
they are semi-engaged to may change. Hence at any point in Phase 2, j is the head of
i’s list if and only if is the bottom of j’s list. It will also be true that is on j’s list
if and only ifj is on i’s list. Phase 2 starts with the Phase 1 table and removes entries
from lists in a way similar to Phase 1, but the selection of lists is more constrained.
We first need some definitions.
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7 2 6 8 5 3 4
4653817
5217468
1 7 3 6 5 8 2
7184623
7384512
2843561
4235671

FIG. (a). 8-person preference lists.

(z, (z, (z,
4) 5)

(s, 5) (s,6) (s, 6)
FIG. l(b). Three stable roommate assignments.

2 6 5 3 4
6 5 3 8 1
52174
17365
71846
3 8 4 5 1
8 4 3 5
4 2 5 6 7

2 3
2

FIG. 2(a). Phase table.

E Hx $1 E2
2 6
6 5
5 2

1 7
7 1

FIG, 2(b). Rotation R =(E, H, S1) Rotation R2--(E2, H2, $2) both exposed in the Phase table. In
the Phase table 6, 7, 8 is a tail of R, and R has no tail.

DEFINITION. In a table T, an exposed rotation R is an ordered subset of people
E {el, e2, . er}, such that si hi+l, for all from 1 to r, where + 1 is taken modulo
r. Note that since the order of E is cyclic, the actual selection of which element in E
is named el is arbitrary, but that selection determines the rest of the ordering.

Figure 2(b) shows two rotations that are exposed in the Phase 1 table of the
running example.

We will often write "R (E, H, S)," where H is the set of head entries of Eordered
to correspond to the order of E, and S is the set of second entries of E, with
corresponding order. Note that, as sets, S H, and that, as ordered sets, S is a

(backwards) cyclic rotation of H; when that point is central, we will write S H r. We
will sometimes say that "e is in R" to mean that e is the E set of R; we will also say
that "(e, h) is a pair in R" to mean that e ei and h hi for some ei in E.

DEFINITION. If R (E, H, S) is an exposed rotation in table T, then the elimination
of R from T is the following operation" for every si in S, remove every entry below
ei in si’s list in T, i.e., move the bottom of s’s list up to e (from e+). Then remove

s from k’s list, for each person k who was just removed from si’s list.
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Notice that if all people are semi-engaged in a table T before a rotation elimination,
then all people are semi-engaged after that elimination; hence, one effect of the
elimination is to move the head of ei’s list down one place, for each ei in R, i.e., e
becomes semi-engaged to the s of table T. Figure 2(c) shows the table resulting from
eliminating R from the Phase 1 table.

6 5 3 4
5 3
2 1 7 4
1 7 3 6
7 1 8 4
3 8 4 5
8 4 3 5
4 5 6 7

FIG. 2(C). Table after eliminating R from the Phase table. Note that R is still exposed, and now has
a tail of 3. Rotation R (E3, H3, $3) where E {2, 6, 7, 8}, is now also exposed.

PHASE 2 of the algorithm is simply:
1. While some person has more than one entry on his list, and no list is empty,

find and eliminate a rotation.
2. If every person has exactly one entry on his list, then pairing each person with

their head entry specifies a stable assignment.
3. If there is an empty list, then there are no stable assignments.

Figure 2(d) completes the execution of Phase 2, eliminating rotations R and R4.

6 5
5 3
2 4 6
7 3 6
1 8 4
3 8 4
8 4
4 5 6

FIG. 2(d). Table after eliminating R2. R is the only exposed rotation.

6 5
3
2
7
1 8
8 1
4
5 6

Table after elimination of
R Now R4, R are exposed,
where E 1, 8} E.- {5, 8}.

1 5
2 3
3 2
4 7
5 1
6 8
7 4
8 6

Table after elimination of R4
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2.2. Correctness of Algorithm I. The correctness of Algorithm I is proved in [I],
and will not be fully repeated here. However, we need the statements of the central
lemmas that prove correctness, and we need to extend some of them; we will give
proofs of the extended lemmas.

DEFINITION. If T is a table, then roommate assignment A is said to be contained
in, or in, T, if and only if every pair in A is in T, i.e., is on j’s list, and j is on i’s list
for each pair (i, j) in A.

The following lemmas imply the correctness of Algorithm I.
LEMMA 2.1 [I]. If T is a table (in Phase 2) where no list is empty, and at least one

person has more than one entry, then there is a rotation exposed in T.
Lemma 2.1 will be proved and extended in the next section.
LEMMA 2.2 [I]. Let R (E, H, S) be an exposed rotation in T, and let A be any

stable assignment contained in T. If ei E and (e, h) is a pair in A, then (ei, hi) must

also be a pair in A, for every ei in E.
Lemma 2.2 will be proved and extended in the next section.
LEMMA 2.3 [I]. If rotation R (E, H, S) is exposed in T, and there exists a stable

assignment in T where el E pairs with hi, then there also exists a stable assignmenI in
T where el does not pair with hl, and by Lemma 2.2, no ei pairs with hi, for any ei in E.

LEMMA 2.4 [I]. If the algorithm ends with a single entry on each list, then pairing
each person to that entry gives a stable assignment.

2.3. Extensions of the central lemmas. We will prove Lemmas 2.1 and 2.2 in order
to extend them.

Proof ofLemma 2.1. Let ei be a person who has at least two entries, hi and si, on
its list in T. Since the head entries are a permutation of the people, and si hi, there
must be a person ej such that si hi. We claim that e must have two or more entries
on its list. If not, then h is its only entry, and so e is the only entry on hj’s list. To
see this, note that hi is both the head and bottom entry on e.’s list, so e. must also be
both the head and bottom of hi’s list. But, hj si which is on ei’s list, so ei (which
cannot be ej) must also be on h’s list, and so both hi and e. must have at least two

entries on their lists. Repeating this argument, we must eventually cycle, in which case
a rotation has been found. [3

DEFINITION. The proof above gives an (implicit) algorithm for finding a rotation

R, starting from any person e who has at least two entries on its list in T. Let e denote
the person who is visited twice by the algorithm (i.e., where the cycle is detected).
Every person who is visited before the first visit to el is said to be on a tail of R, and
the other people are in the body of R.

Note that in a given table, an exposed rotation may have many tails, and in a

different table, the same exposed rotation may have different tails. This is illustrated
in the example of Fig. 2. We will need the following extension of Lemma 2.1.

COROLLARY 2.1. If e is a person with two or more entries on its list in table T, then
e is either in a tail or in the body of a rotation exposed in T.

The following lemma extends Lemma 2.2.
LEMMA 2.5. Let R be a rotation exposed in table T, and (ei, hi) a pair in R. IrA

is a stable assignment contained in T where ei pairs with hi, and if e, h) is any pair in

either the body of R or a tail of R, then e, h) must be a pair in assignment A.
Proof Let e. be a person either in R or in a tail of R. If ek is any other person

such that Sk hi, then in A, ek must pair with hk if e. pairs with hi; if not, then ek must
be paired with a person below Sk on its list, since hk is already paired with e, and A
is in T. But Sk is the head of e’s list in T, so ej must be the bottom of Sk’S list, and
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since Sk is on ek’S list, ek is on Sk’S list, and is preferred to e. by Sk. Hence ek and sk
would block A. It follows that if ej is in the body of R, and if e pairs with h in A,
then every ei in R must pair with hi in A. Now consider any tail of R (relative to T).
If (e, h, s) is the last triple of the tail, then s hi for some ei in R, so (e, h) must be a
pair in A, and the implication follows backwards along the tail. Hence in A, each
person in the tail must also pair with the head person on their list in T. U

2.4. The execution tree D. Algorithm I is guaranteed to produce a stable assignment
if there is one. However, in this paper we are concerned with the structure of the set
of all the stable assignments for a particular instance; most of what we will deduce
will be by examining the possible executions of Algorithm I. Hence we need the
following theorem.

THEOREM 2.1. IrA is any stable roommate assignment, then there is an execution

of Algorithm I which produces A.
Proof Let T be any table obtained from a (partial) execution of Algorithm I,

where stable assignment A is in T. If in T, the head of each person’s list is their partner
in A, then, as in the proof of Lemma 2.1, each list has only a single entry, and so T
is the final table of an execution of Algorithm I, and A is the resulting stable assignment.
So, assume that there is a person p whose partner in A is not the head element of p’s
list in T. Hence p’s list has at least two entries, and, by Corollary 2.1, p is either in
the body or in a tail of a rotation R (E, H, S) exposed in T. We claim that no person
ei in the body of R pairs with hi in A. This follows directly from Lemma 2.5, since if
(ei, hi) is a pair in A, then p’s partner in A must also be its head entry in T, contradicting
the selection of p.

We will show that when R is eliminated from T, assignment A is still contained
in the resulting table. The elimination of R from T can be viewed as a two-step process.
First, the head of each element ei in R is moved down one position to hi. By the
argument in the paragraph above, assignment A is in the table after these moves.
Hence in A, each ei in E must be paired with si or below in its list, and for the stability
of A, it follows that each si in S must be paired with ei or above, in its list. Hence A
will be in the remaining table if, for each si in S, we remove all the elements below
in si’s list, and remove si from the lists of each of these elements. But these are exactly
the elements that are removed when R is eliminated from T. Hence rotation R can be
eliminated from T, creating a smaller table T’ which still contains the stable assignment
A. The theorem follows by repeating this argument until no rotations remain.

COROLLARY 2.2. Let R E, H, S) be an exposed rotation in table T, and let T’ be
the table after eliminating R from T. If ei is any person in E, then T’ contains all stable
assignments that T contains, except for those assignments where ei mates with

DEFINITION. We use D to refer to the resulting execution tree, when, for a given
Phase 1 table, Phase 2 of Algorithm I is executed in all possible ways. Each node x
in D represents the table T(x), which is the current state of the algorithm at node x.
Each edge out of x is labeled with a rotation which is exposed in T(x), and which is
the next rotation eliminated from T(x) on that execution path out of x. We use D(x)
to denote the subtree of D rooted at x.

Note that D is defined only for the Phase 2 executions. In the remainder of the
paper, when we talk about Algorithm I, we will be referring to Phase 2, unless we
specifically state otherwise.

Naive enumeration ofall stable assignments. Given Theorem 2.1, we could generate
all stable assignments by forcing all possible executions of Algorithm I. This would be
simple to do, but would be terribly inefficient, as it would most often generate the
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same stable assignment several times. However, we will show in this paper that an
efficiently implemented modification of this naive approach generates each stable
assignment exactly once, at a cost of O(n 2) time per assignment. Although the
modification is simple, its proof of correctness and time is not, and most of this paper
centers on developing the needed tools for the proof. We will return to the enumeration
problem after examining the structure of D, and the rotations in the next several sections.

3. Basic lemmas. In this section, we develop the basic (technical) tools and
definitions that will be used in the rest of the paper. Before going on, it is useful to
examine the execution tree D in a running example (see Fig. 3). Three initial
observations stand out: first, if P and P’ are distinct paths in D that lead to the same
stable assignment, then the edges of P and P’ are marked with the same set of rotations,
although in different order; second, every path in D has the same length; and third,
many of the rotations seem to come in dual pairs as defined below.

2 6
RI= 2 6 5 4 7

3 5 2 R2= 5 7

2

R3"-
6
7
8

5 3
3 8
8 4
4 5 R2 R

R4= 8 5 6 R2 R3 R3

R2 R4 6 8 R5

(R) O (R) (C)

FIG. 3. "Free DJbr the example. The tables at the nodes are not shown. All paths have length 4. (R4, R5)
and R2, /6) are each a dual pair of rotations. R and R have no duals.

DEFINITION. If R (E, H, S) is a rotation in D then we define Rd to be the triple
(S, E, E r), where S and E have the same order in R d as they have in R. Note that
with this definition (R’I) R. Note also that R d has the form of a rotation; if R d is
actually a rotation in D (i.e., is a rotation exposed in some table T in D), then we
call R and R d a dualpair of rotations. Any rotation without a dual is called a singleton
rotation.

In the example, rotations R, and Rs are singletons, and (R4, R5) and (R2, R6)
are each a dual pair of rotations. With this terminology, we can make a more precise
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observation, which replaces the second and third observations above: Each path from
the root to a leaf in D contains every singleton rotation, and exactly one of each pair
of dual rotations. We will prove that these observations are facts which hold for any
execution tree D of Algorithm I, and these facts will then be exploited to reveal the
structure of the set of stable roommate assignments. However, we first need several
technical definitions and lemmas.

LEMMA 3.1. If R (E, H, S) and R ’ (S, E, E r) are dual rotations that are both
exposed in a table T, then in T each list of E S has exactly two elements.

Proof This follows simply from definition of duals, and the fact that person is
the head of j’s list in any table if and only if person j is the bottom of i’s list in that
table.

DEFiNiTiON. For a table T, the active part of T is the subtable of T consisting
of those lists which contain more than one person.

LEMMA 3.2. If R (E, H, S) and Rd= (S, E, E ) are both exposed in T, then the
active part of the table resulting from eliminating R from T is the same as the active part
of the table resulting from eliminating R d from T. Further, that active part is just the
active part of T minus the lists of E S.

Proof This follows directly from the definition’s dual rotations and rotation
elimination, and Lemma 3.1 above.

DEFiNiTiON. Let T be a table and R (E, H, S) be a rotation. If there is a subset
of elements of T which form a table T’, such that R is exposed in T’, then we say
that R is embedded in T. Note that the definition does not require that some execution
of Algorithm I actually expose R, when started with T.

LEMMA 3.3. If R and R d are dual rotations, then R is embedded in table T if and
only if R" is.

Proof This follows directly from the definition of duals, and the fact that is on
j’s list if and only if j is on i’s list.

DEFINITION. Let R be a rotation exposed in table T, and let T(R) be the table
resulting from eliminating R from T. If rotation R’= (E’, H’, S’) is embedded in T
but not in T(R), then we say that R removes R’ from T. Note that for R to remove
R’ from T all that is required is that h or sl not appear on el’s list in T(R), for at
least one el in R’.

DEFINITION. A path P in D is said to contain the rotations that label the edges
of P.

LEMMA 3.4. If P is a path from the root of D to a node x in D, and P’ is a path
from the root to a node x’, and P and P’ contain the same rotations in different order,
then table T(x) and table T(x’) are identical. Hence a table is determinedfrom the phase
1 table by the set of rotations leading to it, not by their order.

Proof It is clear from the way that elements are removed in Phase 1 and Phase
2, that at any point in Phase 2, the current table T is determined by the Phase 1 table
and the bottom elements of each list in T. In Phase 2, the bottom element of person
i’s list is changed only if person is in the S set of an eliminated rotation. Hence if
is not the second element in any rotation on the path, then i’s bottom element in T is
its bottom in the Phase 1 table; otherwise, the bottom of i’s list in T is given by the
person p who most prefers, such that is the second element in p’s list in some
rotation on the path to 7

DEFINITION. The set of rotations that appear on a path from the root to a leaf
in D is called a path set. We will use this term when the order of the rotations is not
important.
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Lemma 3.4 shows a mapping from the path sets onto the stable assignments, but
Lemma 3.4 does not show that two different path sets cannot generate the same stable
assignment. We will later show that the mapping is in fact one-one, i.e., that any two
paths in D which lead to the same table must contain the same set of rotations. This
fact, which is more difficult to prove than Lemma 3.4, will be central in the efficient
enumeration of the stable assignments.

We are now ready to state and prove the first nontrivial technical lemma.
LEMMA 3.5. IfR E, H, S) and R’= E’, H’, S’) are two distinct rotations exposed

in a table T, then R removes R’ from T if and only if R’= Ra. Hence the only way to
remove an exposed rotation is to explicitly eliminate it or its dual rotation, if it has one.

Proof One direction is trivial. If R and Rd are dual rotations, then since one is
embedded in T if and only if the other is, the elimination of R must remove R d. To
prove the other direction, suppose that R and R’ are exposed in T, and that R # R’
eliminates R’ from T. We will show that R’ must be R a. When R is eliminated, person
q is removed from the list of a person p if and only if p s; or q s; for some si e S.
Clearly, these removals of individual people from T affect the lists of people in E’
only if si is in H’ (hence in S’), or if si is in E’. To see that the first case is not possible,
recall that in table T the elements in the H column are a permutation of the 2n people,
and that in each rotation R, the set of S elements and H elements in R are the same.
So even though the S column of table T is not necessarily a permutation (i.e., a person
can appear more than once in the S column), no person can appear in the S set of
more than one rotation exposed in T. Hence S f3 S’= S f3 H’= , and so the first case
is not possible. Hence the elimination of R removes R’ from T only if some si is in
S t3 E’. For ease of discussion, assume without lose of generality that s e S f3 E’, and
that s ej.

If e # h, then the change of the bottom of sl to el (the consequence of eliminating
R) will not affect R’, so we assume also that el h. Let T(R) be the table resulting
from eliminating R in T. Since the bottom of sl’s list moves up to e, which is the

and e h), s’s list in T(R) contains only thehead of s’s list in T (since s
single element e We claim that if e’ E, then es list in T(R) must also contain
only a single element. If not, then in T(R), el is on a tail that leads to no rotation.
To see this, note first that H’ cannot be affected by the elimination of R, and if e has
two elements in its list in T(R), then its first two elements in T(R) are the same as
in T. Hence, following the proof of Lemma 2.1, the unique path from e’ in T(R) is
the same as in T, but that path cannot form a cycle, since it will encounter a member
of R’ (s or earlier) which has only one element on its list. Hence if e has more than
one element on its list in T(R) then it will be on a tail leading to no rotation. But this
contradicts Corollary 2.1, so in T(R) each e’ in E’ contains only a single element in
its list. Now R is exposed in T, so each e in E has two or more elements on its list
in T, so the effect of eliminating R in T is to move the bottom of each e in R’. But
this is possible only if for each e’ E, e= Sk and hi--- ek, for some ek in R.

So we now know that if R removes R’ from T, then as sets, E’= H, and H’= E S’.
This is necessary if R’= Rd, but in order to actually prove that equality, we need to
show that the order inside the sets is correct. We already know that the correspondence
between E’ and H’ is correct, i.e., that e’ Sk and h’ ek, for the same k. So, assuming
without loss of generality that s e’, we must show that s’ e+ for each i, where
+ 1 is taken (mod r), and r is the size of R. To do this, we first note that in T the list

of every element in R contains exactly two elements; this follows from what we just
showed, since in T, each e in R is the head of s’s list, so si is the bottom of e’s list,
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so each element in R has exactly two people on its list in T. But then each ei can be
only on the list of hi or si in T. Further, ei appears once in H’ and once in S’. Now
ei is the head of si’s list in T, so ei must be the second element in hi’s list in T. So

’s list is ei so s’ei--s hi+l, and the second element on hi+ +1, i-" ei+l, as claimed.
Hence if R removes R’ from T, then R’= Rd. V1

Later in the paper we will strengthen this theorem to show that if R is exposed
in T, and R’ is embedded in T, but perhaps not exposed, then R removes R’ from T
if and only if R’= Rd.

4. The structure of D. In this section we examine the structure of D, as this structure
will reveal the structure of the set of stable assignments.

4.1. Covering rotations. DEFINITION. Let x be a node in D and D(x) the subtree
of D rooted at x. The active part of D(x) is the tree D(x) where at each node y in
D(x), T(y) is replaced by the active part of T(y). Note that the edge labels of D(x)
do not change.

DEFINITION. If R and Ra are dual rotations, and path P in D contains either of
them, then we say that P covers R and R a. If R is a singleton, and P contains it, then
P covers R.

LEMM, 4.1. Let x be a node in D with associated table T(x). Every path from x to

a leaf in D(x) covers the same set of rotations.

Proof. Let d(x) denote the maximum number of edges on any path from x to a
leaf in D. The theorem will be proved by induction on d(x). For d(x)= 1, if there is
only one edge out of x (i.e., only one rotation exposed in T(x)), then the basis is
trivially true. If there are two rotations R and R’ exposed in T(x), then, by Lemma
3.5, they must be duals of each other, since eliminating either one of them results in
a table with no rotations (i.e., each removes the other). Similarly, there cannot be more
than two rotations in T(x), since the elimination of any of them removes them all. So
the basis is proved.

Assuming that the theorem holds for d(x)<= k, let x be a node in D where
d(x) k + 1, and let z be a child of x such that d(z)-- k; by the induction hypothesis,
all paths from x through z to a leaf must cover the same rotations; let P be any such
path, and let R be the rotation labeling the edge (x, z). If R is the only rotation exposed
in T(x) then there is nothing to prove, so let y be another child of x, and let R’ be
the rotation on the edge (x, y). We will show that every path from x through y to a
leaf of D(y) covers the same set of rotations as P.

If R’= R a, then by Lemma 3.2 (since both R and Ra are exposed in T(x)), the
active parts of T(z) and T(y) are identical, and hence the active parts of D(z) and
D(y) are identical. Further, d(z)= k, and d(y)<=k, so each path from z covers the
same rotations, and each path from y covers the same rotations, so, since the subtrees
from z and y are identical, any path from z must cover the same rotations as any path
from y. Then every path from x through y covers the same rotations as P.

If R’ Ra, then, by Lemma 3.5, R is still exposed in table T(y), and R’ is still
exposed in table T(z). Let z’ be the node associated with the table obtained by
eliminating R’ from T(z), and let y’ be the node associated with the table obtained
by eliminating R from T(y); and let P(z’) and P(y’) be paths from x to leafs in D
that pass through z’ and y’, respectively. Now the set of rotations on the path from
the root of D to z’ is exactly the same as the set of rotations on the path to y’, hence
by Lemma 3.4, T(z’) is identical to T(y’), and so D(z’)= D(y’). It follows, as in the
case above, that P(z’) and P(y’) cover the same set of rotations. But, P(z’) covers the
same set as P, and since d(y)=< k, any path out of y covers the same set of rotations
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as P(y’), hence covers the same set as P. Node y was an arbitrary child of x such that
y # z, so the theorem is proved.

By definition, every rotation is exposed somewhere in D; hence the major con-
sequence of this theorem is the following theorem.

Path Theorem.
THEOREM 4.1. Every path from the root of D to a leaf covers all the rotations.

Further, since no path can contain both a rotation and its dual, each path contains every
singleton and exactly one of each dual pair of rotations.

COROLLARY 4.1. Every path in D from the root to a leaf has the same length.
Hence the observations in the example hold in general.
We can now strengthen Lemma 3.5.
COROLLARY 4.2. If R is exposed in table T, and R’ R is embedded in T, then R

removes R’ if and only if R’= R.
Proof. Clearly, R removes R a whether R a is exposed or not. To prove the converse,

let x be a node in D with associated table T(x), and let y be the child of x obtained
by eliminating R from T(x). Since R’ is embedded in T(x), neither R’ nor (R’) a are
on the path from the root to x. If R removes R’, it removes (R’) a also, so neither of
these rotations is on any path from x to a laf. Hence to avoid contradicting Theorem
4.1, it follows that R’= R.

5. The structure of the rotations and stable assignments. In this section we derive
two compact representations of the set of all stable assignments. We first need a few
more technical observations.

5.1. Unique elimination.
DEFINITION. Let ei, hi, Si be a triple in rotation R; hence when R is eliminated

from any table it is exposed in, the bottom of si’s list moves from ei+ to ei, where
+ 1 is taken mod r. Let A(R, i) denote the set of people on si’s original list between

ei and ei+l, including ei but excluding ei+l. Similarly, let B(R, i) be the people between
e and e+, including ei+ but excluding ei.

LEMMA 5.1. For any e in R, R is the only rotation whose elimination moves the
bottom ofs’ s list to a person in A R, ), and is the only rotation whose elimination moves
the bottom of si’s list from a person in B(R, i).

Proof Let R’ be a different rotation whose elimination moves the bottom of s’s
list to a person p in A(R, i) from a person q. Clearly, since ei is above q, and p is
above e+, no path in D can contain both R and R’. Further, R a (if it is a rotation)
cannot precede R’ on any path, since R a moves the head of s’s list to e+, which is
below p. Similarly, R’ cannot precede Ra on any path, since it moves si’s bottom to
p, which is above ei+. But every path contains either R or R a, so no path contains
R’, contradicting the definition of a rotation. The proof for moves from B(R, i) is
similar.

COROLLARY 5.1. A person p is the H element of person q’s list in at most one
rotation, and is the S element of q’s list in at most one rotation. Hence there is at most
one rotation whose elimination moves the head of q’s list to p, and there is at most one
rotation whose elimination moves the bottom ofp’s list to q.

COROLLARY 5.2. Ifp ei, and p A(R, i), then si can never be paired with p in any
stable roommate assignment.

Proof Consider any path P where p is paired with s in the resulting assignment.
Since si prefers p to ei+, p is not the bottom of si’s list in the Phase 1 table. Hence,
somewhere on P, p must become the bottom of si’s list. By the nature of rotation
eliminations, for any person z, the only way that the bottom of z’s list can change is



754 DAN 6VSFED

by the elimination of a rotation R (E, H, S), where z is in S. Hence for p to become
the bottom of si’s list, some rotation must have explicitly moved the bottom of the list
to p. But this contradicts Lemma 5.1 above. [3

Necessary elimination. Let R be a rotation with the triple ei, hi, si in R. If p # hi,
and p is above si in ei’s list in the Phase 1 table, then R will never be exposed until
p is removed from ei’s list.

LEMMA 5.2. Letp be a person who must be removedfrom ei’s list before R is exposed.
There exists a unique rotation R’, such that R’ appears before R on every path that
contains R, and such that of all the rotations which appear before R on any path in D,
R’ is the only one whose elimination removes p from ei’s list.

Proof From examination of Algorithm I, there are only two ways in which p is
removed from ei’s list: either p is removed when the bottom of ei’s list moves up above
p, or when the bottom of p’s list moves up above ei. If p is removed by the first case
event, then R is not embedded in the table after ei’s bottom moves above p, since p
is above si. Hence p is removed by the first case event only on paths that do not contain
R. By Lemma 5.1, the second case can happen only when a particular unique rotation,
R’, is eliminated. Since p must be removed from ei’s list before R can be exposed, R’
must precede R on any path that contains R. [3

DEFINITION. If p must be removed from ei’s list before R is exposed, and if R’
is the (unique) rotation discussed in Lemma 5.2, then we say that R’ explicitly
precedes R.

5.2. The partial order H* and the structure of the stable assignments.
DEFINITION. Let H* be the reflexive transitive closure of the above relation of

explicit precedence. It is clear that H* is a partial order on the rotations. Figure 4
shows the Hasse diagram of H* for the running example.

(R)
4.

FIG. 4

DEFINITION. In partial order H*, a subset C of rotations is called closed if and
only if it is closed under the predecessor relation, i.e., if R is in C, and R’ precedes
R in H*, then R’ is in C.

LEMMA 5.3. There is a one-one correspondence between the path sets in D and the
set of those closed subsets of II* which contain all the singleton rotations, and contain

exactly one of each dual pair of rotations.

Proof One direction is trivial. Let C be a path set in D, and let P be any of the
paths in D containing path set C. We claim that C forms a closed subset in H* of the
required type. We know that each path in D contains all the singleton rotations and
exactly one of each dual pair of rotations; hence we only need to show that C is closed
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in H*. But, by Lemma 5.2 above, any rotation that precedes R C must be contained
on P; hence C is closed. Conversely, let C be a closed set of the required type; we
will show that there is a path P in D which contains C exactly. First, the maximal
elements Co c C (those with no predecessors in II*) must be exposed rotations in the
Phase 1 table, and since only one of any dual pair is in C, there is a subpath from the
root of D consisting of the rotations Co. After the Co rotations are eliminated, the
elements C1 c C whose only predecessors are in Co must now be exposed, and (since
only one of each dual pair is in C) each remains exposed until eliminated, and hence
there is a path from the root consisting of Co followed by C. Continuing in this way,
there is a path from the root to a leaf in D consisting of the rotations in C. [3

The proof of the following is essentially the same as the second part of the above
proof of Lemma 5.3.

COROLLARY 5.3. If C is a closed set in H*, and is contained in some path P in D,
then there exists a path P’ in D containing the same rotations as P, such that in P’, all
rotations in C appear before any rotations not in C. Further, the internal order of the
rotations in C is the same on both paths, as is the internal order of the rotations not in

C, i.e., in P’ the rotations in C simply move above the non-C rotations, but keep their
same internal order.

Since each path set maps to a unique stable assignment, Lemma 5.3 implies that
each closed subset in II* of the required type maps to a unique stable assignment. We
now show that distinct closed subset map to distinct stable assignments.

LEMMA 5.4. Let C and C’ be two distinct closed subsets of H* which both contain
all the singletons and exactly one of each dual pair of rotations. Then, as path sets, C
and C’ yield distinct stable assignments.

Proof Suppose to the contrary that both the path sets C and C’ produce the same
stable assignment A. We claim that the minimal rotations in C must be in C’. Let
R (E, H, S) be a minimal rotation in C, and let ei be in E. Then in A, ei must be
mated to s. To see this, note that the elimination of R moves e’s head to s, and every
rotation that moves e’s head below si (and moves s’s bottom above e) must be
preceded by R. But R is a minimal rotation in C, so the head of e’s list must end up
at s, and e is mated to s in A. Now s is not the head of e’s list in the Phase 1 table,
and the head of any list e can change only by the elimination of a rotation R*=
(E*, H*, S*) where e is in E*, so C’ must contain a rotation that moves the head of
ei’s list to s. But by Corollary 5.1, there is only one rotation, R, that moves the head
of e to s. Hence R, and all minimal rotations in C, must also be in C’. But since C
and C’ are closed, all the predecessors of the minimal rotations in C must also be in
C, and hence in C’. But any closed subset is precisely the set of its minimal elements,
plus the predecessors of those minimal elements. Hence C C’, but since they both
have the same cardinality, C C’. [3

The following two theorems connect the preceding lemmas and summarize what
we now know about the structure of the stable assignments.

THEOREM 5.1. There is a one-one correspondence between stable assignments and
those closed sets in H* which contain every singleton rotation and exactly one of each
dual pair.

Hence H* is a small (O(n2) size) representation of the set of all stable assignments.
We will later discuss how to efficiently construct H*, and how to construct a stable
assignment from a closed subset of the correct type.

THEOREM 5.2. There is a one-one correspondence between path sets in D and stable
assignments.



756 DAN GUSFIELD

Theorem 5.2 is Lemma 3.4 and its converse, and is one of the keys to efficient
enumeration of the stable assignments. Before discussing enumeration, we derive an
alternative representation for the stable assignments.

5.3. Independent set representation of stable assignments. In this section, we present
a second compact representation of the set of all stable assignments. We first need
some additional observations.

5.3.1. Refining 1-1*.
LEMMA 5.5. Let (R, R d) and (R1, R) be two dual pairs of rotations, and R’ a

singleton rotation. Then:
(1) Neither R nor Rd can precede R’ in H*, i.e., only a singleton rotation can precede

a singleton.
(2) R precedes RI in H* if and only if Rd precedes Rd in II*.
Proof Since each singleton rotation is on every path in D, any rotation which

precedes a singleton rotation in H* must be on every path in D. So if R precedes R’,
R is on every path, and R d is on no paths in D, contradicting the assumption that R
is a rotation; so the first fact is proved. For the second fact, observe first that since R
precedes R, no path can contain both R and Re, so any path containing Re contains
Rf. We must show that in any such path, R appears before R e. Let P be a path
containing R e, and consider the point x where Re is eliminated. Since no path can
contain both R1 and Re, R cannot be exposed anywhere in D(x), the subtree of D
below x. But Corollary 6.2, which will be proven later, states that if any nonsingleton
rotation is embedded in T(x), then both it and its dual are exposed somewhere in
D(x). Hence it must be that R e is not embedded in T(x), so Ra must appear on P
before R e, and fact 2 is proved.

5.3.2. Graph G. We define an undirected graph G as follows. There exists one
node in G for each nonsingleton rotation, and two rotations R1 and R2 are connected
by an edge in G if and only if there exists a rotation R (possibly R1 or R2, since a
node precedes itself by definition) such that in H*, R precedes R and Re precedes
R2. It follows that R and Re are connected for each dual pair (R, Re) and if two
rotations are adjacent in G, then they cannot appear together on any path in D.

LEMMA 5.6. Every maximal independent set in G contains exactly one node from
each dual pair of rotations.

Proof First, no independent set can contain both nodes of a dual pair. For the
other side, let S be an independent set in G which does not contain either R or R e.
If neither R nor Re can be added to S, then there must be a node R in S such that
(R, R) is an edge in G, and there must be a node R2 in S such that (R e, R2) is an

e precedesedge in G. But then there exists a rotation R3 such that R3 precedes R, and R3
R, so Rd precedes R3 (by Lemma 5.5(2)), and it follows that Rd precedes R. Also,
there exists a rotation R4 such that R4 precedes Re and R4d precedes R, so R precedes
R4d precedes R2. So R e precedes R precedes R2. But then R and R would be
connected in G. Hence it cannot happen that neither R nor Re could be added to S
to create a larger independent set, and continuing in this way, the lemma is proved. [3

DEFINrrION. Let H be the partial order H* with the singletons removed.
The following is directly implied by Theorem 5.1 and Lemma 5.5 (1).
LEMMA 5.7. Let be the set of all singleton rotations in H*. A set of rotations C

is closed in H* ifand only if C-, is closed in H. Hence there is a one-one correspondence
between the stable assignments and the closed subsets of II that contain exactly one of
each dual pair.

We can now show a one-one correspondence between the maximal independent
sets in G and the stable assignments.



STABLE ROOMMATES 757

LEMMA 5.8. Any closed subset C in II that contains exactly one of each dual pair,
is a maximal indpendent set in G.

Proof No path in D can contain two rotations which are connected in G. But
since C is closed in H, C w E corresponds to a path set from D, hence to at least one
path in D. Hence no rotations in C can be connected in G, and C is an independent
set in G. It is maximal, because is has one rotation from each dual pair, and no
independent set in G has more.

LEMMA 5.9. Any maximal independent set in G is a closed set in H.
Proof Let S be a maximal independent set in G, and let R be any rotation in S.

Suppose R’ precedes R in H. Then, since R’d precedes itself, R and R’d are connected
in G, so R ’d is not in S. But S must contain one of each dual pair, so S contains R’.
It follows that S is closed in II.

In summary, we have Theorem 5.3.
THEOREM 5.3. There is a one-one correspondence between the maximal independent

sets in G and the set of stable assignments.
Hence, G is another small implicit representation of the set of all stable assign-

ments. We can simplify the definition of G with the following lemma.
LEMMA 5.10. Rotations R and R’ are connected in G if and only if R d precedes R’

in 1-I.
Proof First, if R d precedes R’, R and R’ are connected in G, since R precedes

itself. Conversely, if R and R’ are connected in G, then there is a rotation R* such
that R* precedes R and R*d precedes R’. But by Lemma 5.5, R* precedes R implies
that R d precedes R*d SO R d precedes R’.

The above lemma allows a more efficient method to construct G: we can determine
whether to connect two nodes by looking directly at a single entry in the precedence
relation, rather than looking for a third rotation to satisfy the initial requirement for
connecting two nodes in G. It turns out that G can be constructed in time O(n4);
details are omitted, but are very similar to the construction of a related partial order
H given in [G].

5.4. Equivalent sets and representations. We now know that the path sets of D,
the closed subsets of H* that contain each singleton and exactly one of each dual pair,
and the maximal independent sets of G augmented with the singletons, are all exactly
the same sets of rotations, and these sets are in one-one correspondence with the stable
assignments. We will see later that each such set can be used to generate the associated
stable assignment in O(n2) time.

6. Efficient enumeration of all stable assignments. We now discuss an efficient
method to generate all stable assignments. The method is a modification of a very
general, naive method that is often suggested as a way to enumerate constrained sets;
the naive method is rarely efficient, but is efficient in the stable assignment problem.
The efficiency here is a consequence of very special properties of the stable assignment
problem, and the way the enumeration is implemented.

By Theorem 2.1, the stable assignments can be generated by forcing all execution
behaviors of Algorithm I. This would not be guaranteed to be efficient, since the same
assignment would likely be generated many times. However, by Theorem 5.2, we need
not generate each path in D, but only each path set. One approach is to use graph G
to generate each maximal independent set (path set) in G, and, as we will show below,
then use the path set to generate the associated stable assignment. The fastest known
methods to generate all maximal independent sets in a general graph appear in [LLR],
but applying those methods to G yields a time bound of O(n4) per independent set.
Alternatively, we could try to generate all the closed subsets of H* which contain all
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singletons and exactly one of each dual pair. However, general techniques for such
constrained enumeration in general partial orders seem very inefficient. Here, we will
use a different approach, heavily exploiting results about the structure of D and the
rotations, to obtain a method which, after II* is constructed, will generate each path
set, and each stable assignment, in O(n2) time per assignment. This compares favorably
with the O(n3) methods given in [K] and [MW] to construct each stable marriage.
In the first section we will present the method and prove it correct, and in the second
section we will discuss the time it requires. We first need the following definitions.

DEFINITION. Let SR be a set of rotations. For each person p, let SR(p) be the
highest person on p’s list such that SR(p) ei and p si in some rotation R (E, H, S)
in SR.

DEFINITION. Let T be a table and SR be a set of rotations. The elimination of
SR from T is the following: For each person p, delete all people in p’s list below
SR(p), if there are any, and delete p from the lists of all of those deleted people, if p
exists in those lists.

Note that the definition does not require that all the rotations in SR be embedded
in T, or that SR is contained in any path set.

DEFINITION. For a rotation R, define II*(R) as the set of rotations consisting of
R and all the predecessors of R in II*.

6.1. The dual enumeration method. The idea of the method is to simulate Algorithm
I forcing it to generate each path set, and associated stable assignment, exactly once.
We will represent the simulation by a binary tree B. As in tree D, each node x in B
will represent a table; when node x is a nonleaf, one edge out of x will be labeled by
a single rotation which is exposed in T(x), but the other edge, if it exists, will be
labeled by a set of rotations, not necessarily embedded in T(x). We will call the first
edge the left edge and the second edge the right edge. If the left edge (x, y) in B is
labeled by R, then the table T(y) at node y is obtained from T(x) by eliminating R
from T(x). When R is a singleton, then there will be no right edge out of x, but when
R is a nonsingleton, then the right edge (x, z) will exist and will be labelled with

FIG. 5. Tree B given by the dual enumeration method. The labels at the leaves refer to assignments given
in Fig. 3.

It is reported in [K] that the time is O(n2), per marriage, but this is incorrect. Constructions appear
in the appendix of [G1] showing that the algorithm can take l(n3k/[log k2]) time for k stable marriages.
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II*(Ra), and the resulting table T(z) will be the table obtained by the elimination of
the set II*(Ra) from T(x). Each leaf of B will contain a table with no exposed rotations.
The simulation begins with a node representing the phase one table, and each node x
in B is expanded by arbitrarily choosing an exposed rotation R in T(x), eliminating
R from T(x) on the left edge out of x, and, if R is a nonsingleton, eliminating II*(Ra)
from T(x) on the right edge out of x. A table with no exposed rotations is not
expandable; we will show that such a table must specify a stable assignment. The
simulation ends when no unexpanded nodes in B are expandable. We call this method
the dual enumeration method. Figure 5 illustrates this method on the running example.

6.1.1. Correctness of the dual enumeration method.
LEMMA 6.1. The dual enumeration method never generates a path set (stable

assignment) more than once.

Proof Let x be a nonleaf node in B, and let R be the rotation on the left edge
out of x. Consider the leaves in the subtree rooted at x, and the path sets associated
with those leaves. Those path sets are divided into those sets containing R and those
containing Rd (none, if R is a singleton). Since no path set contains both a rotation
and its dual, there is no intersection between these two sets of path sets. Applying this
fact inductively upward from the leaves to the root in B, it follows that no path set is
generated more than once. Theorem 5.2 then implies that no stable assignment is
generated more than once. [3

LEMMA 6.2. Every stable assignment (path set) is generated at least once by the
above method.

Proof Let x be a nonleaf node in B which is also a node in D (the root of B is
such a node, although we will later see that all nodes of B are in D). Let A be a stable
assignment contained in T(x). Let R be the exposed rotation eliminated from T(x)
on the left edge out of x in B, and let T(y) be the resulting table. Suppose first that
the path set for A contains R. Then by Corollary 2.2, and the fact that T(x) is in D
as well as in B, it follows that node y is in both D and B, and assignment A is contained
in table T(y).

Now suppose that the path set for A contains R d, and let w be any node in D(x),
the subtree of x in D, such that T(w) contains A and such that the edge into w is
labeled with R d. Clearly, every path from x which leads to a leaf labeled with A
contains such a node w. Also, every rotation in H*(Rd) must be on the path in D from
the root to w. Now, as in the proof of Corollary 5.3, a rotation R d is exposed if all of
its predecessors in H* have been eliminated and R has not been removed, so there
must also be a path in D from x to a node z, containing exactly those rotations in
II*(Rd) that are on the path from x to w (i.e., this second path is obtained by deleting
all the rotations on the first path from x that are not in H*(R d)). Further, the elements
of T(w) are all contained in T(z), since the rotations leading to w are a superset of
those leading to z. Hence A must be contained in T(z) as well as in T(w). But T(z)
is exactly the table obtained in B by the elimination of II*(Rd) from T(x). Hence, if
the path set for A contains R d, then the right child of node x in B is the above node
z in D, and T(z) in B contains assignment A.

Now the phase one table is in both D and B, and so by iterating the above
arguments downward from the root, we see that there is a path in B consisting of
nodes in both D and B, such that assignment A is contained in each of the tables on
the nodes in the path. Since the nodes on this path are in D, and the table sizes decrease
with each edge on the path, the path ends with a table containing assignment A exactly.
Hence assignment A appears at some leaf of tree B.
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The above lemmas show that every stable assignment is generated exactly once,
but this does not prove the correctness of the dual method, since we have not proved
that the method never generates tables that are not in D. If it did, then it could generate
assignments that are not stable, or it could generate tables that have "rotations" that
are not in D. Lemma 6.2 does not show that every table in B is also in D, although
it is immediate that if x is in B and D, then y, the left child of x in B, is also in D.
What remains to show is that the right child of x in B is necessarily in D. The point
is that even though there is an assignment in T(x) whose path set contains the
nonsingleton rotation R, which is exposed in T(x), we do not know for sure that there
is an assignment in T(x) whose path set contains R J. If there is no such assignment,
then the dual enumeration method will either generate a table which does not specify
an assignment but which has no exposed rotations (in which case it will have done
excess work), or it will generate an assignment which is not stable. Neither of these
things can happen if each table in B is also in D. To prove that each table of B is in
D, we show that for any node x in D, if R is exposed in T(x), then R J is exposed in
some table in D(x), the subtree of D rooted at x. This implies that T(x) contains a
stable assignment whose path set contains R in D(x), if R is exposed in T(x). Of
course, since R is exposed in T(x), R appears below x on any of these paths.

TIEOREM 6.1. Let R and R be dual rotations, and x a point in D. IfR is exposed
in T(x), then R is exposed in D(x). Hence ifR is exposed in T(x), then there is a stable
assignment in T(x) whose path set contains R as well as one which contains R.

To prove this theorem we first need the following.
LEMMA 6.3. If P is a path from the root of D to a node x in D, and P’is a path

from the root to a node x’, and P and P’ cover the same set of rotations, then the active
.parts of table T(x) and table T(x’) are identical, and hence the active parts ofD(x) and
D(x’) are also identical

Proof Note first that since no path can contain both rotations in a dual pair, the
length of P and P’ are the same. Let dP and dP’ be the parts of P and P’, respectively,
after the point v in D where P and P’ diverge. The proof of the lemma is by induction
of the length of dP (which is, of course, also the length of dP’). For length of one,
dP must contain R while dP’ contains R, for some dual pair of rotations. Then in
T(x), both R and R are exposed and the basis follows from Lemma 3.2. Now
assuming the theorem holds for dP of length /, consider dP of length / + 1, and let
R and R’ be the first rotations on dP and dP’ respectively, and let ’R and ,R, be the
first nodes below v on these paths (see Fig. 6(a)). If R’= R, then the active tables
are the same after eliminating either rotation, and hence there must be a path from, that is identical to the part of dP’ starting at u,. Hence the table T at the end of
that path is T(x’). But, by the induction hypothesis, the active part of T(x) is the same
as the active part of T; hence the theorem follows in this case.

Now suppose that R’ R. There are two cases to consider: either R is on dP’,
or RJ is on dP’.

Let w be the point on dP’ where R (in the first case) or R (in the second case)
is eliminated. Since both R and R’ are exposed at v, R must be exposed at every table
on dP’ down to w.

In the first case, consider the edge on dP’ into w, and let R* be the rotation
eliminated there (see Fig. 6(b)). If instead of eliminating R*, R is eliminated at that
point, R* will not be removed (since R* R). Hence the path which is identical to
dP’ except that the order of R* and R is reversed, is in fact a path from v; call that
path dP*. Now dP’ and dP* contain exactly the same rotations, so, by Lemma 3.4,
the table at the end of dP* is T(x’). Repeating this argument up the length of dP’,
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moving R up at each step and leaving the rest of the path the same, it follows that
there is a path from v through ’R which contains the same rotations as dP’, and hence
ends with table T T(x’). But, by the inductive hypothesis, as above, the active parts
of T(x) are identical to the active parts of T, and hence of T(x’).

In the second case, when R a is on path dP’, there must be a path, P(R), from v
through ,R, which is identical to dP’, except that R replaces R (see Fig. 6(c)). This
follows from Lemma 3.2, and the fact that R is exposed at w. But now dP’ and P(R)
diverge below v; hence by the induction hypothesis, the active part of the table, T, at
the end of P(R) is identical to the active part of T(x’). Now we can repeat the step
argument of the first case, moving R up P(R) to v, and conclude that there is a path
from v through u which contains exactly the same rotations as P(R). Then, by the
inductive hypothesis, the active part of T(x) is the same as the active part of T, which
is the same as the active part of T(x’). [3

Proof of Theorem 6.1. Let z be the closest ancestor of x such that R a is exposed
in D(z), and let y (possibly x) be the child of z on the path from z to x. Let R be
the rotation on the (z, y) edge. Let P be a path from z to a leaf, where P contains R,
and let R2 be the first rotation on P (see Fig. 7(a)). If R R, then the active tables
after eliminating either rotation are the same, so the subtrees below those two points
must be the same; hence D(y) must contain R. So, assume that R R. Neither R
nor R is on the path from the root to z, so either R or R must be on P, say at a
point w. Note that in either case, R is exposed at w. Hence if R is before w on P,
then we can assume P contains R. If P contains R and R is after w (see Fig. 7(b)),
then consider the effect of eliminating R at w; the resulting active table is the same
as after eliminating R, so there is a path from w which contains R. So we can always
assume that P contains R and R. But now, we can move R up a step at a time, as
in the preceding proof, concluding that there is a path from z through y that contains
R a. This contradicts the selection of z, and proves the theorem. [3

Theorem 6.1 completes the proof of correctness of the dual enumeration method.
In summary, we have Theorem 6.2.

THEOREM 6.2. The dual enumeration method generates each stable assignment
exactly once, and the table at each leaf in B specifies a stable assignment.

There are several useful corollaries of Theorem 6.1.
ColOlAY 6.1. For any table T(x) in D, ifR is the only rotation exposed in T(x),

then R is a singleton.
CooIIA 6.2. If R and R are duals embedded in T(x), then both are exposed

somewhere in D(x).
root

FIG. 7(a)

Rd
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R1 2

FIG. 7(b). R d is on P after w.

Recall that the proof of Lemma 5.5 (2) depended on Corollary 6.2, so Lemma 5.5
is now fully proved.

COROLLARY 6.3. If R and Rd are duals, then there is a point x in D where both R
and R are exposed in the table T(x).

COROLLARY 6.4. If R is a nonsingleton rotation, and ei e R, then there is a stable
roommate assignment where each ei is paired with hi, and also one where each ei is paired
with &.

Proof By Lemma 3.1, at the point x where both R (E, H, S) and R d are exposed,
each list in E U S contains exactly two elements, and eliminating Ra makes hi the
only element on ei’s list, and eliminating R makes si the only element on ei’s list. With
either elimination, the algorithm is guaranteed to find a stable assignment in the
resulting table. [3

6.2. Complexity analysis. In this section we show that the dual enumeration
method works in time O(rt log n+kn2) to enumerate k stable assignments. The
O(n2 log n) term is the time needed to find all the rotations in D and to construct H*.
Thereafter, each stable assignment is generated in O(n2) time, per assignment. To
prove the above bound, we first examine the computational steps needed before and
in the dual method: how to find all the rotations and recognize the singletons, how to
eliminate a set of rotations, how to generate "enough" of II*, and how to find H*(R)
for a rotation R. We then show how to charge the work during the dual algorithm,
and prove the above time bound.

6.2.1. Finding all the rotations in O(/13 log n) time. Even though the number of
stable assignments, hence the size of D, grows exponentially in n, the Path Theorem,
and the fact that Algorithm I runs in O(n2) time, imply that there can be at most
O(n2) rotations in D. In fact, Corollary 5.1 shows that there can be at most n(n- 1)
rotations. We show here that all the rotations in D can be found in O(n log n) time.
To do this, we run Algorithm I once, following a path P in D, finding the rotations
on P. By the Path Theorem, P covers all the rotations on D, but we still have to
determine which are singletons and which have duals. If R is a rotation on P, then



764 DAN GUSFIELD

we can test if R a is a rotation by simply returning to the point on P where R is
eliminated and successively choosing and eliminating any rotation other than R. By
Corollary 4.2, we will either expose and eliminate R d, or we will have a table where
only R is exposed; in the latter case, R must be a singleton, by Corollary 6.1. There
are at most n(n- 1) rotations on P, and each run of Algorithm I costs O(n 2) time, so
although the size of D can be exponential in n, all rotations in D can be found in
O(n4) time. Of course, in practice this procedure can be sped up by noting at each
step which other rotations are exposed.

We can speed up the above method to run in time O(n log n). The idea is that
we can find 2n chains in II* that contain all the rotations on path P; there is one chain
for each person p, and it simply consists of the ordered list of the rotations on P that
move the head of p’s list. The rotations in the chain are ordered by the relative order
that they appear on P. It is easy to see that if rotation R moves p’s head before rotation
R’ does, on P, then R precedes R’ in the partial order H*. Now Lemma 5.5 (1) says
that in H* only singleton rotations can precede a singleton, so this implies that there
is a point on each chain where all the rotations above the point are singletons, and
all below it are nonsingletons; we search for that point using binary search. Each query
in the search costs O(n2) time, as above, and since there are only n(n- 1) rotations
per chain, the breakpoint for each chain is found in O(n 2 log n) time. There are only
2n chains, so at most O(n log n) total time is required. Since the form of the dual
rotations (not on P) are known, and the total size of their description is O(n2), once
the singletons have been identified, the rotations not on P can be generated in O(n2)
total time.

6.2.2. Time needed for the elimination of a set of rotations. Any arbitrary set of
rotations SR can be eliminated from any table T in O(n) time. The key is that the
total size of the description of SR is O(n2), so a simple scan through the rotations in
SR finds SR(p) for each person p, and this takes O(n2) time in total. Further, any
table is of size O(n2), and when SR is eliminated, each element to be removed can be
found and removed in constant time, so the elimination of the elements only requires
O(n) time. This also shows that given a path set, the associated stable assignment
can be generated in O(n) time, by simply eliminating the path set from the phase
one table.

6.2.3. Time needed to "construct" II* and to find II*(R). The partial order H* has
O(n2) elements, and if we represent H* as a directed graph, DG, where each node is
an element in H* and each edge corresponds to a pair in the relation, then there might
be as many as [(n4) edges in the graph. However, in the dual enumeration method,
we only need to know H* in order to find the predecessors of a rotation. Hence it will
suffice to know any subgraph of DG whose transitive closure is H*. By definition, the
Hasse diagram of H* is the smallest such subgraph. It turns out that the Hasse diagram
has at most O(n2) edges, and there is a supergraph, DG*, of the Hasse diagram, which
also contains only O(n2) edges, and DG* can be found from the set of rotations in
O(n) time. Then since DG* has only O(n) nodes and edges, given any rotation R,
we can find II*(R) in O(n 2) time by backwards search from R in the obvious way.

Summarizing, we have Lemma 6.4.
LEMMA 6.4. There exists a directed acyclic subgraph, DG*, of DG containing all

the nodes of DG, such that R leads to R’ by a path in DG* if and only ifR is connected
by a directed edge to R’ in DG. Further, DG* has O( n2) edges, and it can be constructed
from the set of rotations in O(n2) time.
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Proof Let ei, hi, si be a triple in rotation R. Recall that when R is eliminated
from any table it is exposed in, the bottom of si’s list moves from ei+ to ei, where
+ 1 is taken mod [RI. Recall also that A(R, i) is the set of people on si’s original list

between ei and ei+l, including ei but excluding ei+l. In order to "construct" H*, we
first examine each rotation R (E, H, $), and for each person si in S, we find A(R, i)
and then for each person p in A(R, i), we mark si in p’s list with rotation R. All of
these markings can be done in O(n2) time, since each A(R, i) is a contiguous list of
elements in si’s original list, and by Lemma 5.1, no two A(R, i) sets intersect.

The rest of the construction method, and the proof of its correctness and time,
essentially appear in [G] 4.2 where enumeration for the stable marriage problem is
discussed. In the stable marriage problem, the set of stable marriages are also represen-
ted by a supergraph of the Hasse diagram of a particular partial order. That supergraph
has O(n2) nodes and edges and is constructed from a marked table similar to the one
above. What is important is that the only properties of the marked table that are needed
in the construction of the supergraph of [G], and to prove the size and time bounds,
also hold for the above marked table used here. The reader is referred to [G] for the
complete details.

6.2.4. Time needed for the dual enumeration method.
THEOREM 6.3. Given DG* as above, each stable assignment can be generated in

O(n2) time, per assignment. In fact, the assignments can be generated on-line in this time.

Proof Consider a node x in B, and define x as a left node if it is the root of B,
or if the edge into it from its parent is a left edge. From each leaf which is also a left
node there is a unique maximal path upward from the leaf consisting only of left nodes
(see Fig. 8). For example, the path from the leftmost leaf in B runs to the root of B.
These paths are edge disjoint, and cover every left edge in B. Now consider the top
node x of one of these paths. Starting from this top node x, the work of the dual
enumeration method along the path down to the associated leaf, consists of an execution
of Algorithm I starting from T(x), which is a subtable of the Phase 1 table. Hence the
total time for the work along this path is O(n2). But these paths are disjoint, each
ends at a distinct leaf of B, hence at a distinct stable assignment, and these paths cover
all the left edges in B. Hence the total work of the dual enumeration method along
the left edges of B is O(n2), per assignment.

FIG. 8. Schematic tree B. The maximal paths of left edges are drawn with wavy lines.

The work on any right edge out of any node x in B consists of finding H*(Ra)
for a given R d, and eliminating H*(Rd) from T(x). As shown above, each of these
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operations can be done in O(n2) time. If (x, y) is a right edge, and y is a leaf, then
we can charge the O(n) time for edge (x, y) to the assignment at node y. If (x, y) is
a right edge and y is not a leaf, then y is the top node of one of the maximal left paths
discussed above. We charge the work on (x, y) to the assignment at the end of that
path. Clearly, no assignment gets charged for more than one right edge, so the work
for all the right edges in B is also O(n), per assignment.

In order to make the time bound on-line, simply expand B in a depth-first manner,
going left whenever possible. In such a traversal, no more than O(n) time can pass
between the generation of new stable assignments. F1

In the above analysis, the time for the left edges can be accounted for more closely,
to get an O(n) time bound per assignment for the left edges. However, the work for
the right edges remains O(n) per assignment, and it is an open question whether this
can be substantially reduced.

7. Characterizing the stable,pairs.
DEFINITION. If persons and j are paired together in some stable assignment,

then they are called a stable pair. If they are paired together in all assignments, then
they are called a fixed pair.

Knuth [K] mentions the utility of knowing the stable pairs in the stable marriage
problem, and in [G] it is shown how to find all the stable pairs for the marriage
problem in O(n2) time. Here we examine the equivalent question for the stable
roommate problem.

DEFINITION. Let Z be the set of singleton rotations, and let P be a subpath from
the root in D containing all and only the singleton rotations. Let x* be the end of
path P.

By Lemmas 5.3 and 5.5, it is clear that such a P exists, and that all stable assignments
are in D(x*). In other words, if all the singleton rotations are eliminated as a set from
the phase one table, T(x*) results, and it contains all stable assignments.

LEMMA 7.1. Person is in a fixed pair if and only if i’s list in T(x*) has only a

single entry.
Proof First, since D(x*) contains all the stable assignments, if i’s list in T(x*)

contains only one entry, j, then (i,j) is a pair in every stable assignment. If i’s list in
T(x*) is not a single entry, then must be in the E set of a rotation R, and in the
H S sets of rotation Rd. Hence by Corollary 6.4, is in at least two stable pairs, and
so is not in a fixed pair.

We claim that if is not in a fixed pair, then can mate with person p only if p
is in the S set for in some nonsingleton rotation R, or if is in the S set for p in R d.
This follows easily from the workings of Algorithm I, and the fact that T(x*) is
generated by the singletons. Combining this observation with Corollary 6.4 gives
Theorem 7.1.

THEOREM 7.1. If (ei,j) is not a fixed pair, then it is a stable pair if and only ifj
or j si in some nonsingleton rotation R E, H, S).

Hence the nonfixed stable pairs can be found immediately from the nonsingleton
rotations, and the fixed pairs can be found in O(n2) time from the singletons, by
eliminating the singletons from the Phase table. Hence the set of all stable pairs can
be found in O(n log n), and any speed up, down to O(n 2) time, in finding the rotations
will speed up finding the stable pairs. It is not difficult, using Theorem 7.1, to find all
the fixed pairs in O(/13) time, but it is open whether this leads to a faster way of finding
all the stable pairs, or of finding the singletons.
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8. Specializing the roommate structure to marriage.
DEFINITION. Let MP be an instance of the stable marriage problem on n men

M, and n women W. Let RMP be an instance of the stable roommate problem on
M U W, obtained from MP by adding to the end of each man (woman) p’s list all the
men (women) other than p.

It is easy to prove that each stable assignment in RMP is a stable marriage in
MP and conversely. Hence the structure of the stable roommate problem applies to
the marriage problem, and it is of interest to see how the general structure specializes
in the case of stable marriage. In particular, it is interesting to compare the results
here to those of [IL], where a structure of the set of stable marriages was first obtained.
The results in this paper specialize to those in [IL] for the marriage problem. However,
the structure of stable marriages is somewhat simpler than the structure of stable
roommate assignments, and this allows faster algorithms to construct it, and a simpler
view of how to construct stable marriages from the partial order(s). Hence the structure
resulting from specializing the roommate structure to stable marriage at first appears
different than that in [IL]. In the next paragraphs we sketch additional observations
that connect the structures and the expositions.

The following facts are stated without proof:
(1) In H* resulting from RMP, there are no singleton rotations.
(2) If R (E, H, S) is a rotation in H* resulting from RMP, then all people in E

have the same sex, and all people in H have the opposite sex. Hence the E set in R
is male if and only if the E set in Rd is female, and the rotations partition naturally
into two equal-sized sets of rotations, one in which each rotation has a male E set
and one in which each rotation has a female E set. We call the first type the male
rotations and the second type the female rotations.

(3) In every pair in relation H* resulting from RMP, the two rotations have the
same sex. Hence, the partial order H* in RMP is composed of two disjoint partial
orders" MH* containing the male rotations, and FH* containing the female rotations.

(4) Let C be a closed set in MH*, and let C’ be the rotations in MH*-C, and
let C’d be the duals, in FH*, of the rotations in C’. If C is closed in MH*, then C’d

is closed in FII*, and hence their union is closed in H*, and since the union contains
exactly one of each dual pair, it represents a stable assignment in RMP (stable marriage
in MP). The converse is obviously also true. Hence, there is a one-one correspondence
between the closed sets in MH* (without further constraints) and the stable marriages
of MP.

This paper introduced the concepts of dual rotation and singleton rotation. Facts
1 and 4 explain why these concepts were not needed in the structure of stable marriage.
Although the exposition is quite different here, the representation of the set of stable
marriages given in [IL] can be expressed as MH*. Facts 3 and 4 help "explain" why
the representation of stable marriages is simpler than the representation of stable
assignments: each closed subset in MH* represents a stable marriage, and conversely,
while in the general case of stable assignment, only particular, highly constrained
closed subsets in II* represent stable assignments. This also partly "explains" why
each stable marriage can be constructed in O(n) time in [G], while in this paper,
O(n2) time for each stable assignment is the best bound obtained. Hence what makes
the roommate problem more involved is the existence of singleton rotations, and the
fact that the nonsingletons do not partition in a nice way, as they do in the marriage
problem. As a final comment, note that given fact 1, all rotations in MII* can be
obtained from a single pass through Algorithm I in O(n 2) time. This bound was first
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obtained for the stable marriage problem by a very different method and argument in
[G].

9. Open problems. First, given the O(n)-time method in [G] to enumerate each
stable marriage, compared to the O(n 2) method for the more general problem of stable
assignment, a natural problem is to bring down the time for enumerating assignments,
or to more fully explain why the stable assignment problem is more complex than the
marriage problem. Second, the O(n log n) bound for finding all the rotations, and
hence the stable pairs, seems too large. We conjecture that O(n 2) is the correct bound,
and that the singletons should be recognizable after a single execution of Algorithm
I. It seems likely that there are additional structural observations about rotations that
will lead to this time bound. For example, it is an easy corollary of Theorem 6.1 that
if R (E, H, S) is a rotation such that E 71 H , then R is a singleton rotation. In
the example presented in this paper, that fact identifies the singletons, but it is not
true in general that for every singleton rotation E f3 H . Finally, there is the more
general question ofwhat algebraic structure is generated by the set of stable assignments,
under some reasonable relation. It is known that the stable marriages generate a
distributive lattice under the relation of "domination" [K], and as pointed out in
[GILS], this is the essential key to the efficient representation of the set of stable
marriages. Further, there is a good sized class of interesting combinatorial problems
each of whose solution sets generate a distributive lattice over some natural relation.
It then follows (see [IR] or IN]) that for each of these problems, the solution sets can
be represented by a compact partial order where the solutions are in one-one correspon-
dence with the closed subsets of the partial order, although the time needed to find
the partial order and to extract the solutions differs in each case. This partial order
representation has many algorithmic uses; applications in stable marriage appear in
[IL], [ILG] and [GILS], but there are many other applications in other combinatorial
problems (see [IR] for a good bibliography). The stable assignments are not known
to be representable as closed subsets in a partial order, but their representation in II
(closed subsets which contain exactly one of each dual pair) is certainly related, and
it raises the question of whether an algebraic study of this structure would be fruitful.
In particular: what sort of algebraic structure do these closed subsets of II generate,
and is there a natural relation that ties them together? Is there an interesting general
class of problems with this structure? Can such problems be reduced to problems of
the first (seemingly simpler) type? Does this more general algebraic approach lead to
more efficient or generalizable algorithms?

History and acknowledgments. The structure H*, the material in 1-5.2, and in
7 and 8, were first derived and presented in [G2]. That report then used H* to

efficiently reduce the roommate problem to the marriage problem. However, the
"proof" of that reduction was in error, and the main corollary of the reduction, the
claimed "partition theorem," is not true. I thank Sally Floyd for first catching this
error and Robert Irving for finding the same error. The present paper, with its focus
on enumeration, first appeared as [G3]. Independently, Robert Irving [I1] developed
a different approach leading to a structure similar to H*, and an enumeration method
similar to the method presented in this paper. His report also gives a solution to the
minimum regret stable roommate problem.

I want to thank the students in the fall 1985 Yale computer science 260 class, who
generated many useful execution trees at the beginning of this research; the trees of
A. Zoler and E. Winters were particularly helpful, the latter demonstrating a counter-
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example to an early conjecture. I thank David Warren who acted as a sounding-board,
and who contributed the version of Phase 1 ofAlgorithm I that appears in this paper.
Particular thanks go to Dana Angluin, who listened to many parts of this work as it
developed. Finally, I thank Carrie Shepard, my stable roommate and partner in stable
marriage.
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Abstract. We give a parallel implementation of merge sort on a CREW PRAM that uses n processors
and O(log n) time; the constant in the running time is small. We also give a more complex version of the

algorithm for the EREW PRAM; it also uses n processors and O(log n) time. The constant in the running
time is still moderate, though not as small.

Key words, sort, merge, parallel algorithm, sample
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1. Introduction. There are a variety of models in which parallel algorithms can
be designed. For sorting, two models are usually considered: circuits and the PRAM;
the circuit model is the more restrictive. An early result in this area was the sorting
circuit due to Batcher [B-68]; it uses time 1/2 log2 n. More recently, Ajtai et al. [AKS-83]
gave a sorting circuit that ran in O(log n) time; however, the constant in the running
time was very large (we will refer to this as the AKS network). The huge size of the
constant is due, in part, to the use of expander graphs in the circuit. The recent result
of Lubotzky et al. [LPS-86] concerning expander graphs may well reduce this constant
considerably; however, it appears that the constant is still large [CO-86], [Pa-87].

The PRAM provides an alternative, and less restrictive, computation model. There
are three variants of this model that are frequently used: the CRCW PRAM, the
CREW PRAM, and the EREW PRAM; the first model allows concurrent access to a
memory location both for reading and writing, the second model allows concurrent
access only for reading, while the third model does not allow concurrent access to a
memory location. A sorting circuit can be implemented in any of these models (without
loss of efficiency).

Preparata [Pr-78] gave a sorting algorithm for the CREW PRAM that ran in
O(log n) time on (n log n) processors; the constant in the running time was small. (In
fact, there were some implementation details left incomplete in this algorithm; this
was rectified by Borodin and Hopcroft in [BH-85].) Preparata’s algorithm was based
on a merging procedure given by Valiant [V-75]; this procedure merges two sorted
arrays, each oflength at most n, in time O(log log n) using a linear number ofprocessors.
When used in the obvious way, Valiant’s procedure leads to an implementation of
merge sort on n processors using O(log n loglog n) time. More recently, Kruskal
[K-83] improved this sorting algorithm to obtain a sorting algorithm that ran in time
O(log n log log n/log log log n) on n processors. (The basic algorithm was Preparata’s;
however, a different choice of parameters was made.) In part, Kruskal’s algorithm
depended on using the most efficient versions of Valiant’s merging algorithm; these
are also described in Kruskal’s paper.

More recently, Bilardi and Nicolau [BN-86] gave an implementation of bitonic
sort on the EREWPRAM that used n/log n processors and O(log2 n) time. The
constant in the running time was small.
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In the next section, we describe a simple CREW PRAM sorting algorithm that
uses n processors and runs in time O(log n); the algorithm performs just 5/2n log n
comparisons. In 3, we modify the algorithm to run on the EREW PRAM. The
algorithm still runs in time O(log n) on n processors; however, the constant in the
running time is somewhat less small than for the CREW algorithm. We note that apart
from the AKS sorting network, the known deterministic EREW sorting algorithms that
use about n processors all run in time O(log n) (these algorithms are implementations
of the various sorting networks such as Batcher’s sort). Our algorithms will not make
use of expander graphs or any related constructs; this avoids the huge constants in
the running time associated with the AKS construction.

The contribution of this work is twofold: first, it provides a second O(log n) time,
n processor parallel sorting algorithm (the first such algorithm is implied by the AKS
sorting circuit); second, it considerably reduces the constant in the running time (by
comparison with the AKS result). Of course, AKS is a sorting circuit; this work does
not provide a sorting circuit.

In 4, we show how to modify the CREW algorithm to obtain CRCW.sorting
algorithms that run in sublogarithmic time. We will also mention some open problems
concerning sorting on the PRAM model in sublogarithmic time. In 5, we consider a
parametric search technique due to Megiddo [M-83]; we show that the partial improve-
ment of this technique in [C-87b] is enhanced by using the EREW sorting algorithm.

2. The CREW algorithm. By way of motivation, let us consider the natural tree-
based merge sort. Consider an algorithm for sorting n numbers. For simplicity, suppose
that n is a power of 2, and all the items are distinct. The algorithm will use an n-leaf
complete binary tree. Initially, the inputs are distributed one per leaf. The task, at each
internal node u of the tree, is to compute the sorted order for the items initially at the
leaves of the subtree rooted at u. The computation proceeds up the tree, level by level,
from the leaves to the root, as follows. At each node we compute the merge of the
sorted sets computed at its children. Use of the O(log log n) time, n processor merging
algorithm of Valiant, will yield an O(log n log log n) time, n processor sorting
algorithm. In fact, we know there is an g(log log n) time lower bound for merging
two sorted arrays of n items using n processors [BH-85]; thus we do not expect this
approach to lead to an O(log n) time, n processor sorting algorithm.

We will not use the fast O(log log n) time merging procedure; instead, we base
our algorithm on an O(log n) time merging procedure, similar to the one described
in the next few sentences. The problem is to merge two sorted arrays of n items. We
proceed in log n stages. In the ith stage, for each array, we take a sorted sample of
2i- items, comprising every n/2i-th item in the array. We compute the merge of these
two samples. Given the results of the merge from the i-1st stage, the merge in the
ith stage can be computed in constant time (this, or rather a related result, will be
justified later).

At present, this merging procedure merely leads to an O(log2 n) time sorting
algorithm. To obtain an O(log n) time sorting algorithm we need the following key
observation"

The merges at the different levels of the tree can be pipelined.

This is plausible because merged samples from one level of the tree provide fairly
good samples at the next level of the tree. Making this statement precise is the key to
the CREW algorithm.
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We now describe our sorting algorithm. The inputs are placed at the leaves of the
tree. Let u be an internal node of the tree. The task, at node u, is to compute L(u),
the sorted array that contains the items initially at the leaves of the subtree rooted at
u. At intermediate steps in the computation, at node u, we will have computed UP(u),
a sorted subset of the items in L(u); UP(u) will be stored in an array also. The items
in UP(u) will be a rough sample of the items in L(u). As the algorithm proceeds, the
size of UP(u) increases, and UP(u) becomes a more accurate approximation of L(u).
(Note that at each stage we use a different array for UP(u).)

We explain the processing performed in one stage at an arbitrary internal node
u of the tree. The array UP(u) is the array at hand at the start of the stage; NEWUP(u)
is the array at hand at the start of the next stage, and OLDUP(u) is the array at hand
at the start of the previous stage, if any. Also, in each stage, we will create an array
SUP(u) (short for SAMPLEUP(u)) at node u; NEWSUP(u), OLDSUP(u) are the
corresponding arrays in respectively, the next, and previous, stage. SUP(u) is a sorted
array comprising every fourth item in UP(u), measured from the right end; i.e., if
]UP(u)I m, then SUP(u) contains the items of rank rn-3-4i in UP(u), for 0 <- <
[m/4J. At each stage, for each node u, the computation comprises the following two
phases.

(1) Form the array SUP(u).
(2) Let v and w be u’s children. Compute NEWUP(u) SUP(v) U SUP(w), where

U denotes merging.
There are some boundary cases where we need to change Phase 1. (For example,

initially, the UP arrays each contain one or zero items. Thus, the SUP arrays would
all be empty and the algorithm would do nothing.) In view of this, we establish the
following goal: at each stage, so long as 0 [UP(u)] [L(u)], the size of NEWUP(u)
is to be twice the size of UP(u). At this point, some definitions will be helpful. A node
is external if IUP(u)I=IL(u) I, and it is inside otherwise. Phases 1 and 2, above, are
performed at each inside node. At external nodes, Phase 2 is not performed and Phase
1 is modified as follows. For the first stage in which u is external, Phase is unchanged.
For the second stage, SUP(u) is defined to be every second item in UP(u), in sorted
order. And for the third stage, SUP(u) is defined to be every item in UP(u), in sorted
order. It should be clear that we have achieved our goal, namely, the following lemma.

LEMMA 1. While O<[UP(u)I<IL(u)I, INEWUP(u)]=2IUP(u)I.
It is also clear that 3 stages after node u becomes external, node t, the parent of

u, also becomes external. We conclude the following.
LEMMA 2. The algorithm has 3 log n stages.
It remains for us to show how to perform the merges needed for Phase 2. We will

show that they can be performed in constant time using O(n) processors. This yields
the O(log n) running time for the sorting algorithm.

A few definitions will be helpful. Let e, f g be three items, with e < g. f is between
e and g if e_-<f and f< g; we also say that e and g straddle f Let L and J be sorted
arrays. Let f be an item in J, and let e and g be the two adjacent items in L that
straddle f (if necessary, we let e =-co or g co); then the rank of f in L is defined
to be the rank of e in L (if e =-oo, f is defined to have rank 0). We define the range
[e, g) to be the interval induced by item e (including the cases e =-co and g oo). L
is a c-cover of J if each interval induced by an item in L contains at most c items from
Y. We also say that the items from J in the range [e, g) are contained in e’s interval.
We define L to be ranked in J (denoted L- J) if for each item in L we know its rank
in J, and we define L and J to be cross-ranked (denoted L x J) if both L J and J - L.
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We will need the following observation to show that the merge can be performed
in O(1) time:

OLDSUP(v) is a 3-cover for SUP(v) for each node v; as UP(u)=
OLDSUP(v)UOLDSUP(w), we deduce UP(u) is a 3-cover for SUP(v);
similarly, UP(u) is a 3-cover for SUP(w).

This will be shown in Corollary 1, below. But first, we describe the merge
(Phase 2).

We need some additional information in order to perform the merge quickly.
Specifically, we assume UP(u)-* SUP(v), UP(u)- SUP(w) are available. Using these
rankings, in Step 1 we compute NEWUP(u), and in Step 2 we compute NEWUP(u)-
NEWSUP(v) and NEWUP(u)- NEWSUP(w).

Step lmcornputing NEWUP(u). Let e be an item in SUP(v); the rank of e in
NEWUP(u SUP(v) SUP(w is equal to the sum of its ranks in SUP(v) and SUP(w).
So to compute the merge we cross-rank SUP(v) and SUP(w) (the method is given in
the following two paragraphs). At this point, for each item e in SUP(v), besides
knowing its rank in NEWUP(u), we know the two items d and f in SUP(w) that
straddle e, and we know the ranks of d and f in NEWUP(u) (these will be needed in
Step 2). For each item in NEWUP(u) we record whether it came from SUP(v) or
SUP(w) and we record the ranks (in NEWUP(u)) of the two straddling items from
the other set.

Let e be an item in SUP(v); we show how to compute its rank in SUP(w). We
proceed in two substeps.

Substep 1. For each item in SUP(v) we compute its rank in UP(u). This task is
performed by processors associated with the items in UP(u), as follows. Let y be an
item in UP(u). Consider the interval I(y) in UP(u) induced by y, and consider the
items in SUP(v) contained in I(y) (there are at most three such items by the 3-cover
property). Each of these items is given its rank in UP(u) by the processor associated
with y. Substep 1 takes constant time if we associate one processor with each item in
the UP array at each inside node.

Substep 2. (See Fig. 1.) For each item e in SUP(v) we compute the rank of e in
SUP(w). We determine the two items d and f in UP(u) that straddle e, using the rank
computed in Substep 1. Suppose that d and f have ranks r and t, respectively, in
SUP(w). Then all items of rank r or less are smaller than item e (recall we assumed
that all the inputs were distinct), while all items of rank greater than are larger than
item e; thus the only items about which there is any doubt as to their size relative to
e are the items with rank s, r < s <_-t. But there are at most three such items by the
3-cover property. By means of at most two comparisons, the relative order of e and
these (at most) three items can be determined. So Substep 2 requires constant time if
we associate one processor with each item in each SUP array.

UP(u) 0 do,.=..
0 0 0

e
SUP(v)

<e
SUP(w)

>e

FIG.
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Step 2--maintaining ranks. For each item e in NEWUP(u), we want to determine
its rank in NEWSUP(v) (and in NEWSUP(w), using an analogous method). We start
by making a few observations. Given the ranks for an item from UP(u) in both SUP(v)
and SUP(w) we can immediately deduce the rank of this item in NEWUP(u)=
SUP(v) t_J SUP(w) (the new rank is just the sum of the two old ranks). Similarly, we
obtain the ranks for items from UP(v) in NEWUP(v). This yields the ranks of items
from SUP(v) in NEWSUP(v) (for each item in SUP(v) came from UP(v), and
NEWSUP(v) comprises every fourth item in NEWUP(v)). Thus, for every item e in
NEWUP(u) that came from SUP(v) we have its rank in NEWSUP(v); it remains to
compute this rank for those items e in NEWUP(u) that came from SUP(w).

Recall that for each item e from SUP(w) we computed the straddling items d and

f from SUP(v) (in Step 1). (See Fig. 2.) We know the ranks r and of d and f,
respectively, in NEWSUP(v) (as asserted in the previous paragraph). Every item of
rank r or less in NEWSUP(v) is smaller than e, while every item of rank greater than

is larger than e; thus, the only items about which there is any doubt concerning their
size relative to e are the items with rank s, r < s <-t. But there are at most three such
items by the 3-cover property. As before, the relative order of e and these (at most)
three items can be determined by means of at most two comparisons. Thus, Step 2
takes constant time if we associate a processor with each item in the NEWUP array
at each inside node.

NEWUP (u)

NEWSUP(v) o o o o o o

<e >e

FG. 2

ke....y: from SUP (w)
o from SUP (v)

It remains to prove the 3-cover property (Corollary 1 to Lemma 3) and to determine
the complexity of the algorithm (Lemmas 4 and 5).

LEMMA 3. Let k >= 1. In each stage, any k adjacent intervals in SUP(u) contain at

most 2k q- 1 items from NEWSUP(u).
Proof We prove the result by induction on the (implicit) stage number. The claim

is true initially, for when SUP(u) first becomes nonempty, it contains one item and
NEWSUP(u) contains two items, and when SUP(u) is empty, NEWSUP(u) contains
at most one item.

Inductive step. We seek to prove that k adjacent intervals in SUP(u) contain at
most 2k + 1 items from NEWSUP(u), assuming that the result is true for the previous
stage, i.e., that for all nodes u’, for all k’-> 1, k’ intervals in OLDSUP(u’) contain at
most 2k’+ 1 items from SUP(u’).

We first suppose that u is not external at the start of the current stage. (See Fig. 3.)
Consider a sequence of k adjacent intervals in SUP(u); they cover the same range as
some sequence of 4k adjacent intervals in UP(u). Recall that UP(u)=
OLDSUP(v) U OLDSUP(w). The 4k intervals in UP(u) overlap some h >-1 adjacent
intervals in OLDSUP(v) and some j=> 1 adjacent intervals in OLDSUP(w), with
h +j =4k + 1. The h intervals in OLDSUP(v) contain at most 2h + 1 items from SUP(v),
by the inductive hypothesis, and likewise, the j intervals in OLDSUP(w) contain at
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k intervals

SUP(u). o o

4k intervals "UP(u)

Is ..) int

OLDSUP(v) e-’

_< 2h+l items < 2j+ items

FIG. 3

OLDSUP (w)

SUP(w)

most 2j+ 1 items from SUP(w). Recall that NEWUP(u)= SUP(v)t_J SUP(w). Thus the
4k intervals in UP(u) contain at most 2h+2j+2=8k+4 items from NEWUP(u). But
NEWSUP(u) comprises every fourth item in NEWUP(u); thus the k adjacent intervals
in SUP(u) contain at most 2k+ 1 items from NEWSUP(u).

It remains to prove the lemma for the first and second stages in which u is external
(for the third stage in which u is external there is no NEWUP(u) array, and hence no
NEWSUP(u) array). Here we can make the following stronger claim concerning the
relationship between SUP(u) and NEWSUP(u): k adjacent intervals in SUP(u) contain
exactly 2k items from NEWSUP(u) and every item in SUP(u) occurs in NEWSUP(u).
This is readily seen. Consider the first stage in which u is external. SUP(u) comprises
every fourth item in UP(u) L(u) and NEWSUP(u) comprises every second item in
UP(u). Clearly the claim is true for this stage; the argument is similar for the second
stage.

Taking k 1 we obtain the following.
COROLLARY 1. SUP(u) is a 3-cover of NEWSUP(u).
Remark. An attempt to prove Lemma 3, in the same way, with a sampling strategy

of every second (rather than every fourth) item will not succeed. This explains why
we chose the present sampling strategy. It is not the only strategy that will work
(another possibility is to sample every eighth item, or even to use a mixed strategy,
such as using samples comprising every second and every fourth item, respectively, at
alternate levels of the tree); however, the present strategy appears to yield the best
constants.

We turn to the analysis of the algorithm. We start by computing the total number
of items in the UP arrays. If [UP(u)[ 0 and v is not external, then 21UP(u)
[NEWUP(u)[ [SUP(v)I + [SUP(w) (IUP(v)[ + [UP(w)[) 1/2[UP(v)[; that is"

Observation. [UP(u)[ =1/4[UP(v)[. So the total size of the UP arrays at u’s level is- of the size of the UP arrays at v’s level, if v is not external.
The observation need not be true at external nodes v. It is true for the first stage

in which v is external; but for the second stage, [UP(u)[ =1/21UP(v)[, and so the total
size of the UP arrays at u’s level is 1/4 of the total size of the arrays at v’s level; likewise,
for the third stage, IUp(u)l- IuP(v)l, and so the total size of the UP arrays at u’s level
is of the total size of the UP arrays at v’s level.
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Thus, on the first stage in which v is external, the total size of the UP arrays is
bounded above by n + n/8 + n/64 + n + n/7; on the second stage, by n + n/4+
n/32+ n+2n/7; on the third stage, by n+ n/2+ n/16+ n+4n/7. Similarly,
on the first stage, the total size of the SUP arrays (and hence of the NEWUP arrays
at inside nodes) is bounded above by n/4+ n/32+ n/256+ 2n/7; on the second
stage, by n/2 + n16+ n 128 + 4n/7; on the third stage, by n + n/8 + n/64 +
8n/7.

We conclude that the algorithm needs O(n) processors (so as to have a processor
standing by each item in the UP, SUP, and NEWUP arrays) and takes constant time.
Let us count precisely how many comparisons the algorithm performs.

LEMMA 4. The algorithm performs 15/4n log n comparisons.

Proof Comparisons are performed in Substep 2 of Step 1 and in Step 2. In Step
1, at most 2 comparisons are performed for each item in each SUP array. Over a
sequence of three successive stages this is 2. (2n/7 + 4n/7 + 8n/7)= 4n comparisons.
In Step 2, at most 2 comparisons are performed for each item in the NEWUP array
at each inside node. Over a sequence of three successive stages this is also 4n com-
parisons. However, we have overcounted here; on the third stage, in which node u
becomes external, we do not perform any comparisons for items in NEWUP(u); this
reduces the cost of Step 2 to 2n comparisons.

So we have a total of at most 6n comparisons for any three successive stages.
However, we are still overcounting; we have not used the fact that during the second
and third stages in which node v is external, SUP(v) is a 2-cover of NEWSUP(v) and
every item in SUP(v) occurs in NEWSUP(v) (see the proof of Lemma 3). This implies
that in Step 1, for each item in array SUP(v), in the second or third stage in which v
is external, at most one comparison need be made (and not two). This reduces the
number of comparisons in Step 1, over a sequence of three stages, by n/2 + n 3/2n.
Likewise, in Step 2, for each item in array NEWUP(u), in the first or second stages
in which the children of u are external nodes, at most one comparison is performed.
This reduces the number of comparisons in Step 2, over a sequence of three stages,
by n/4+ n/2 3/4n. Thus the total number of comparisons, over the course of three
successive stages, is 5/2n for Step 1, and 5/4n for Step 2, a total of 15/4n com-
parisons.

In order to reduce the number of comparisons to 5/2n log n, we need to modify
the algorithm slightly. More specifically, we modify Step 1, as follows, so that it
performs a total of 5/4n log n comparisons, rather than 5/2n log n comparisons. When
computing the rank of each item from SUP(v) (respectively, SUP(w)) in SUP(w)
(respectively, SUP(v)), we will allow only the items in SUP(v) to perform comparisons
(or rather, processors associated with these items). We compute the ranks for items
from SUP(v) as before. To obtain the ranks for items from SUP(w) we need to change
both substeps. We change Substep 1 as follows. For each item h in SUP(w), we compute
its rank r in UP(u) as before (the old Substep 1). Let k be the item of rank r in UP(u),
and let s be the rank of k in SUP(v). We also store the rank s with item h. s is a good
estimate of the rank of h in SUP(v); it is at most three smaller than the actual rank.
We change Substep 2 as follows. (See Fig. 4.) Item e in SUP(v), of rank t, communicates
its rank to the following, at most three, receiving items in SUP(w): those items with
rank in SUP(v) which at present store a smaller estimate for this rank. (These items
are determined as follows. Let d and f be the items from UP(u) that straddle e. Let
g be the successor of e in SUP(v). The receiving items are exactly those items straddled
both by e and g, and by d and f; the second constraint implies that there are at most
three receiving items for e, by the 3-cover property.) For those items h in SUP(w) that
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do not receive a new rank from an item in SUP(v), the rank s computed in the modified
Substep 1 is the correct rank.

This new procedure reduces the number of comparisons in Step 1 by a factor of
2, and leaves unaltered the number of comparisons in Step 2. We conclude the following.

LEMMA 5. The algorithm performs 5/2n log n comparisons.
We have shown the following.
THEOREM 1. There is a CREW PRAM sorting algorithm that runs in O(log n) time

on n processors, performing at most 5/2n log n comparisons.
Remark. The algorithm needs only O(n) space. For although each stage requires

O(n) space, the space can be reused from stage to stage.

3. The EREW algorithm. The algorithm from 2 is not EREW at present. While
it is possible to modify Step 1 of a phase so that it runs in constant time on an
EREW PRAM, the same does not appear to be true for Step 2. Since we use a somewhat
different merging procedure here, we will not explain how Step 1 can be modified.
However, we do explain the difficulty faced in making Step 2 run in constant time on
an EREW PRAM. The explanation follows. Consider NEWUP(u) and consider e and
g, two items adjacent in SUP(v); suppose that in NEWUP(u), between e and g, there
are many items f from SUP(w). Let f’ be an item in NEWSUP(v), between e and g.
(See Fig. 5.) The difficulty is that for each item f we have to decide the relative order
of f and f’; furthermore, the decision must be made in constant time, without read
conflicts, for every such item f This cannot be done. To obtain an optimal logarithmic
time EREW sorting algorithm we need to modify our approach. Essentially, the
modification causes this difficult computation to become easy by precomputing most
of the result.

We now describe the EREW algorithm precisely. We use the same tree as for the
CREW algorithm. At each node v of the tree we maintain two arrays: UP(v) (defined
as before), and DOWN(v) (to be defined). We define the array SUP(v) as before; we
introduce a second sample array, SDOWN(v): it comprises every fourth item in

NEWUP(u)...

f’NEWSUP(v)... o o

key: from SUP (w)
o from SUP (v)

FIG. 5
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DOWN(v). Let u, w, x, and y be, respectively, the parent, sibling, left child, and right
child of v. A stage of the algorithm comprises the following three steps, performed at
each node v.

(1) Form the arrays SUP(v) and SDOWN(v).
(2) Compute NEWUP(v) SUP(x) SUP(y).
(3) Compute NEWDOWN(v) SUP(w) J SDOWN(u).

We will need to maintain some other arrays in order to perform the merges in constant
time; namely, the arrays UP(v)U SDOWN(v) and SUP(v)J SDOWN(v). It is useful
to note that SDOWN(v) is a 3-cover of NEWSDOWN(v); the proof of this result is
identical to the proof of the 3-cover property for the SUP arrays (given in Lemma 3
and Corollary 1).

We describe the new merging procedure. Assume that J and K are two sorted
arrays of distinct items, J and K having no items in common. We show how to compute
J x K in constant time using a linear number of processors (this yields L J U K),
supposing that we are given the following arrays and rankings (see Fig. 6):

(i) Arrays SJ and SK that are 3-covers for J and K, respectively.
(ii) SJ x SK and SL SJ (.J SK.
(iii) SK -> J and SJ -> K.
(iv) SJ -> J and SK --> K.
We will also compute SL--> L.
We note that the interval I between two adjacent items, e and f, from SL SJ (.J SK

contains at most three items from each of J and K. In order to cross-rank J and K,
it suffices, for each such interval, to determine the relative order of the (at most) six
items it contains. To carry out this procedure we associate one processor with each
interval in the array SL. The number of intervals is one larger than the number of
items in this array. The cross-ranking proceeds in two substeps: for each interval I in
SL, in Substep 1 we identify the two sets of (at most) 3 items contained in I, and in
Substep 2 we compute the cross-rankings for the items contained in I.

key: -- input ranking

---" output ranking

FIG. 6

Substep 1. The (at most) three items from J are those straddled by e and f If e
is in SJ (respectively, SK) we determine the leftmost of these (at most) three items
using SJ J (respectively, SK J); the rightmost item is obtained similarly. The (at
most) three items from K are computed analogously.

Substep 2. This substep is straightforward; for each interval in SL, it requires at
most five comparisons, and a constant number of other operations.

Computing SL- L. For each item e in SL, we simply add its ranks in J and K,
which yields its rank in L (these ranks are obtained from SJ J and SJ K if e is
from SJ, and from SK J and SK K if e is from SK).
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Remark. If SJ (respectively, SK) is a 4-cover of J (respectively, K) but SJ
(respectively, SK) is contained in J (respectively, K) then (essentially) the same
algorithm can be used, since the interior of any interval in SL will still contain at most
three items from J and at most three items from K.

We return to the EREW sorting algorithm. We suppose that the following rankings
are available at the start of a phase at each node v (see Fig. 7):

(a) OLDSUP(x) x OLDSUP(y).
(b) OLDSUP(v) --> SUP(v).
(c) OLDSUP(w) OLDSDOWN(u).
(d) OLDSDOWN(v)-> SDOWN(v).
(e) SUP(v) SDOWN(v).
(f) UP(v) xSDOWN(v).
(g) SUP(v) x DOWN(v).

In addition, we note that since DOWN(v)= OLDSUP(w)U OLDSDOWN(u), and as
we have SUP(v)x DOWN(v) from (g), we can immediately obtain:

(h) OLDSUP(w) --> SUP(v).
(i) OLDSDOWN(u)--> SUP(v).

Likewise, from UP(v)=OLDSUP(x)UOLDSUP(y) and from (f), UP(v) x
SDOWN(v), we obtain:

(j) OLDSUP(x) --> SDOWN(v), OLDSUP(y) --> SDOWN(v).
The computation of (a)-(g) for the next stage at node v proceeds in five steps. In Step
1 we compute (a) and (b), in Step 2, (c) and (d), in Step 3, (e), in Step 4, (f), and in
Step 5, (g).

Remark. We note that all the items in DOWN(u) come from outside the subtree
rooted at u (this is easily verified by induction). This implies that SUP(w) and
SDOWN(u) have no items in common, and likewise for UP(v) and DOWN(v). Thus,
all the cross-rankings J x K that we compute below obey the assumption that J and
K contain no items in common.

Step 1. Compute SUP(x)x SUP(y) (yielding NEWUP(v)). The computation also
yields UP( v) - NEWUP(v), and hence SUP(v)-NEWSUP(v). (See Fig. 8.) We
already have:

(i) OLDSUP(x)x OLDSUP(y) (from (a) at node v).
(ii) OLDSUP(x)+ SUP(y) (from (h) at node y).
(iii) OLDSUP(y)--> SUP(x) (from (h) at node x).

UP (v) DOWN v

FIG. 7
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(a)
OLDSUP( x - =- OLDSUP y

SUP(x) SUP (y)

FIG. 8. Step 1.

(iv) OLDSUP(x)- SUP(x) (from (b) at node x).
(v) OLDSUP(y)- SUP(y) (from (b) at node y).
Step 2. Compute SUP(w) SDOWN(u) (yielding NEWDOWN(v)). This compu-

tation also yields DOWN(v)-NEWDOWN(v), and hence SDOWN(v)-
NEWSDOWN(v). (See Fig. 9.) We already have:

(i) OLDSUP(w) OLDSDOWN(u) (from (c) at node v).
(ii) OLDSUP(w)- SDOWN(u) (from (j) at node u).
(iii) OLDSDOWN(u) SUP(w) (from (i) at node w).
(iv) OLDSUP(w) -* SUP(w) (from (b) at node w).
(v) OLDSDOWN(u)-> SDOWN(u) (from (d) at node u).
Step 3. Compute NEWSUP(v)NEWSDOWN(v). (See Fig. 10.) We already

have:
(i) SUP(v)SDOWN(v) (from (e) at node v).
(ii) SUP(v)NEWDOWN(v), and hence SUP(v)-->NEWSDOWN(v) (this is

obtained from: SUP(v)SUP(w), from Step 1 at node u, and SUP(v)
SDOWN(u), from Step 2 at node w, yielding SUP(v)
[SUP(w) 1.3 SDOWN(u)] SUP(v) NEWDOWN(v)).

(c)
OLDSUP (w)= = OLDSDOWN (u)

(b)

S U P (w) SDOWN u

FIG. 9. Step 2.

(e)
SUP v = =- SDOWN v

step step 2

NEWSUP v NEWSDOWN v

FIG. 10. Step 3.
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(iii) NEWUP(v) xSDOWN(v), and hence SDOWN(v)NEWSUP(v) (this is
obtained from SUP(x)x SDOWN(v), from Step 2 at node y, and SUP(y)x
SDOWN(v), from Step 2 at node x, yielding [SUP(x)USUP(y)]x
SDOWN(v) NEWUP(v) x SDOWN(v)).

(iv) SUP(v) - NEWSUP(v) (from Step 1 at node v).
(v) SDOWN(v) NEWSDOWN(v) (from Step 2 at node v).
Step 4. Compute NEWUP(v) x NEWSDOWN(v). (See Fig. 11.) We already have:
(i) NEWSUP(v)x SDOWN(v) (from Step 3(iii) at node v).
(ii) SDOWN(v)- NEWUP(v) (from Step 3(iii) at node v).
(iii) NEWSUP(v) NEWSDOWN(v) (from Step 3 at node v).
(iv) NEWSUP(v)- NEWUP(v).
(v) SDOWN(v) NEWSDOWN(v) (from Step 2 at node v).

(Here NEWSUP(v) is a 4-cover of NEWUP(v), contained in NEWUP(v); as explained
in the remark following the merging procedure, this leaves the complexity of the
merging procedure unchanged.)

Step 5. Compute NEWSUP(v) x NEWDOWN(v). (See Fig. 12.) We already have:
(i) SUP(v)x NEWSDOWN(v) (from Step 3(ii) at node v).
(ii) SUP(v)- NEWDOWN(v) (from Step 3(ii) at node v).
(iii) NEWSDOWN(v) NEWSUP(v) (from Step 3 at node v).
(iv) SUP(v)- NEWSUP(v) (from Step 1 at node v).
(v) NEWSDOWN(v) NEWDOWN(v).

We conclude that each stage can be performed in constant time, given one processor
for each item in each array named in (i) of each step, plus one additional processor
per array.

It remains to show that only O(n) processors are needed by the algorithm. This
is a consequence of the following linear bound on the total size of the DOWN arrays.

LEMMA 6. IDOWN(v)]--< 16/311SUP(v) ].
Proof This is readily verified by induction on the stage number.

step 3 iii
NEWSUP(v) = SDOWN(v)

NEWUP(v) NEWSDOWN (v)

FIG. 11. Step 4.

step 3ii
SUP( v = = NEWSDOWN v

NEWSUP v NF’W DOWN v

FIG. 12. Step 5.
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COROLLARY 2. The total size of the DOWN arrays, at any one stage, is O( n).
This algorithm, like the CREW algorithm, has 3 log n stages. We conclude the

following.
THEOREM 2. There is an EREW PRAM algorithm for sorting n items; it uses n

processors and O( n space, and runs in O(log n) time.
We do not give the elaborations to the merging procedure required to obtain a

small total number of comparisons (as regards constants). We simply remark that it
is not difficult to reduce the total number of comparisons to less than 5n log n com-
parisons; however, as there is no corresponding reduction in the number of other
operations, this complexity bound gives a misleading impression of efficiency (which
is why we do not strive to attain it).

4. A sublogarithmic time CRCW algorithm. References [AAV-86] and [AV-87]
give tight upper and lower bounds for sorting in the parallel comparison model; using
p => n processors to sort n items the bound is (R)(log n/log 2p/n). In addition, there is
a lower bound of l(log n/log log n) for sorting n items with a polynomial number of
processors in the CRCW PRAM model [BH-87]. We give a CRCW algorithm that uses
time O(log n/loglog2p/n) for 2n<=p<-n2. It is not clear which, if any, of the upper
and lower bounds are tight for the CRCW PRAM model.

We describe the algorithm; it is very similar to the CREW algorithm. Let r p/n.
It is convenient to assume that n is a power of r (the details of the general case are
left to the reader). There are three major changes to the CREW algorithm. First, rather
than use a binary tree to guide the merges, we use an r-way tree. This tree has height
h log n/log r. Second, we define the array SUP(v) to comprise every r2 item in UP(v),
rather than every fourth item; again, at the external nodes we need a special definition,
namely" SUP(v) comprises every r item in the first stage v is external, every rth item
in the second stage, and every item in the third stage. Third, the array NEWUP(v) is
defined to be the r-way merge of the SUP arrays at its r children. As before, the
algorithm will have 3h 3 log n/log r stages. But here, rather than use constant time,
each stage will take O(log r/log log 2r) time.

To obtain the r-way merge we perform 1/2r(r-1) pairwise merges of the r SUP
arrays. To obtain the rank of an item in the array NEWUP(v) we sum its ranks in
each of the r SUP arrays. We use r processors to compute this sum; they take
O(log r/log log r) time on a CRCWPRAM using the summation algorithm from
[CV-87].

Before explaining how to perform a single pairwise merge it is useful to prove a
cover property.

LEMMA 7. k intervals in SUP(v) contain at most rk+ 1 items in NEWSUP(v).
Proof The proof is very similar to that of Lemma 2; the details are left to the

reader. [3

COROLLARY 3. SUP(v) is an (r+ 1)-cover of NEWSUP(v).
We perform the merges essentially as in the CREW algorithm. Here, at the start

of a stage, we need to assume that for each node u, for each item in UP(u) we have
its rank in the SUP arrays at all r of u’s children. Let v, w be children of u. We proceed
in two steps, as in the CREW algorithm.

In Step 1, we start by dividing each pairwise merge into a collection of merging
subproblems, each of size at most 2(r+ 1); each subproblem is then solved using
Valiant’s merging algorithm [V-75]. To divide a merge into subproblems, we exploit
the fact that UP(u) is an (r+ 1)-cover of SUP(v), as follows. For each child v of u,
we label each item in SUP(v) with its rank in UP(u) (this is carried out in constant
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time by providing each item in UP(u) with r(r+ 1) processors). A subproblem is
defined by those items labeled with the same rank; it comprises two subarrays each
containing at most r+ 1 items. For the problem of merging SUP(v) and SUP(w), for
any item e in SUP(v) (respectively, SUP(w)) the boundaries of its subproblem can be
found as follows: let f and g be the items in UP(u) straddling e (obtained using the
rank of e in UP(u)); the ranks off and g in SUP(v), SUP(w) yield the boundaries
of the subproblem. To ensure that the merges performed using Valiant’s algorithm
each take O(log log 2r) time, we need to provide a linear number of processors for
each merge. Since each item in SUP(v) participates in exactly r-1 merges, it suffices
to allocate r-1 processors to each item in each SUP array. This gives us NEWUP(u).

In Step 2, ranking the items from NEWUP(u)- SUP(v) in NEWSUP(v) for each
child v of u, we proceed as follows. Consider an interval I induced by an item e from
SUP(v). For each such interval/, we divide each collection of items from NEWUP(u)-
SUP(v), contained in I, into sets of r contiguous items, with possibly one smaller set
per interval. Using Valiant’s algorithm, we merge each such set with the at most r / 1
items in NEWSUP(v) contained in I. If we allocate r processors to each merging
problem, they will take O(log log 2r) time. To allocate the processors, we assign 2(r 1)
processors to each item in NEWUP(u). Each item participates in r-1 merging prob-
lems. In a merging problem, if the item is part of a set of size r, the item uses one of
its assigned processors. If the item is part of a set of size <r, the item takes one
processor from the item e defining the interval I. Each item e contributes at most r- 1
processors to a merging problem in the latter manner, thus it suffices to provide 2(r- 1)
processors to each item in NEWUP(u).

We conclude the following.
THEOREM 3. There is a CRCW sorting algorithm for the CRCW PRAM that uses

2n <- p <-_ n 2 processors and runs in time O(log n/log log 2p/n).

5. A parametric search technique. The reader is warned that this section is not
self-contained. We recall Megiddo’s parametric search technique [M-83] and its
improvement in many instances in [C-87b]. The improvement was an asymptotic
improvement, but was not practical for it was based on the AKS sorting network. As
we will explain, the role played by the AKS network can be replaced by the EREW
sorting algorithm from 3.

In a nutshell, the procedure of [C-87b] can be described as follows. A comparison-
based sorting algorithm is executed; however each "comparison" is an expensive
operation costing C(n) time, where n is the size of the problem at hand. In addition,
the comparisons have the property that they can be "batched": given a set of c
comparisons, one of them can be evaluated, and the result of this evaluation resolves
further c/2 comparisons, in an additional O(c) time. Examples of search problems
(called parametric search problems), mostly geometric search problems, for which this
approach is fruitful, include [M-83], [C-87a], [C-87b], [CSS-88]. Megiddo showed
that parallel sorting algorithms, executed sequentially, provide good sorting algorithms
for this type of problem; the reason is that a parallel sorting algorithm naturally batches
comparisons.

In [C-87b] it was shown how to achieve a running time of O(n log n +log nC(n))
for the parametric search problems, when using a depth O(log n) sorting network as
the sorting algorithm. (Briefly, the solution required O(log n) "comparisons" to be
evaluated; the overhead for running the sorting algorithm and selecting the comparisons
to be evaluated was O(n log n) time.) It was also observed that to achieve this result
it sufficed to have a comparison-based algorithm which could be represented as an
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O(log n) depth, O(n) width, directed acyclic graph, having bounded indegree, where
each node of the graph represented a comparator and the edges carried the outputs
of the comparators.

In fact, a slightly more general claim holds. We start by defining a computation
graph corresponding to an EREW PRAM algorithm on a given input. We define a
parallel EREW PRAM computation to proceed in a sequence of steps of the following
form. In each step, every processor performs at most b (a constant) reads, followed
by at most b writes; a constant number of arithmetic operations and comparisons are
intermixed (in any order) with the reads and writes. We represent the computation of
the algorithm on a given input as a computation graph; the graph has depth 2 T (where
T is the running time of the algorithm) and width M+ P (where M is the space used
by the algorithm and P is the number of processors used by the algorithm). In the
computation graph each node represents either a memory cell at a given step, or a
processor at a given step. There is a directed edge ((m, t), (p, t)) if processor p reads
memory cell m at step t; likewise there is a directed edge ((p, t), (m, + 1)) if processor
p writes to memory cell m at step t. If no write is made to memory cell m at step t,
there is a directed edge ((m, t), (m, t+ 1)).

Suppose we restrict our attention to algorithms such that at the start of the
algorithm, for each memory cell (at step + 1) we know whether the in-edge (in the
computation graph) comes from a processor (at step t) or a memory cell (at step t).
For a sorting algorithm of this type, that runs in time O(log n) on n processors using
O(n) space, we can still achieve a running time of O(n log n + log nC(n)) for the
parametric search problems. (To understand this, it is necessary to read [C-87b, 1-3].
The reason the result holds is that we can determine when a memory cell is active, to
use the terminology of [C-87b], and thus play the game of 2 of [C-87b] on the
computation graph. In general, if we do not have the condition on the in-edges for
memory cells, it is not clear how to determine if a memory cell is active. As explained
in 3 of [C-87b], given a solution to the game of 2, we can readily obtain a solution
to the parametric search problem).

Remark. The computation graph need not be the same for all inputs of size n. In
addition, the graph does not have to be explicitly known at the start of the sorting
algorithm.

Next, we show that the EREW sorting algorithm satisfies the conditions of the
previous paragraph. Each of the five steps for one stage of the EREW algorithm
comprises the computation of the cross-ranks of two arrays. The computation of the
cross-ranks proceeds in two substeps; in the first substep, each processor performs a
constant number of reads; in the second substep, each processor performs a constant
number of writes.

We conclude that the result of [C-87b] can be achieved with a much smaller
constant, thereby making the paradigm less impractical.
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A NATURAL NP-COMPLETE PROBLEM WITH A NONTRIVIAL LOWER
BOUND*

ETIENNE GRANDJEAN

Abstract. Let SAT<(N) denote the following problem. Instance. A conjunction p of (in)equalities t
or tt <t2, where tt, are terms of the form ff2"" .f(e), where eN, s_>-0 and each f is a monadic

function symbol. Question. Is q satisfiable on N?
Let SAT () denote the following subproblem of SAT< (N) defined by the following restriction: we

assume that 0-<_ s =< 2 and each f {g, g2}. These two problems are NP-complete. We show that they are

solved by a Turing machine using a polynomial number of deterministic steps and only n nondeterministic

steps. This is nearly optimal since we prove that any problem in NTIME (n) is reducible in deterministic
time O(n) to SAT< (N) (respectively, SAT (N)). It follows from the result U,. DTIME (cn) NTIME (n)
of Paul et al. [Proc. 24th Annual IEEE Symposium on Foundations of Computer Sciences, 1983, pp.
429-438] that these problems are not in LI DTIME (cn). Further, we show that SAT (N) and SAT< (N)
belong to E2(n), the class of problems solved in time O(n) by alternating Turing machines using one

alternation. They are the first natural problems proved to be in E2(n)- 1.3 DTIME (cn).

Key words. NP-complete problem, determinism, nondeterminism, Turing machine, alternating Turing
machine, linear time reduction, random access machine, spectrum of first-order sentence

AMS(MOS) subject classification. 68Q

1. Introduction. In his Turing Award Lecture [Co2] S. Cook notes," the record
for proving lower bounds on problems of small complexity is appalling. In fact there
is no nonlinear time lower bound known on a general purpose computation model for
any natural problem in NP, in particular, for any of the 300 problems listed in [GaJo].
Of course, one can prove by diagonal arguments the existence of problems in NP
requiring time n k for any fixed k."

Recently, Adachi et al. [AIK] have proved lower bounds on game problems (in
directed graphs) which are polynomial time complete. For instance, they show that
"the cat and K-mouse game" introduced by [ChSt] is not in DTIME (n’-) for any
e > 0 and integers K, k with K >-4k + 1 > 5. They essentially prove that each problem
in DTIME (n ’) is reducible to the game problem in time O(n log n); the result follows
by the well-known hierarchy of DTIME classes (see [HoU1]). These seem to be the
first natural problems in NP (in fact, in P= 1.3, DTIME (n’)) on which a nonlinear
time lower bound is proved. However, no precise (polynomial time) upper bound s
stated and we think that the stated lower bound is not optimal.

As Cook notes, it is surprising that none of the many classical NP-complete
problems has a known time lower bound. One reason seems to be that the reductions
of problems in NP to the generic NP-complete problems, i.e., the satisfiability of
Boolean formulas (SAT) and its restriction, 3-satisfiability (3-SAT), are not efficient
enough. The best-known reduction (stated by [Sr]) is as follows: there is a fixed k
such that each problem in NTIME (n) is reducible to 3-SAT in deterministic time
O(n(log2 n)’). Because of our lack of knowledge about relationships between NTIME
classes and DTIME classes, we cannot deduce (from this reduction) any nontrivial
time lower bound on problem SAT (respectively, 3-SAT). However, [PPST] obtained
a very nice result about this: U DTIME (cn) NTIME (n).

This is the first result which states that nondeterminism increases the power of
usual (i.e., one-dimensional multitape) Turing machines. It follows that a hypothetical
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linear time reduction of NTIME (n) to SAT (i.e., a slight improvement of the known
reduction) would imply that SAT DTIME (cn). Unhappily, such a reduction seems
to be improbable (or inaccessible) for it would also imply that each problem in
NTIME(n) could be solved (as problem SAT) by a Turing machine using only
n(log2 n) k deterministic steps and n/log2 n nondeterministic steps (a Boolean formula
of length n contains O(n/log2 n) distinct variables).

In fact, some versions of the tiling problem (cf. [Le]) are NP-complete and can
be proved to be NTIME (n)-hard (with respect to deterministic linear time reductions)
by a straightforward argument. Tiling is essentially a direct encoding of a nondeter-
ministic Turing machine (with one tape and several heads): each tile of a tiling describes
one cell at one instant; so a computation of length n of a Turing machine is encoded
by an n x n tiling. It must be clear that the following problem, denoted TILE, has the
desired properties"

Instance. A finite set of tiles T and two sequences T1, T2,’’’, T, and
T, T,. ., T’, of n tiles of T.

Question. Is there an n x n tiling (with tiles of T) whose first row and last row
are T1, T2,’’’,Tn and T,T,...,T’, respectively? (Note. T1,’",Tn and
T,. ., T’, describe the tape at the first and nth instant, respectively).

However, we think that such a (linear) lower bound result for TILE (or for any
similar tiling problem) is not at all optimal and then is not very interesting: it seems
that any decision algorithm of problem TILE needs n2 nondeterministic steps (in order
to guess an n n tiling).

In the present paper, we study a new problem, denoted SAT< () defined as
follows.

Instance. A set SYMB of monadic function symbols. A conjunction o of
(in)equalities tl t2 or tl < t2, where t, t2 are terms of the form ff. fs(e), where
s -> 0, each f SYMB and e .

Question. Is there a structure (, g)gSVM on domain which satisfies conjunction
?

T2Let SA < () (respectively, SAT ()) denote the following subproblem of
SAT< (): we assume that each f {g, g} (respectively, f {g, g2} and 0-< s -< 2).

Let o be an instance of SAT< () of length n and ao, a a,_ be the list of
integers which occur in q. Clearly o SAT< () if and only if there is a model of
(on domain ), where all terms and subterms which occur in o have values in the
union of intervals (-Ji<, [ai-n, ai+ hi. This remark proves that problem SAT< () is
in NP.

Our main results (Theorems 6.3 and 6.4) are as follOWs: each problem in
NTIME (n) is reducible to problem SAT< () (respectively, SAT2 ()) in time O(n)
on a deterministic Turing machine, in fact, a one-tape transducer (in particular problems
SAT< () and SAT () are NP-complete).

Hence SAT< (t) and SAT (t) are not in (.J DTIME (cn). Our main result seems
to be optimal since these problems are solved by a Turing machine using a polynomial
number of deterministic steps and only n nondeterministic steps (we also prove that
SAT<() NTIME (n(log n)2) and SAT2() NTIME (n log2 n). The linear nature
of these problems is stated by the following result" SAT () and SAT< (N) belong
to class E(n), i.e., are solved in time O(n) by an alternating Turing machine so that
existential steps precede universal steps.

We feel that problem SAT< (t) has an easy, natural formulation: it concerns one
of the simplest classes of quantifier-free formulas interpreted over integers. The use
of function symbols is essential for the NP-completeness of this problem: we can
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(trivially) decide in deterministic polynomial time the satisfiability problem of a
conjunction q of signed atomic formulas (where individual variables are replaced by
integers) if q includes no function symbols but only relation symbols. Problems
SAT< () and SAT () are the first natural problems which separate classes
t.J DTIME(cn) and Z2(n); the existence of such problems trivially follows from
inclusion U DTIME (cn) NTIME (n).

Let us mention that the linear time reduction (by one-tape transducer) we use has
been defined by Dewdney [De] who proves that some natural NP-complete problems
(for instance, 3-SAT and 3-COLOURABILITY) are equivalent via this reduction.

The proof of our main result is long and rather technical; it uses intermediate
results about the two following notions:

(i) The NRAM (Nondeterministic Random Access Machine), where the only
arithmetical operation is the addition of unit (see [Se], [Moll, [Mo2]).

(ii) The (generalized) spectrum of a first-order sentence.
(i) Let NRAM (T(n)) denote the class of languages accepted by an NRAM in

time T(n). We use a technical version of a result of [Mo2]:
NTIME (T(n)) (3c NRAM (cT(n)/log2 T(n)).

(Monien assumes T(n) >- n log n; we take T(n)= n). The idea is essentially to
use the ability of an NRAM to do operations on integers in one step and to guess an
integer in one step: more precisely, by first precomputing the table of all possible
e log2 T moves of a (nondeterministic) Turing machine (NTM) (for a sufficiently small
e, the precomputation requires time O(T/log T)), the NRAM simulates e log T
moves of the NTM in O(1) steps by consulting the table only once.

(ii) We use a result of [Gr2] stating that a set of positive integers (respectively,
a set of finite structures) accepted by an NRAM in time O(m), where m is the input
integer (respectively, the cardinality of the domain of the input structure), is the
spectrum (respectively, generalized spectrum) of a first-order sentence q with only one
variable and relation and function symbol of arity =< 1.

Lastly, by unrolling the first-order sentence q on domain m (it gives a formula
of length O(m log2 m) because q has only one variable) we obtain a linear time
reduction to problem SAT< (l), i.e., our main result; we get rid of disjunctions of the
first-order sentence by adding function symbols; by some encoding techniques, we
state a linear time reduction to SAT ().

The structure of the paper is .s follows. In 2, we give some notation and
definitions, in particular we present NI<.,. Ms. In 3, we prove several upper bounds
on problems SAT< () and SAT (1). The rest of the paper consists of a proof of
the main result" 4 presents the simulation of NTMs by NRAMs; in 5, computations
of NRAMs are described by one-variable first-order sentences; last, in 6, we prove
the linear time reduction of NTIME (n) to SAT< () and SAT (). The proof that
SAT< (1) E2(n) is given in the Appendix.

2. Preliminaries. We use the usual notation and definitions in computational
complexity (see [HoU1]). Our models of computation are multitape Turing machines
(for short, TM), where every tape is one-dimensional; more precisely, a TM has one
read-only tape for input, several read-write tapes (the worktapes) and in case it
computes a function, one write-only tape for output. A deterministic (respectively,
nondeterministic) TM is abbreviated as a DTM (respectively, an NTM). A one-tape
transducer is a DTM which computes a function with only one worktape. Let
DTIME (T(n)) (respectively, NTIME (T(n))) denote the class of languages accepted
in time T(n) by a DTM (respectively, NTM).
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We also use the nondeterministic random access machines (for short, NRAM)
defined in [Se], [Moll, [Mo2], [Gr2]. An NRAM consists of a finite program which
operates on a sequence of registers Ro, R, R2, . Each register can store any natural
number. The program is a finite sequence of instructions, labeled inst0,
inst 1,..., inst l, of the following types:

(1) Read(R,) (7)
(2) Ri := 0 (8) (R,):= Rj
(3) Ri:=Ri+l (9) Go toinstioor
(4) Ri := Ri 1 (10) If R Rj then go to inst io else go to inst
(5) Guess (R) (11) Accept
(6) R := R (12) Reject

(R) denotes the register pointed to by register Ri (i.e., the address of (Ri) is the
content of R). The effect of instructions (2)-(4), (6)-(8), and (10)-(12) is evident (the
value of x y is x y if x _-> y; if x < y, it is 0). The control of the program is transferred
from one instruction to the next one, except after instructions (9), (10). Instructions
(5) and (9) are nondeterministic; the meaning of Guess (Ri) is: guess any integer to
be stored in Ri.

At the beginning of the computation of an NRAM, the control of the program
points to inst0, the content of each register is 0 and a sequence of integers
Uo, U,..., Um-, 0 with U>0, j<m, serve as inputs. The instruction Read (Ri)
causes the NRAM to transfer the first integer U which has not been read in up to this
time into register R. We assume that the execution of any instruction only requires
one time unit.

A simple NRAM (see [Gr2]) is similar to the NRAM defined above with the
following changes: it has two accumulators, i.e., special register denoted a and b, and
its instructions are the following:

(1) Read(a) (7) b:=a
(2) a:=0 (8) (a):=b
(3) a:=a+l (9) Go toinstioori
(4) a := a 1 (10) If a b then go to inst io else go to inst i
(5) Guess (a) (11) Accept
(6) a := (a) (12) Reject

(a) denotes the register pointed to by accumulator a. In fact, only accumulator a
is used for accessing the sequence of registers (like the control head of a Turing
machine).

LEMMA 2.1. Each NRAM is simulated by a simple NRAM in linear time.

Proof The proof is easy (see [Se]).
Let us define some generalized NRAMs. A multitape NRAM operates on finitely

many sequences of registers Ro, R1, ", R, R’I, ", Ro," RI", A multidimensional
NRAM has one or several multidimensional sequences of registers R(jl,j2,’’" ,j.);
an address jl,""" ,js is an s-tuple of natural numbers.

LEMMA 2.2. Each multitape (respectively, multidimensional) NRAM is simulated
by an ordinary NRAM in linear time.

Proof See [Mol], [Mo2], [Gr2].
We will use alternating Turing machines (see [CKS]) M with a bounded number

of alternations: M is a H1 (respectively, 2) Turing machine if it has only universal
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states (respectively, if in any computation of M there is only one alternation and
existential steps precede universal steps).

Let Hi(n) (respectively, E2(n)) denote the class of languages accepted by IIl
(respectively, 532) Turing machines in time O(n).

In the proof of our main result, it is convenient to use a one-to-one representation
of positive integers: the dyadic notation on the alphabet (1, 2); an integer e > 0 such that

e cei 2i,
i=O

where aiE{1,2}, is represented (in dyadic notation) by the word aal_"’aao.

Similarly, we define the d-adic notation on the alphabet {1, 2,..., d} for d -> 2.
The complexity of problem SAT< (N) which involves a representation of integers

is not modified if we prefer the usual binary notation (for example) rather than the
dyadic because of the following easy lemma.

LEMMA 2.3. There is a DTM which transforms a positive integer in dyadic (respec-
tively, binary) notation into binary (respectively, dyadic) notation with O(n) moves
(where n is the length of the representation).

Let length (e) denote the length of the dyadic representation of an integer e > 0
(convention: length (0)= 1).

Notation. For a real number r > 0, let log r denote the logarithm of r in base 2
and let [r] and [rJ denote the least integer no -> r and the greatest integer n<=r,
respectively.

We will use the usual notation and definitions in first-order logic and model theory
(see, for example, [ChKe, Chap. 1]).

3. Upper bounds of complexity. For the purpose of giving an efficient algorithm
to solve the problem SAT< (N) (respectively, SAT2 ()) let us transform each instance
q of this problem into a more manageable formula p’. Let eo 0 < el <" < e,_ be
the increasing list of distinct integers which occur in q (we add 0 to the list). Let p’
denote the conjunction of (in)equalities obtained from conjunction q by replacing
each integer ei by e i, where integers e’ (i 0," , m 1) are defined as follows:
e= eo=O and e+-e[=min (n, ei+--ei), where n =length (p). Hence el<=(m 1)n _-<
n2-n for -< m- 1. In the sequel, formula p’ will also be denoted SIMPLE (p).

LEMMA 3.1. Let us adopt the above notation (in particular q’= SIMPLE (q)).
(i) p is satisfiable if and only if q’ is satisfied by a structure where all terms and

subterms of p’ have values < n2 (respectively, if and only if p’ is satisfiable).
(ii) length (q’) <= n and length (e) O(log n) for < m.
(iii) The sorted sequence Co, e, , e,_ is obtainedfrom input p in time O(n log n)

on a DTM.
(iv) The sequence (Co, e’o)(e, e) (e,_, e_) is computable on a DTM in time

O(no), where no is the length of the input sequence eo, e, em_
(v) Formula p’ is computable from input in time O(n log n) on a DTM.
Proof. (i) Assume p is satisfied by a structure 4. We associate to it the following

’compressed’ structure 4" replace each ei by e, transform the distinct values vl <
v2"" < Vk (k <= n) of the other terms and subterms of p into the respective values
v < v. < v defined by the following induction on integer j (1 -<j_-< k):

if v e (for some i) then v := e
else (let be the integer such that i< m- 1 and
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ei < vj < ei+l or such that rn- 1 and ei < vj)
if ei . vj-1 < l)j then v’. := v-i + 1
else (i.e., in case j 1 or in case v-i < ei < v)v := ei+ 1.

Clearly ’ satisfies q’ and (i) follows because the (in)equalities between the concerned
values are all preserved.

v< /12(ii) Clear from the fact that ei= e and ei < for i< m.
(iii) Use one of the standard sorting methods [AHU].
(iv) Easy because addition of integers is computable in linear time.
(v) ’ is computed as follows:

(1) Compute the sequence (eo, e) (e,-l, e’_l) which corresponds to q.
(2) Sort the list of (in)equalities of q according to the integers which occur

in their first members (it requires time O(n log n)). In each (in)equality replace the
integers ei which occur in the first member by e’i by using the sequence
(eo, e)... (e,_l, e’_l) (this requires time O(n)).

(3) It is similar to procedure (2) but we consider second members of
(in)equalities instead of first members.

The following proposition expresses that problems SAT< (N) and SAT2 (N) can
be solved in "quasi-linear" time (cf. [Sr]).

PROPOSITION 3.2. SAT< ([)6 NTIME (n(log 7/)2) and SAT2 (N)6 NTIME
(n log n). More precisely, problem SAT< () (respectively, SAT2 ()) is solved by a
Turing machine using n log n (respectively, n) nondeterministic steps and n(log n)
(respectively, n log n) deterministic steps.

Proof. The decision algorithm is the following. Let q be an instance of SAT< (t)
(respectively, SAT ()), of length n.

(1) Compute the transformed formula q’ (cf. Lemma 3.1(v)).
(2) Delete each double occurrence of a same (in)equality in q’ by sorting the list

of (in)equalities (notice that there remains only O(n/log n) (in)equalities in q’).
(3) For each (in)equality 0 0’ or 0 < 0’ of q’ guess the values of terms 0 and

0’ and of their subterms in the interval of integers [0, n2[ (for instance, if 0=

flf2"" "fs(e), guess values .(e), fs_f(e),... ,flf2"" .f(e), successively so that the
(in)equality between 0 and 0’ holds).

(4) Verify that these guesses do not contradict each other (sort them).
Clearly, q is satisfiable if and only if this nondeterministic algorithm leads to

acceptance. Procedures (1) and (2) require time O(n log n). For analyzing the time
required by procedure (3), note the following:

Each guess of a value of a (sub) term has time cost O(log n);
The formula ’ contains no more than n occurrences of distinct or not distinct

(sub)terms. Therefore procedure (3) guesses no more than n values in the general case;
For each instance of SAT (), there are O(n/log n) occurrences of distinct

or not distinct (sub)terms in ’ (after the execution ofprocedure (2)) and then procedure
(3) guesses O(n/log n) values (for SAT2 ([)).

Therefore, procedure (3) requires nondeterministic time O(n log n) for SAT< ()
(respectively, O(n) for SAT()). Procedure (4) requires deterministic time
O(n(log n)) for SAT< () (respectively, O(n log n) for SAT (t))" this is the time
needed to sort a list of expressions of total length O(n log n) (respectively, O(n)).

The following proposition improves in some way the nondeterministic time upper
bound of SAT< ().

PROPOSITION 3.3. Problem SAT< ([) is solved by a Turing machine using O(n)
nondeterministic steps and a polynomial number of deterministic steps.
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Proof The algorithm is the following. Let q be an instance of SAT< (), of length
n. Execute procedures (1) and (2) of the proof of Proposition 3.2 and the following
procedures (3)-(6):

(3) For each (in)equality 0 0’ or 0 < 0’ of q’ guess the values of the terms 0, 0’
in the interval [0, n2[ so that the (in)equality holds (of course, if term 0 or 0’ is only
an integer, do not guess its value; also examine the (in)equalities e e’ or e < e’ between
terms e, e’ which are only integers: if any of them is (trivially) false then the algorithm
rejects because q’ is not satisfiable; if they are (trivially) true, delete them).

Let q" be the conjunction/i 0i v ofthe equalities which are guessed in procedure
(3) (0i is a term, vi is an integer). Clearly, q’ is satisfiable if and only if at least one
of the conjunctions q" is satisfiable. The following procedures (4) and (5) gradually
simplify formula q" by successive substitutions justified by the following equivalence
where if, are sequences of composed functions and e, e’, e" are integers:

(e e’ ^ ffe e")<- (e e’ ^ e’= e").

(4) Sort the list of conjuncts 0i v of q" according to the lexicographical order
of terms 0 (which are read from right to left) and then in case a term Oi is a proper
subterm of another term 0J, i.e., 0 q30 (regard this equality as an identity of words),
replac the equality Oi =v.i by v =v (this is justified by (.)).

In case two terms 0i and 0 are identical" if v v then delete the repeated equality
0r v; if v v./then we obtain a contradiction.

(5) Iterate procedure (4) as long as it can be executed (i.e., some terms 0 are
subterms of some other 0.) and no contradiction is reached.

(6) If we get a contradiction then reject. Otherwise accept.
An execution of procedure (4) decreases the number of occurrences of function

symbols in q". So, it is repeated only O(n) times. Notice that this does not increase
the number of occurrences of integers (each of length O(log n)) in q": this number
remains O(n/log n). Therefore, the length of q" is always O(n).

Clearly this algorithm needs O(n) nondeterministic steps which are only used in
procedure (3) to guess the values of O(n/log n) terms in [0, n2[ and needs a polynomial
number of deterministic steps.

It remains to prove the correctness of this nondeterministic algorithm. Clearly, if
it rejects then each formula q" is contradictory. An acceptance means that procedure
(5) leads to a conjunction q"= (/ Oi--Vi) where no term 0i is a subterm of another
term 0.. To conclude the proof, it suffices to prove the following lemma.

LEMM 3.4. If no term O is a subterm of another term 0 then the conjunction
q"= (/i Oi=v) (where each vi denotes an integer) is satisfiable.

Proof Let E denote the set of integers which occur in q". For all terms Oi-
ff. .f(e) that occur in q", define the values of subterms f(e),
fr--fr(e),’’" ,f2f3"" .f(e) out of E so that distinct subterms have distinct values.
Last, define the values of Oi =ff2 f(e) to be vi (so, q" is satisfied by the constructed
structure). There is no double definition of a same value because no 0 is a subterm
of another term 0./. So, Lemma 3.4 and Proposition 3.3 are proved. [3

For the purpose of proving a linear time upper bound for problem SAT () on
an alternating TM, let us present a useful language and an algorithm to recognize it.

Notation. Let denote the following language on an alphabet E {#, $} (where
E N {#, $} )-

’#u...#uv ug, E eachuisawordu: each={u#u2 .#u$u .,,
u:.j is a word ui and the sequence U’l, u2’" Up’ is lexicographically ordered}.
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LEMMA 3.5. Language belongs to II(n).
Proof. is decided by the following algorithm.

(1) Verify that words u’ ’..., u2 up are lexicographically ordered.
(2) Universally choose an index i [1, m] and verify that ui is a word u..
(3) Universally choose an index j [1, p] and verify that u is a word ui.

This clearly requires O(n) universal (or deterministic) steps.
THEOREM 3.6. Problem SAT () belongs to Ez(n).
Proof The required algorithm is obtained by transformations of the nondeter-

ministic algorithm, denoted 9, of Proposition 3.2. Let us analyse algorithm 92. It has
three kinds of procedures:

(i) A nondeterministic procedure (procedure (3)) of time cost O(n).
(ii) Some procedures which sort lists of integers (respectively, lists of

(in)equalities) of total length O(n) (examples: sort the integers which occur in q; in
Procedure (4) sort a list of equalities).

(iii) Other deterministic procedures (example: construct the sequence
(eo, e)... (e,,_, e_) from the sorted sequence eo,"’, e,_): they only require
time O(n).

Let us (informally) present our E2 algorithm. Let q be an input of length n and
(q) denote a computation of on input q.

(1’) Guess (existentially) all the sorted sequences obtained in (q). Examples:
guess the sorted sequence of integers eo, e e,,_ which occur in q; guess formula
q’ and all the transformed forms of formula q’ and all the transformed forms of
formula q constructed before (cf. Proof of Lemma 3.1(v)).

(2’) Execute the nondeterministic procedure (3).
(3’) Execute the deterministic procedures of
(4’) Verify that each (guessed) sorted list is a "good" sorted list by comparing it

with the corresponding (nonsorted) sequence: execute an appropriate version of the
algorithm of Lemma 3.5 (it uses O(n) universal steps).

(5’) Reject if one of the above procedures (3’) or (4’) leads to a contradiction.
Otherwise accept.

This is clearly a E algorithm (existential steps precede universal steps) which solves
problem

SAT (N) in time O(n) on an alternating TM.

Remarks. The universal steps of our E2-algorithm are only needed in order to sort
some inputs (cf. procedure (4’)). Note that the proofs ofupper bounds on the complexity
of SAT2 (N) do not depend upon the fact that the number of distinct function symbols
is bounded (by 2) but only depend upon the fact that s, the number of composed
functions of a term. is bounded by a fixed number (for instance 2). In fact we have
even the following theorem.

THEOREM 3.7. Problem SAT< (N) belongs to Ee(n).
Idea of the proof The complete proof is long and needs much care. We present

it in the Appendix. The idea is as follows. A difficulty (for proving a linear time upper
bound for SAT< (N)) originates from the unboundedness of the number of composed
function symbols in a term of an instance of SAT< (t): therefore first we reduce
SAT< (N) (in linear time) to a similar problem where an instance q has no term with
more than log n composed functions (n length (q)). Second, we solve the simplified
problem by associating to each satisfiable instance (p a conjunction (p"--(Aioi--vi)
such that:
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(i) q" "derives" from q, i.e., is a consequence of q ("derivation" will be precisely
defined);

(ii) No term 0i is a subterm of another term 0 (q" is satisfiable by Lemma 3.4).
This is exactly the conjunction q" of length O(n) produced by the deterministic

procedures (4), (5) in the proof of Proposition 3.3. However, we no longer produce
the formula q" deterministically, but guess it.

4. Simulation of NTMs by NRAMs. In order to prove our main result we need a
technical version of a result of [Mo2]. The idea of its proof (given in the Introduction)
is simple but the precise proof is rather long and tedious.

Let S c {1, 2}* be a language accepted by an NTM in time cn for a constant c.
We are going to exhibit an NRAM which simulates the NTM in time O(n/log n). An
input w ofthe NRAM is not read one bit at a time (it would require time n length (w)),
but is read by blocks. More precisely, let k be a (sufficiently large) fixed integer, only
depending upon set S (the exact value of k will be given below); each word w { 1, 2}
is divided into subwords Wo, Wl," ", Wrn-1 SO that:

(i) w Wo Wl win-l;

(ii) For each < m 1 length (wi) h (n) where h (n) 1 / k log n
(iii) 0<length (w,,_)<=h(n).
Consequently, m= [n/h(n)] (we assume n>-2k so that h(n)>= 1).
For convenience we identify a word w with its corresponding m-tuple

(Wo, w,. ., w,,_). Each word wi is also identified with the integer it represents in
dyadic notation: so, 0< Wi<2h")+<=2n/k. Each instruction Read (R) causes the
NRAM to transfer the first integer w which has not been read in up to this time into
register Rj (convention: w,, =0).

Let NRAM* (T(n)) denote the class of languages S c {1,2}* accepted by such
an NRAM for some k in time T(n) (n is the length of the input word w).

LEMMA 4.1. (see [Mo2]). If a language S= {1,2}* belongs to NTIME (n) then
S t.J NRAM* (cn/log n).

Proof We can assume without loss of generality that an NTM accepts S in time
cn (c is a fixed integer) and has only one input tape, numbered 0, and two woi’ktapes,
numbered 1 and 2.

The time of a computation of the NTM (on an input of length n) is divided into
intervals of h(n) instants: A0, A,... (h(n)= [1/k log nJ). Similarly, each tape of the
NTM is divided into blocks of h (n) adjacent cells. IfE { 1, , d } is the tape alphabet,
each description 8 ,,h(n) of a block is identified with the integer represents in d-adic
notation: so; t < d h(n)+. Tape (i -0, 1, 2) of the NTM is represented by a sequence
of registers R, R... of the NRAM so that the content of R is the description of
block j.

It is clear that if a head of the NTM scans block j at a given instant, then this
head can only visit blocks j, j- 1, and j/ 1 during the next h(n) instants. In order to
simulate h(n) steps of the NTM in O(1) steps (cf. Part 5 below), the NRAM precom-
putes a binary relation " roughly, z" will mean that the NTM transforms a "partial
description" r into another one r’, in h(n) moves. More formally, a (partial) description
of type 1 (of the NTM) is defined to be a tuple of integers which consists of:

(i) A control state tr (encoded by an integer);
(ii) For each tape 0, 1, 2"

The head position 7r on the visited block;
Descriptions o, -, -1 of the visited block and of the right and left

-1adjacent blocks, respectively. We adopt the convention t =0 (respectively, 1 =0)
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in case 6 describes the leftmost (respectively, rightmost) block of tape i. Recall that
all blocks have length h(n) exactly, except blocks described by 0 and the block of the
input tape which contains wm_.

A description r’ of type 2 is similar to a description of type 1 with the following
change: the visited block of tape is not necessarily the block described by 6 but
must be any of the blocks 6 6i- - r’i, or 6. the tuple includes a number O, -1, or 1
(i.e., center, left, or right) indicating the visited block.

Clearly, the number of possible descriptions (of type 1 or 2) is /3(n)=
O([h(n). d3h(n)]3) (for each 3 blocks on a tape i=0, 1,2 there are at most 3h(n)

--1possible head positions and d3h(n) possible block descriptions (6, 6 6i )). We write
rr’ if the NTM transforms description - (of type 1) into description z’ (of type 2)
in h(n) moves. Let us describe the work of the NRAM.

Part 1. Copy the input integers Wo, w, ., w,,_, 0 into registers Ro, R. R
respectively. Guess the integer n and compute h(n). Verify that m [n/h(n) and
that the input is suitable, i.e., length (wi) h(n) for each < m 1 (verify 2 h(")- 1 -< w =<
2(2(n)- 1)) and 0<length (w,,_)<-h(n). Part 1 requires time O(m)= O(n/log n).

Part 2. Compute the addition table of integers< d h(")/l (in time O(d2"("))) and
a table Taiv which gives the quotient and the remainder of the division of each integer
< d"(")/ by d (it requires time O(dh("))). Construct also the table Taiv for base 2
(instead of base d).

Part 3. Construct the table T of the possible transitions from a description r of
type 1 or 2 to a description r’ of type 2 by only one move of the NTM (this will be
denoted as rlr’). For convenience, we assume that our NRAM is multidimensional.
We use the fact that an integer which encodes a word of length h(n) on the alphabet
E {1,..., d} (for instance, the description 6 of a block) is decoded, i.e., analyzed
by bits, in time O(h(n)) (by using table Tdiv) and that conversely, an encoding
subroutine requires a similar time. Let us exhibit it:

SUBROUTINE ENCODING {Comment: it reads a sequence of h(n) symbols of g
and returns the integer e it represents}

begin e := 0;
for i:=l to h(n) do

begin Read (u); e := de + u end
end.

For each description z the set {r’] rl r’} can be constructed in time O(h(n)). Therefore,
the NRAM computes table T1 in time O((n)h(n)) since there are O((n)) descrip-
tions (of type 1 or 2).

Part 4. Construct the table T of relation , using table T. For each description

" of type 1 do as follows:
Stage 4(i). (1 <- i<= h(n)). Construct the set D of descriptions ’i such that z_r

for a description r_ D_ (convention: Do {r}).
It is clear that Dh,)= {r’lr"}. Stage 4(i) (1 =< i<=h(n)) requires time O((n)).

Therefore, the construction ofthe set { r’ rr’}, for a fixed z, requires time O(/3 (n) h (n))
and table T is computed in time O((n)2h(n)).

Parts 2-4 of the precomputation require time O((n)2h(n))= O(h(n)7d 8h"))
where h(n)= [1/k log nJ.

For a sufficiently large integer k (k>-201ogd is sufficient) we obtain
O(h(n)7d 18hn)) O(n/log n).

Part 5. This is the main part of the simulation. Each interval Ae (of length
h(n) [1/k log n J) of a computation of the NTM is simulated in O(1) steps as follows:
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exhibit the description r (of type 1) of the NTM at the first instant of Ae; guess a
tuple r’ (of type 2) such that r"; for each tape i=0, 1, 2, transform the contents of
the three visited registers R!.I_1, Rj,i Rj+li according to the new description r’. [3

5. NRAMs and first-order generalized spectra. In the present section, we give a
key lemma (Lemma 5.2) for the proof of our main result. It uses a logical notion: the
(generalized) spectrum of a first-order sentence. Our idea is roughly the following. We
encode m moves of an NRAM (which simulates ll(m log m) of an NTM by Lemma
4.1) into a structure of domain m={O, 1,..., m-l}. More precisely our input is
encoded by a function f: m --> m (note that such a function encodes a word w {1, 2}*
of length about m log m); the m moves of our NRAM are encoded by a "computation
structure" (m, f, <,... expanding the input structure (m, f) (with the natural order
< of the domain m and with some functions from m to m and some constants); lastly
we define the "computation structures" to be exactly the finite models ofsome first-order
sentence with only one (universally quantified) variable; the variable intuitively rep-
resents each of the m instants of the computation of the NRAM. The precise definitions
and proofs are given below.

In 4, we have identified each word we {1,2}" with an m-tuple (Wo,"" ", w,,_l)
of integers where m [n/h(n)] (h(n)= [1/k log nJ) and each wi <2n /k. Now let us
identify each sufficiently long word w {1, 2} with the structure (re, f), where domain
m is {0, 1, , m 1 } and f is the function m -> m {0} such that for all < m, f(i) wi
(this is possible since wi <2nl/k<= m except for finitely many n). So, a set of words
S c {1, 2}* is identified with a set of structures (re, f) (except for finitely many words
w of S" we can eliminate these words without changing the complexity of S).

Notation. Let S be a set of structures (m, f), where m is a positive integer and f
is a function: m --> m -{0}. We write S NRAM (T(m)) to mean that S is accepted by
an NRAM in time T(m).

Remarks. m is the cardinality of the input structure (m is not the length of the
encoding of this structure!). We still use the above convention: a Read instruction
reads the first valuef(0), f(1),. ,f(m 1), 0 which has not been read in up to this time.

Let us reformulate Lemma 4.1.
LEMMA 5.1. Ifa language S {1, 2}* belongs to NTIME (n), then there is an integer

c such that S NRAM (era) (where S is regarded as a set of structures (m, f)).
Proof Note that n/log n= O(m) since m= [n/h(n)].
Remark. The assertion S NRAM (cm) of Lemma 5.1 implicitly refers to the

integer k used in the partition of an input w {1, 2}* into an m-tuple (Wo, , Wm-).
It does not matter because k only depends upon set S.

Notation. For an integer c > 1 and a function f: m--> m-{0}, let f denote the
function: cm --> cm such that: Of(e) =f(e) for e < m and Cf(e) =0 for m <- e < era. If
w (Wo,. ", w,,_) (m, f) we also denote

c(w) (Wo, w,,_,, 0, .. <cm, cf).
(c m times

DEFINITION. Let q be a first-order sentence whose type is -U {<, F} where
(i) < is a binary relation symbol (for linear order);
(ii) F is a specified monadic function symbol.
The generalized spectrum of q, denoted GenSp

(M is a positive integer) which have an expansion (M, <, F,
and where:

(i) < is the natural linear order on M;
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(ii) Symbol F is interpreted by function F. (More generally, for convenience, we
confuse each symbol and its interpretation.)

The following lemma is similar to Theorem 6 of [Gr2]. We present a proof of this
lemma in order to make the paper self-contained.

LEMMA 5.2. If S is a set of structures (m, f) such that S NRAM (cm) for an
integer c>-_ 1, then there is a sentence =klx b(x) (with only one variable x) of type- {<, F} such that:

(i) is quantifier-free;
(ii) - only contains monadic function symbols and constant symbols;
(iii) For any structure (m, j), f: m m {0}, we have (m,j) S if and only if

cm, cf) GenSp ().
Proof.. Let S NRAM (cm). Without loss of generality we assume that a simple

NRAM, , accepts S in time cm, c-> 1 an integer. Let inst 0, inst 1... inst be the
sequence of instructions of the program of :g. We want to encode an accepting
computation of length M cm in a structure of domain M. We can require that all
integers encountered in it be smaller than M. The type -t_J {<, F} of our structure
includes the monadic function symbols denoted /, A, (A), (A’), B, and P with the
following (intuitive) meaning (note that the argument of the functions intuitively
means" "at the instant t"), see Fig. 1.

I(t) holds iff the current instruction is inst
A(t) is the content of accumulator a

(A)(t) is the integer currently stored in register (a)
(A)’(t) is the integer written in register (a)
B(t) is the content of accumulator b
P(t) e itt the next input integer to be read in is F(e)

FIG.

The conjunction, Oo, of sentences Vx::ly suc (y) x and (/x L) [x < suc (x) ^suc(L)=0] defines (on domain M) the constants 0, L= M-1 and the monadic
function suc such that suc (e) e + 1 modulo M, for each e M: in case e < M 1,
we use the more suggestive notation e + 1. Define the constants 1 0 + 1, 2 1 + 1
as abbreviations.

For the purpose of describing an accepting computation of M, let us give some
sentences of type - t_J {<, F}:

p, [A(O) 0 ^ (A)(O)= 0 ^ B(O)= 0 ^ I(0)= 0 ^ P(O)= 0],

(1 describes the initial conditions. The following sentence:

q2 I k/ I

means that exactly one instruction of the program is current at each instant.
Let (same a)(t), (same (a))(t), (same b)(t), and (same p)(t), respectively, denote

equalities A(t+l)=A(t), (A)’(t+l)=(A)(t), B(t+l)=B(t), and P(t+l)=P(t).
Define the formula (same (a), b)(t) for example, as the conjunction (same (a))(t)^
(same b)(t).

Figure 2 associates to each instruction a formula which describes its action.
Let (t be the sentence (It L)/i<=l[I(t)=iqi(t)]. We want to express the

following facts (recall that the content of a register remains unchanged until this register
is pointed out by accumulator a)"
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Instruction inst Formula i(t)

Read (a) A(t+l) F(P(t)) ^ P(t+ 1) P(t)+l ^ (same (a), b)(t) ^ I(t+ 1)= i+

a := a + (similarly for
a:=a-1 anda:=0)

A(t+ 1)= A(t)+ ^ (same (a), b,p)(t) ^ I(t+ 1)= i+

Guess (a) =iyA(t + l)= y ^ (same(a), b, p)(t) ^ l(t + 1)= i+

a := (a) A(t+ 1) (A)(t) ^ (same(a), b,p)(t) ^ I(t+ 1)= i+

b’.- a B(t+ l)= A(t) ^ (same a, (a),p)(t) ^ I(t+ 1)= i+

(a):= b (A)’(t+ 1)= B(t) ^ (same a, b,p)(t) ^ l(t+ 1)= i+

Go to inst or i (samea,(a),b,p)(t)^[l(t+l)=ioV l(t+l)=i]

Ifa-b
then go to inst
else go to inst i

(same a, (a), b, p)(t)

^ [A(t)= B(t) I(t+ 1)= io]
^[A(t) # B(t)- I(t+ 1)= ill

Accept (or Reject) l(t+ 1)=

FIG. 2

(1) If t’ is the last instant before when A(t) A(t’), i.e., for all t" with t’ < t" <
it holds A(t") A(t), then the integer currently stored in the register pointed out (by
accumulator a) at instant is the integer written in this register at instant t’+ 1.

(2) If register A(t) has never been pointed out before instant t, then the integer
currently stored in this register at instant is its initial content which is 0.

For this purpose we will define a new function symbol N (N for "numbering"),
which has one argument and two values. Define the "current registers" of a computation
as the couples (A(t), t), where A(t) is the address (a natural number) of the register
pointed out (by accumulator a) at instant t, < M. There are exactly M "current
registers." Let N(x) denote the "current register" of rank x (x < M) in lexicographical
ordering.

Clearly, function N is defined by the following sentences:

p4:Vt::lx(A(t), t)= N(x),

5:(Vx L)N(x) < N(x + 1).

The following sentence, 6 indicates which is the integer read in the register
pointed out (by a) at each noninitial instant t. It uses function N in an essential manner.

[N(x):(A(t’), t’) ^ N(x/ 1)= (A(t), t)

(*1) ^ (A(t) A(t’) (A)(t) (A)’( t’+ 1))

(*2) ^ (A(t) A(t’) - (A)(t) 0)].

Implications (. 1 and (.2), respectively, describe the above-mentioned cases (1) and (2).
Let 7 be the sentence V I(L) i, where the disjunction extends over all -< such

that inst Accept.
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Clearly, an input (m, f) is accepted by a computation of M (of length M cm)
if and only if the sentence =/i-<7 i has a model which expands the structure
(M, F)= (cm, cf) (a model of q "mimics" an accepting computation). In other words,
(m,f) $ if and only if (cm, cf belongs to GenSp (). Moreover, it is easy to put the
conjunction in an equivalent form with only one universal quantifier and no existential
one as required: we use (Skolem) function symbols to eliminate existentially quantified
variables (see [Grl], [Gr2] for more details).

Remark. Moreover, using a "folding" technique as in [Ly], [Gr2], we can prove
a stronger result than Lemma 5.2: replace condition (iii) by: (iii’) the set S is GenSp ().

6. Linear time reduction to SAT<(II). In order to give a clear idea of the proof
of Lemma 6.2 which follows, we first prove a weakened form of this lemma: we consider
the problem SAT (t). This problem is similarly defined as SAT< (t) but disjunctions
(with, of course, conjunctions) are permitted in an instance of SAT ().

LEMMA 6.1. Let S be a set ofstructures (m,f), f: m --> rn -{0}. IfS NRAM (cm),
for an integer c, then S is reducible to problem SAT () in time O(rn log m) on a DTM.

Proof. By Lemma 5.2 there is a sentence q /xd/(x) of type fill {<, F} such that:
(i) , is quantifier-free;
(ii) f only contains monadic function symbols, denoted G, and constant symbols,

denoted C;
(iii) (m,f) S if and only if (cm, cf) GenSp (q).
Moreover, we assume that contains no negation because each subformula of

the form t t2 (respectively, t < t2) can be replaced by the disjunction t < t2 v t < t
(respectively, t t v t < t).

Let (M, F) be a structure identified with the M-tuple W Wo, , W4_), where
0<= We F(e)< M for e < M. Associate to W the conjunction qw of the following
formulas , , ’3:

O A A G(e)<M^ A C<M,
GeY e<M

1 expresses that each constant C is in the domain M and that the image of domain
M for each (monadic) function G is also included in M;

12 A c/ e I]13 A F e We,
e<M e<M

2 is an "unrolled" version of formula p Vx ,(x) and then because of formula ’3
the conjunction qw Ol ^ ’ ^ /3 expresses that (M, F)= (Wo, W,. ., WM_)
belongs to the generalized spectrum of sentence . Hence (M, F)= W belongs to
GenSp () if and only if qw e SATf< (N). (Note that each occurrence of a constant
symbol C can be replaced by C(0): C is now regarded as a monadic function symbol).
From condition (iii) we obtain the equivalence: w (m,f) belongs to S if and only if
tp(w) e SAT (N).

Formula (w is a Boolean combination of O(cm)= O(m) atomic formulas, each
of length O(log m). Hence, length (q(,))= O(m log m). The construction of
essentially consists of:

(1) Read the input w= (Wo, w,. ., w,,_) and copy the cm-tuple

c(w) (Wo,. ", w,,_, 0,- ., 0).

(2) Write the list 0, 1,. ., cm- 1 (a fixed number of times).
Clearly, the reduction w (Wo," , w,,_)->c<w) (from S to SAT ()) is compu-

table in time O(m log m) on a DTM.
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Remark. We have used the same notation for symbols of the type - of o and for
the corresponding function symbols of Ow. Note that the function symbols of Cw are
interpreted by functions: N t whose values out of the interval of integers [0, M[ can
be defined arbitrarily.

Notation. Let DM denote the set {0, q, 2q,. , (M- 1)q}.
LEMMA 6.2. Let S be a set of structures m, f), f: m - m {0}. If S NRAM (cm)

for an integer c, then S is reducible to problem SAT< () in time O(m log m) on a DTM.
Proof By Lemma 5.2, there is a-sentence of type -(3 {<, F} of the following

form:

=Vx V / trj(x),}rj(x) suchthat:
i<qj<r

(i) - only contains monadic function symbols,,denoted G and constant symbols,
denoted C;

(ii) ,ji is written for "=" or "<"’,
(iii) crj and rj are terms (with only one variable x);
(iv) m, f) S if and only if cm, cf) GenSp ().
Sentence q is the disjunctive normal form of the sentence of Lemma 5.2 where

negation has been eliminated.
Let (M, F) be a structure identified with the M-tuple W Wo, , WM-1), where

0 -< We F(e)< M for e< M. As in Lemma 6.1, the idea of the proof is to "unroll"
the sentence p in an ordered domain of M elements: we now choose the domain
DqM {0, q, 2q. (M- 1)q} (intuitively, an integer e < M is "represented" by eq).
We will use the intermediate elements eq + e < M, 1 <= < q) to suppress the disjunc-
tion V

Let Po, P1, Q be new monadic function symbols. Define w to be the conjunction
of the following formulas bl if6:

q--1

d/ / Q eq l ^ / / Q eq + O,
e<M e<M i=1

ql means Q is the characteristic function of the subsetD of q-multiples in the interval
of integers [0, Mq[;

4’ A A [G(eq) <Mq ^ Q(G(eq))= 1],
G- e<M

^ A [C(0)<Mq^ Q(C(0))= 1],
Ce-

02 means the set Dq is invariant for each function G and contains the constants C(0)
(C is now regarded as a function symbol);

IP3=/e<a4,q[/s=o,,eq-l<Ps(eq+i)<eq+q^PP’(eq+i)=eq+il’
13 means Po and P1 permute each interval [eq, (e + 1)q[, e < M, and are inverses each
other.

Let F! and Gj (i < q, j < r) be new monadic function symbols.

04 / / / Fj(Po(eq+ i)) . G(Po(eq+ i)),
e<M i<q j<r

q,= / / / [Fj(eq) o-}(eq) ^ G}(eq) ’j(eq)].
e<M i<q j<r

Because of the property I of permutation P0, it is clear that I4 ^ 5 implies the
following formula o’ which paraphrases sentence

’ / / / cr( eq * r(eq)
e<M i<q j<r
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(04 A /5 implies for each e < M the conjunction /kj<r o’j(eq) *!’r(eq) where is the
index such that Po(eq+ i) eq).

Conversely, in case o’ is satisfied, let us construct permutation Po and functions
F, G as follows" for each e < M, choose an index such that Aj<r crj(eq)*! rj(eq)’
is satisfied and take Po(eq + i) eq; then complete the definition of function Po so that
it permutes each interval eq, (e + 1)q[.

For all e < M, < q, and j < r, take F(eq) trj(eq) and. Gj(eq) r(eq), and for
1 -_< i’ < q take

Fj(eq + i’) 0 and Gj(eq + i’) 0 in case .j! is "="

and take

is "<"Fj(eq+i’)=0 and Gj(eq+i’)=l in case.
From these definitions, q5 is trivially satisfied and so conjuncts of I]/4 corresponding
to pairs (e, i) such that Po(eq + i) eq are also satisfied. The other conjuncts of 04 are
satisfied because from the definition of F, G we have F(eq + i’) .( G!(., eq + i’) for all
i’ [1, q[.

Finally, let us define the formulas @6 -/ke<M F(eq) qWe (where qWe denotes the
product of the integers q and We) and w-/ku6 @u. Let --(D, <, F, G, C),c
be a structure of type - (<, F} on the domain D. It must be clear that the two
following assertions are equivalent:

(1) Structure satisfies formula ’ (which paraphrases ) and its reduct (D, F)
is isomorphic to structure W-(M, F) by the isomorphism e-eq (notice that this
isomorphism is expressed by 06).

(2) Structure is the restriction (to D) of a reduct of a structure

3 (Mq, <, F, G, C, Po," )o.c-....
(on domain Mq) which satisfies w.

(Note. For convenience, our notation does not distinguish between a function
symbol and its interpretation in some domain DM M, or Mq, however, we must
remember that they are distinct.)

Notice that in assertion (2) the domain Mq of may be replaced by . The
equivalence (1)(2) implies: a structure W=(M, F) has an expansion (of type
-t_J {<, F}) which satisfies if and only if w has a model on domain Mq (respec-
tively, N).

Thus (M, F)= W belongs to GenSp () if and only if w SAT< (). From
condition (iv) we obtain the equivalence: w=(m,f) belongs to S if and only if
cwSAT<(t). As in Lemma 6.1, we easily see that the reduction w=
(Wo,’’’, w,,_)cw (from S to SAT< ()) is computable in time O(m log m) on a
DTM.

Remark. In the proof of Lemma 6.2 note the following facts"
FACT 6.2.1. If formula w is satisfiable, then it is satisfied by a structure where

all terms and subterms that occur in w have values < cqm.
FACT 6.2.2. There is a finite set of function symbols SYMB (only depending on

set S) such that each function symbol ofw belongs to SYMB.
FACT 6.2.3. There is a constant Co (only depending on set S) such that no term

of ,.w contains a composition of more than Co (distinct or not distinct) function
symbols of SYMB.

It is now easy to prove the main theorem.
THEOREM 6.3. If a language S { 1, 2}* belongs to NTIME n then S is reducible

to problem SAT< (N) in time O(n) on a one-tape transducer.
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Proof. From Lemma 5.1, there is an integer c such that S NRAM (cm) and then
from Lemma 6.2 the set S (regarded as a set of structures (m,f)) is reducible to problem
SAT< (N) in time O(m log m)via the reduction w (Wo, , w,,_)--Ocw). It remains
to prove that this reduction is computable on a one-tape transducer. The algorithm is
the following:

Let w {1, 2} be an input word.
Part 1. Computation of h(n) and m: write n in binary notation (in time O(n));

compute the integers [n/kJ, h(n)= [log(n/k)l, and m= [n/h(n)] (it requires a
polynomial time in the length of n).

Part 2. Construction of formula Ocw)= Ai6 Ii" we only present the construction
of the conjunct 16 which fully depends on input w (the other conjuncts g 5 only
depend upon length of w). We have I//6= ItA I where = Ae<,, F(eq)= qWe and

A,_-<e<c,, F(eq)=O. Construct g. That is, for each e<rn"

copy the subword we of length h(n) on the worktape.
multiply e and we (now regarded as an integer) by q.
write the conjunct F(eq)= qWe on the output tape.

g is constructed in a similar (simpler) manner. Part 1 of the algorithm clearly requires
time O(n). Part 2 requires time O(rn log m) O(n).

We strengthen Theorem 6.3 by the following theorem.
TqEOREM 6.4. If a language S c { 1, 2}* belongs to NTIME n), then S is reducible

to problem SAT2< () (respectively, SAT2 ()) in time O(n) on a one-tape transducer.
Proof. We use the reduction w--o,.(w (from $ to SAT< ()) of Lemma 6.2. Let

SYMB= {f, [a {1,2}} denote the finite set of function symbols which occur in
formulas Oc(w (cf Fact 6.2.2). For each w{1,2}* let O’w denote the formula (with
function symbols g, g2) obtained from O(w by replacing each occurrence of any
symbol f (a {1, 2}1) by the composition gg2" g,, where a aa2. ct. Let us
prove the equivalence (w SAT< () q’w SATe< (). Clearly ’w SAT2< ()
implies 0(w SAT< ().

Conversely, assume that a structure (, F),., satisfies formula o,.(w. We
can assume that all terms and subterms of O(w have values < cqm in structure
(Fact 6.2.1).

For each integer e < cqm and each f..., SYMB, let us define the values of:

g,(e), g,_g,,(e),. ., g2g,. g,(e) to be integers _-> cqm

(i.e., distinct from the values of the terms and subterms of Ow)) such that distinct
terms have distinct values.

Last, for each e< cqm, define g,g,:.., g,(e) to be the value of f,...,(e) in
structure . (This construction is similar to that of Lemma 3.4.) It follows from these
last definitions that structure (, g, g2) (where undefined values of g, g2 can be fixed
in any manner) satisfies o’. Hence O’w SATe< (). It is obvious that reduction w ’w
from S to SATe< () (similar to reduction w-Ow)) is computable in time O(n) on
a one-tape transducer.

Remark. The above argument proves also that SAT< () is linear time reducible
to SAT2< ().

Let us state two useful facts to prove Theorem 6.4 for SAT2 ().
FACT 6.4.1. There is a constant integer c’ (depending only upon set S) such that

if 0’w is satisfiable, then it is satisfied by a structure where all terms and subterms of
O’w have values < c’m. In particular, the length of each integer e which occurs in o’
is bounded by length (c’m)= O(log m).
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FACT 6.4.2. It follows from Fact 6.2.3 that no term of q’w contains a composition
of more than col O(1) function symbols g, g2.

For each we {1, 2}*, define formula q"w to be the conjunction of the following
formulas"

(i) A formula denoted q3w obtained from q’w by replacing each term of the form
galga2"’" g.(e) (aiG{1,2}, s_>-l) by gl(aa2’’’ as’) where , denotes the
word of {1, 2}* (identified to an integer) obtained by the concatenation"

= l’2^e (where 1’ denotes symbol "1" repeated times) with such that
length ()= 1/length (c’m). (Note. We can construct since length (e)<_-
length (c’m) by Fact 6.4.1.)

(ii) For each term 0 go,lgo,2""go,.(e) of q’w the formula:

0/ [g() e ^ A<=i<-s g’(tioi+ z2’)= g’g’(ai+

Note that q0 is equivalent to the conjunction

,’o [g() e ^ /,<=,<=. g,(a, aL) g, g.(e)l
Clearly rC’w’ is an instance of problem SAT (). It follows from Fact 6.4.2 that

each formula q’0 contains O(1) atomic subformulas and then has length O(log m) (cf.
Fact 6.4.1), so, length (q"w)= O(m log m).

We easily see that the application w-> ’w’ is computable in time O(m log m)-
O(n) on a one-tape transducer.

It remains to prove the equivalence" q’w SATE< ()<-> q"w SAT2 (). The con-
junction of q3w and formulas q, clearly imply rC’w. Hence q’w’ implies O’w.

By Fact 6.4.1 we canConversely, assume that a structure (/, g, g) satisfies qw.
assume that values of terms and subterms which occur in q’w are < c’m. For each term
O=g,g2... gL(e) of q’w redefine gl(Oli’’" 01,) to be g,. gas(e) for each i[1, s]
and redefine g() to be e.

There is no double definition of the same value because if we have any equality
a^ fl^’, where a,/3 {1, 2}*, then a =/3 and g, g" (because of the equality
length (g’) length (g,’) 1 + length (c’m)) and consequently e e’. These modifications
of function g do not affect the truth of ’w in structure (, g, g2) since they only affect
values g(u) for some u > c’m.

Our structure ([, g,, g2) trivially satisfies formulas , (and, consequently q’0) and
then satisfies q3w (which paraphrases ’w). Hence rC"w SAT2 (). This concludes the
proof of Theorem 6.4.

COROLLARY 6.5. Theorem 6.3 (respectively, Theorem 6.4) still holds for SAT< ()
(respectively, SATe< ([)) in the absence of the equality symbol "=".

Sketch of proof Let us modify the formula qc<w) of the proof of Theorem 6.3"
replace each equality tr z by the conjunction cr < SUC (r) ^ z < SUC (or), where SUC
is a new function symbol (intuitively, SUC is the successor function); take the conjunc-
tion of the obtained formula with the following formulas/<cq,, (G(i) < cqm) for all
function symbols G of q<w) (cf. Fact 6.2.1), and with the formula

/ [i<SUC(i)^SUC(i)<i+2]
i<cqm

which clearly defines the successor function restricted to the interval ofintegers [0, cqm[.
This proves Corollary 6.5 for SAT< (). Starting from this result, we prove the last
part of Corollary 6.5 exactly as we proved Theorem 6.4 for SATe< ([).
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From the separation result of [PPST], t_J,. DTIME (cn) NTIME (n) Corollary
6.6 follows.

COROLLARY 6.6. (i) Problems SAT<(N) and SATe< (N) do not belong to
I,.J DTIME (cn), even in the absence of the equality symbol.

(ii) Problem SAT2 (N) does not belong to ,. DTIME (cn).
Final remarks. Corollary 6.6 is a modest result because on one hand it concerns

an NP-complete problem (often regarded as intractable) and on the other hand the
linear time lower bound it states is a deterministic lower bound. It would be interesting
to exhibit a (natural) NP-complete problem o to which each problem in
NTIME (n log n), for example, is linear time reducible; then it would follow from the
hierarchy theorem on NTIME classes [Col], [SFM] that o NTIME (n).

We would like to exhibit a problem NTIME (n) to which all problems of this
class are linear time reducible (on a DTM), so that ,. DTIME (on). However it
is hard to find a (sufficiently expressible) problem the solution of which does not
involve sorting.

Note added in proof We have recently proved that a problem listed in [GaJo],
"Reduction of Incompletely Specified Automata" has the same complexity theoretical
properties as SAT2 (N) (cf. E. Grandjean, "A Nontrivial Lower Bound for an NP-
Problem on Finite Automata," to be submitted).

Appendix A. A proof o’f Theorem 3.7. Let us introduce several definitions and
lemmas.

DEFINITION. An elementary conjunction is an instance of problem SAT< (N) of
the form/i0i vi,where 0i denotes a term which includes at least one function symbol
and vi denotes an integer. If no term 0i is a subterm of another term 0J, then we say
that the elementary conjunction is suffix-free.

Lemma 3.4 can be restated as follows.
LEMMA A.1. Each suffix-free elementary conjunction is satisfiable.
DEFINITION. A partition A of an elementary conjunction is a function which

associates to each conjunct oe e’ of a decomposition of -, i.e., a sequence
,o%,.. ",k of nonempty words (on the alphabet SYMB) such that

DEFINITION. Let , ’ be two elementary conjunctions and A be a partition of
We say that derivesfrom ’ modulo A if for each conjunct e e’ of , to which

A associates the decomposition o= k’’", there exist integers Co, e,..., ek
such that:

(i) Co= e;
(ii) e_l e is a conjunct of ’, for each 1, 2, , k;
(iii) ek e’.
Remark. Clearly, the derivation (between elementary conjunctions) is a transitive

relation.
DEFINIXION. The depth of an elementary conjunction , denoted depth (), is

the maximal number of occurrences of function symbols in a term of .
Of course, an elementary conjunction which derives from a suffix-free elementary

conjunction is satisfiable (by Lemma A.1). Conversely we have Lemma A.2.
LEMMA A.2. If an elementary conjunction P is satisfiable, then it derives from a

suffix-free elementary conjunction ’ (modulo some partition A) such that:
(i) depth (’) -< depth ();
(ii) the function symbols and integers which occur in alp’ are those of
(iii) length (’) -< length () + I. conj;
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where is the length of the largest integer which occurs in do and conj is the number of
conjuncts of do.

Proof. The construction of do’ is given by procedures (4), (5) of the proof of
Proposition 3.3. Recall that we make successive substitutions (starting from conjunction
i)--Ar Or---Vr) as follows: in case a term 0i is a proper subterm of another 0;, i.e.,
cg0i 0;, replace the conjunct 0./= v., of/r Or Vr by v v; (and suppress any duplicate
conjunct). We obtain a sequence of elementary conjunctions doo do, dos, , do,, do’
such that do. derives from do./ modulo some (simple) partition A. (s =0, 1, , m 1).
Clearly there are strictly fewer occurrences of function symbols in do,/1 than in do. (in
particular m-< length (do)) and there are no more conjuncts (respectively, occurrences
of integers) in dos/ than in do,: this proves (iii). Assertions (i) and (ii) are obvious. [3

Notation. Let DERIVE denote the following problem.
Instance. A tuple (do, do’, A), where do, do’ are elementary conjunctions such that:
(i) Only two distinct function symbols g, g2 occur in do, do’;
(ii) do’ is suffix-free;
(iii) A is a partition of do.
Question. Does do derive from do’ modulo A?
LEMMA A.3. There is a I15 Turing machine all which decides the problem DERIVE

in time O( n + d2(d + l)), where n, d, denote thefollowing measures ofan input (do, do’, A):
n length (do) + length (do’), d max (depth (do), depth (do’)) and is the length of the
largest integer occurring in do, dO’.

Proof. Let og be the II1 Turing machine with the following program an input of
which is an instance (do, do’, A) of problem DERIVE.

() Universally choose a conjunct oe e’ of do.

(02) If A associates to this conjunct the decomposition o= ok’’" ff2ff, uni-
versally choose a set Ek of at most k conjuncts of do’.

The last part of the algorithm is deterministic: we want to check that one of
the following conditions (.j) is true (0=<j =< k).

For 0<=j< k, condition (.j) is:
There are integers eo e, el,"" ", e, e+ such that (oie_ e)e Ek for each i=

1,...,j, and (O+le e/) is a conjunct of do’ which does not belong to Ek.
Condition (,k) is as follows: There are integers e0=e, e,..., ek such that

(oiei- ei) Ek for each i= 1,. ., k and ek is e’.
(//3) uses the following recursive PROCEDURE CHECK (j), whose parameter

belongs to {1, , k+ 1}.

PROCEDURE CHECK (j).
{We assume that eo e, e,. , e.,_l have been found so that each conjunct (..iei_l el)
belongs to E,fori=l,-..,j-1}
BEGIN

IF j -< k THEN
BEGIN

look for an equality of the form e.,_ a in E;
IF such an equality is found THEN
BEGIN e., := a; call CHECK (j+ 1) END

ELSE
BEGIN

look for such an equality (-.e.,_ a) in do’;



806 ETIENNE GRANDJEAN

IF such an equality is found THEN
BEGIN e. := a; ACCEPT (Condition (,j- 1) is true) END

ELSE REJECT
END

END;
IF j k + 1 THEN
IF ek- e’ THEN ACCEPT (Condition (,k) is true)
ELSE REJECT

END;

(03) is precisely the following:

BEGIN eo :- e; call CHECK (1) END.

It is clear that (for each conjunct e= e’ and each set Ek) (0"3) accepts if and
only if one of the conditions (,j) is true (recall that ’ is suffix-free and then is
satisfiable).

We easily see that if derives from modulo the partition A, then the II1 Machine
a// accepts the input (, ’, A).

Conversely, assume that q/accepts an instance (, ’, A). Let e e’ be a conjunct
of and let = k’’" 21 be its associated decomposition (by A). We are going
to construct by induction a sequence of integers eo, e, , ej (0 <_-j <= k) such that the
following condition (cCj) holds:

(c): eo is e and (,.iei_- ei) is a conjunct of ’ for each i= 1,... ,j.

Assume that for some j < k (c) holds for the sequence eo, e, , e. Let Ek be a set
of k conjuncts (of ’) which include the j conjuncts (iei_ ei) for 1 =< _<-j. Since q/

accepts the input (, ’,A) there is j’_<-k such that Condition (.j’) is true for the
conjunct e e’ and the set Ek. We necessarily have j’->j and then there is an integer

e+ such that (+ej e+) is a conjunct of ’. This proves Condition (/). So the
induction is complete and we have constructed for the conjunct e e’ a sequence
eo, el," ", ek such that:

(CCk): eo is e and (e_ e) is a conjunct of ’ for each i= 1,..., k.

Now defining Ek to be the set of k conjuncts (e_ e), for 1,. , k we clearly
see that Condition (,k) holds (for the conjunct (fie= e’) and the set Ek) and then ek
is e’. It proves that (e e’) derives from ’ modulo A and then (, ’, A) DERIVE.

It remains to analyze the time used by machine 9/. Parts (0//) and (//2) clearly
need time O(n). Let us examine the time required by (//3) for a fixed conjunct e e’
of (decomposed into = k’’" 2ff by A, with k_-< d) and a fixed set Ek of k
conjuncts of ’. Clearly each conjunct of Ek has length O(d + l). Therefore the search
of a conjunct (respectively, of k conjuncts) of the form es_- a in Ek requires
k. O(d + l) steps (respectively, k. O(d + l) steps). The end of (3) consists in either
looking for such a conjunct in ’ or checking that ek is e’; it needs O(n) steps. Thus
(q/a) requires a time O(n + d2(d + l)). rq

Recall that an instance o of SAT< () is satisfiable if and only if the corresponding
conjunction, SIMPLE(q) (defined at the beginning of 3) is satisfiable. Let
SHORT () denote the conjunction of the distinct conjuncts of SIMPLE (o) presented
in lexicographical order.

LEMMA A.4. There is a , Turing machine which accepts the set {(, p’): p’=
SHORT (p)} in linear time.

Proof. It is similar to (simpler than) the proof of Theorem 3.6.



AN NP PROBLEM WITH A LOWER BOUND 807

LEMMA A.5. There is a linear time bounded nondeterministic Turing machine
which for each input q’ of the form q’= SHORT () with n =length (o), constructs an
elementary conjunction dp such that:

(i) o’ is satisfiable ifand only ifit produces some conjunction dp which is satisfiable;
(ii) Depth ()- I-log n and each integer which occurs in dp is less than HE;
(iii) Function symbols of are exactly those of q’ (or o);
(iv) has only O(n/log n) conjuncts and length ()= O(n).
Proof. The algorithm of is the following:

(1) For each (in)equality 0 0’ or 0 < 0’ of o’, guess the values of the terms 0,
0’ in the interval [0, n2[ so that the (in)equality holds: it produces an elementary
conjunction o"= (Ai Oi=v). (By Lemma 3.1(i) o’ is satisfiable if and only if it produces
some conjunction o" which is satisfiable.)

(2) Let 1= [log n ]. For each conjunct 0i v of qY’ of the form fp... f2f(e)= e’,
compute the quotient q and the remainder r of the Euclidean division of p by
(p ql+ r) and guess q "intermediate" integers values u, u2,’’ ", uq in the interval
[0, n2[, i.e., replace the conjunct 0 v of q" by the "guessed" conjunction"

"/,= A
1-<j=<q+l

where Uo e, uq+ e’, each uje[O, n2[, j=f.itfjt-l’" "fj-l)t+ for j= 1,2,. q and
rq+ =fqt+r’’’ft+ (in case r=O take u, e’ and delete the last conjunct of yi).

Let be the conjunction A y.

(i) is a direct consequence of Lemma 3.1(i). The assertions (ii) and (iii) are
obvious. It remains to prove (iv). We have

length (o") length (o’) + conj. O(log n)

where conj denotes the number of distinct conjuncts of o’ (or o) and then is O(n/log n).
Therefore length (o")= O(n). The number of conjuncts of is no more than the
number of conjuncts of o" (i.e., O(n/log n)) plus O(n/1)= O(n/log n) (we add a
conjunct for each block of composed functions). We have length ()= O(n) since
each conjunct of has length O(log n).

We can prove Theorem 3.7 as follows.
THEOREM 3.7. Problem SAT< () belongs to ,2(n).
Proof As we have noticed in the proof of Theorem 6.4, problem SAT< (t) is

linear time reducible to problem SAT2< (). Thus it suffices to prove SAT2< ()e E2(n)
and even to prove that the set

SET= {(o, o’)" o’= SHORT (o) and o’ SAT2< ([)}
belongs to ,2(n) (because length o ’) -< length (o) for o’= SHORT(o) and then for
an input o we can "guess" such a conjunction o’ in linear time).

The following algorithm clearly decides if (o, o’)SET (cf. Lemmas A.4, A.5,
A.2, A.3):

(1) Check that o’= SHORT (o) (cf. Lemma A.4).
(2) Simulate the nondeterministic Turing machine / (on input o’): it produces

an elementary conjunction (cf. Lemma A.5).
(3) Guess a partition A of and another elementary conjunction ’ (cf. Lemma

A.2).
(4) Check that ’ is suffix-free (in linear time on a H Turing machine).
(5) Check that (, ’, A) belongs to DERIVE (using the II Turing machine of

Lemma A.3).



808 ETIENNE GRANDJEAN

CLAIM. The algorithm (1)-(5) works in linear time on an alternating Turing machine.

Proofof the claim. If q’= SHORT (q) and belongs to SATe< (), then (by Lemma
A.5) produces (starting from input q) a satisfiable elementary conjunction of
depth [log n and length O(n) (where n length (q)). It follows from Lemma A.2
that is derivable from a suffix-free elementary conjunction ’ (modulo some partition
A) such that: length (’) _-< length () + 1. conj where is the length of the largest integer
occurring in and then is O(log n) (by Lemma A.5(ii)) and conj is the number of
conjuncts of which is O(n/log n) (by Lemma A.5(iv))" hence length (’)= O(n).
It follows from Lemma A.3 that the H Turing machine o accepts the input (, ’, A)
in time O(n + (log n)2(log n + log n)) O(n). This proves the claim.

In order to get a E2 algorithm (i.e., existential steps precede universal steps) we
do not execute the whole of Part (1) before Parts (2)-(5) but execute all the existential
steps of Part (1) and of Parts (2)-(5) before we execute their universal steps. This
completes the proof of Theorem 3.7.
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SCHEDULING UET SYSTEMS
ON TWO UNIFORM PROCESSORS AND LENGTH TWO PIPELINES *

HAROLD N. GABOW

Abstract. A set of jobs related by precedence constraints is to be executed in minimum

time on two uniform processors, the faster one using f time units per job and the slower

s > f time units. When s f-k 1 the desired schedule can be characterized as HLA, "highest-

level-first with abstentions." It can be found in linear time when there is no idle time; in

general the time is exponential in the number of levels of the precedence graph. The problem

of scheduling jobs related by precedence constraints on a length two pipeline processor is

isomorphic to a simple version of the uniform processor problem. The optimum schedule

is HLF, "highest-level-first," and can be found in linear time. Approximately optimum

schedules for two uniform processors can be found in linear or nearly linear time. The

schedule that is optimum for two identical processors has accuracy at most a factor 2-

above optimum, for arbitrary f and s. The HLF schedule has accuracy 5/4 for f/s 1/2
and 6/5 for f/s 2/3.

Key words, scheduling, uniform processors, pipeline processor, highest-level-first sched-

ule, critical path rule, precedence constraints, directed acyclic graph

AMS (MOS) subject classifications. 68Q25, 68R10, 90B35

1. Introduction. Much work has been done on the problem of finding a short-
est multiprocessor schedule for a set of unit execution time jobs subject to precedence
constraints (so-called UET systems [C]). The most encouraging results are for two iden-
tical processors. This problem is P2 prec, pj llCmax in the notation of [GLLRK].
Several efficient algorithms have been given [FKN], [CG], [GJ77], including one with
linear running time [G82a], [GT]. The problem can be efficiently solved even in the
presence of release times and deadlines [GJ76], [GJ77]. On the other hand the problem
is NP-complete when the two processors are identical but the job execution times are
one or two (P21prec pje {1, 2}lCmax [U].

This paper investigates the problem for two uniform processors (Q2 prec, p
llCn. A "uniform" processor runs at constant speed). Suppose a job can be exe-
cuted in f time units on the fast processor and s units on the slow processor, f < s.
Write A 8- f. The case A 1 is most amenable to analysis. We show that

" characterization of an optimum schedule for two iden-the HLF, highest-level-first,
tical processors [G82a] generalizes to this case. Here the optimum schedule is HLA,
"highest-level-first with abstentions." Such a schedule differs from HLF in that it
contains "unforced idle time," i.e., idle that from a local viewpoint is unnecessary
[GLLRK]. An HLA schedule can be constructed in linear time if the location of the

* Received by the editors August 2, 1982; accepted for publication (in revised form) June

25, 1987. This work was supported in part by National Science Foundation grants MCS-
7818909 and MCS-8302648.

Department of Computer Science, University of Colorado at Boulder, Boulder, Colorado

80309.
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idle time is known. So if an optimum schedule has no idle time, it can be found in
O(n / m) time, where n and m are the number of nodes and edges of the precedence
graph, respectively. In general the algorithm runs in o(2L(n + m)) time, where L is
the number of levels in the precedence graph.

Recent developments in computer architecture motivate the problem of scheduling
a pipeline computer. The case of a length two pipeline is isomorphic to a simple version
of the A 1 problem. In this case an HLF schedule is optimum and can be found in
O(n + m) time.

To handle general speeds f and s and also to obtain polynomial running times,
we study algorithms that find a schedule that is guaranteed to be nearly optimum.
One strategy is to use the optimum schedule for two identical processors. This gives
a uniform processor schedule that is at most a factor 2- (f/s) above optimum. (As
expected this approaches one as f/s approaches one.) Another strategy is to use an
HLF schedule for the two uniform processors. This gives better accuracy for two
important cases: f/s 1/2 has accuracy 5/4 and f/s 2/3 has accuracy 6/5. (All
bounds on accuracies are tight.)

Section 2 gives definitions and reviews relevant results for two identical processors.
Section 3 derives the HLA characterization of an optimum schedule for the A 1 case.
This gives the above-mentioned algorithms for uniform processors and pipelines. It also
provides a new proof that HLF schedules are optimum for two identical processors.
Section 4 explores the use of the identical processor schedule to approximate the
optimum uniform processor schedule. Section 5 explores the HLF approximation
algorithm. Section 6 gives concluding remarks.

2. Preliminaries. This section gives basic terminology and reviews some results
in scheduling.

A scheduling problem is defined on a dag (directed acyclic graph). A node of the
dag represents a job that requires one unit of processing time; an edge represents a
precedence constraint. G always denotes the given dag; n and m denote the number
of nodes and edges, respectively. If there is an edge from node x to node y, then x
is an immediate predecessor of y and we write x - y; if there is a directed path (of
zero or more edges) from x to y, then x is a predecessor of y, y is a ucceor of x and
we write x-Ly. A node with no predecessors is initial. A dag can be partitioned into
level8 , L >_ >_ 1: level consists of all nodes x that start paths with t nodes but
not paths with t + 1 nodes. We write level(x) . L always denotes the highest level
of the dag. Figure 2.1 shows a dag. In all figures dags are drawn with the convention
that edges are directed vertically from higher node to lower.

4

3
’,’b

2

Fc. 2.1. Dag with four levels.
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The nodes of the dag (jobs) are executed on two uniform processors, i.e., proces-
sors of constant speed. The speeds are two relatively prime positive integers f and s,
f _< s. The fast processor PI executes a node in f time units, while the slow processor
Ps executes a node in s time units. (Strictly speaking parameters f and s are the
inverses of speed. This will not cause confusion.) Define A s- f. If A 0 the
processors are identical.

Suppose PI and Ps start simultaneously and execute nodes without interruption.
Every fs time units Pf executes s nodes and Ps executes f nodes. These f + s nodes
are executed in a repetitive pattern called the execution period (Figure 2.2). A time
interval on Pf or P in the execution period during which one node is executed is a
slot. The slots of a period are numbered from 1 to f + s in order of increasing right
endpoint (finish time), with ties broken by left endpoint (start time); hence the last
two slots aref+s-lonPs andf+sonPf.

FG. 2.2. Execution period for f/s 2/3.

For identical processors the execution period is trivial. Assume otherwise, A > 0.
Then a slot on PI overlaps at most two slots on Ps; also a slot on Ps overlaps at least
two slots on PI. Exactly A + 1 slots on PI are contained in a slot of Ps. (To show
this note that each of f 1 borders of slots on Ps is in the interior of a different slot
of PI. This leaves s- f + 1 A + 1 slots of PI contained in a slot of Ps.)

When A 1 every slot overlaps at most two others. This is the basic reason
why the results of 3 hold. It implies the following properties, which are assumed in

3 (Figure 2.2)" The slots are numbered from 1 to 2f + 1. The odd-numbered slots
are on PI, the evens on PI+I. The left endpoint of a slot is nondecreasing with slot
number, as is the right endpoint.

A "schedule" specifies how to process each node and obey every precedence con-
straint. More precisely a schedule is an assignment of each node x to an ordered pair
(p(x), t(x)), where p(x) E {f, s}, t(x) >_ 0 is the start time for x, t’(x) t(x) + p(x) is
the finish time, and for any distinct nodes x and y with either x y or p(x) p(y)
and t(x)

_
t(y), we have t’(x) <_ t(y). Processor PB(X) executes x from its start time

to finish time. A processor is idle when it is not executing any node. w, the largest
finish time of a node, is the length (makespan) of the schedule. An optimum schedule
has length w*, the minimum length possible. For further material on schedules see
[C], [GLLRK].

For any slot a, 1 _< a _< f + s, a a-schedule starts in a. More precisely let
slot a be on processor P. Let P’ be the other processor and let a be the first slot
on P starting no earlier than a (for a < f + s, a a + 1; for a f + s, a 2 of
the next execution period). In a a-schedule, P(P’) starts at slot a(a’) or later. So an
ordinary schedule is a 1-schedule. The length of a a-schedule is measured starting at
the beginning of slot a. An optimum a-schedule is a a-schedule whose length is as small

If the processors are identical, values f and s designate distinct processors so f = s in

the equation p(x) p(y).
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as possible (among all a-schedules. In general for a fixed dag, the optimum length
varies with a). Section 3 proves most results for a-schedules (and a fortiori for ordinary
schedules). It should be clear how to interpret a phrase like "an optimum a-schedule
that has property P’-- when in doubt, "optimum" modifies only "a-schedule," so this
schedule is an optimum a-schedule, that happens to also have property P.

The following definitions generalize HLF, highest-level-first, schedules. HLF
schedules are optimum for identical processors (A 0 [G82a]. The definitions are
given for A 1, where we will show they lead to optimum schedules. However they
are relevant for arbitrary A.

A level schedule "executes levels" in decreasing order. More precisely let a be
a slot, 1 <_ a _< 2f+l. Let H be the set of all nodes on the highest level L. A
level a-schedule executes the nodes of H in the first IHI slots a,a + 1,..., 7 (where
r 1 + ((IHI + a- 2) mod (2f + 1))). There are three cases for r"

(i)
(ii)
(iii)

r 2f + 1 is the last slot of an execution period.
7<2f+landnonodeisinslotr+l.
r<2f+landanodeyisinslotr+l.

In cases (i)- (ii) the rest of the schedule is a level 1-schedule for G- H. In case (iii)
the rest of the schedule is a level r-schedule for G H y, where r r + 2 if r < 2f
and r 1 if r 2f. A level schedule is a level 1-schedule. Figure 2.3 shows two level
schedules.

a b c

(a)

e f

FIG. 2.3.

d e f

g

(b)

Level schedules for Fig. 2.1, f/s 1/2. (a) c0 6. (b) w* 5.

In a level schedule consider a level g, L _> _> 1, where case (iii) applies. Let x
be the node in slot 7". So level(x) g, level(y) < g, and xvZy since slots r and r + 1
overlap. The ordered pair (x, y) is a jump from x tc y; alternatively the jump goes
from level g to level(y), level g jumps y. If case (ii) applies to level , g has an idle
jump; by convention an idle jump goes to level 0 (level 0 is a fictitious level). Level
has a jump in cases (ii) and (iii) but not (i). In Figure 2.3 and all other figures nodes
that are jumped are dotted. The idle times in Figure 2.3 are idle jumps.
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The execution of level , for L _> t _> 1, is defined inductively. For t L it consists
of the above slots a, a + 1,..., r plus slot T + 1 if L jumps a node. For smaller t it is
defined in the obvious way by induction. Observe that nodes of t that are jumped are
not included in the execution of (e.g., in Figure 2.3(a), g is not in the execution of
level 1).

The slots of a level schedule are linearly ordered (as in an execution period, the
order is by increasing right endpoint with ties broken by left endpoint). If a is a slot,
a+ denotes the next slot in this order. We extend this linear ordering to the nodes of
the dad, e.g., if node x is in slot a, the node after x is the node in a+.

In a level schedule let the levels with jumps be fl > > fk, where level fi jumps
to level ti. The jump sequence of the schedule is the ordered k-tuple (tl, t2,..., tk). In
Figure 2.3 the jump sequences are (1, 0, 0, 0) in (a) and (0, 1) in (b). Observe that the
dad and the jump sequence together determine the slots where nodes are executed. In
particular the length w can be deduced.

Jump sequences are compared using lexicographic order. That is, (t,..., tk) >
(s,...,sr) if for some j, 1 _< j <_ min{k,r}, t s for 1 _< i < j and tj > sj.
(Lexicographic order allows the possibility that (tl,..., tk) > (Sl,..., st) if ti si for
1 <_ i <_ r and k > r. This cannot occur with jump sequences: If ti si for 1 _< i _< r
then k r and (t,...,tk) (S,...,Sr).)

A highest-level-first (HLI schedule is a level schedule whose jump sequence is as
large as possible. Such a schedule is essentially a critical-path schedule. HLF schedules
are optimum for several types of identical processor scheduling: two processors [CG],
[G82a], forest precedence In61], [H82], and interval orders [PY], [G81] (the last is
shown HLF in [G83]). Figure 2.3 shows HLF schedules are not optimum for uniform
processors: (a) is HLF but (b) is optimum. Observe that the optimum schedule jumps
to the highest level except when it has idle jumps. This is characteristic of an "HLA"
schedule, defined as follows.

In a level schedule, a level is abstentious if it ends in slot T < 2f and has an
idle jump. A level that has a jump but is not abstentious is nonabstentious. So a
nonabstentious level either ends in slot r < 2f and jumps a node or ends in slot
2f. (The motivation for the latter condition is that when a level ends in slot 2f, the
schedule includes a complete slot 2]" + 1 regardless of whether the level jumps a node.)

Let A be a set of levels, A c_ {1,...,L}, and let a be a slot, 1 <_ a <_ 2f + 1.
An HLA a-schedule for A is a level a-schedule with abstentious levels A, whose jump
sequence is as large as possible. An HLA (highest-level-first with abstentions) schedule
is an HLA 1-schedule. Figure 2.3 shows HLA schedules, with abstentions 1, 2 in (a)
and 4 in (b).

For identical processors an HLF schedule is an HLA schedule with no abstentions.
(Any idle jump is in the slot that is the analogue of 2f, the slot that never abstains.)
Such a schedule can be constructed in linear time.

Similar algorithms can be used for uniform processors. In one instance we shall see
the set of abstentious levels A is known in advance. (This is a nontrivial assumption.
A given set of levels A may not even have an HLA schedule, since the precedence
constraints may force idle jumps at levels not in A.)

THEOREM 2.1. Given se of abstentious levels A and processor speeds f, f + 1,
an HLA schedule, if it exists, can be found in O(n + m) time and space.

Proof. The algorithm is a straightforward adaptation of the identical processor
algorithm of [G82a]. The latter works in two passes: Pass I processes the levels t in
descending order t L, L- 1,..., 1; it finds all levels that jump to level t. Pass II
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finds the specific nodes jumped.
The same strategy words for uniform processors. The important point is that

after level is processed in Pass I it is easy to decide whether or not t jumps a node:
The number of nodes on level that are jumped is known. This determines the slot
that executes the last node of t. Level t jumps a node if t A and r 2f / 1. Both
these conditions are easy to test.

The time and space are O(n / m). The time bound depends on using the set
merging algorithm of [GT].

The key fact in analyzing HLF schedules is that they decompose into "blocks."
The blocks are defined from a set of boundary levels t, 1 <_ i <_ B / 1, where tl 1,
t?B+l L + 1. The exact definition of t can be found in [G82a]. For 1 _< i _< B,
block Xi consists of all nodes scheduled after ti+l up to and including ti, except for
the node (if any) jumped from i. Every node is in a block except nodes jumped from
boundary levels . The blocks partition the time units of the schedule. The following
result is proved in [G82a].

THEOREM 2.2. Assume A O.
(a) In an HLF schedule any block X is executed in [IXI/2] time units.

(b) For any block Xi, 1 < i g B, XiAXi_I, i.e., any node of Xi precedes any
node of Xi-1.

Theorem 2.2 imp.lies that an HLF schedule for identical processors is optimum,
since its length is E7: [Ix, l/. HLa schedules have a similar block structure, but
it is not needed in this paper (although a block structure is used in 5).

3. HLA schedules. This section proves that when A 1 there is an optimum
HLA schedule. This leads to an algorithm that finds an optimum schedule in O(n+m)
time when there is no idle and o(2L(n/m)) time in general. It also gives a linear-time
algorithm for length two pipelines.

The proof is organized as follows. Lemmas 3.1-3.3 show that an optimum schedule
that is level always exists. Lemma 3.4-3.6 establish some "highest-level-first" types of
properties. Theorem 3.1 shows that an optimum schedule that is HLA always exists.
All these results are for the case A 1. They simplify to show that an HLF schedule
is optimum for length two pipelines (Corollary 3.2), and also A 0, i.e., two identical
processors (Corollary 3.3). If A > 1 the results do not apply; in fact there need not
even exist an optimum schedule that is level (Theorem 3.2).

The first result will allow us to consider only schedules that execute nodes in slots
(Lemma 3.3).

LEMMA 3.1. For any slot a, there is an optimum a-schedule that executes a node
in the first slot a.

Proof. Let S be an optimum a-schedule (S does not necessarily execute nodes
in slots). Slot a ends at the first time any schedule can complete a job (even when
a 2f). If S does not use any portion of a, let x be the first node to start executing
in S. Moving x to a gives a valid a-schedule no longer than S (recall length starts at
a). Similarly if S executes a portion of some node x in a, move x to a.

The next lemma is the heart of the transformation of an optimum schedule to
a level schedule. First some notation. Let S be a schedule that executes nodes in
slots, such as a level schedule. S/x denotes the schedule S starting at the slot after x.
For example for S the schedule Figure 2.3(b), Sic is a 3-schedule for nodes d, e, f, g.
(Sometimes it is convenient to use Six to refer to the nodes after x; no confusion will
result.) An almost-level schedule S is a schedule such that for the first node executed
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x, Six is a level a-schedule for G- x (and some a). Recall that L denotes the number
of levels in the dag.

LEMMA 3.2. If G has an optimum a-schedule that is almost-level then it has an
optimum a-schedule with a level L node in the first slot.

Proof. The proof is by induction on L. The base case L 1 is trivial. Assume
the lemma holds for graphs with less than L levels and prove it for L as follows.

Consider an optimum a-schedule S that is almost-level; without loss of generality
assume x, the node in the first slot, has level(x) < L. Let y be the node after x; since
S is almost-level level(y) L. Let S’ be S with nodes x and y interchanged. If S’ is

not a valid schedule, it violates a precedence constraint xz, where node z is in the
slot originally overlapping y. Clearly level(z) < level(x)

_
L- 1. So G- {x, y} is an

L- 1 level graph and Sly is an almost-level schedule for it. By induction it has an
optimum schedule T whose first node w is on level L- 1 and is in the first slot of Sly.
Since level(x) < L, xw. So a valid schedule for G results from scheduling y and x
in the first two slots and then T. This is the desired schedule. [:l

Now we show that an optimum schedule can be transformed to a level schedule.
LEMMA 3.3. Any slot a has a level a-schedule that is an optimum a-schedule.
Proof. The proof is by induction on n, the number of nodes in G. The base

n 1 is trivial. Assume the lemma for graphs with fewer than n nodes and prove it
for G as follows.

Observe that G has an optimum a-schedule S that starts with a level L node
in slot a: There is an optimum a-schedule with some node x in a by Lemma 3.1.
Suppose level(x) < L. By induction G- x has a level a+-schedule that is optimum.
This schedule preceded by x in a is an almost-level a-schedule for G that is optimum.
(x does not precede the node in a+ since level(x) < L.) Now Lemma 3.2 shows the
desired schedule S exists.

Let x be the first node of S. If x is not the only level L node then x, followed
by the schedule for G- x given by induction, is the desired schedule. So suppose x is
the only node of L. If in S the processor opposite x is idle during the entire duration
of slot a, then x is followed by a 1-schedule for G- x. By induction this schedule can
be assumed level, as desired.

Otherwise the processor opposite x executes a portion of some node y during
Clearly y can be assumed to be in slot a+. By induction G- {x, y} has a level a++-
schedule that is optimum. This schedule preceded by x in a and y in a+ is the desired
schedule. (y does not precede the node in a++ since the latter is on level L- 1.)

The next two lemmas show initial nodes have "highest-level-first" properties.
LEMMA 3.4. If x is an initial node then any slot a has an optimum level

schedule where all nodes before, x are on level(x) or higher.
Proof. The proof is by contradiction. Let S be an optimum level a-schedule

where x is in the earliest slot possible. Suppose a node y with level(y) < level(x)
is scheduled before x; choose y as the last such node. Node y is jumped since x
is scheduled at level(x) or before. We derive a contradiction by showing x can be
scheduled earlier.

Let T be the result of interchanging x and y in S. The first case is when T is a
valid schedule. T is a level schedule up to and including x, which is jumped. Let x be
in slot V in T. Let U be an optimum level 7+-schedule for T/x (by Lemma 3.3). Let V
be the schedule T with T/x replaced by U. V is a valid schedule. (x does not precede
the node in v+, which is on level(x) or higher.) V gives the desired contradiction.

The second case is when T is not a valid schedule. T can only violate a precedence
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constraint y-z for some node z with level(z) < level(y) < level(x). S does not
schedule z before x, by choice of y. Thus in S, z is the node after x, and level(x)
jumps from x to z.

Let y be in slot in T (so z is in +). Let U be an optimum level g+-schedule

for T/y. Let V be T with T/y replaced by U. V is a valid schedule. (y does not
precede the node in tc+, which is on level(x)- 1.) If V is level it gives the desired
contradiction.

If V is not level then 1 (in this case level(x) has a jump in S but not in T).
Let w be the node before y in V. Let W be V with V/w replaced by an optimum level
l-schedule. W gives the desired contradiction.

LEMMA 3.5. Let X and Y be dags where node x is initial in X, node y is initial
in Y and X-x Y-y. Suppose level(x) > level(y). Then for any slot a an optimum
a-schedule for Y is no longer than one for X.

Proof. By Lemma 3.4 let S be an optimum level a-schedule for X where all
nodes before x are on level(x) or higher. Let T be S with x replaced by y. Suppose
T is not a valid schedule for Y. T can only violate a precedence constraint yz for
some node z with level(z) < level(y) < level(x). This implies S jumps from x to z,
so in T, z is in the slot v after y. Thus T/y Six is a v-schedule for a dag with
level(x)- 1 levels.

Let U be an optimum level v-schedule for T/y. Let V be T with T/y replaced
by U. V is a valid schedule for Y. (y does not precede the node in v, which is on
level(x)- 1.) This gives the lemma.

The next lemma investigates the situation where there is a choice of nodes to
jump on the same level.

LEMMA 3.6. Let X and Y be dags where node x is initial in X, node y is initial
in Y, level(x) level(y) and X- x Y- y. Let a be any slot and let A be a set
of abstaining levels. Let S be an HLA a-schedule for A on X. Then there exists T,
an HLA a-schedule for A on Y, with these properties:

(i) S and T have the same jump sequence before
(ii) Let X’ be the subgraph of X that remains after the execution of level , and

similarly for Y’. Either X’ Y’, or jumps a node y’ in S and x’ in T such that
X’ x’ Y’ y’.

Proof. For succinctness in this argument, "good schedule" stands for "HLA a-
schedule for A." We first prove property (i). It asserts that any two good schedules
for X and Y have the same jump sequence before t. We will show that if S is a good
schedule for X its jump sequence before t is at most that of a good schedule for Y.
Symmetry gives (i).

So let S be a good schedule for X and let T be S with x replaced by y. First
observe that T is a valid schedule unless t jumps from x to a successor of y: Suppose
T is not valid. It can only violate a precedence constraint yz for a node z with
level(z) < t. Since S is HLA and x is initial, S does not jump z before x is executed.
Thus in S, t jumps from x to z, as desired.

The observation implies that before t, T is a valid level a-schedule with absten-
tions A (T is level since level(x) level(y)). So the jump sequence before t of a
good schedule for Y is at least that of T. This is the same as that of S (again recall
level(x) level(y)). Property (i) follows.

To show property (ii) consider two cases. First suppose that in S no level above
jumps below t. Let T be any good schedule for Y. By (i) T has the property supposed
for S. Clearly (ii) holds.
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The second case is when in S some level f > t jumps below t. By (i) f jumps
below t in any good schedule for Y. Since S is HLA, it jumps x before f. Similarly
any good schedule for Y jumps y before f. Now the argument for (i) shows that a
good schedule has the same jump sequence in X as in Y, and that S, with x replaced
by y, is a good schedule for Y. Choosing it as T gives (ii).

Now we show the main result.
THEOREM 3.1. Assume A 1. Any slot a has a set of levels A such that any

HLA a-schedule for A is an optimum a-schedule.
Proof. The proof is by induction on L. If L 1 the theorem is trivial. Assume

the theorem, for fewer than L levels and prove it for L, as follows. Let S be an optimum
level a-schedule. Let z be the last node in the execution of L. By induction assume

S/z is an HLA schedule. Choose S so that subject to the above conditions its jump
sequence is as high as possible. Let A be the abstentious levels for S, i.e.,

A {t level t ends in slot -, 1 <_ - < 2f, but does not jump a node}.

To prove the theorem it suffices to show S is an HLA schedule for A. This is obvious
if S does not jump from L (i.e., either L E A or L ends at slot 2f + 1). So assume S
does a jump from L.

We will argue inductively to find an HLA schedule T for A and levels t., L
tl > t2 >... > tk 0, such that:

(i) For 1 _< j _< k, S and T have the same jump sequence above t..
(ii) For 1 _< j < k, t. jumps a node y. in S and x. in T such that X. x

Y. y., where X. (Y.) is the subgraph induced on all nodes after the execution of
in S (T).
Property (i) for j k gives the desired conclusion.

Start by choosing T as an arbitrary HLA schedule for A. For the base case j 1,
property (i) is vacuous. For (ii) recall S jumps a node yl from L. So clearly T jumps
a node x from L. Both X1 -Xl and Y1 -yl are the subgraph of all nodes below level
L excluding x and y.

For the inductive step assume (i)-(ii) for j < k, and prove it for j + 1 as follows.
Write level(xj). Since T is an HLA schedule for A, l >_ level(yj). To show equality
holds (as required by property (i)) suppose the contrary, t > level(yj). Let 7 be the
slot after x. (equivalently after y.). Let U be T, with T/x replaced by an optimum,
HLA v-schedule (for Y.. This schedule exists by induction, although it may not abstain
at the levels in A). Since t < t., U is a valid level a-schedule. Further Lemma 3.5
implies U is optimum for G. But U shows that S does not have the highest jump
sequence possible, contradicting its definition. We conclude l level(yj) as desired.

Now Lemma 3.6 can be applied to graphs X. and Y. (the choice of S makes it
HLA on X.). It shows S and T have the same jump sequence above t. Further T can
be chosen so that (ii) of Lemma 3.6 holds. Using the notation of Lemma 3.6, either
X Y’ or X’ x Y y.

In the first case X’ Y’, S and T can be assumed identical after . Take j+ 0
and k j + 1 to complete the induction.

X (SOIn the second case X’ x’ Y y’, take tj+ t, yj+ = Y’ and xj+
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Xj+I X’ and Ya+l Y’). k will be a value > j + 1. Clearly (i) and (ii) hold for
j+l. [:]

The key to finding the optimum HLA schedule is finding the abstentious levels.
We have not succeeded in doing this. Here are two simple applications of the theorem.

COROLLARY 3.1. Assume 1.
(a) If there is a schedule with no idle time, it can be found in O(n + m) time and

space.
(b) An optimum schedule can be ,found in o(2L(n+m)) time and O(n+m) space.
Proof. (a) Apply Theorems 3.1 and 2.1 with A
(b) There are at most 2/‘ possible sets of abstentious levels A. Find an HLA

schedule for each and select the shortest. [-]

Note also that if the amount of idle time is O(1) the schedule can be found in
polynomial time. This follows since a schedule with I units of idle abstains at most I
times. This fact may be of theoretic interest: We have not eliminated the possibility
that the general A 1 problem is NP-complete. This fact shows that a reduction
must use an unbounded amount of idle time, unlike most other scheduling problems.

We give two more applications of Theorem 3.1, for the case of no abstentions. The
first is to pipeline scheduling. A length k pipeline processor has k stages, connected
in series. A job is executed in k time units it passes through each stage in order,
spending one time unit at each stage. Thus jobs are executed in slots corresponding
to the time intervals It, t + k) for nonnegative integers t. The pattern of slots does
not change even when there is idle: If a job is not started at time t, the complete slot
It, + k) is idle.

For a length two pipeline, the pattern of slots is similar to the A 1 case, since
each slot (except the first and last) overlaps two others. Since the slot pattern does
not change, there is no advantage in abstaining.

COROLLARY 3.2. For a length two pipeline any HLF schedule is optimum. Such
a schedule can be found in O(n + m) time and space.

Proof. The argument of Theorem 3.1 shows any HLF schedule (i.e., an HLA
schedule with A q}) is optimum. The only change is to adopt the above notion of
slot. The HLF schedule is found as in Theorem 2.1. [:]

The proof of Theorem 3.1 is easily adapted to show that an HLF schedule is
optimum for identical processors. This derivation is independent from the one in

COROLLARY 3.3. For two identical processors any HLF schedule is optimum.
Proof. For identical processors an execution period is one time unit long with

slots numbered one and two. By convention a jumped node goes in slot two. The
proofs of the lemmas and the theorem are simpler because slot two does not overlap
the following slot.

Returning to uniform processors, the HLA characterization holds only for speeds
with A 1. When A > 1 some dags do not even admit an optimum level schedule.

THEOREM 3.2. Assume A > 1. There is a dag where no level schedule is
optimum.

Proof. The argument depends on the relative sizes of 2f and s. Equality does
not occur since it implies f 1, s 2, A 1.
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Case 2f > s. Consider Figure 3.1. It consists of components S and F, where S
is a chain of s- 1 nodes and F has two nodes a, a that precede a chain of f- 1 nodes.

An optimum schedule O has length fs with no idle time: PI executes node a
followed by the nodes of S. Ps executes a followed by the remaining nodes of F. O
is not a level schedule since a and a are on level f < s- 1 L.

To prove the theorem it suffices to show O is the only optimum schedule. First
consider a dag consisting of two chains. If a schedule with no idle exists, each processor
executes nodes from one chain for fs time units. At this point the processors can
switch chains but not before.

Now consider a schedule with no idle for Figure 3.1. There are three cases,
depending on the nodes executed at time zero. If a and a’ are executed the preceding
observation implies the schedule is O. If P executes b the observation implies PI
executes the entire F component while Ps executes S. But F has f + 1 < s nodes,
giving idle time on PI.

FG. 3.1. Nonlevel dag for 2f > s.

FIG. 3.2. Nonlevel dag for 2f < s.
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The last case is where PI executes b and Ps executes a at time zero. If Pf executes
a after b, 2f > s implies Ps switches to component S while Pf executes F. This gives
idle time as in the previous case. If PI does not execute a after b, 2f > s implies Ps
executes F while Pf executes S. But since S has only s- 1 nodes this gives idle time
on Pf.

Case 2f < s. In Figure 3.2, the dag has height [s/f > 3. An optimum schedule
O has length w* ([s/f 4- 1)f" First PI executes node a while Ps is idle. Then

PI executes all nodes but b while Ps executes b. (Ps can finish at time f 4- s _< w*.)
Clearly O is not level.

The optimum is unique: Observe 2s > s 4- 2f > w*. Hence to achieve w*, P
must execute precisely one node; further that node must be b. Now it is easy to see
the schedule must be O.

4. The AI approximation algorithm. This section investigates the strategy
of using an optimum identical processor schedule for two uniform processors. The
worst-case accuracy bound is 2- (f/s). The time and space to find the schedule are

O(n+m).
An AI (Approximately Identical) schedule T is constructed as follows. Start with

an HLF schedule S for two identical processors. Then convert it to T: A time unit of
S where one node is executed corresponds to f time units of T where the same node
is executed on Pf. A time unit of S where two nodes are executed corresponds to s
time units of T where the same two nodes are executed. Ps executes one node while

PI executes the other with A units of idle.
An AI schedule can be found in O(n + m) time. To derive the accuracy bound

define these quantities from the AI schedule:

the number of nodes on Pf scheduled with a node on Ps;
u- the number of nodes on PI scheduled with idle on Ps.

Clearly w st + fu. Since the optimum schedule executes at most (1If + 1Is)w*
nodes, it is clear that

(1) (1If + 1Is)w* >_ 2t + u.

Now we derive another bound on w*.
LEMMA 4.1. w* >_ f + uf
Proof. The lemma is proved by decomposing the schedule into blocks Xh, j

1,..., B (recall Theorem 2.2). Define these quantities for a block X.

w* (X) the length of an optimum schedule for the nodes of X;
t(X) the contribution to made by X in the AI schedule;
u(X) the contribution to u made by X in the AI schedule.

Observe that w* _> E=I * (Xj) by Theorem 2.2(b). Also + u ’Y-1 t(Xj) +
u(Xj). So it suffices to show w* (X) >_ t(X)f + u(X)f for every block X.

Theorem 2.2(a) implies that in the AI schedule Pf executes exactly [IXI/2] nodes
of X. So [IXI/2] t(X)+u(X). Clearly w* (X) >_ [IXI/2] f, since a schedule executes
at least [IXI/2] nodes on some processor. This gives the desired conclusion. V1

THEOREM 4.1. (a) On any dag the AI schedule achieves the bound w/w* <_
2- (f/s).
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(b) There i a dad where the AI schedule has w/w* 2 -(f/s).
Proof. (a) Multiplying (1) by s- f, Lemma 4.1 by 2- (s/f), and adding gives

(2 f/s )w > st + fu. The right-hand side is
(b) Consider a dad consisting of a chain of s nodes plus f isolated nodes. The

AI schedule executes a chain node with an isolated node until all isolated nodes are
exhausted. Then it executes chain nodes with idle. So w fs + Af.

The optimum schedule executes the chain nodes on Pf and the isolated nodes on
Ps, so w* -f8.

The obvious way to improve the AI schedule is to compress idle on Pf: When
two consecutive nodes on Pf are on the same level, the second node can be scheduled
after the first with no intervening idle. Similarly when a node is jumped on Ps, the
node following it on Pf can be scheduled right after its predecessor. The compressed
AI (CA1) schedule is the result of applying these rules as much as possible to remove
idle. (If If/A] nodes are compressed a whole new slot is available on Pf. We will not
concern ourselves with how this slot is used since our lower bounds do not depend on
it.) The CAI schedule has an alternate description: It is a level schedule that never
jumps from processor Ps but otherwise has the highest jump sequence possible.

Our results on CAI indicate that compression does not help there are dags
where the accuracy is the same as AI. The main result is stated below. The proof is
a construction similar to 5. Details and other results can be found in [G82b].

THEOREM 4.2. Assume f/s >_ 4/5 (A is arbitrary). For any e > 0 there is a

dad where the CAI schedule has

5. The HLF approximation algorithm. This section investigates the HLF
scheduling rule as an approximation algorithm. When A 1 an HLF schedule can
be found in O(m / n log log n) time and O(n + m) space. Two important cases of
HLF scheduling are analyzed: When s/f 1/2 the worst-case accuracy bound is 5/4.
When s/f 2/3 the bound is 6/5. These are the main cases where HLF is preferable
to the AI schedule, which is more accurate than HLF when s/f >_ 4/5.

The HLF scheduling algorithm differs from the HLA algorithm of Theorem 2.1
because the slots are not known in advance. Nonetheless a similar algorithm works
for HLF scheduling: Pass I processes levels in decreasing order. When processing
it finds the level (if any) that jumps to. (Note that since all idle jumps from levels
above t are known, it is easy to decide if has a jump or not. This organization differs
from Theorem 2.1, which when processing t finds the levels that jump to it.) Pass II
finds the specific jumps.

The main data structure of the algorithm is a priority queue that finds the highest
level can jump. Since levels are integers between ! and n the queue can be efficiently
implemented using the data structure of van Emde Boas [E76], [E77].

THEOREM 5.1. Asume A 1. An HLF schedule can be found in O(m +
n log log n) time and O(m + n) space.

Proof. Further details are similar to the identical processor case of [G82a]. They
are given explicitly in [G82b]. [:]

HLF schedules decompose into blocks, as in Theorem 2.2"
THEOREM 5.2. Assume A 1.
(i) In an HLF schedule any block X is executed in consecutive time slots a, a +

1,..., r with no intervening idle. Here 1 <_ a, v <_ 2f + 1 and a 2.
(ii) For any block Xi, 1 < i <_ B, XiXi-1.
Proof. In part (i), a - 2 since a level schedule never jumps a node in slot one.

The rest of the proof follows the identical processor case of [G82a]. The details can
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be found in [G82b].
The analysis of HLF schedules is done on blocks. Define the following quantities

for any block X:

w(X) the length of the HLF schedule for X;
w*(X) the length of an optimum schedule for X;
(X) (X) *(X).

If a is the first slot of X in the HLF schedule then it gives a a-schedule for X. w(X)
is the length of this a-schedule, i.e., time zero is at the start of slot a. So the length of
the HLF schedule is w =1 w(Xj), w* (X) is the length of an optimum 1-schedule
for X. This allows both processors to start simultaneously, unlike co(X). The length
of an optimum schedule is w* _> 3.B___l o3" (Xj), by Theorem 5.2(b).

FIG. 5.1. The six block shapes for f/s- 1/2.

First we analyze the HLF schedule for f/s 1/2. Figure 5.1 shows the six
possible shapes for the slots of a block. It justifies the following result.

LEMMA 5.1. In a nonoptimum block X the first slot is three, the last slot is two
and 6(X) 1. [3

To analyze the accuracy of the HLF schedule let i be the number of nonoptimum
blocks. The bound follows from two inequalities.

LEMMA 5.2. (a) w* >_ w- i.
(b) (3/2)w* _> w + i.
Proof. (a) Lemma 5.1 shows the number of time units the schedule can decrease

is at most the number of nonoptimum blocks.
(b) Observe there are at least w 4-i nodes: Figure 5.1 shows that each time unit

of the schedule can be associated with a distinct node in some block. In addition there
are i nodes not in any block: Every nonoptimum block starts in slot three, and the
node jumped in slot two is not in any block.
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This implies (b) since the optimum schedule executes at most (3/2)w* nodes.
THEOREM 5.3. Assume f/s 1/2.
(a) On any dag the HLF schedule has w/w* <_ 5/4.
(b) For any > 0 there is a dag where the HLF schedule has w/w* > 5/4

6

FIG. 5.2. Bad dag .for the HLF schedule .for f/s 1/2.

5

FG. 5.3.

2 5 5

4 6

(b)

Module schedules. (a) HLF schedule. (b) Better schedule.



SCHEDULING TWO UNIFORM PROCESSORS 825

Proof. (a) Add the inequalities of Lemma 5.2.
(b) For any positive integer r consider Figure 5.2. This dag consists of r repetitions

of a "module" with six nodes. (Node six is on level one but is drawn higher for clarity.
Note the resemblance to Figure 2.1.)

The HLF schedule is r repetitions of the module schedule shown in Figure 5.3(a).
Thus w hr. However this schedule shows w* < 4r + 1" P1 executes node one of the
first module. Then come r repetitions of the module schedule of Figure 5.3(b), where
each module executes node one of the next module. (The last module has idle in the
last slot three.)

Thus w/w* > 5r/(4r / 1), which approaches 5/4 as r approaches c. VI
We turn to the HLF schedule for f/s 2/3. It has a different character from

previous approximate schedules. Regarding the lower bound dags, recall that in the
previous algorithms the optimum schedule has O(1) idle time. This is true in all other
examples for level-type scheduling algorithms that we know of ILl, [LS]. We have not
found such examples for this algorithm-- the dag that achieves the tight lower bound
has O(w*) idle time.

This property manifests itself in the proof of the upper bound. The previous
schedules are analyzed by inequalities based on the fact that the number of nodes
gives a lower bound on w*. Inequalities of this type cannot be tight in dags with
O(w*) idle in the optimum schedule. Hence a different approach must be used. We
use an estimate of how much w can decrease, derived from the precedence constraints.

We first investigate how much a block can shrink. For generality consider two
processors of speeds f and s f + 1, and a block X in some HLF schedule. Define
this quantity from the HLF schedule"

T(X) ill + j/s, where i(j) is the number of time units in w(X)
when Pf (P) is not executing a node of X.

In the HLF schedule for X both processors are always busy except possibly during the
first slot (if one processor is executing the node jumped before X and the last slot (if
one processor is idle or executing the node jumped from X). T(X) gives the number
of nodes (possibly fractional) that could have been executed in these two slots.

LEMMA 5.3. 5(X) < T(X)/(1/f + l/s).
Proof. Ifn is the number of nodes in X then (1If + 1/s)w(X) n+T(X) and

(1If + 1/s)w*(X) > n.

first

TABLE 1
Slot contributions to T(X) for f/s- 2/3.

slot

2 3 4 5

0 1/3 112 213

last 2/3 1/2 1/3 0
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Table 1 gives the contribution of each slot to T(X) when it is the first or last
slot in X. For instance if the first slot of X is three then during the initial time unit
of this slot P3 is idle, contributing 1/3 to T(X). (If X consists of only one slot, its
contribution to T(X) is the sum of the first and last contributions.)

LEMMA 5.4. Let X be a block.
<

(b) If (X) 2 then slot five is first in X and four i last.
(c) If 6(X) > 0 then slot three, four or five is first in X.
Proof. Table 1 shows that T(X) <_ 5/3, with equality only when slot five is first

and four is last. Applying Lemma 5.3 gives (a) and (b) For (c) note that any block
with slot one first is optimum and slot two is never first.

To obtain a global view of how the schedule can shrink, merge blocks into "seg-
ments." These are the portions of the schedule between idle jumps: A segment W

s andXt but noX s>i>t,consists of consecutive blocks, W U=tX, where Xs-1
end with an idle jump. (For boundary conditions allow s B in the first segment
and 1 in the last segment.)

The segments partition the blocks. Each segment starts in slot one of a period.
Both processors run uninterrupted, jumping a node between consecutive blocks of the
segment, until the last slot of the segment (where an idle jump may be made). To
analyze the length of the schedule for a segment W define these quantities"

w(W) the length of the HLF schedule for W;
w* (W) the length of the optimum schedule for W.

Note that W does not contain the nodes jumped from the last level of each of its
blocks. So possibly w*(W) < w(W).

LEMMA 5.5. For any segment W, w*(W) >_ (5/6)w(W).
=t 5(Xi). Write w(W) 6p + q p > 0Proof. Let W U=tX. Set 5(W) s

6 > q _> 0, so p is the number of complete execution periods in the segment. It suffices
to show 5(W) <_ p since this implies w*(W) w(W) 5(W) >_ 5p + q.

Consider a block X in W with 5(X) > O. X contains slot four or five of the
execution period it starts in; also if 6(X) 2 then X ends in another execution
period, where it contains slot four. This follows from Lemma 5.4(b)-(c), and the fact
that if X starts in slot three it contains slot four (otherwise X has only one node,
making 6(X) 0).

This implies we can assign each unit of 5(W) to slot four or five of a distinct
complete execution period of W. Hence 5(W) <_ p as desired. [21

THEOREM 5.4. Assume f/s 2/3.
(a) On any dag the HLF schedule achieves w/w* <_ 6/5.
(b) For any > 0 there is a dag where the HLF schedule has w/w* > 6/5 e.

Proof. (a) Let the segments of the HLF schedule be Wj, j S, S- 1,..., 1.
w* (Wj). ClearlyFrom Theorem 5.2(b), Wj-,Wj-1 for S >_ j > 1. Hence w _> Y=I

s (Wj). So the theorem follows from Lemma 5.5.W Ej=I w
(b) For any positive integer r consider Figure 5.4. It consists of r repetitions of

a module with eight nodes. (As in Figure 5.2 nodes 7 and 8 are on level 1 but are
drawn higher.)
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Fic. 5.4.

2

Bad dag for the HLF schedule for f/s 2/3.

7 5

4 8

5 6

(a)

2 7 5

5 4

6

8

(b)

5.5. Module schedules. a) HLF schedule. b) Better schedule.
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The HLF schedule is r repetitions of the module schedule shown in Figure 5.5(a).
Thus w 12r. However this schedule shows w* _< 10r + 1" P1 executes node one of
the first module. Then come r repetitions of the module schedule of Figure 5.5(b),
where each module executes node one of the next module. (The last module has idle
in the last slot three.)

Thus w/w* >_ 12r/(lOr + 1) which approaches 6/5 as r approaches c. [:]

The remaining results on HLF schedules are negative. The following bound is
proved similar to the others; details are in [G82b].

THEOREM 5.5. Assume f/s >_ 4/5 (A is arbitrary). There is a dag where the
HLF schedule has z/w* 6/5. [:]

Note that when f/s >_ 4/5, the AI schdeule has accuracy 2- (f/s) <_ 6/5, so it
beats the theorem. Since the AI scheduling algorithm has a slightly lower time bound,
it is preferable.

Results for lower speed ratios are in [G82b].
6. Conclusions. We have shown that an HLF schedule is optimum for length

two pipelines, and can be found in linear time. Also an optimum HLA schedule exists
for two uniform processors when A 1. This gives a linear-time algorithm for an
optimum schedule on dags that have no idle time. It would be interesting to extend
this to a polynomial time algorithm for the general A 1 case.

Before summarizing the results for approximate schedules consider one more

scheme, oriented toward processors of disparate speed. An Approximately One Proces-
sor (AO) Schedule is any schedule with no idle time on PI. Note that w/w* <_ l+(f/s)
for AO, since (1If + 1Is)w* >_ z/f.

FIG. 6.1.

2

5/2

5/4
6/5

I/2 2/5 4/5

$

Accuracy bounds for approximate schedules.

Figure 6.1 plots the accuracy of the approximate schedules. The AI schedule is
found in linear time and has accuracy 2- (f/s). It is more accurate than AO when
f/s >_ 1/2. It is more accurate than HLF when f/s >_ 4/5 and perhaps other cases.
The HLF schedule is defined for A 1. It is found in O(rn + n log log n) time. It is
the most accurate for f/s 1/2 and 2/3.



SCHEDULING TWO UNIFORM PROCESSORS 829

Acknowledgments. The author thanks the anonymous referees for helpful sug-
gestions, and Ed Coffman for his encouragement.

REFERENCES

[E76]

[E77]

[FKN]

[G81]

[G82b]

[GS3]

[GJ761

[GJ77]

[GLLRK]

[GT]

[H61]

[H821
ILl

[LS]

[PY]

E. G. COFFMAN JR., ed., Computer and Job-Shop Scheduling Theory, John Wiley, New

York, 1976.

E. G. CoFFMA N J R. A N D R. L. GrAH A M, Optimal scheduling for two-processor systems,

Acta Informatica, (1972), pp. 200-213.

P. VAN EMDE BOAS, R. KASS, AND E. ZIJLSTRA, Design and implementation of an
efficient priority queue, Math. Systems Theory, 10 (1977), pp. 99-127.

P. VA N EMDE BOA S, Preserving order m a forest in less than logarithmic time and linear

space, Inform. Proc. Lett., 6 (1977), pp. 80-82.

M Fv 11, T. KASAM I, A N D K N N0M YA Optimal sequencing of two equivalent proces-

sors, SIAM J. Appl. Math., 17 (1969), pp. 784-789; Erratum, SIAM J. Appl.

Math., 20 (1971), p.141.

H. N. GABOW, A linear-time recognition algorithm for interval dags, Inform. Proc. Lett.,
12 (1981), pp. 20-22.

An almost-linear algorithm for two-processor scheduling, J. Assoc. Comput.

Much., 29 (1982), pp. 766-780.

Exact and approximate algorithms for scheduling UET systems on two uniform proces-

sors, Technical Rept. CU-CS-225-82, Dept. of Comp. Sci., Univ. of Colorado,

Boulder, CO, July 1982.

On the design and analysis of efficient algorithms for deterministic scheduling, Proc.

2nd International Conf. on Foundations of mputer-Aided Process Designs,

1983, pp. 473-528.

M. R. GAREY A N D D. S. JoH N SO N, Scheduling tasks with nonuniform deadlines on two

processors, J. Assoc. Comput. Much., 23 (1976), pp. 461-467.

Two-processor scheduling with start-times and deadlines, SIAM J. Comput., 6

(1977), pp. 416-426.

R. L. GRAHAM, E. L. LAWLER, J. K. LENSTRA, AND A. H. C. RINNOOY KAN,

Optimization and approximation m deterministic sequencing and scheduling: A survey, Ann.
Discrete Math., 5 (1979), pp. 287-326.

S. N. (ABOW AND R. E. TARJAN, A linear-time algorithm for a special case of disjoint

set union, J. Comput. System Sci., 30 (1985), pp. 209-221.

T.C. Hu, Parallel sequencing and assembly line problems, Oper. Res., 9 (1961), pp.

841-848.

CombmatorialAlgorithms, Addison-Wesley, Reading, MA, 1982.

E. L. LLOYD, Critical path scheduling with resource and processor constraints, J. Assoc.
Comput. Much., 29 (1982), pp. 781-811.

S. LAM AND R. SETHI, Worst case analysis of two scheduling algorithms, SIAM J. Corn-

put., 6 (1977), pp. 518-536.

C. H. PAPADIMITRIOU AND M. YANNAKAKIS, Scheduling interval-ordered tasks,

SIAM J. Comput., 8 (1979), pp. 405-409.

J. D. ULLMAN, NP-complete scheduling problems, J. Comput. System Sci., 10 (1975),
pp. 384-393.



SIAM J. COMPUT.
Vol. 17, No. 4, August 1988

(C) 1988 Society for Industrial and Applied Mathematics

014

A RANDOMIZED ALGORITHM FOR CLOSEST-POINT QUERIES*

KENNETH L. CLARKSON

For Quentin Deane Clarkson, in loving memory

Abstract. An algorithm for closest-point queries is given. The problem is this: given a set S of n
points in d-dimensional space, build a data structure so that given an arbitrary query point p, a closest
point in S to p can be found quickly. The measure of distance is the Euclidean norm. This is sometimes
called the post-office problem. The new data structure will be termed an RPO tree, from Randomized
Post Office. The expected time required to build an RPO tree is O(n[d/21(1+e)), for any fixed > 0,
and a query can be answered in O(log n) worst-case time. An RPO tree requires O(n[d/2(1+)) space in
the worst case. The constant factors in these bounds depend on d and e. The bounds are average-case
due to the randomization employed by the algorithm, and hold for any set of input points. This result
approaches the 12(n[d/2]) worst-case time required for any algorithm that constructs the Voronoi diagram
of the input points, and is a considerable improvement over previous bounds for d > 3. The main step of
the construction algorithm is the determination of the Voronoi diagram of a random sample of the sites,
and the triangulation of that diagram.

Key words, closest points, Voronoi diagrams, computational geometry

AMS(MOS) subject classifications. 68U05, 68P10

1. Introduction. The post-office problem is a fundamental problem of compu-
tational geometry, having many applications in statistics, operations research, inter-
active graphics, coding theory, and other areas.

Several algorithms that are asymptotically fast in the worst-case sense are known
for this problem in the planar (d 2) case. They involve the construction of the
Voronoi diagram of the sites [12], [26], and the use of fast methods for searching
planar subdivisions resulting from that diagram [19], [17], [11]. By these methods, a
data structure requiring O(n) space can be constructed in O(n log n) time, so that a
query can be answered in O(log n) time.

The higher-dimensional cases are much less examined and understood. Dobkin
and Lipton have described a data structure requiring O(n2d+1) time and space to
construct, giving a query time of O(logn) [10]. Chazelle has given an algorithm for
the case d 3 that requires O(n2) preprocessing for O(log2 n) query time [4].

Although the time and space bounds for RPO trees are rather large for large d,
they are a considerable improvement over previous general bounds. The key step in
the construction of the data structure is the determination of Voronoi diagrams of
small subsets of the sites. (For convenience, points in S will be called sites.) The
bounds depend on the complexity of these Voronoi diagrams. If the diagrams have
O(n) vertices, the construction requires an expected time bounded by O(nC), where C
is a constant independent of d. Indeed, when a set of sites is uniformly distributed in
a hypercube [1], or spatially Poisson-distributed [13], their Voronoi diagram has linear
complexity on the average. These facts suggest that RPO trees may do considerably
better in practice than the worst-case bounds would show. On the other hand, in
the worst case Voronoi diagrams may require l)(n[d/2]) storage [18], [24], so in a sense
any algorithm using Voronoi diagrams could not perform too much better than RPO
trees.
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1.1. Overview. The initial observation for the data structure is just this: if we
want to find a closest site in S to a point p, then knowing a closest site to p in some
R C S can help restrict the search in S. The terms candidate sets and candidate sites
help to formalize this notion.

DEFINITION. For a given subset R c S, and any point x, let rz denote the
distance of x to a closest site in R. Then the candidate region C(x) for x, relative
to R, is the ball of points whose distance to x is less than r. The corresponding
closed ball will be denoted (x). The candidate set for x is S C(x). The candidate
region for a set of points A is C(A) UeAC(x), with the candidate set S C(A).

Thus, for a query point p and region A with p A, the set S C(A) contains all
the closest sites to p. If q is a closest site in R to p, then the candidate set S C(A)
contains all sites closer to p than q. The key idea is to find some R c S, and some
collection of regions, such that for every region A in the collection, the candidate set
of A relative to R contains few sites.

Such a collection of regions can be found using random sampling, as follows: take
a random sample R of the sites, determine the Voronoi diagram )(R) of that sample,
and then compute A()(R)), a triangulation of the Voronoi diagram. (Voronoi dia-
grams are defined in 2; triangulations are discussed in 3.) The result is a collection
of simple regions with the following properties:

The union of the regions covers Ed, that is, Ed t.JAA((R))A;
The number of regions is O(r[d/2]), for r -+ oc, where r is the size of R;
With high probability, the candidate sets S DC(A) are "small" for all regions
A A()(R)), specifically, IS C(A)I- nO(logr/r) as r -+ oc;
The regions in A()(R)) are simple, so that for point p and A A()(R)),
we can tell in O(1) time if p A, for fixed dimension d;
For each A A()(R)), there is a site q R such that all points in A are as
close to q as to any other site in R.

These properties suggest a two-step process for answering closest-point queries: given
query point p, determine a region A A()(R)) that contains it, then determine the
closest site to p in R (S g)C(A)) by linear search. For a suitable sample size, with
high probability this procedure is faster than directly searching S. By repeatedly
taking random samples until a sample is found for which the corresponding candidate
sets are all small, a data structure with an improved worst-case query time can be
constructed. Since a random sample will satisfy this condition with high probability,
on average only O(1) sampling repetitions need be done.

Rather than search the candidate sets in linear time, this construction can be
applied recursively, using a sample size r that is independent of the number of sites.
The resulting search structure is an RPO tree, in which the number of children of a
node is independent of the number of sites, as is the size of the set of sites associated
with each leaf node.

Each node t of an RPO tree corresponds to a collection of sites S’ that contains
the closest site to a set of potential query points. If t is an internal node, a suitable
sample R’ c S is found, and for each A e A()(R)), there is a child t’ of t for which
a record t’.region is A. The children of t form a list t.children. A closest-point query
can be answered by tracing down from the root, moving from a current node t to a
child t’ t.children, whose associated t’.region contains the query point. If is a leaf
node, the sites t.sites associated with t are given a linear search to answer the query.

The procedures Make_RPO_Tree and Answer_Query are shown in Fig. 1. The
procedure New_RPO_Tree returns a new RPO tree, whose regions and subtrees are
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subsequently defined. From Theorem 4.5, the sample size r should be at least about
(d + 1) 3. The constant K should be no smaller than r. The constant Cr,d O(1og r/r)
is defined in Theorem 4.5.

function Make_RPO_Tree(S" Set_of_Sites) return t" RPO_Tree;

t +--- New_RPO_Tree;
if ISI < K then t.leaf -- true; t.sites S;
else

t.leaf -- false;
repeat choose random sample R c S until VA e A()(R)), IS N C(A)[ <_ Cr,dlSI;
t. children ;
for A e A()(R)) do

t’ Make_RPO_Tree(S C(A));
t.region A; t.site site q such that A C_ Vq; t.children -- t.children J {t’};

od;
fi;
end function Make_RPO_Tree;

function Answer_Query(t RPO_Tree; p: query_point) return closest site;
current_closest - any site in R;
while not t.leaf do

choose any t E t.children with p t’.region;
if t.site closer to p than current_closest then current_closest .-- t’.site;
t - t;

od;
closest -- site closest to p among those in t.sites (J {current_closest};
end function Answer_Query;

FIG. 1. Procedures Make_RPO_Tree and Answer_Query.

Before making a more detailed description of the algorithm, it may be helpful to
consider informally the simplest interesting example of a set S C(A), which occurs
when A is a triangular region in the plane, a region in the triangulation of the Voronoi
diagram of a sample R. In Fig. 2, the set R {q, Pl,..., Ph}, and A has vertices a, b,
and c, part of a triangulation of the Voronoi region )q. As will be shown in 4, the
region C(A) has a particularly simple description: it is simply C(a)U C(b) U C(c).
Since a, b, and c are vertices of )q, the circles bounding (a), (b), and (c) are
Delaunay circles of the Voronoi diagram )n- To restate this fact, suppose p A. Then
since q S, the closest site to p is contained in the disk defined by the circle centered
at p that passes through q. This disk is contained in the union of the Delaunay disks
at a, b, and c.

For the RPO construction to work, with high probability all these Delaunay disks
should contain few sites. Why should this be? The reason is based on the fundamental
fact that these Delaunay disks contain no sample sites. Intuitively, this provides some
evidence that these disks contain few sites: if some arbitrary disk contains a large
fraction of the sites, then with high probability, some sample site will be chosen from
that disk, and it cannot be a Delaunay disk. This argument is made precise in 4.3.
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FIG. 2. A triangle A E A(q)q) and C(A).

1.2. Outline of the paper. To complete the description of the algorithms, it
is necessary to specify the triangulation procedure A, and to characterize formally
the candidate regions C(A) for A c A(3)(R)). To analyze the algorithms, we must
bound the number of children that a node can have, that is, the number of regions
in A(q)(R)), and also bound the size of the resulting subproblems, that is, the size of
each C(A) fq S. Before addressing these questions, some notation and basic lemmas
will be given in 2. Many readers should be able to skim most of this section, or
refer to it as needed. In 3, the triangulation procedure is given, and a bound on
the size of its output is developed. In 4, it is shown that the candidate regions to
be used have simple descriptions, generalizing the above example. It is also shown
that with high probability, all the corresponding candidate sets have few sites. Also
given in this section are the modifications to the algorithms for handling a variant of
the post-office problem, in which all closest sites to a query point are desired. In 5,
the complexity analysis of the algorithms is completed. Some concluding remarks are
made in 6, with discussion of subsequent and related work.

The basic idea for the RPO data structure is simple, and the critical algorithmic
step is the fundamental operation of computing the Voronoi diagram, followed by
triangulation. Nonetheless, several factors complicate the discussion. The algorithms
generalize for an arbitrary dimension, so that the descriptions and proofs of correct-
ness are abstract. An operation of triangulation must be applied to the unbounded
polyhedral sets of a Voronoi diagram, as must the determination of candidate regions.
This is best done using the notion of "points at infinity," considering an unbounded
polyhedral set as the convex hull of a set of points, some of which are at infinity.
This idea is made precise using two-sided space, described in the next section. The
sample R may be degenerate, that is, not have full affine dimension. This possibil-
ity must be accounted for. These factors imply that the description must be more
abstract and complicated than it otherwise would be.
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2. Notation, terminology, and background. The notation in this paper will
follow [14] in general, and use basic results from that text. The concepts of oriented
projective geometry [27] will also play a large role. The following notation is gathered
here for reference:

Ed denotes d-dimensional Euclidean space;
A + B is the pointwise sum {x + y x A, y B}, for A, B C Ed;
x + A and A + x denote {x} + A, for x Ed;
aA denotes the product {ax x A}, for a real number a and A c Ed;
S,u denotes the sphere that has center x and that contains y. B,u and B,u. denote

the corresponding open and closed balls;
A flat F C Ed is an affinely closed set, that is, if x, y F, then the straight line

through x and y is contained in F.
aft A denotes the affine closure of a point set A C Ed, that is, the intersection of all

flats containing A;
dim A denotes the affine dimension of A, that is, the dimension of the linear subspace

(aft A) p, for p E A. A k-fiat F has k dim F;
cony A denotes the convex closure of A, that is, the intersection of all convex sets

containing A;
relint A is the interior of A relative to its affine closure;
relbd A is the boundary of A relative to its affine closure.

Rays and cones. For x, y Ed, let ray y denote

+ >_ o}.

A cone C with apex a is a subset of Ed such that ray y C C if and only if y C, for
yEd.

Polyhedral sets and polytopes. A polyhedral set is the intersection of a finite
number of closed halfspaces, and a polytope is a bounded polyhedral set. A polyhedral
cone is a cone that is a polyhedral set. A d-polytope (d-polyhedral set) P satisfies
d dim P.

A supporting hyperplane h of a polyhedral set P satisfies hNP and h+ fqP
where h+ is an open halfspace defined by h. A face of a polyhedral set P is the
intersection of P with a supporting halfspace. Vertices, edges, and facets are faces of
affine dimension 0, 1, and d- 1, respectively, for a d-polyhedral set. In general, a face
of P with dimension k is a k-face, and the set of such faces is f(P). The set fo(P)
of vertices (or extreme points) of a polyhedral set P will be denoted by vert P.

Two polyhedral sets A and B are said to be cornbinatorially equivalent if there is
a bijective mapping A from the faces of A to those of B such that F c G if and only
if A(F) C A(G), for all F and G faces of A.

The set of extreme rays of a polyhedral set P is the set of rays e emanating from
the origin such that there is some point q for which q + e is an edge (1-face) of P. The
convex hull of the extreme rays of P is the characteristic cone cc P. From [14, 2.5.2],
if x,y P and e is a ray from the origin, then x + e C_ P if and only if y + e C_ P.
(Looking ahead, this is equivalent to the condition that e corresponds to a "point at
infinity" in P, and that P is convex even when such points are included.) This fact
and the convexity of P imply that x + cc P C P for any x P. It can be shown that
cc P is the maximal such cone.

A set is said to be line-free if it contains no straight lines (no 1-flats). A line-free
cone is pointed [14, p. 24], that is, it has only one apex, which is a vertex. Many basic
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facts about polytopes generalize nicely to line-free polyhedral sets, using the notion
of "ideal points" defined below.

Complexes. A complex is a collection of polyhedral sets such that every face of
a polyhedral set in the complex is also in the complex, and the intersection of two
polyhedral sets in the complex is a face of each of them. (In the complexes considered
here the empty set is a face.) A polyhedral set of dimension k in a complex is
a k-face of that complex, and the terminology of vertices, edges, and facets carries
over for complexes. The facial lattice of a complex is the set of faces of the complex,
together with the inclusion relations between those faces.

One example of a complex is the boundary complex B(P) of a polyhedral set P,
the set of facets of P and their faces. Another example of a complex is the Voronoi
diagram of a set of sites, described below.

Two-sided space, homogeneous coordinates, and ideal points. It will be
helpful conceptually and computationally to use the notion of "points at infinity,"
also known as ideal points, as opposed to the usual real points in Ed. These classes
of points together make up what will be denoted Td, or two-sided 8pace. (The name
will be explained below.)

To represent points in Td, homogeneou8 coordinates will be used: a real point
x E Ed is represented by Xh [xr; xs] if x xr/xs, where x Ed and x C , xs > 0.
(The terminology is borrowed from projective geometry [23], although in this case,
the coordinates cannot really be said to be homogeneous.) An ideal point x Td is
represented by the homogeneous coordinates [x; 0], where x Ed and x =fi 0. The
point x can be considered the "endpoint" of ray0 xr. If x is an ideal point and y is real,
we will say that conv(x, y) is rayy(Xr + y). Indeed, if z conv(x, y), for any points
x and y, then for any representations Zh, Xh, Yh, we have Zh axXh + ayYh, for some
as, ay _> 0, and conversely. This provides a general definition of convex combination
for points in Td.

Note that homogeneous coordinate representations are not unique: if xh is a
homogeneous representation of x, then so is flXh, for any fl > 0. (This convention
is different from that of projective geometry, where fl need only be nonzero. This
follows [21] and [15], and is needed to distinguish ideal points in "opposite directions.")
The two-sided nature of Td derives from its containment of two copies of Ed, since
[xr; 1] and [x;-1] represent distinct points in Td for every x Ed. There is a
correspondence between points in Td and the d-sphere

Sd-" {x e Ed+lllxll-
A point with homogeneous coordinates Xh corresponds to Xh/llXhl], where Xh is inter-
preted as a point in Ed+l. The ideal points of Td correspond to those points of Sd

on the hyperplane xs Xd+ 0. The two halves of Sd separated by the set of ideal
points correspond to the two sides of Td.

In general, the only points in Td considered will be those satisfying x _> 0. This
set of points is termed the "front range" of Td, and will be denoted by .Fd. A closed
convex set P C Ed will be extended by including [b- a; 0] in P whenever raya b c P.
This implies that the set of points on Sd corresponding to P is also closed. A straight
line will thus have two ideal "endpoints," and so on for all fiats. (Note that this
gives a meaning to "fiat" that is different from Stolfi’s [27].) This convention will
extend the definition of the sum A / B for unbounded A and B. The notation for a
sphere S,u can be extended to allow the center x to be an ideal point. In this case,
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Sx,y is a hyperplane normal to xr and passing through y. The closed ball Bx,y is the
corresponding closed halfspace. An analytic relation describing such spheres is given
below in the discussion of Voronoi diagrams.

The set re A will denote the real points of A, and id A will denote the ideal points
of A. Note that re A re B implies that idA- id B, for A and B closed and convex.

With this extension to the front range Fd, a line-free unbounded polyhedral set
P C Ed has an implicit additional defining halfspace. That is, id P is an additional
facet of P, the ideal facet. This facet corresponds to cc P in a natural way, and the
correspondence extends to the faces of id P, so that the vertices of id P correspond
to the extreme rays of cc P. Thus vert P is extended to include ideal points. The
following simple lemma helps in generalizing facts about polytopes to facts about
polyhedral sets.

LEMMA 2.1. Let C be a polyhedral pointed cone with apex a. Let h be a
supporting hyperplane of C with h C {a}. Let t be a normal vector to h contained
in the same halfspace containing C. Then P- C fq (h + ,) is a polytope.

Proof. See Appendix A. [:]

It is easy to show that C t-JueArayy, and that x P if and only if x

Ix a; 0] id C. This bijective map satisfies (cx + y)’ cx’ + fly’, for a +/ 1.
This implies that id C and P are combinatorially equivalent. Thus Lemma 2.1 brings
id C into the "real" world of Ed.

The following lemma is a generalization of [14, 2.4.5] from polytopes to line-free
polyhedral sets.

LEMMA 2.2. If P C Ed is a line-free d-polyhedral set then P- cony vert P.
Proof. See Appendix A. v!

Simplices and triangulations. A simplex is a simple kind of polyhedral set:
a d-simplex is a polyhedral set with d + 1 vertices and affine dimension d. Note that
vertices will be allowed to be ideal. For example, a triangle with two ideal vertices is
a cone, and a triangle with one ideal vertex is bounded by a line segment and by two
parallel rays from the endpoints of that line segment.

A simplicial complex is a complex composed of simplices. A triangulation 7" of
a complex C is a simplicial complex that is a subdivision of C. Every vertex of 7" is
a vertex of C, every facet of 7" is a simplex, and the union of the facets of 7" is the
union of the facets of C.

In 3, a particular kind of triangulation of C, denoted A(C), will be described.
Construction of this complex is an essential procedure in the algorithm given in this
paper. The complexity of A(C) and of its construction procedure are also considered
in 3.

The triangulation A may involve "simplices" of even greater generality than those
shown above. For example, suppose dim S 2 but dimR 1, specifically, R is a set
of sites on the x axis. Then each Voronoi region q)q of R will be a strip bounded by
two parallel lines. This can be viewed as an interval A, that is, a 1-simplex, added to
the y-axis. That is, q)q A / l, where is the y-axis line. In general, when d > dim R,
the regions of A(q)(R)) will have the form A / f, where A is a simplex and f is a flat
orthogonal to aft A. This generalization is formalized by Lemma 3.4.

Duality. For a complex C, a dual P of C is another complex for which there is an
inclusion-reversing correspondence between faces of C and those of P. That is, there
is a bijective mapping from the set of faces of C to those of P such that for faces F
and G of C, the inclusion F c G holds if and only if (F) 3 (G). The facial lattice
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of C can be determined from the facial lattice of P, and vice versa.
One particular dual relation between polyhedral sets is quite useful. For a set

A c Ed, the polar set A* is

{Yl Yh’gCh >-- 0 for all x E A}.

When P is a line-free d-polyhedral set in Ed with the origin in its interior, the polar
set P* of P is a polytope, even when P is unbounded. Moreover, P* is dual to P.
The ideal facet of P, if any, corresponds to the origin, which will be a vertex of P*,
for unbounded P.

Voronoi diagrams. The Voronoi diagram ])(R) of a set of sites (points) R in
Ed is the partition of Ed into blocks, such that all points in a block have exactly
the same closest sites. The Voronoi region ])q associated with a site q E R is the
polyhedral set containing all points at least as close to q as they are to any other
site. If v re vert ])q for some site q, then the sphere (ball) centered at v with radius

II v -qll is termed a Delaunay sphere (ball) of the sites R. (A ball in the plane is also
called a disk.) At least d + 1 sites are on a Delaunay sphere, and none are inside it.

It is well known that ])q is unbounded if and only if q is on the convex hull of R.
Furthermore, each unbounded edge of ])q is normal to a facet of conv R that contains q.

Brown [3] has shown that the computation of a Voronoi diagram in Ed can be
reduced to the problem of computing a convex hull in Ed+l. The reduction is done by
means of a mapping from Ed to Ed+l. One mapping that achieves this reduction is the
function T Ed -+ Ed+l, which sends y Ed to the point (Yl,..., Yd,--y.y/2) Ed+l.
For x, q Ed, we have y Sx,q if and only if

(Xl, Xd, 1)" T(y) (Xl,..., Xd, 1). T(q).

This implies aft T(Sz,q) is a hyperplane. Furthermore, if Bx,q is a Delaunay ball, then
T(R) N T(B,q) is empty, so that aft T(Sx,q) contains a facet of cony T(R). It follows
that cony T(R) gives a dual complex to 3) (R).

Note also that the analytic condition for y S,q can be extended coherently to
ideal z by Zh" (T(y) T(q)) 0, where Zh is interpreted as a point in Ed+a. For ideal
y and x, the appropriate condition is Yr "Xr- O.

3. Triangulating polytopes and Voronoi regions.
3.1. A triangulation procedure and its correctness. The procedure A to

be used for triangulating a complex C is straightforward: the procedure produces a
set of simplices triangulating each face of C, considering these faces in increasing order
of their affine dimension. Note that if 1 > dim P, then the face P is a simplex. If
1 < dim P, then arbitrarily pick v vert P, and let A(P) be the collection

{conv({v} U S) IS e A(F), F a facet of P, v F}.

For example, if P is a polygon, then for every edge e of P not containing vertex v,
the triangle defined by e and v is in A(P). Note that once A(P) is computed, it is
"fixed," so that the same triangulation of P is used whenever a face is triangulated
for which P is a facet.

To apply A to a polyhedral set, that set must have a vertex. However, not all
polyhedral sets have vertices. (An example of such a polyhedral set is given in the
discussion of triangulations in 2.) We will first show that A can be applied to line-free
polyhedral sets, and then discuss the extension of A to arbitrary polyhedral sets.
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LEMMA 3.1. A line-free polyhedral set P has a vertex.
Proof. If P is a real polyhedral set, the result is a special case of [14, 2.4.6]. If P

is an ideal polyhedral set (say some ideal facet of an unbounded polyhedral set), then
the result follows from Lemma 2.1 and [14, 2.4.6].

This lemma implies that some choice v E vert F can be made in A. To show that
P is the union of the simplices in A(P), the following lemma is useful.

LEMMA 3.2. For a line-free polyhedral region P, if v vert P and a P, then
the point b ray a fq relbd P is on a facet of P that does not contain v.

Proof. See Appendix A. lq

THEOREM 3.3. Given a complex C containing only line-free polyhedral sets,
A(C) is a triangulation of that complex. (Note that the simplices in A(C) may have
ideal vertices.

Proof. Induction on dimension will be applied to each polyhedral set P in
to show that A(p) returns a set of simplices covering P. Let a P. Then ray, a
intersects relbd P at v and at some point b. (If P is ideal, map the points involved
to the polytope of Lemma 2.1.) By the previous lemma, b is on some facet F not
containing v. Since by inductive assumption, b is in a simplex A of a triangulation of
F, it follows that a conv({v} t_J A), and the set of regions returned by A covers P.

The other properties of a triangulation follow by similar straightforward induc-
tion. i-1

To extend the triangulation procedure A to polyhedral sets that do not have
vertices, the following lemma is useful.

LEMMA 3.4. Let P c Td be a closed polyhedral set. Then there is a subspace L
of maximum affine dimension for which x + L C P for any x P. Furthermore, if
L* is any fiat that is orthogonally complementary to L, then P (PNL*) + L, where
P L* is a line-free polyhedral ,set.

Proof. (Recall that L* and L orthogonal means that L and the subspace L* x
are orthogonal, where x E L*. That is, every vector in L*-x is perpendicular to every
vector in L. Since L* and L are extended to include ideal points, the sum L / L* is
the front range of Td.)

For re P, the lemma is a restatement of [14, 2.5.4]. The extension to idP follows
from this, since re P re(P L*) / re L implies equality for the ideal parts as well.

In the particular case where P is a Voronoi region, the flat L* can be taken to be
aft R, so that L is (aft R) +/-, the subspace orthogonal to aft R. Observe that if is a
straight line contained in a Voronoi region Vq, then l- (conv{a, c})U (conv{a,-c}),
where a re and c id 1. For any other site q R, c Vq implies that q Be,q, so
that Ch" (T(q’)- T(q)) >_ 0. But -c Vq as well, so Ch" (T(q’)- T(q)) _< 0. Therefore
for any q R, we have q Sc,q, and so aft R c_ Sc,q. That is, aft R is perpendicular
to c, and C_ (aft R) +/-.

To use this lemma to extend A for Voronoi regions containing lines, simply define
A(Vq) to be the set of regions {A + (aft R) +/- A A(Vq N aft R)}.

3.2. Complexity of the complex A()(R)). In the worst case, the Voronoi
diagram )(R) has O(r[d/2) faces. This follows from the correspondence discussed in

2 between )(R) and conv T(R) c Ed+l, and from the Upper Bound Theorem [20]
applied to (d + 1)-polytopes. As is shown below, the number of simplices in A()(R))
has the same O(r[d/2) bound. First a bound will be proven for A(P), in the case
where P is a simple polytope, defined below. Next it will be shown that for every
polytope P, there is a simple polytope/ with the same number of facets, such that
A(/5) has at least as many simplices as A(P).
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LEMMA 3.5. For a simple d-polytope P with n facets, the triangulation A(P)
has O(n[d/2j) 8implices, as n --Proof. A simple polytope satisfies the condition that every vertex of the polytope
is contained in exactly d facets of that polytope. Suppose P is a simple polytope.
Then the dual P* has the property that every facet of P* contains exactly d vertices.
(The dual and some of its properties are described in 2.) That is, the facets of P* are
all simplices, which is the definition of a simplicial polytope. The faces of a simplex
are all simplices [14, 4.1]. That is, each k-face of P* is a k-simplex and has k + 1
facets. This means that dually, every (d- 1 k)-face of P is a facet of k + 1 faces
of P. Put another way, every k-face of P is a facet of d- k faces of P.

What does this fact imply for A(P)? For a polytope F, let IA(F)I denote the
number of simplices in A(F). Then the definition of A(F) and the above fact imply
that

Z IA(F)[ Z IA(F’)[ < (d k A- 1) IA(F’)I.
FEfk(P) FEfk(P) Ftfk_l (P)

The second relation holds because IA(Fr)l appears d k + 1 times in the second sum.
Putting these relations together,

IA(P)I IA(F)I < d! IA(F)I d!l vert PI.
Ffd(P) Ffo(P)

By the results of [20], vertPI O(n[d/2]) when P is a d-polytope with n facets, so
the lemma follows. 1

Before proving the corresponding lemma for nonsimple polytopes, a definition is
needed.

DEFINITION. Let P C Ed be a d-polytope and let h be a hyperplane with
F- h N P a facet of P. Let ] be a hyperplane with nonempty intersection with P,
and with all vertices of vert P \ vert F in the open halfspace ]z+. If F is in the open
halfspace -, then the polytope/5 p N + will be said to be obtained from P by
pushing the facet F.

This operation of pushing a facet of a polytope is the dual of the operation of
pulling a vertex [14, 5.2]. The (polar) dual polytope of a pushed polytope P can
be obtained by pulling a vertex of P*. In [14, 5.2] it is shown that the operation of
pulling vertices, when applied successively to every vertex of a polytope, results in a
simplicial polytope. Dually, the operation of pushing facets yields a simple polytope.

The following lemma is a restatement of [14, 5.2.2], together with some relevant
discussion in that section.

LEMMA 3.6. Suppose [:’ C Ed is a d-polytope obtained from the d-polytope P by
pulling v E vert P. Then the faces of [ are exactly the following:

faces of P that do not contain v;
faces of the form conv(v, G), where

G is a face of P not containing v, and
G is contained in a facet of P that contains v;

Furthermore, for every face F of P containing v, there is a facet F of F that yields
a face conv(v, F’) of the second type.

Proof. All claims except the last statement are from [14, 5.2.2]. The last statement
follows by considering conv(vert F \ (v)), which does not contain v, and is either a
facet of F or contains a facet of F. [:]
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Using the inclusion-reversing correspondence between faces of a polytope and
faces of its dual, the following lemma shows what pushing a facet will do"

LEMMA 3.7. Suppose P C Ed is a d-polytope obtained from the d-polytope P by
pushing a facet F h fq P of P. Then the faces of correspond to the following:

faces of P that do not meet F;
faces of the form h fq G, where

G is a face not contained in F, and
G contains a vertex of F.

Furthermore, for every face H of F, there is a face G of P such that H is a facet of
G, and G yields a face h f G of the second type.

Proof. The lemma follows directly from the previous one, and duality.
LEMMA 3.8. For a line-free polyhedral set P of dimension d and with n facets,

the triangulation A(p) has O(n[d/2j) simplices, as n -- o.Proof. If P is a line-free polyhedral set with the origin in its interior, the dual P*
is a polytope, and the operation of pushing the ideal facet of P can be defined using
the dual operation of pulling the origin, which will be the vertex of P* corresponding
to id P. The analogue of Lemma 3.7 holds for the case of pushing id P, using duality.

From Lemma 3.5 and the above discussion, it suffices to show that if/5 is the
result of pushing facet F h N P of P, then IA(/5)I > IA(P)I. Lemma 3.7 implies
that for every face of P, there is a face of/5; that is, there is an injective mapping
m" B(P) -*/(/5). The lemma follows using induction on dimension. U

LEMMA 3.9. The complex A(3)(R)) has O(r[d/2]) regions, and O(r[d/2] logr)
time suffices for its construction. The constant factors are eO(dlgd).

Proof. Without loss of generality, we need consider only a bound on the size of
A(q)(R)) when d-dimR.

Let ZR denote the polytope conv T(R), dual to q)(R) from the discussion of 2. It
is easy to see that R has the same facial lattice structure as (R) (is combinatorially
equivalent). It follows that A(R) has the same number of simplices as A() (R)).
Lemma 3.8 then gives the desired bound.

The time required to construct A(3)(R)) is dominated by the time necessary for
determining q)(R)" the projection PR can be computed in O(r) time, and q)(R) can
be triangulated in time linear in the number of its faces.

Several algorithms are known for computing q)(R) in O(r log r) time when 2
dim R [121, [22]. As noted in 2, the computation of q)(R) can be reduced to the
computation of the convex hull of T(R). This can be done in O(r2 / r[d/2] log r) time
[25]. For d > 2, this is O(r[d/2] log r). [3

4. Candidate regions and sets for Voronoi diagram triangulations.
4.1. Candidate regions have a simple description. The following theorem

characterizes the candidate regions of line-free simplices in A(3)(R)). The general
case is considered in Theorem 4.2 below.

THEOREM 4.1. Let line-free A E A(q)(R)), with A C q)q for a site q. Then the
candidate region C(A) is

C(A)= [.J Ba,q.
aEvert A

(As noted above, the points in vert A are vertices of Voronoi regions, and the balls
are either Delaunay balls or halfspaces corresponding to convex hull facets. The ideal
vertices of A are ideal vertices of q)q, which correspond to unbounded edges of 3)q that
are normal to a convex hull facet containing q.)
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Proof. It suffices to show that C(A) c_ [-JavertABa,q, as the reverse inclusion follows
by definition. That is, we must show that if x E A, then

C(x) Bx,q C U Ba,q.
avertA

Suppose y q Ba,q for all a E vert A. The theorem follows if this condition implies that
y Bx,q.

From 2, y Ba,q if and only if ah" (T(y)- T(q)) > 0. By Lemma 2.2,
A conv vert A, and so

Xh ., Oaah
avertA

for some aa _> 0, not all zero. Therefore,

Xh (T(y) T(q)) ( A aaah) (T(y) T(q)) E
avertA

aaah" (T(y) T(q)) > O.

This implies y

_
Bx,q, and the lemma follows.

Note that the only property of the line-free polyhedral set A on which the proof
depends is that A C ])q, so that an analogous result holds for any such polyhedral set.

This characterization of C(A) must be extended to the case where A is not nec-
essarily line-free.

THEOREM 4.2. Let A A(3)(R)), with A c )q for a site q. Then the candidate
region C(A) is

C(A) C(A N aft R) t3 (Fd \ aft R).

Proof. From the discussion following Lemma 3.4, A has the form (A t3 aft R) +
(aft R) +/-. Also from that discussion, aft R C_ Sc,q for ideal c if and only if c (aft R) +/-.
Since C(A) D_ Bc,q for all c id(aff R) +/-, we have

C(A)

_
Fd \ N c,q,

cid(aff R) +/-

that is, C(A) D_ Fd\ aft R.
The theorem now follows by showing that C(A) C3aff R c_ C(Af3aff R)aff R. Let

z A. First, suppose z is a real point. Then by the discussion following Lemma 3.4,
z x+y, for x re AC3affR and y e re(aftR) +/-. Since [Xr/x+yr/y;1] is a
homogeneous representation for z, we have, for w E aft R,

Zh" (T(w) T(q)) [,/; 1]. (T(w) T(q)) + [U,/; 0l" T(q)),

but [y,./ys; 01 id(aff R) +/-, and so

Zh" (T(w)- T(q)) < 0 if and only if Xh" (T(w)- T(q)) < 0.

That is, C(z) aft R C(x)1 aft R. If z is an ideal point not in (aft R) +/-, then

Zh OCXh + Yh, for some x id(A g affR), y q id(affR) +/-, a > 0, and fl > 0.
In this case, similarly, C(z) [3 aft R C(x) N aft R. Finally, if z id(aff R) +/-, then
C(z) Bz,q, and Sz,q aft R, so that C(z) f3 aft R . Thus C(A) and C(A f3 aft R)
agree on aft R, and the theorem follows. [:1
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4.2. Reporting all closest sites. While an RPO tree allows a closest site to a
query point to be found, sometimes it is of interest to find all the sites closest to a
given point. In this case, the distinction between C(A) and C(A) becomes important.
For example, suppose the sites are all on the surface of a sphere So,q, and the query
point is the center of the sphere c. Here the set C(c)fq S will be empty, but the
set C(c)fq S S. To handle such situations, it will be shown below that, roughly
speaking, for most points x e A e A((R)), C(x) is contained in C(A).

THEOREM 4.3. Under the conditions of Theorem 4.1, let x E A, and F be the
face of A with x relint F. Let F’ F fq aft R. Then (x) C C(A) [.J Cn(F), where

co(F)- N Sa,q n aff R.
aEvertF

(The existence and uniqueness of such a face F is readily established using ele-
mentary properties of polytopes, as given in [14, 2.6]. Note that when x is in the
interior of some q)q, the associated region Co(3)q) is trivial: it is easy to show that
Co(A) {q}. Note also that in the two-dimensional case, the region Co(e) for some
Voronoi edge e is simply the intersection of the two Delaunay circles of the endpoints
of e. This intersection contains only the two sites of R that define e.)

Proof. It is easy to show that x relint F implies that x z + -’aEvertF’ Oaa, for
some z (aft R) +/- and some aa all strictly greater than zero. (This holds necessarily
only if F gl aft R is a simplex.) For a point y, reasoning similar to that in the proof
of Theorem 4.1 implies that when y q C(A), we have ah" (T(y) T(q)) _> 0 for all
a vert Ft. Thus,

xh" (T(y)- T(q)) Oaah (W(y)- T(q)) > 0.
avertF

If Xh.(T(y)--T(q)) > 0 then y C(x), so suppose Xh.(T(y)--T(q)) O. Since Ca > 0
and ah" (T(y) T(q)) > 0 for all a vert ft, we must have ah" (T(y) T(q)) 0 for
all a E vert Ft. The y for which this holds are precisely those in Co(F). D

When all sites closest to a query point are desired, the function Make_RPO_Tree is
modified so that for each face F of a region A A() (R)), the sites F.sites Co(F)fqS
are stored for the node v with v.node A. When answering a query, the variable
current_closest represents a set of sites, the sites so far found closest to the query
point p. At each step of Answer_Query, the face F of A with query point p relint F
is found, and the distance of the sites in F.sites to p is compared with the distance
of those in current_closest. (Note that all sites in F.sites are equidistant from p, and
similarly for current_closest.) If the sites in F.sites are the same distance as those
in current_closest, they are added to the set current_closest. If they are closer, they
replace that set, and if they are farther, that set is unchanged. If current_closest is
maintained as a list of lists of sites, this updating operation requires constant time.

4.3. Candidate sets are likely to be small. The theorem below implies that,
with probability 1/2, the candidate sets generated by Make_RPO_Tree all contain few
sites. This ensures that an RPO tree can be created that has height O(logn), and
allows a bound on the tree’s total size.

As a warm-up, here is a lemma regarding the Delaunay balls.
LEMMA 4.4. For S c Ed, let R C S be a random sample (without replacement}

of size r. Let Pa be the probability that any open Delaunay ball B has IS fq B] > cn.
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Then Pa <_ 1/2, for

In (2 (dl))
r-d-1

That is, 1 Pa >_ 1/2, where 1 P is the probability that for all Delaunay balls B,
it holds that IS N B <_

Proof. Suppose that R c R is the set of the first d + 1 samples taken. If
d dim R, then the sphere containing R defines an open ball B. Now suppose
IS t B > an. Then the probability that none of the remaining r- d- 1 samples are
taken from S t B is bounded above by (1- a)r-d-1. That is, with probability at least
1 (1 -a)r-d-l, B will not be a Delaunay ball of )(R). For sufficiently large a, the
latter probability is large.

Now let X be the set of all subsets of R of size d + 1, let BR, be the open ball
defined by subset R E X, and let B(X) be the set of open balls defined by these
subsets. Let B(X) C B(X) be the set of all such balls B satisfying IS
If no ball B B(X) satisfies R B q}, then every ball in B(X) that does not
contain any sample sites must not be in B,(X). That is, every Delaunay ball of R
must contain a proportion of sites smaller than a.

What is an upper bound on the probability P that at least one B B(X) has
B B(X) and R B q)? For a given ball B e B(X), the joint probability of
these two conditions is no more than the conditional probability that R gl B q) given
B B,(X). The latter probability is the same as that for the ball defined by the first
d / 1 sample sites. Since the probability of the union of a set of events is not more
than the sum of the probabilities of the individual events, we have

r )(l_a)r_d_Pa-Prob{=IR’EXIBR, eB.(X) andRNBR,-O}<
d+l

When a >_ ln(2(d+l))/(r- d- 1), this probability is no more than 1/2, using the
relation -ln(1 a) >_ a for 0 <:

This lemma is not a proof of the desired result for general C(A), since not all
regions C(A) are the union of Delaunay balls. However, the proof of the following
theorem is quite similar to that of the lemma.

THEOREM 4.5. For S c Ed, let R C S be a random sample of size r. Let P be
the probability that any one of the regions A A()(R)) has IS C(A)I > an. Then
P, <_ 1/2, for

a

_
at,d

(d d- 1)In ((d d- 1)2 (d_l))
r-d-1

That is, 1 P >_ 1/2, where 1 Pa is the probability that for all A A()(R)), it
holds that IS C(A)I <_ an.

Proof. By Theorems 4.1 and 4.2, for A A()(R)) with A C_ )q,

C(A) U [Ba,q U (Fd \ aft R)].
aevert(Anaff R)

The simplex A aft R has at most 1 +dimR vertices, so the number of regions making
up this union is no more than d+ 1. Let a’ a/(d+ 1). The condition ISC(A)I > an
thus implies that IS C(I)I > a’n, where I is a region Ba,q U (Fd \ aft R). It suffices
to prove that with probability 1/2, all such regions contain no more than an sites.
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A region I may have a real or a ideal. If a is real, there is a set of 1 / dimR sites
R’ C R such that I is the union of Fa\ aft R with the relatively open ball defined
by the (dim R)-sphere in aft R that contains R’. If a is ideal, there is a set of dim R
sites R’ and a site s E R such that I is the union of Fa \ aff(R’ t2 {s}) with the open
half-flat of aff(R’ t.J (s}) that is bounded by aft R’ and that does not contain s.

Let X be the set of all nonempty subsets of R of size d + 1 or less, together with
the set of pairs (R’, s) where R’ c R, s E R, and 1 < IR’I < d. Let Is be the region
corresponding to x X as above, and let I(X) be the set of regions corresponding
to the elements of X. Let I,(X) be the subset of I(X) containing regions I I(X)
satisfying IS f’l I > (’n. We have, for any given region I I(X),

The probability

Prob{R N I qi given I I,(X)} <_ (1 oft)r-d-1.

Prob{3x X Ix I,(X) and R fq Ix }

is greater than P,, and is bounded above by (1- Ot)r-d-1 times the size of X. It
is easy to see that IXI- (d + 1)(dl) -4-d(d + 1)(d+l) or IXl- (d + 1)2(d+l). The
theorem follows, using manipulations as in the lemma above, r

5. Time bounds for Make__RPO_Tree and Answer_Query. To bound the
time needed for Make_RPO_Tree, we will first consider the work done by the procedure,
aside from the recursive calls, and then bound the work for those calls.

Let t(n) denote the expected time required by Make_RPO_Tree.LEMMA 5.1.
Then t(n) satisfies

In r)t(n) < Klnr[d/2q log r + K2r[d/2]t K3n--
r

when n > K. The constants K1 and K2 are at most exponential in O(dlogd), and
Ka is (d + 1)2 + O(1/log r), as r -- oo.

Proof. From Theorem 4.5, the repeat-until loop for determining a suitable
A()(R)) will end after two iterations on the average, and require O(r[d/2] log r) each
iteration, by Lemma 3.9.

The other operations in Make_RPO_Tree require O(n) or O(r) time, except for
the recursive calls and the determination, for each A A()(R)), of S C C(A).

From the proof of Lemma 3.5 and precise bounds on the number of vertices of
a d-polytope with r facets [14, 4.7], the constants K1 and K2 are dominated by d!,
which is exponential in O(dlog d).

From Theorem 4.5, the size of each subproblem is cr,dn. The bound for K3 follows
from the value of (r,d and elementary approximations, rl

THEOREM 5.2. The expected time t(n) required by Make_RPO_Tree is bounded
by t(n) o(nrdl2](i+,)), as n ---+ oo, where

ln(K3 lnr)+ (lnK:)lrdl2]
ln(r/K3 In r)

for fixed r and d.
Proof. By "unrolling" the recurrence for t(n) to depth m In(n/K)/ln(r/K3 In r),

we have

t(n) O(nr[1] log r(KKzrral]-I In r)m),
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and the desired expression follows by algebraic manipulations.
THEOREM 5.3. The worst-case time required by procedure Answer_Query is

bounded by

K + Krrdl:] ln(nlK)1 ln(rlK3 In r).

This is O(log n) as n ---, oc, for fixed r and d.
Proof. This is just the work in searching through the children of an RPO tree,

times the depth of such a tree. U

6. Conclusions. We have seen that a simple, natural approach to the post-
office problem may be used to gain great improvements in asymptotic efficiency over
methods previously known for d > 3. In addition, this approach has an advantage
of conceptual and programming simplicity over previous asymptotically fast methods
for d < 3.

The approach given here may be used to yield fast algorithms for other proximity
problems. For example, suppose a convex three-dimensional polytope P is given, and
a data structure is to be found such that given a plane h with h fq P q}, the vertex of
P closest to h is to be determined quickly. This problem is equivalent to determining
the point of vert P closest to the ideal point normal to h, and is also equivalent to
linear programming in 3-D with multiple objective functions. The problem may be
solved with nearly linear preprocessing and logarithmic query time using an approach
analogous to that given in this paper.

After the preliminary report of these results [5], later work has shown that these
ideas have applications in many other areas of discrete and computational geometry,
such as arrangement searching, determining the separation of polytopes, constructing
order k Voronoi diagrams [6], computing line-segment intersections, bounding (<k)-
sets in Ed [7], computing the diameter of a point set in E3, incremental construction of
geometric structures [8], and triangulating simple polygons [9]. Independently of this
work, the concept of the Vapnik-Chervonenkis (VC) dimension [28] has been applied
to, for example, the problem of halfspace range queries, resulting in a randomized
algorithm for the construction of a data structure for such queries [16]. This concept
has also been applied to questions of learnability [2]. While apparently not equivalent,
the two approaches (the VC dimension and that of this paper) are similar in spirit, and
provide a useful means of applying divide-and-conquer to computational geometry.

Appendix A. Proofs of three technical lemmas are given below.
LEMMA 2.1. Let C be a polyhedral pointed cone with apex a. Let h be a supporting

hyperplane of C with h f’l C {a}. Let be a normal vector to h contained in the
same halfspace containing C. Then P C fq (h + ) is a polytope.

Proof. (Note that such a hyperplane h exists because a is a face.) Since C and
h + are polyhedral sets, it follows that their intersection is a polyhedral set. It
remains to show that P is bounded. If not, then P contains a ray, by [14, 2.5.1]. Such
a ray has the form rayz y, where z, y P and . (y- z) 0. Since C is a cone, the
point (x a)/llx all + a E raya x is in C, for every x E rayz y. As I[xll --, c, with x
on rayz y, the points (x a)/llx all + a converge to (y z)/lly zll + a. Since C is
closed, this point is in C. But (y- z)/lly- zll / a h, contradicting the choice of h.

LEMMA 2.2. If P C Ed is a line-free d-polyhedral set then P conv vert P.
Proof. The lemma is true for polytopes by [14, 2.4.5]. The unbounded case will

first be considered for polyhedral cones, and then in general.
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If C is a line-free polyhedral cone, then as mentioned above, C is pointed, so
that Lemma 2.2 applies to C. Using the correspondence above between x E P and
x’ Eid C, the fact that P conv vert P implies that id C conv vert id C. Since

it follows that for any y C,

C= U conv{a,x},
xEidC

Olaah -t-
xEvert id C

OlxXh

for some as, ax >_ 0, x vert id C. That is, C c conv vert C. It is easy to show that
C conv vert C, so the lemma follows for line-free polyhedral cones.

To prove the lemma for general line-free polyhedral sets, we appeal to [14, 2.5.6],
which directly implies that a line-free polyhedral set P can be expressed as P
cc P +conv re vert P. Since cc P is line-free if P is, the relation cc P conv vert cc P
holds. The lemma follows. [:]

LEMMA 3.2. For a line-free polyhedral region P, if v vert P and a P, then
the point b rayv a N relbdP is on a facet of P that does not contain v.

Proof. (The relative boundary of P is generalized to include id P.) Since relbdP
is the union of the facets of P [14, 2.6.3], b is on some facet of P. Suppose v id P.
Then the lemma follows by induction on dimension: suppose v and b are on the same
facet F. Then assuming the lemma for the polytope F, b is on some facet of F not
containing v. Such a facet of F is the intersection of F with another facet F of P
[14, 2.6.4], and so b E F but v F. Suppose v idP. If a is a real point, then so
is b, and the lemma follows. If a idP, then we map v, a, and so b to a polytope as
in Lemma 2.1, and the lemma follows by the above argument.
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EFFICIENT SOLUTIONS TO SOME TRANSPORTATION
PROBLEMS WITH APPLICATIONS TO
MINIMIZING ROBOT ARM TRAVEL*

MIKHAIL J. ATALLAH? AND S. RAO KOSARAJU$

Abstract. We give efficient solutions to transportation problems motivated by the following robotics
problem. A robot arm has the task of rearranging m objects between n stations in the plane. Each object
is initially at one of these n stations and needs to be moved to another station. The robot arm consists of
a single link that rotates about a fixed pivot. The link can extend in and out (like a telescope) so that its
length is a variable. At the end of this "telescoping" link lies a gripper that is capable of grasping any one
of the m given objects (the gripper cannot be holding more than one object at the same time). The robot
arm must transport each of the m objects to its destination and come back to where it started. Since the
problem of scheduling the motion of the gripper so as to minimize the total distance traveled is NP-hard,
we focus on the problem of minimizing only the total angular motion (rotation of the link about the pivot),
or only the telescoping motion. We give algorithms for two different modes of operation: (i) No-drops. No
object can be dropped before its destination is reached. (ii) With-drops. Any object can be dropped at any
number of intermediate points. Our algorithm for case (i) runs in O(m+ n log n) time for angular motion
and in O(m+ na(n)) time for telescoping motion. Our algorithm for case (ii) runs in O(m+n) time for
angular motion and with the same time bound for telescoping motion. The most interesting problem turns
out to be that of minimizing angular motion for the with-drops mode of operation.

Key words, transportation problems, robotics, arm motion, Euler tour, circular track, graph augmentation
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1. Introduction. A robot arm has the task of rearranging m objects between n
stations in the plane. Each object is initially at one of these stations and needs to be
moved to another station (its destination). The robot arm consists of a single link that
rotates about a fixed pivot (see Fig. 1). The link can extend in and out (like a telescope)
so that its length is a.variable. At the end of this "telescoping" link lies a gripper that
is capable of grasping any one of the m given objects.

The gripper can pick up an object and drop it at another station, then move to
another station and continue with the transfers. Many objects can be simultaneously
located at the same station, but the gripper cannot be holding more than one object
at a time. When the gripper is empty and is at a station, it is free to pick up any of

Pivot Gripper

FIG. 1. The robot arm can pivot and can extend like a telescope.
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the objects at that station. We also require that the gripper terminate at the station
where it started. Scheduling the motion of the gripper so as to minimize the total
distance it travels can be shown to be NP-hard from the NP-hardness of the Euclidean
Traveling Salesperson Problem [P2]. Here we focus on the problem of minimizing
only the total angular motion (rotation of the link about the pivot), or only the total
telescoping motion.

For the case of minimizing angular motion we henceforth assume, without loss
of generality, that

(a) the n stations are positioned on a circular track centered at the pivot, and
(b) the motion of the gripper is always along the circumference of this circular

track.
The problem is then to minimize the total length of the circular arcs traversed by

the gripper. The input specification is made by listing the destinations of the objects
at each station on the circular track. The stations, in clockwise cyclic order, are denoted
by the integers 1 to n, and one of them is designated as being the initial position of
the gripper (we call it the start station). The input therefore describes a directed
multigraph having n vertices and rn edges (we draw a directed arc for each object--the
head and the tail corresponding to the destination and the source stations, respectively).
Figure 2 illustrates a four-station four-object transfer problem.

S:tart

FIG. 2. A transfer problem.

The problem of minimizing the total telescoping motion rather than the angular
one can be viewed as a linear track problem rather than as a circular one. The circular
track case is considerably more difficult than the linear track one.

We develop fast algorithms for two different modes of operation: (i) No-drops.
Once an object is picked up by the gripper, it cannot be dropped before its destination
is reached. (ii) With-drops. Any object can be dropped at any number of intermediate
points. The algorithm for the no-drops case runs in O(rn + n log n) time for a circular
track (i.e., minimizing angular motion), in O(m + ha(n)) time for a linear track (i.e.,
minimizing telescoping motion); here c(n) is the extremely slowly growing functional
inverse of Ackermann’s function. The no-drops problem can be cast as a graph-
augmentation problem [ET], [P1]--augmentation of a graph to an Eulerian graph.
The with-drops problem is more interesting and does not seem to translate into a
natural graphical problem. Somewhat surprisingly, we are able to design a faster
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algorithm for this problem--an O(m + n) time algorithm (for either circular or linear
track). One of the difficulties in the with-drops problem for a circular track is that an
optimal transportation may have to transport an object through the longer of the two
circular arcs between its source and destination (such an arc is henceforth called major,
the other arc being minor). In 4 we give an example for which any optimal transporta-
tion must transport an object through the major arc. However, we prove that in a
with-drops problem, an optimal transporation transports at most one object through
the major arc. This nontrivial result is only one of the ingredients in our linear time
solution to this problem; another ingredient is a method for quickly identifying which
of the m objects (if any) should be transported through the major arc.

Throughout the paper, all graphs are actually multigraphs (i.e., can have many
edges with same head and tail). A graph is directed unless we explicitly state that it
is undirected. All the graphs we refer to are embedded on the (circular or linear) track,
i.e., their vertices are the stations on the track and their edges are directed arcs drawn
along the track. Therefore when we henceforth refer to an edge e of a graph G, we
are really talking about a particular drawing of that edge (for a circular track, the edge
can be drawn two ways). We use lel to denote the length of the portion of the track
covered by e.

For a circular track we assume, without loss of generality, that the circle’s circum-
ference equals unity. The complement of an edge e is the edge eC with the same source
as e, same destination as e, and such that e and e together cover the complete
circumference (see Fig. 3). Note that (eC) e, and that lel+lel- 1. An edge e is major
if and only if lel > , and is minor otherwise (in Fig. 3, e is minor and e is major).
Note that if el-- then both e and e are minor. Shortening a major edge means
replacing it with its complement.

FIG. 3. An arc and its complement.

We adopt the convention that, when depicting a transportation, we draw an input
source-to-destination pair as a directed (circular or linear) arc coinciding with the
actual path that this transportation uses to take the object to its destination (in the
with-drops case, the object transported along such an arc may be dropped many times
on the way to its destination).

We assume that none of the n stations is useless, i.e., each is the source or
destination of at least one object (useless stations are easily eliminated with an O(m + n)
preprocessing step). This implies that n _-<2m.
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2. No-drops problem. In this section we prove the following result.
THEOREM 1. An optimal transportation for any no-drops problem can be calculated

in O(m + na(n)) for a linear track, in O(m + n log n) time for a circular track.
The rest of this section proves the above theorem.
First, observe that in a circular no-drops problem we never need to take an object

to its destination using the major arc, and therefore we always draw the input edges
so that they are minor.

The no-drops problem is a graph-augmentation problem: we want to add edges
to the input graph so as to make it Eulerian [E], such that the total lengths of the
added edges is minimum. Any Euler tour of the resulting Eulerian graph then gives
an optimal transportation. These added edges are called augmenting edges, and corre-
spond to motion of the gripper when it is not holding any object. In future drawings,
we distinguish such augmenting edges by drawing their arrowhead dashed, whereas
that of an input edge is drawn solid.

Since the minimum Eulerian augmentation does not depend on the start vertex,
the length of an optimal transportation does not depend on which vertex is the start
(and hence finish) vertex. (In the with-drops case, considered in 3, the start vertex
is significant.)

Recall that a graph G is Eulerian if and only if (i) every vertex of G has its
in-degree equal to its out-degree (we call this the degree-balance property), and (ii)
the undirected version of G is connected. Condition (ii) can be replaced by "G is
strongly connected," because if (i) holds then G is strongly connected if and only if
its undirected version is connected [E]. In the rest of this paper we restrict the
augmenting edges to be of the form (i,i+ 1) or (i+ 1, i), i.e., each augmenting edge
covers only one of the n intervals (gaps) between adjacent stations. There is no loss
of generality in doing so, since an augmenting edge that covers intervals can always
be broken into smaller edges without increasing the total edge length, without
disturbing degree balance, and without damaging undirected connectivity. Of course
if there are many such augmenting edges covering an interval (i, + 1), then we do not
store each of them individually since this might take a total of O(mn) space; instead,
we store a count of the number of such edges going in each direction across that
interval. Thus the total storage needed for augmenting edges is O(n).

Observe that in any optimal augmentation, if any pair of antiparallel edges (i, + 1)
and (i+ 1, i) are augmenting edges, then between and + 1 there cannot be any other
augmenting edge (otherwise removal of (i, i+ 1) and (i+ 1, i) preserves the degree-
balance and undirected connectivity, contradicting the optimality of the original aug-
mentation).

2.1. Linear track. We first prove the linear track part of Theorem 1, an example
ofwhich is given in Fig. 4(a), where n 8 and m 5. We make a few trivial observations.

OBSERVA’rION 1. In any transportation, at any point x between the leftmost and
the rightmost stations, the number of times the gripper moves left to right across x is
the same as the number of times the gripper moves right to left across x. In addition
each of these crossings is _>-1.

Based on this observation, we add across each interval the smallest number of
augmenting edges that will make the total number of edges that cross that interval
from left to right equal to the number of edges that cross it from right to left. The
"augmenting edges" needed for Fig. 4(a) are shown in Fig. 4(b). When the graph is
augmented in this manner, every vertex will have the degree-balance property. Let this
augmentation process be denoted as the degree-balanced augmentation.
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2 3 4 5 6

(a)

3 4 5 6 7 8

3 4 5 6 7 8

FIG. 4. (a) A linear track problem" (b) its degree-balanced augmentation" (c) the optimal augmentation.

OBSERVATION 2. If the resulting degree-balanced augmented graph is strongly
connected, then it has an Euler tour, and hence it represents an optimal transportation.

However the augmented graph need not be strongly connected (sc). For example,
Fig. 4(b) has three strongly connected components (scc’s): {1, 4, 5, 2}, {3, 6}, {7, 8}. If
the augmented graph is not sc then its scc’s are disjoint in the sense that there is no
edge between any two ofthem (because for a graph having the degree-balance property,
the scc’s are the connected components of the undirected version of the graph).

Now the problem reduces to adding more augmenting edges, with minimum total
length, to make the graph sc without disturbing its degree-balance property. An example
of this augmentation is shown in Fig. 4(c). In general, augmentation of a q-scc
degree-balanced graph can be achieved by including q 1 antiparallel pairs of augment-
ing edges (we needed two such pairs to go from Fig. 4(b) to 4(c): one between 5 and
6, the other between 6 and 7). To find the q- 1 antiparallel pairs needed to minimally
make the degree-balanced graph sc, we create a q-vertex edge-weighted undirected
graph, one vertex for each scc. In that undirected graph, an edge between and j is
present if and only if a station x in the ith scc is adjacent to a station y in the jth scc
(i.e., Ix- Yl 1). The weight of this edge {i,j} is the distance between stations x and
y. If there are many such pairs x, y for a particular {i, j}, then the weight of {i, j} is
the minimum over all such pairs x, y.

OBSERVATION 3. The minimum total length augmenting pairs needed to make the
degree-balanced graph sc correspond to the undirected edges of a minimum spanning
tree (MST) of the above-mentioned q-vertex undirected graph of scc’s. (Of course, we
have to map each undirected edge {i, j} of the MST into one antiparallel pair of
augmenting edges: (x, y), (y, x) in which x and y are the stations in scc’s and j,
respectively, which contributed to the weight of the {i, j} edge.)

The above discussion implies an O(m + ha(n)) time algorithm for computing the
minimum Eulerian augmentation in the linear track version of the problem, using the
MST algorithm of [FT]. Any Euler tour of the resulting Eulerian graph gives an optimal
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transportation. Such an Euler tour can easily be found in an additional O(m) time
[AHU, Exercise 5.9].

Thus the overall time for the linear track case is O(m + na(n)). We now complete
the proof of Theorem 1 by considering the circular track case.

2.2. Circular track problem. If we know that there exists an optimal transportation
in which at least one interval is not covered by any augmenting edge, then we can
solve n separate straight line problems" the ith one, assuming that there is no augmenting
edge between stations and i+ 1 (assume that station n+ 1 =station 1). Then the
transportation corresponding to the minimum of these n solutions gives the optimal
transportation. However, it is not hard to come up with an example in which any
optimal solution must have augmenting edges covering the (complete) circumference.

The circular track equivalent of Observation 1 does not hold, i.e., for the circular
track it is no longer true that at every point the number of clockwise crossings of the
gripper is the same as the number of counterclockwise crossings. However, if we define
the flux across an interval to be the number of clockwise crossings minus the number
of counterclockwise crossings (counting both the input edges and the augmenting
ones), then we have the following.

LEMMA 1. For any augmentation, the degree-balance property is satisfied ifand only
if the flux is the same across all intervals.

Proof It suffices to show that degree balance holds if and only if, for any i, the
flux across interval (i- 1, i) is the same as that across interval (i, i+ 1). The difference
between these two fluxes equals the difference between the in-degree of and its
out-degree. [:]

The flux across an interval is the sum of two components. One component is the
augmenting flux across that interval" the number of clockwise augmenting edges across
that interval minus the number of counterclockwise augmenting edges across it. The
other component is the input flux across that interval and is the number of clockwise
input edges across it minus the number of counterclockwise input edges across it. Let
b(i) denote the input flux across the interval (i,i+ 1). In Fig. 2, b(1)= b(2)= 1,
b(3) 0, b(4) 2. Note that b(i) is the number of counterclockwise augmenting edges
that must be added to interval (i, i+ 1) in order to make its total flux equal to zero (a
negative value signifies adding clockwise edges).

The next two lemmas impose constraints on the augmenting edges and possible
flux values that an optimal augmentation can have.

LEMMA 2. There exists an optimal augmentation in which for some the number of
augmenting edges in between and + 1 is no more than one.

Proof. Let an optimal augmentation result in at least two augmenting edges
between every and i+ 1. Among all such optimal augmentations, select one with the
fewest clockwise augmenting edges. Select any undirected circuit of n augmenting
edges covering the circumference (ignoring the directions of these augmenting edges).
We distinguish two cases.

Case 1. On this circuit, the total length of the clockwise edges is not equal to the
total length of the counterclockwise edges. If it is larger (respectively, smaller), then
remove the clockwise (respectively, counterclockwise) edges and duplicate the counter-
clockwise (respectively, clockwise) edges one more time. This preserves undirected
connectivity and also the degree-balance property. In addition, this transformation
decreases the total length. This contradicts the optimality of the original augmentation.

Case 2. On this circuit, the total length of the clockwise edges is equal to the
total length of the counterclockwise edges. Remove the clockwise edges and duplicate



TRANSPORTATION PROBLEMS FOR ROBOT ARMS 855

the counterclockwise edges one more time. This preserves undirected connectivity, the
degree-balance property, and the total length. However it results in an optimal aug-
mentation having fewer clockwise edges than the original one, a contradiction.

Note that Lemma 1 implies that for every optimal transportation there exists a
value such that the flux across every interval is that value. In addition, Lemma 2 implies
that there are only 3n relevant values of flux worth considering, namely LI in-__l {b(i)-
1, b(i), b(i) + 1}.

LEMMA 3. There exists an optimal augmentation whoseflux is between -m- 1 and
m/l.

Proof. Lemma 2 implies that there exists an optimal augmentation in which at
least one interval has at most one augmenting edge across it. The absolute value of
the flux of such an augmentation is no more more than 1 + maxl_<_i_<_n Ib(i)l =< 1 + m.

It is easy to come up with examples in which there is a unique optimal augmentation
and it has flux (R)(m). The range "-m- 1 to m + 1" of Lemma 3 can be narrowed to
"-m/2 to m/2" but we avoid doing so for simplicity of exposition.

Observe that fixing the value of the flux (at, say, ) entirely determines the cost
of the minimum augmentation achieving degree balance at that flux value, because
every interval (i, i+ 1) needs to add across it -b(i) clockwise augmenting edges in
order for the flux across it to become . The resulting graph, however, may not be sc,
and additional pairs of antiparallel edges may need to be added in order to make it
sc. For a given flux value, the antiparallel pairs needed to make the degree-balanced
graph sc can be determined by a minimum-cost spanning tree computation similar to
the one described for the linear track case. Our main problem is therefore that of
determining which flux value fro is such that there is an optimal Eulerian augmentation
whose flux is 0.

Let the cost of flux be the total length of the minimum Eulerian augmentation
whose flux is constrained to be . This cost consists of two components: (i) a degree-
balance component db () equal to -’i=1 ]lt- b(i)]/i, where li is the length ofthe interval
(i, i+ 1), and (ii) a connectivity component cc(O) which accounts for the length of
the antiparallel pairs of augmenting edges needed to make sc the degree-balanced
graph resulting from (i). (The cc() results from the previously mentioned MST
computation.)

If we knew db () and cc () values for all m 1 -< =< m + 1, then the optimal
would be the one which minimizes db ()+ cc (). The next two lemmas show how

to compute all the db (q)’s and cc (O)’s efficiently (the nontrivial part is computing
the cc (q)’s).

LEMMA 4. The db (ff)’s (-m 1 _<- ff _-< m + 1) can all be computed in O(m) time.

Proof. It suffices to show that the description of the function db (.) can be
computed in O(m) time. Note that db ()=i=114’-4(i)1/ is piecewise linear and
has at most n angular points (at O=b(i), 1-<i<=n). It is easy to compute
b(1),..., b(n) in O(m) time. If we knew the slope of db (if) at every value of
-m 1 <_- -<_ m + 1, then we could easily obtain all the db (O)’s with O(m) additional
work. The slope at =-m-1 is equal to ---1 l=-1, and at = m+ 1 it equals
i=l l 1; in between it changes only at values of that belong to {b(1),. ., b(n)}.
Therefore we sort {b(1),..., b(n)} in O(m) time, and then we scan the resulting
sorted sequence, updating the slope of db (.) as we go along.

LEMMA 5. The cc (O)’s (-m 1 _-< _-<-m + 1) can all be computed in O(m +
n log n).

Proof. First observe that if (.J ’--1 {b(i)}, then cc ()= 0 because in that case
the degree-balanced graph of flux b is already sc (it has an augmenting edge across
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every one of the n intervals). We therefore need only concern ourselves with computing
the cc ($)’s for all UT-- {b(i)}. By its definition, cc(@) is equal to twice the cost
of the MST of the undirected graph CC (@) whose vertices are the n stations, and
whose edges consist of

(i) the undirected versions of the input edges, and
(ii) one edge {i, i+ 1} for each interval (i, i+ 1).

The edges in (i) have zero cost in CC (), while an edge {i, i+ 1} in (ii) has zero cost
if # th(i) (because in that case the minimum degree-balanced augmentation for flux
value already places at least one augmenting edge across the interval (i, i+ 1)), and
cost equal to the interval’s length li if = b(i). Note that all CC (@)’s have the same
set of edges, the only difference being in the weights of the n edges in (ii). Since the
edges in (i) have zero cost in all CC (@)’s, we can "collapse" each connected component
of the edges in (i) into a single vertex: let Vl,"’, Vq be the vertices resulting from
this collapsing operation; if the endpoints of an edge in (ii) collapse into a single vi
then the edge vanishes; otherwise it survives (of course its endpoints become the
collapsed vertices rather than the original stations). This collapsing operation can
easily be done in O(m) time as a preprocessing step. Assume from now on that this
has already been done, so that every CC () is now a q-vertex multigraph having as
edges the (at most n, at least q) edges in (ii) that survived the collapsing operation.
Each ofthe (possibly many) edges between ui and vj corresponds to an interval between
one of the stations that collapsed into ui and one of the stations that collapsed into

vj. Of course cc () is still twice the cost of the MST of the new (collapsed) CC (@).
Let CC be identical to the (collapsed) CC (@), except that in CC the costs associated
with the edges of CC (0) are replaced by labels: the edge of CC that corresponds to
interval (i, i+ 1) is labeled by th(i). Note that CC () can be obtained from CC by
assigning to each edge with label th(i) a cost of zero if th(i)# , a cost equal to the
length of (i,i+ 1) if b(i)= . Let the intervals that correspond to edges of CC be
denoted by (il, il + 1),. ., (it, ir + 1). Find the median of b(i),. ., b(ir) (call it bo),
then partition the set {i,..., it} into A, B, C as follows: a={ij: b(ij)<bo}, B=
{i: 4(i)=4o}, C={i: b(i)> 4o}. (Note that each of A and C has at most r/2
elements.) The important thing to notice is that, if => bo (respectively, bo, --<4o)
and belongs to A (respectively, B, C), then in CC (q) the edge corresponding to
interval (i, + 1) has zero cost. This suggests the following recursive procedure for
computing the cc (q)’s for all q {b (i): 6 A U B t_J C}. First, create the undirected
graph QA (respectively, Q, Qc) whose vertices are u,..., Uq and each of whose
edges correspond to an interval (i, i+ 1) with i_A (respectively, B, C). Let CCA
(respectively, CCn, CCc) be obtained from CC by collapsing each connected com-
ponent of QA (respectively, Qn, Qc) into a single vertex. Note that CCA (respectively,
CCn, CCc) has no more than IAI (respectively, IBI, IcI) edges, and no more vertices
than it has edges. Recursively compute the CCA () values for all {b(i): i A}.

Note. CCA (q) (respectively, cc (), ccc ()) denotes twice the cost of the MST
of CCA (q) (respectively, CCn (), CCc ($)). Note that if = b(i) for some in A
(respectively, B, C) then cc (0) equals CCA () (respectively, cc, ($), CCc ()).

Next, recursively compute the CCc () values for all 0 {b(i): i C}. Then find
CC (bo) and compute its MST in O(IBI (IBI)) time [FT] (ccn (bo) is twice the cost
of this MST). If T(r) denotes the overall time for this recursive procedure, then we have

T(r) <-_ T([AI) + T(]CI) / cr+ c2IBI(]BI),

where IAI < r/2,1C[<= r/2, andlAl+lB[+lC r. This implies that T(r)= O(r log r). [3
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This completes the proof of Theorem 1.
Now we consider the more interesting with-drops mode of operation.

3. With-drops problem. The main result of this section is the following.
THEOREM 2. When drops are allowed, an optimal transportation for the circular

track problem (and hence for the linear track one as well) can be computed in O(m + n)
time.

The proof of the above theorem is developed through the end of this section, and
involves several nontrivial insights into the structure of the with-drops problem. We
concern ourselves with the circular track problem only, since an O(m + n) time solution
to the circular track problem automatically implies an O(m + n) time solution to the
linear track problem (by first embedding the linear track problem on a very small
circular arc of a circular track and then using the circular track algorithm). Since
n _<-2m it suffices to give an O(m) time algorithm.

First, observe that every object can be moved to its target station by moving it in
one direction only. However this observation still allows two possibilities for transport-
ing an object: along the minor arc between its endpoints, or along the major arc. For
example, Fig. 5 proves that an optimal transportation for some problems must include
transporting an object by the major arc. The (1, 2), (1, 4), and (2, 4) distances are
each, and the (3, 4) distance is very small. If we transport (1, 2) and (2, 1) by the minor
arcs (Fig. 5(a)) then the complete transportation length is (a pair of antiparallel
augmenting edges between 2 and 3 is then needed). However if we transport (1, 2) by
the major arc, as in Fig. 5(b), we can drop it at station 4 (we henceforth call such a
drop an intermediate stop), then complete the (4, 3) and (3, 4) transports and finally
resume the transportation of the (1, 2) arc. In this case the total path length is
approximately one.

Start

Drop

Start

(a) (b)

FIG. 5. (a) A with-drops problem; (b) its optimal transportation.

As in 2, each augmenting edge corresponds to motion of the gripper when it is
not holding any object, and covers only one interval (if the motion spans more than
one interval, then .each interval will get an augmenting edge). Also as before, if there
are many augmenting edges across an interval, then we store only a count of the
number of such edges going in each direction across that interval.

Lemma 1 obviously still holds. Note that the fact that the transportation may
move objects to their destinations using the major arc implies that there are 2 possible
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ways to draw the m input source-to-destination pairs (whereas in 2 there was only
one way to draw them). Lemma 10 will establish that we can restrict our attention to
only m possibilities.

Let T be any transportation (with drops). We associate with T a graph G(T)
whose vertices are the n stations, and whose edges are the m edges corresponding to
the input source-to-destination pairs, plus any augmenting edges. Each input edge in
the transportation might have been covered by many intermediate stops, but in the
graph G(T) we simply draw the edge from its source to its destination. For example,
in the transportation of Fig. 5(b), the edge (1, 2) is a single edge even though this
object gets dropped at station 4 and picked up from there later on. Note that G(T)
has the degree-balance property, and hence the flux corresponding to T is the same
across every interval. Since G(T) is degree-balanced, its scc’s are also the connected
components of the undirected version of G(T). Therefore G(T) is the union of disjoint
scc’s. For example, in Fig. 5(b), the graph depicted has two scc’s: {1, 2}, {3, 4}. A graph
G is transportable from vertex x if and only if there exists a transportation T with x
as its start (and hence finish) vertex, and such that G(T)- G. The graph shown in
Fig. 5(b) is not transportable from vertex 3, but it is transportable from vertex 1. This
example also illustrates how the length of an optimal transportation now depends on
where the start vertex is.

In the following, we first establish that the graph G(T) of an optimal transportation
T can be computed in O(m) time (Lemma 19). Then we show that T can be calculated
from G(T) in O(m) time (Lemma 20).

For the next three lemmas, BAL is any degree-balanced graph, and the scc’s
of BAL are denoted by sccl,’", SCCh. Observe that any scci can individually be
transported using any vertex in scci as the start vertex (even without drops).

Now we define the reachability graph of BAL to have vertices sccl, ., scch, and
to have an edge from scci to sccj if and only if there exists a vertex x of sccj on some
edge e of scc/ (i.e., x occurs on the circular arc covered by e). This is represented by
scci- scc, and we say that scc is directly reachable from scc.

The above definition of direct reachability implies that, if edges e and e2 of BAL
overlap and neither one of them properly contains the other, then either el and e2 are
in the same scc of BAL or the scc’s containing el and e2 are directly reachable from
each other.

We say that scc is reachable from scc if and only if there is a directed path from
scc to scc in the reachability graph.

LEMMA 6. In the reachability graph, if scc - sccj, then scc A scc can be transported
using any vertex of scci as the start vertex.

Proof. Since scc- scc, there exists an edge e of scc that covers a vertex x of

scc. Transport scc until point x of e is reached, drop the object, finish scc, and then
complete scci. [3

In fact the following generalization of Lemma 6 holds.
LEMMA 7. IfH is any directed spanning subtree of the teachability graph with scc

as the root, then the union of all the scc’s in H is transportable using any vertex of scc
as the start vertex. In addition, the total number of intermediate stops is no more than
(the number of vertices of H) 1.

Proof. The transportation process resembles a depth-first search of H, begun at

scc" First we mark every sccj H as being "new," then we mark scc as being "old"
and begin transporting scci from any start vertex in scc. Whenever we are transporting
an edge e of the scc currently being transported, we go through every edge f that has
an endpoint covered by e: if f is in a child scc of the current scc, and if the scc of f
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is still marked "new," we mark the scc off as being "old," interrupt the transportation
of the scc of e, and recursively transport the scc of f using a start (and hence finish)
vertex the endpoint off covered by e. Every sccj H eventually gets transported, and
every such sccj (except the root, scci) causes one intermediate stop to occur during
the transportation of its parent. [3

COROLLARY 1. A graph is transportable from vertex x if and only if it has degree-
balance and, in its reachability graph, every scc is reachablefrom the scc that contains x.

Proof. The "only if" part of the proof is trivial; the "if" part follows from
Lemma 7. [3

COROLLARY 2. If G is transportable from vertex x, then there is a transportation T
ofG (i.e., G(T) G) from x such that, in T, the number of intermediate stops is no more
than n- 1.

Proof. The proof is an immediate consequence of Lemma 7. [3

LEMMA 8. Let S be a subset of the scc’s of BAL such that every scc in S is reachable
from scci. Suppose that the union of the scc’s in S covers the circumference. Then for any
degree-balanced graph G G may be disconnected), BAL L.J G is transportable from any
vertex in scci.

Proof. Since the union of the scc’s in S covers the circumference, every scc of
BAL is reachable from at least one scc in S. This, and the fact that every scc in S is
reachable from scci, implies that every scc of BAL is reachable from scc. Therefore
(by Corollary 1) BAL is transportable from any vertex in scc. While transporting BAL,
we are bound to reach a vertex in each of the scc’s of G. At such vertices interrupt
the main transportation of BAL and finish the scc’s of G.

LEMMA 9. Let T be an optimal transportation and let e be a major edge in G( T).
Then the scc of G(T) that contains e must cover the circumference.

Proof. Let scc (e) be the scc containing e, and sccl be the scc containing the start
vertex. Since T is a transportation, scc (e) is reachable in G(T) from sccl. If scc (e)
does not cover the circumference, then its individual flux (the flux due to its edges
only) is zero, and hence any interval covered by scc (e) is covered by at least two
edges of scc (e). Therefore, in G(T)-e+ ec, the scc containing e is still reachable
from scc, and it now covers the circumference. Therefore, by Lemma 8, all the other
scc’s of G(T)-e + e are transportable from the start vertex. Thus G(T)-e + e is
transportable from the start vertex, which contradicts the optimality of T (since e is
longer than e).

LEMMA 10. Ill any optimal transportation, at most one object is moved to its
destination along the major arc.

Proof. Let T be an optimal transportation, let SCCl, SCCh be the scc’s of
G(T), and let the start vertex be in scc. Suppose that G(T) has two major edges ei
and e, respectively, in scc and scc. By Lemma 9, scc covers the circumference, and
so does scc.

Case 1. scc scc. Without loss of generality, we can assume that, in the reachabil-
ity graph, scc is reachable from scc without going through sccj. Now, modify scc by
shortening e. Because scci is still reachable from scc and still covers the circumference,
even this modified scc along with all the other scc’s are transportable from the start
vertex (by Lemma 8). Since we made e shorter, the new transportation has smaller
length than T, a contradiction.

Case 2. scc sccj. We distinguish two subcases.
Subcase 2.1. Every interval covered by e is covered by at least one other edge of

scc. Consequently, modifying scc by shortening e leaves the circumference covered
by the new scc, which is still reachable from sccl. Therefore, by Lemma 8, the graph
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obtained from G(T) by shortening ei is still transportable. This contradicts the optimal-
ity of T.

Subcase 2.2. Some interval is covered by ei and by no other edge of scci. Then
the individual flux of scci is / 1 or-1, and therefore every interval in the region covered
by both ei and ej is also covered by at least one other edge of scc (because the
individual flux of scc is an odd number). In this case simultaneously shortening both
e and ej leaves the new scc still covering the circumference, leading to a contra-
diction. [3

Lemma 10 reduces from 2" to m the number of possible drawings of the m input
edges that need to be considered, but it does not yet give an O(m) time algorithm.
We must still identify, in O(m) time, which edge (if any) needs to be drawn along the
major arc. Even if we knew which drawing of the m input edges is best, it is not clear
how to augment these into a minimum-length graph that is transportable (from the
start vertex). All these nontrivial issues are addressed below.

LEMMA 11. Let T be an optimal transportation, and let e be a major edge of G(T).
Then at least one interval covered by e is not covered by any other edge of G(T).

Proofi Suppose to the contrary that the region covered by e is also covered in
G(T)-e. Then there exists in G(T)-e a sequence of edges fl,""" ,fs such that
fl LJ... [_Jfs covers e, and every f/ contains an endpoint of f+, 1-<i< s. Figure 6
illustrates this (s 5), ignoring edge directions as well as the distinction between input
edges and augmenting ones. We assume that the sequence fl,. .,f has the smallest
number of elements (-s) among all such sequences covering e; this implies that
neither one of f and f+ contains the other. Note that Lemma 10 implies that s > 1.
Let scc be the scc of G(T) that contains the start vertex, and for any edge x, scc(x)
denotes the scc that contains x. We distinguish two cases.

f3 f3

f5

(a) (b)
FIG. 6. Illustrating the two cases of the proof ofLemma 11.

Case 1. e c, the complement of e, covers at least one endpoint of at least one of
the f’s (see Fig. 6(a)). For every l<=i<s, the fact that f and f+l overlap without
containment implies that we have either scc (f)=scc (f+l), or scc (f) and scc (f+)
are directly reachable from each other. Therefore the scc (f)’s are reachable from one
another and from scc (e). Now, in G(T)-e+ ec, scc(e) is still reachable from scc,
and every scc (f) is still reachable from scc (e) (because e contains an endpoint of
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some f). Since the union of the scc (f)’s with scc(ec) covers the circumference, it
follows (by Lemma 8) that the graph G(T)-e+e is transportable (from the start
vertex). This contradicts the optimality of T.

Case 2. e does not cover any endpoint of any f (see Fig. 6(b)). Note that this
implies that some f, say fl, contains e. Let be the shortest distance between any
endpoint of e (say, x) and any endpoint of any f (say, endpoint y of f). Now, in
G(T), simultaneously shorten e and add two antiparallel augmenting arcs of length
each between x and y. In the resulting graph, the two additional augmenting edges
that were added make see (e) scc(f,), and therefore every scc (f) is reachable from
sccl. Since the union of the scc (f)’s covers the circle, Lemma 8 implies that the new
graph is transportable. The decrease in cost with respect to the original G(T) is given
by

lel-lel-2 I=1-2. (lel+l)>-21Al0

(note that leVI + < Ifl 1/2, and recall that the circle’s circumference is unity). Thus the
new transportable graph is shorter than G(T), a contradiction.

COROLLARY 3. Let T be an optimal transportation, and let d/( T) denote the flux of
T. If G( T) contains a major edge, then I(T)I- 1.

Proof The interval covered by e and by no other edge, in Lemma 11, has-flux
value of +1 or -1.

We henceforth use Do to refer to the graph which consists of all m input edges,
drawn so that each of them is minor.

LEMMA 12. If Do covers the circumference, then no optimal transportation can
contain a major edge.

Proof Let T be an optimal transportation and let e be a major edge of G(T).
Since e is major, its complement e is in Do. Since Do covers the circumference, Do- eC
covers e. Since G(T) e contains Do- eC, G(T) e covers the region covered by e.
This contradicts Lemma 11.

If two edges of Do overlap without either of them containing the other, then in
every degree-balanced augmentation of Do, these two edges either belong to the same
scc or to two scc’s that are directly reachable from each other. Based on this observation
let us define a relation, =, between any two edges of Do, as follows:

(a) For any two input edges e and e2, el e2 if and only if either these two edges
share a common endpoint, or they overlap but neither one of them contains the other.

(b) Transitively close the relation =.
Note that is an equivalence (eq.) relation, and, in addition, no two eq. classes

of have a vertex in common. Also note that in any degree-balanced augmentation
of Do, two input edges in the same eq. class of belong to scc’s that are reachable
from each other.

Define an ordering < among the eq. classes of as follows: If Ci and C are any
two distinct eq. classes of =, then Ci <C if and only if some edge of C covers all the
vertices of C (and hence no edge of C covers any vertex of Cj). Note that is
independent of the drawing of the edges, whereas < does depend on it. Based on this
ordering we can draw a forest of trees F whose nodes are the eq. classes of (the
parent of Ci is the "smallest" class above it according to the < relation). An example
of such a forest is shown in Fig. 7. Let r,..., "rk be the trees of F, listed in clockwise
cyclic order and such that - contains the start vertex. Let root (’i) denote the eq. class
at the root of tree ’. Let gl, ", gk be the lengths of the gaps that separate, on the
circumference, the regions covered by the ’’s; gi is the gap between - and -+ (in
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......................Start
{a,b,g,h,I}

{c} if}

(a) (b)

FIG. 7. The forest (b) corresponds to the input edges shown in (a).

{j,z}

{i}

Fig. 7, gl is the arclength from the head of edge h to the tail of edge z, and g2 is the
arclength from the head of edge j to the head of edge a).

LEMMA 13. The eq. classes of and the forest F of eq. classes can be computed
in O(m time.

Proof. For the proof see Appendix A. [3

Let G be any degree-balanced augmentation of Do. (Note that G is not necessarily
transportable and, since it is degree-balanced, its scc’s are the same as the connected
components of the undirected version of it.) We say that eq. classes Ci and Cj of
are directly linked in G if and only if at least one of the scc’s of G contains vertices
from both Ci and C; they are linked if and only if there is a sequence of eq. classes
beginning with C and ending with C such that every two eq. classes in the sequence
are linked.

Let DB (@) be the graph corresponding to the minimum degree-balanced aug-
mentation of Do that results in flux ; note that DB (@) is unique but need not be
transportable. Figure 8(a) shows DB (0) for the Do of Fig. 7. Let db (p) be the total
length of the augmenting edges in DB (b) (i.e., edges in DB ()- Do). By Lemma 4,
it takes O(m) time to compute all the db () values, -m 1 _-< @ _-< m / 1.

Let Cstar be the eq. class containing the start vertex (recall that rl is the tree of
F that contains Ctat). Let LR (tp) be a minimum augmentation of DB (,) that makes
Ctt linked to root (1) while keeping the flux equal to . Hence LR () consists of
DB () plus some augmenting pairs of antiparallel edges (in Fig. 8(b) there is one
such pair, marked "in LR (0)"). Let lr () be the total length of the augmenting edges
in LR () but not in DB ().

LEMMA 14. The lr (tp)’s, for m 1 <= tp <= m + 1, can all be computed in O(m) time.
For any given flux value tPo, LR (to) can be computed in O(m) time.

Proof. For the proof see Appendix B. [3

In the next two lemmas, we show how to compute the optimum among all
transportations in which no edge is major.

Let OPTminor (tp) be the graph corresponding to a transportation that is optimal
among all transportations of flux and that do not have any major edge. If LR ()
is transportable from the start vertex, then OPTminor (t) LR (). Otherwise, pairs of
antiparallel edges are needed across some of the gaps (intervals not covered by Do)
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.......................qtart
in LR(O)

.....................tart
(a) (b)

FIG. 8. Illustrating DB (0), LR (0), and OPT (0) for the input edges of Fig. 7.

in order to turn LR () into OPTminor (@). In Fig. 8(b) there is one such antiparallel
pair, and each of the two edges in it has length gl. (Recall that gl,"" ", gk are the
lengths of the gaps separating the ri’s, listed in clockwise cyclic order, and such that
rl contains the start vertex.)

LEMMA 15. Let () be the total length ofthe augmenting pairs ofantiparallel edges
in OPTm,,or (b) LR (b). If@0 then (@) 0; otherwise (0)= 2. (k= g, max/g).

Proof. ,(d/) is the length ofthe additional edges needed for linking all the root (z)’s
together at flux . No additional edges are needed if @ 0 because then every root (r)
is already linked to root (Z+l) in LR (). If @ =0 then we link the root (ri)’s by adding
an antiparallel pair across every gap except the longest. [3

The above lemma immediately implies the following.
COROLLARY 4. Thepairs ofantiparallel augmenting edges in OPTmio (tP)- LR (@)

can be computed in O(m) time.
LEMMA 16. It is possible to compute, in O(m) time, a graph G(To) for some

transportation To which is optimal among all transportations none of whose edges is
major.

Proof. Note that such a graph is simply an OPT,inor (,) of minimum total length.
The total length of such a graph is equal to (length of edges of Do)+
min, {db (,)+lr (,)+ (,)}. Therefore Lemmas 4, 14, and 15 immediately imply that
we can find a flux value o such that the length of OPTrino () is minimum for ’o.
We now show that, once we know o, OPTmino (o) itself can be computed in O(m)
time. It is trivial to obtain DB (o) in O(m) time. By Lemma 14, LR (Po) can be
obtained from DB (o) in O(m) time. By Corollary 4, OPT,nor (o) can be obtained
from LR (o) in O(m) time. l-1

We now consider transportations that have exactly one major edge.
LEMMA 17. Let E be any set of edges on the circle, exactly one of which is major

(call it e). Let G be any degree-balanced augmentation ofE. IfE covers the circumference,
then every scc of G is reachable from the scc that contains e.

Proof. Let scc (e) denote the scc of G containing edge e. Since E covers the
circumference, there exists in E a sequence of edges f,. ,f such that f LJ. LJ f
covers e c, and every f contains an endpoint of f+, 1 _-< < s. We assume that the
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sequence has smallest number of elements s), and hence none off and f+l contains
the other. See Fig. 9, and note that because e is the only major edge of E, it must
contain at least one endpoint of one of the f’s. Therefore at least one scc (f) is
reachable from scc (e). For every 1 =< < s, the fact that f and f+l overlap without
containment implies that they belong to scc’s that are reachable from one another.
Therefore every scc (f) is reachable from scc (e), and hence (by Lemma 8) any scc
of G is also reachable from scc (e). ]

FIG. 9. Illustrating the proof of Lemma 17.

Recall that we have already stated (in Lemma 10) that in an optimal augmentation
at most one edge is major. The next lemma refines this statement.

LEMMA 18. There exists an optimal transportation T such that, if e (3(T) is major,
then its complement eC Do is in a root eq. class of and is the longest edge in that class.

Proof. Let there exist an optimal transportation T in which edge e is major, and
hence its complement e is in Do. Note that [el--1-leVI, and leVI < 1/2. Let e be in eq.
class C of tree 3 (recall that the eq. classes as well as the ’i’s are defined using Do,
where all edges are minor).

By Lemma 12, Do does not cover the circumference. Lemma 11 implies that e is
the only input edge that covers the k gaps not covered by Do.

Let G’= G(T)-e + e, and note that (3’ is degree-balanced and contains Do. No
scc of G’ covers the circumference, because otherwise (3’ is transportable (from the
start vertex), contradicting the optimality of G(T). Therefore every scc of G’ has an
individual flux of zero, which implies the following"

(*) If an interval is covered by an scc of (3’, then it is covered by at least two
edges of that scc.

Now we prove that e is longest in C. Suppose to the contrary that edgef C is
longer than e. Consider the scc of G’ that contains e (call it scc (e)). In G’, scc (e)
and scc (f) are mutually reachable from one another because G’ contains Do and, in
Do, e and f are in the same eq. class. Now, since T is a transportation, the scc of
(3(T) that contains e is reachable from the scc of the start vertex, and therefore in
G’, scc (e) is reachable from the scc of the start vertex. Therefore in (3’, scc (f) is
reachable from the scc of the start vertex. Consequently, we have:

(**) In G’-f+f, scc (f) is reachable from the scc of the start vertex.

Now, (*) implies that in G’, every interval covered by f is also covered by at least
one edge of scc (f) other than f. Therefore scc (f)-f+f covers the circumference,
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and hence by Lemma 17 every scc of G’-f+f is reachable from scc (fc). This and
(**) together imply that in G’-f+f, every scc is reachable from the scc of the start
vertex. Thus the graph obtained from G(T) by shortening e and simultaneously
lengthening f is also transportable. This contradicts the optimality of T. Thus eC must
be longest in its eq. class.

Now we prove that there is always an optimal T in which C is root in its eq.
class, i.e., C root (5). Suppose that C root (5). Then the parent of C in ’j surely
contains an edge f which is longer than e and covers it entirely. Let G=
G(T) e + e -f+f. Let CYCLES be the set of augmenting edges defined as follows"
across every interval covered by f but not by e, add two antiparallel edges. Thus the

length of CYCLES is 2. (Ifl- leVI). Simple arithmetic shows that adding CYCLES to
G results in a graph of total length no more than that of G(T). We now show that
t + CYCLES is transportable. First note that ( + CYCLES has degree-balance. Now
observe that, because of the presence of CYCLES, e and fc are in the same scc of
0+CYCLES (call it sccx). Furthermore, since T is a transportation, the scc of G(T)
that contains e is reachable from the scc of the start vertex, and therefore in G+
CYCLES, sccx is reachable from the scc of the start vertex. This and the fact that scc,
covers the circle implies that G+CYCLES is transportable. Since G+CYCLES is
transportable and has length no more than that of G(T), we have obtained from G(T)
another transportable graph of optimal length, one in which the complement of the
major edge is in an eq. class that is one level higher in -j. We can repeatedly do this
until we end up with an optimal transportation whose major edge’s complement belongs
to root (5). lq

LEMMA 19. It is possible to compute, in O(m) time, a graph G(T) for some optimal
transportation T.

Proof Use Lemma 16 to compute G(To) and let Costo be its total length. Use
Lemma 13 to compute F: if F has one tree only then return G(To). Now, suppose
that F has more than one tree, i.e., k > 1. Let Cost1 be the length of a transportation
T1 having exactly one major edge in it, and which is optimal among all transportations
that have exactly one major edge. The optimal transportation T will have length
min {Costo, Cost1}. If Cost1 < Costo then Lemma 11 tells us that in our search for the
value COStl, we can restrict our attention to transportations T1 such that there exists
at least one interval covered by only the major edge of G(T1). Within this class of
transportations, any T1 will have to be such that G(T1) has the following properties
where e denotes the major edge and e its complement:

(i) G(T1) e + e has flux equal to zero and thus contains DB (0) (which contains
Do).

(ii) In G(T1) e + e, Cs,ar, is linked to the root eq. class of its tree (’1). Therefore
G(T1) e + e contains LR (0) as well.

(iii) In G(T1)-e + e c, the root eq. class of the tree - that contains e is linked to
root (’1) (simply because T1 is a transportation). The augmenting edges that cause
root (’) and root (’l) to be linked are pairs of antiparallel edges across either all of
gaps 1,. , (j-1), orall of gaps 4j, , k(depending on whichever of gl +" "+
g-i or g +. + gk is smaller).

Thus G(T1)- e/ e equals LR (0) plus the augmenting edges referred to in (iii).
The length of G(T1)-e + e is therefore equal to

(length of Do) + db (0) + lr (0) + 2. min {gl +" "+ gj-1, g +" "+ gk}.

The length of G(T1) therefore equals (using lel+lel 1)

() (length of Do)/db (0)/lr (0)+2. min {gl+’"+g-l,g+’" "+gk}+ 1--2leVI.
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The first three terms of the sum (?) are the same for any such transportation T.
Now, the edge e of G(T) for which the sum of the last two terms of (?) is smallest
should be the one to follow the major arc. It is trivial to identify this edge in O(m)
time and compute the corresponding sum (?): If this sum is smaller than Costo then
this G(T) corresponds to the optimal transportation; otherwise it is G(To). [3

LEMMA 20. Let G be transportable from a designated start vertex. A transportation
T such that G(T)= G can be found in O(m) time.

Proof The proof of Lemma 7 suggests an algorithm for obtaining such a transporta-
tion. However, we cannot afford to create the graph of the reachability relation among
scc’s, because such a graph can be dense. Instead, we create a graph EQUIV’, defined
as EQUIV in the proof of Lemma 13 (Appendix A) except that we now use the input
edges as they are drawn in G rather than as they are drawn in Do (G may include a
major edge). In addition, we compute the eq. classes of a relation ’ and forest of eq.
classes F’ defined as and F were before, except that we now use the input edges
as they are in G rather than in Do. For each eq. class C that is parent in F’ of class
C’, we arbitrarily select an edge e in C and an edge f in C’ such that e properly
contains f (at least one such pair e, f exists); we call edge e the parent of f, and we
call f a child of e. Note that the forest F’ induces at most n 1 such parent-child pairs.
For each edge e, let the list of edges ADJ (e) be the union of (i) the children of e
induced by F’, and (ii) the adjacency list of e in the undirected graph EQUIV’. We
are now ready to describe how to obtain T such that G(T)= G. The transportation
process resembles a depth-first search of the scc’s, begun at sect: First we mark all
scc’s of G as being "new," then we mark scc as being "old" and begin transporting
scc from the start vertex of G (recall that any scc can be individually transported
using any vertex in it as start and finish). Whenever we are transporting an input edge
e of the scc currently being transported, we go through the list ADJ (e): for each
f ADJ (e) that is in a "new" scc, we mark the scc off as being "old," interrupt the
transportation of the scc of e, and recursively transport the scc off using as start (and
hence finish) vertex an endpoint of f covered by e. It is trivial to implement this
procedure in O(m) time. Correctness follows from the facts that (i) EQUIV’, even
though it is sparse, captures all the "overlap without containment" relationships
between pairs of input edges, and (ii) the parent-child pairs induced by F’ capture
enough of the "proper containment" relationships between pairs of edges. More
precisely, (i) guarantees that once an edge of eq. class C is reached by the transportation,
eventually every edge of that class C will be transported. On the other hand, (ii)
guarantees that once an edge of an eq. class C is reached by the transportation,
eventually every eq. class in the subtree of C in F’ will be transported. [3

The last two lemmas imply Theorem 2, which is the main result of this section.

4. Concluding remarks. It is easy to see that our solutions to the angular motion
problem (with or without drops) also work in the presence of obstacles. A preprocessing
step computes the visibility polygon from the fixed pivot point of the robot arm (of
course all n stations must be visible from the pivot, since an invisible station is
unreachable by the robot arm). The robot arm must remain within the visibility polygon
while performing the transportation. While this does not affect the rotational distance
function, the telescoping distance function has to be modified appropriately because
the robot arm may have to be drawn in so as to clear an obstacle.

It would be interesting to investigate the with-drops circular track problem when
the gripper can simultaneously hold c objects, where c is a constant larger than one.
We conjecture that Lemma 10 generalizes to that case, i.e., no optimal transportation
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can transport more than c objects along the major arc. A special case of this problem
for a linear track was treated in [K].

Appendix A. This Appendix proves Lemma 13. Computing F in linear time when
we know the eq. classes is easy and this construction is omitted. We give an O(m)
time algorithm for computing the eq. classes of . For the purpose of this computation
all the edges in Do can be considered undirected. An edge covers the circular region
going clockwise from its beginning to its end. For an edge e Do, let CW(e) (respec-
tively, CCW(e)) be the set of edges of Do whose beginning (respectively, end) is in
the region covered by e and whose end (respectively, beginning) is in the region not
covered by e. Note thatf CW(e) if and only if e CCW(f). The clockwise (respec-
tively, counterclockwise) successor of e is the edge of CW(e) (respectively, CCW(e))
whose beginning (respectively, end) is encountered first by a clockwise (respectively,
counterclockwise) sweep starting at e’s beginning (respectively, end). In Fig. 10(a),
CW(e)= {c, d}, CCW(e)= {a, b}, the clockwise successor of e is d and its counter-
clockwise successor is a.

beginning end
dofe of e

b c

(a) (b)

FIG. 10. Illustrating EQUIV.

The clockwise and counterclockwise successors of every edge of Do can easily be
computed in O(m) time. Assume this has already been done. Now create, in O(m)
time, the undirected graph EQUIV whose vertex set is Do and such that {e, f} is an
edge in it if and only if one of e and f is (clockwise or counterclockwise) successor
of the other. Figure 10(b) shows the graph EQUIV corresponding to Fig. 10(a).
Obviously, EQUIV has at most 2m edges, since every e Do has at most two successors
(one clockwise, one counterclockwise). Hence the connected components of EQUIV
can be computed in O(m) time. Thus the lemma will follow immediately when we
establish that the connected components of EQUIV are the equivalence classes of .
To prove this, it suffices to show that if any two edges e and f overlap without
containment (i.e., without either one of them properly containing the other), then there
is a path between e and f in EQUIV. If edges e and f overlap without containment,
then we define the overlap number of the pair { e, f} to be the number of stations covered
by both e and f, not counting the endpoints of e and f. In Fig. 10(a), the overlap
number of {e, d} is 2, that of {a, w} is 0, and that of {e, w} is undefined because e

properly contains w. We prove the desired result by contradiction: suppose there exist
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pairs of edges that overlap without containment and have no path between them in
EQUIV. Among all such pairs, choose {e,f} to have maximum overlap number. Without
loss of generality, assumef CW(e). Let g be the clockwise successor of e, and let h
be the counterclockwise successor off (see Fig. 11). Since {e, g} and {f, h} are edges
in EQUIV, and since e and f are in different connected components of EQUIV, we
must have gf and h e. Note that, as shown in Fig. 11, the end of g must occur
after that of f in the clockwise direction, because otherwise the overlap number of
{g,f} would exceed the overlap number of {e,f}, a contradiction. Similarly, the
beginning of h comes before that of e, since otherwise the overlap number of {e, h}
would exceed the overlap number of {e, f}, a contradiction. But then, the overlap
number of {g, h} exceeds the overlap number of {e,f}, a contradiction. This completes
the proof of Lemma 13.

Appeadix B. This appendix proves Lemma 14. For every eq. class C rl, let L(C)
(respectively, R(C)) be the vertex of C such that a clockwise sweep of the region
covered by C starts at L(C) (respectively, ends at R(C)). In Fig. 7 L({c}) is the head
of edge c, L({j, z}) is the tail of edge z. If C is not root (h), let the left (respectively,
right) neighbor of C be the first vertex of r- C that is encountered by a counterclock-
wise (respectively, clockwise) sweep begun at L(C) (respectively, R(C)). In Fig. 7,
the left neighbor of eq. class {c} is the tail of edge b, its right neighbor is the tail of
edge g. We use LN(C) and RN (C) to denote the left and right neighbors of C,
respectively. Note that LN (C) L(C) 1 and RN (C) R(C) / 1. Therefore we can
talk about the intervals (LN (C), L(C)) and (R(C), RN (C)). Let the eq. class contain-
ing any vertex x be denoted by Class (x). Note that Class (LN (C)) (respectively,
Class (RN (C))) is either the left (respectively, right) sibling of C in r, or the parent
of C in rl. Also note that Class (LN (C))=Class (RN (C)) is possible (if both are
the parent of C). Now, imagine starting at Cstart and repeatedly applying the function
Class (LN (.)) until root (rl) is reached. This defines a sequence Sey, of eq. classes
from Cstar to root (’). Starting at Csar, and repeatedly applying the function
Class (RN (.)) similarly defines a sequence of eq. classes SRigh,. Let us draw a directed
graph Q to depict what SLey, and SRight might look like; i.e., the vertices of Q are the
eq. classes of SLet SRight and Q has an edge from C to C if and only if C immediately
follows Ci in SLet or in Sgght. Figure 12 shows such a graph Q. Note that the two
paths corresponding to SLej:, and SRight are not necessarily vertex-disjoint and may

FIG. 11. Illustrating clockwise and counterclockwise successors.

FIG. 12. A typical graph Q.
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come together at articulation points more than once. Let these articulation points be
A, A2,’" ", At, listed by increasing distance from C.,art in Q. Let Ao Cstart, At+l
root (’).

Let the interval that corresponds to the pair {C, Class (LN (C))} be
(LN (C), L(C)), and let the interval that corresponds to the pair { C, Class (RN (C))}
be (R(C), RN (C)). Now, let Q(q) be the undirected graph obtained by removing
from the undirected version of Q all the edges {C, Class(LN(C))} and
{ C, Class (RN (C))} whose corresponding intervals are not covered by any augmenting
edge of DB (q). Note that if Q(q) does not contain a path between Ao and A,+, then
antiparallel pairs need to be added to DB (q) to turn it into LR (q); we next investigate
which such antiparallel pairs should be added (the total length of these pairs is lr ()).
Let E(b) be a subset of edges in the undirected version of Q such that adding these
edges to Q(q) causes a path to exist between Ao to A+I; choose E (q) to be such that
the sum of the lengths of the intervals corresponding to its elements is minimum. It
is not hard to see that LR (q) is obtained by adding to DB (q) an antiparallel pair
across every interval corresponding to an element of E(q). Thus lr (q) is twice the
total length of the intervals corresponding to the elements of E (q); let us call this the
cost ofE (q). Now our problem is to keep track of the cost of E (q) as q changes from
-m 1 to m + 1. Write E (q) as E0(q) + El(q) +" + Et(q) where Ei(q) is the subset
of E(q) that is in the biconnected component of the undirected version of Q having
Ai and Ai+l as articulation points. Now, as q changes, Q() changes as well, but it
changes at no more than 3n values of q. Each such change in Q(q) is due to the
appearance or disappearance of an augmenting edge of DB (q) across an interval, and
it is trivial to update, in constant time per interval affected, the cost of each
affected (once we realize that the portion of Q between Ai and Ai+l consists of two
disjoint paths, we can easily supply the other details). Thus it is possible to compute
a description of the costs of all the Ei(q)’s in O(m) time. Getting the description of
the cost of E(q) takes an additional O(m) time, which completes the proof of the
first part of the lemma.

For a given flux value o, computing the actual set E(o) (and the intervals
corresponding to its elements) is easily done in O(m) time, in view of the preceding
discussion: first we compute Q, then Q(qo), then E(qo). This completes the proof of
Lemma 14.

Note added in proof. Professor G. N. Frederickson pointed out that the a (n) for the linear
track case without drops is, in fact, log (log* n).

[AHU]

[ET]
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PROBING CONVEX POLYGONS WITH X-RAYS*

HERBERT EDELSBRUNNER’: AND STEVEN S. SKIENA?

Abstract. An X-ray probe through a polygon measures the length of intersection between a line and
the polygon. This paper considers the properties of various classes of X-ray probes, and shows how they
interact to give finite strategies for completely describing convex n-gons. It is shown that (3n/2)+6 probes
are sufficient to verify a specified n-gon, while for determining convex polygons (3n-1)/2 X-ray probes
are necessary and 5n + O(1) sufficient, with 3n + O(1) sufficient given that a lower bound on the size of the
smallest edge of P is known.

Key words, theory of robotics, computational geometry, probing, X-rays, convexity, complexity
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1. Introduction. Identifying and understanding objects from sensory data is a
fundamental problem in robotics and computer vision. Such sensors can include
imaging devices as well as simpler detectors. Clearly imaging devices provide a
tremendous amount of information; however for reasons of economy and robustness,
simple sensors are often used. There has been increasing interest [1]-[3] in analyzing
the number of measurements which different types of sensors need to determine convex
polytopes. This paper introduces another sensor model, the X-ray probe, and gives
strategies for using it.

Probing polytopes can be viewed as a discrete case of sampling problems encoun-
tered in signal processing. The Nyquist rate [4] specifies the amount of sampling needed
to reconstruct a continuous waveform. Since our objects of interest, convex polygons,
have much more structure than continuous waveforms, it is clear that tighter bounds
can be obtained. Continuous waveforms generated by probes analogous to our model
are used in such medical instrumentation systems as tomography. The techniques used
in reconstruction of these waveforms are unrelated to ours, (see [5]-[7] for surveys).

The most studied geometric probe is the finger probe [1]-[3], which is a directed
line and returns the first intersection of with polygon P. Intuitively, it is like moving
a finger towards an object and recording where it hits. An X-rayprobeX(P, 1) is defined
to be the length of intersection between polygon P and the line 1. We assume that we
know a point O within P, which identifies the general location of P in the plane.
Without such a point to provide a general idea of where P is, it is not clear how to
find P in a finite number of probes. For convenience we shall assume O is within the
interior of P.

A collection of X-ray probes through an object provides us with a great deal of
information about it but not directly with the coordinates of a point on the surface.
Obtaining such absolute information is the difficulty in working with X-ray probes.
Figure 1 demonstrates some of these difficulties; the collection of probes provides very
little constraint on the location, shape, or number of sides of P. Another polygon P’
bears little resemblance to P, but gives identical results for the collection of probes.
In fact, the complete set of probes X(P, 1(O, 0)) through O over all angles 0 describes
two different polygons, P and P reflected through O, denoted as -P. Thus it is a

* Received by the editors December 15, 1986; accepted for publication (in revised form) October 29, 1987.
? Department ofComputer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.
The research of this author was supported by the Amoco Foundation Facility for the Development

of Computer Science 1-6-44862.
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FIG. 1. Different polygons satisfying the same collection ofprobes.

fundamentally different type of device from the finger probe, although it is not clear
which can be considered more powerful.

This paper will give upper and lower bounds on the number of X-ray probes
necessary to determine convex n-gons, as well as for the problem of verifying a
conjectured convex polygon. These bounds are based on the powers of different classes
of probes, each of which has capabilities and limitations to be examined.

2. A lower bound for probing. We can prove a nontrivial lower bound for X-ray
probing by a comparison to finger probing.

LEMMA 1. An X-ray probe X(P, 1) can be simulated by two finger probes.
Proof. Send finger probes down each end of the line, and compute and return the

Euclidean distance between these two points.
THEOREM 2. At least (3n- 1)/2 X-ray probes are necessary to determine a convex

n-gon.
Proof. Cole and Yap 1 prove a lower bound of 3 n 1 finger probes for determin-

ing convex polygons. The result follows from Lemma 1.
This bound is probably loose, but the concept of a lower bound on the number

of probes is complicated by difficulty in determining exactly what information can be
obtained in a constant number of X-ray probes. Since their power comes from collec-
tions of probes, a tighter lower bound may be difficult to obtain.

3. Upper bounds for probing. To obtain absolute information about P from X-ray
probes, it is necessary to think in terms of groups of probes which work together to
determine something about P. This section considers four different classes of probes,
what powers and limitations they possess and how they interact to lead to probing
strategies.

3.1. Origin probes. The first class of probes are origin probes, a set of X-ray probes
all aimed through a common point O within the object. An X-ray probe which hits a
convex polygon and avoids its vertices will go through exactly two edges of the object.
The largest number of such edge pairs is n.
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LEMMA 3. For any convex n-gon P containing O, there are at most n distinct pairs

of edges el, e2 of P such that there exists a line which intersects el, e2 and O.
Proof Consider a line through O which intersects a pair of edges. If we rotate

this line clockwise, only when we sweep past a vertex do we intersect a new pair of
edges. After rotating past n vertices and at most 7r radians, we will return to the original
pair. No other distinct pairs can be found, so there exist at most n opposing edges.
Note that there are exactly n edge pairs unless O is collinear with two vertices of the
n-gon.

We can define a mapping of X(P, l(O, 0)) to two points Pl and pz on l(O, O) at
a distance X(P, l(O, 0)) from O, where l(O, O) is the line through O that encloses an
angle of 0 radians with the x-axis. By the following result, these points lie on hyperbolas
defined by the edges probed through.

LEMMA 4. Let /1: Y mix + bl and 12: y mx + b2 be two distinct lines and map
each angle 0 to the two points on line l( O, O) at distance dfrom O, where d is the distance
between 11 f’l l(O, O) and 12 f) l(O, 0). Then these points define the hyperbolas

y2 xy( ml + m2) + y(bl b2) x2(ml m2) + x( ml b2 m2bl) O.

Proof Consider the situation in Fig. 2. The line l(O, 0) contains points (x, y) such
that y tan (0)x. With tan (0), we have

d x/( 14- t2)(b2/( m2) b/(t- ml))2.
The x-coordinates of the corresponding points can be found by subtracting the x-
coordinates xl and x of the intersections of l(O, O) with l and with 12, respectively:

x +(x x) +(b2/(t m2) b,/(t ml) ).
This can be solved for and used with y tx to get y as a function of x. To obtain a
simpler formula, we set A m + m2, B mm, C b- b, and D mb- mb.
Then we have

Ax q: C + /(Ax q: C) (4Bx2 + 4Dx)
Y= 2

and

Ax :v C -x/(Ax :v C)2 (4Bx + 4Dx)

After simplification, this reduces to the assertion.

FIG. 2. Hyperbolas associated with two straight lines.
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We will use Lemma 4 to determine the equations of the lines that contain edge
pairs. If we have some number of origin probes through a common edge pair, then
we can determine the hyperbolas through the associated points. From the equations
of these hyperbolas, we then deduce the equations of the lines.

It is obvious from Fig. 2 that the hyperbolas which satisfy Lemma 4 have asymptotes
and --12 and 12 and --11. If the angle 0 is such that 1(0, O) intersects 1 and 12 on

opposite sides of O, then the two hyperbolas that avoid O are relevant. This will be
the most frequent case in our discussion below. If l(O, O) intersects ll and 12 on the
same side of O, then the two hyperbolas through O are relevant. This occurs when O
is not between the two edges of the pair considered. In both cases, the two relevant
hyperbolas are central reflections of each other.

The hyperbolas that show up in Lemma 4 are defined by four constants A=
ml + m2, B mlm2, C b- b2, and D mb2- m2bl. It follows that, in general, four
probes through a pair of edges is enough to determine the hyperbolas, and from the
hyperbolas the equations of the lines that contain the two edges. Given A, B, C, D,
we have

A + x/A2-4B A qzx/AZ-4B
m 2 m2=

2

C 2D+AC -C 2D+AC
bl _-- _, and b2 -t-2+2x/a2-4B 2 2v/aZ-4B

From these equations two limitations on our ability to reconstruct the edges are
apparent. First, there is the ambiguity between P and -P. More serious is that b and
b2 are undefined when the square root vanishes, that is, when m m2. Thus any
probing strategy using origin probes must take special action on parallel edges. Note,
however, that there is no ambiguity between P and -P for parallel edges, since
reflection through O is equivalent to rotation through r radians.

We can now recognize the structure formed by mapping origin probes to points.
Each opposing pair of edges gives rise to their own pair of hyperbolas. Two adjacent
hyperbolas meet on the line through O and each vertex. Thus the probes define the
extremes of a "spider web" S(P) (see Fig. 3) around the object. This permits us to
interpret an origin probe for P to be a finger probe on S(P). Both P and -P generate
the same spider web, S(P) S(-P). By Lemma 3, S(P) consists of at most 2n pieces
of hyperbolas.

FG. 3. The "spider web" S(P) around a convex polygon P.
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However, to make use of these properties of origin probes for a probing strategy
we need some means to verify that four or possibly some higher but constant number
of origin probes pass through the same pair of edges. With finger probes, it was possible
to confirm an edge with three probes, two to define it and one in between to verify it.
Unfortunately, a constant number of extra confirmation probes lying on the same
hyperbola is not sufficient to verify an edge pair.

LEMMA 5. There is no constant k such that k probes lying on a hyperbola defined
above implies that the probes pass through the same pair of edges of P.

Proof The proof is by construction. Figure 4 indicates such a polygon. A convex
chain of edges can be used to insure that as many points as desired of S(P) can be
made to lie on a hyperbola of the kind defined in Lemma 4. Let one edge e lie on the
line y x + 1, and let h be the line of points (x, y) that satisfy y -2. We construct a
curve of points p with the following property: if is a line through p and O, then
intersects edge e in point q and line h in point r such that the distance from p to q
is the same as the distance from O to r.

FIG. 4. Counterexample to the notion that k origin probes mapped onto the same hyperbola must intersect

the same edge pair.

It is not hard to see that c is a piece of a hyperbola whose asymptotes are line h
and the line that contains e. If we pick k vertices of P on curve c, then all origin
probes through these vertices are mapped to points on line h. Thus, if a collection of
probes were made through O and these vertices, they would all be taken as lying on
a parallel pair of edges.

By construction, S(P) has k vertices on line h and the hyperbolic pieces connecting
any two consecutive vertices lie all above line h. Thus, a hyperbola ofthe kind considered
in Lemma 4 can be found that intersects S(P) at least 2k times if it lies close enough
and above h, where the vertices of S(P) on h lie.

Verifying edge pairs is the motivation for parallel probes, discussed below.

3.2. Parallel probes. Parallelprobes are a set of X-ray probes aimed with a common
angle 0. A complete collection of parallel probes for a given angle produce a histogram
H(P, O) (see Fig. 5) of the thickness of the obstacle. This is the situation in a medical
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FIG. 5. The "histogram" H(P, 0), 0--0, of a convex polygon P.

X-ray photograph. Formally, H(P, O) is obtained as follows. Let b, the baseline, be
normal to the probing direction 0 and call one of the half-planes defined by b its
positive side. Let l(b, p) be the line normal to b such that p b f-)l(b, p); thus, l(b, p)
has angle 0. We map the probe X(P, l(b,p)) into the point on l(b,p) at distance
X(P, l(b, p)) from b that lies in the positive side of b. H(P, O) is the polygon bounded
by b and the images of all probes with angle 0. For a convex n-gon this histogram
will be bounded by up to n line segments, including the one on b. H(P, 0) is convex
for all convex P over all angles 0. Note that an X-ray probe with angle 0 can be
interpreted as a finger probe on H(P, 0). Each vertex of H(P, 0) determines a line on
which must lie a vertex of P. Thus they provide a capability for verifying edge pairs.

LEMMA 6. Three parallel probes are sufficient to verify an edge pair.
Proof Parallel probes measure the distance between two line segments. Thus three

parallel probes are mapped to three collinear points on the boundary of H(P, O) if
they intersect the same two segments. No three parallel probes hitting different edge
pairs can be mapped to collinear points without violating convexity.

There are two apparent weaknesses of parallel probes. First, a finite number of
them cannot be guaranteed to locate certain vertices, specifically the extreme vertices
that correspond to the vertices of H(P, O) that lie on the baseline b. Without any
bounding information, repeated probes may intersect the same pair of edges. Second,
once a vertex is finally located, it is impossible without more information to distinguish
whether there are one or two vertices on the line. Convexity restricts the number of
collinear vertices to two. This phenomenon relates to the fact that H(P, O) neither
determines P nor the number of its vertices.

It is interesting to consider using an infinite number of parallel probes, as approxi-
mated in medical X-ray photographs where all probes perpendicular to the photo-
graphic plate are recorded at once. The first weakness vanishes although the second
remains. This problem was first posed for convex sets by Hammer in 1963 [8] and has
generated a substantial literature [9]-[12]. The power of such a probe which returns
H(P, 0) for a specified 0 is evident in that only a constant number of photograph probes
are needed to determine any convex polygon.

THEOREM 7. Three X-ray photograph probes are sufficient to determine a convex
polygon P.

Proof The strategy is as follows. Each photograph probe can be defined by its
baseline. For the first two probes, use baselines bl and b2 that are not parallel to each
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other. Since according to the observation above, each of these probes defines up to n
lines on which all vertices of P must lie, two intersecting probes will define up to n 2

points at the intersection of these lines. The vertices of P must be a subset of these
points. The third baseline b is selected such that the line through each of these points
perpendicular to b is unique. The n points on this histogram uniquely identify each
of the vertices of P. ]

Because an X-ray photograph probe captures in one probe a representation of
the entire polygon, they may provide a way to extend probing results to nonconvex
polygons by eliminating the need for an infinite set of probes to hunt for possible
concavities.

3.3. Determining a boundary point. Since parallel and origin probes have com-
plementary properties of verification and identification, by combining them we can
obtain our first piece of absolute information about the polygon. The idea behind this
strategy is to bound a section of the polygon where we know there must be at least
one edge pair and to repeatedly send parallel probes to this section until three images
on the boundary of the corresponding histogram are collinear. Once we have an edge
pair, origin probes can be used to determine the lines containing the two edges.

First, a section of the polygon must be bounded. Sending one horizontal probe
through O gives a thickness , of P along that x-axis. At least one of two vertical
probes at distance ,/2 to the left and to the right of O must intersect P and with a
vertical probe lo through O define a section which is a vertical strip such that each
vertical probe in this strip intersects P. First, we discuss certain subtleties of the
determined section. If both vertical probes l and 12 at distance ,X/2 from O intersect
P, as in Fig. 6, we cannot be sure for which side of O the x-axis is within P, and thus
we cannot be certain about any new interior points. In this case, we choose our section
to be either to the left or to the right of O.

To find a first edge pair, we send vertical probes in the identified section until
three points on the boundary of the associated histogram H(P, 7r/2) are collinear. All
points lie on at most n-1 edges of H(P, 7r/2) and all but one edge contains at most
two of the points. It follows that we succeed after at most 2n-3 additional vertical
probes, since we already have two vertical probes which bounded the probed section

FIG. 6. Identifying a section to parallel probe.



PROBING CONVEX POLYGONS WITH X-RAYS 877

of P. Once we have vertical probes through an edge pair, four origin probes through
a common point, called the origin, can be used to determine the lines that contain the
two edges. By picking the origin for this collection of probes to be where the center
parallel probe intersects the x-axis, we need only make three new probes. One final
probe can distinguish between the edges of P and those of-P.

In order to origin probe the edge pair between the section defined by two vertical
probes, we must have an upper bound U on the distance the edges within this section
are from the x-axis. Without this knowledge, we cannot design origin probes which
we can be certain will intersect the boundary of P within the section, and thus whether
the origin probes all hit the same pair of edges. For the situation where exactly one
of the two initial vertical probes 11, 12 intersects P, we know that the x-axis intersects
P throughout the resulting section. In this case we can bound U because it is clear
that the distance of a point from the x-axis is no larger than the height of the associated
histogram at the vertical line through the point.

This argument fails in the case of Fig. 6, since we cannot be certain on which side
P contains the x-axis. We will use a convexity argument to put a bound on U. Let us
arbitrarily select the section to the right of O. If this section contains the x-axis, we
know a bound on U. If not, we know that the other section contains the x-axis within
P for a distance A/2. The slope of the upper edge of P that intersects the y-axis is
greatest if it is the only upper edge of the left section, 11 =/((-A/2, 0), 7r/2) intersects
P entirely below the axis and lo l(O, 7r/2) intersects P entirely above the axis. By
convexity, no edge in the other section can increase faster than this line, which passes
through the points (0, X(P, lo)) and (-A/2, -X(P, 11)). Reflecting this situation along
the x-axis bounds the lower edges, and together provides the information we need to
origin probe.

A further complication occurs when the edge pair is parallel, meaning bl and b2

are undefined. If another potential edge pair exists in this section, that is, it required
more than five parallel probes within the section to locate the parallel edge pair, this
nonparallel edge pair can be uncovered by a total of 2n parallel probes, since now
two edge pairs can have three probes each.

If the first edge pair is parallel and another edge pair is not known, we must now
repeat the sectioning process parallel to the original pair. Clearly, a line Ip through O
parallel to the first edge pair intersects P between the edge pair. By a process of binary
search, we can enlarge this strip of P known to lie between the edge pair as much as
desired. If 61 is the distance between the two edges, a probe parallel to Ip 61/2 below
lp widens this strip by 61/2. If this probe intersects P, the strip is between lp and the
last probe. Otherwise, the strip is on the other side of lp. Similarly, we can widen this
known strip to 361/4 with a probe parallel to lp 1/4 on either side of the known strip.
We can continue to widen this strip by this method, although for our purposes two of
these probes will suffice. This strip will serve to define a section for the next set of
probes. Note that there is no reason to actually probe lp and that at this point we do
not know how long the edges of the first parallel pair are.

Since these probes are parallel with our previously encountered edge pair, they
will intersect at least two edges different from the parallel edge pair. We will make
five of these, one at each side of the boundary of our 331/4 region, two more within
this region 61/2+ e apart for 0< e < 61/4, and one between these final two probes.
Note that it may be possible to reuse the binary search probes, but only if they
intersected P. If the center three of these probes are not all of the same magnitude,
they do not all intersect a parallel pair of edges. Thus with up to 2n- 3 more parallel
probes we can locate a nonparallel edge pair, which can be origin probed to determine
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the edge pair. Unfortunately, as in Fig. 7, the center three probes can instead intersect
a parallel edge pair. This parallel edge pair must be greater than 61/2 in length.

If 62 is the distance between the second pair of parallel edges, we can define a
strip 382/4 wide within P through the binary search strategy using probes parallel to
the second edge pair. Two parallel probes within this strip 82/2 + e apart for 0 < e < 82/4
can confirm that the first edge pair is greater than 82/2 in length. If this is not the case,
we can find a nonparallel edge pair between the offending probe and the appropriate
end of the 382/4 region. Otherwise, the intersection of the two strips defines a rhombus
Q which must lie within the interior of P. We note that the remainder of P must lie
in strips less than 81/2 and less than 82/2 wide around Q. Extending these boundaries
for each of the two edge pairs surrounds Q by a skewed grid of eight regions, which
together contain all of the edges of P. None of these regions can contain parallel edges,
since P is convex. Further, no three neighboring regions around Q including only one
corner region contain any parallel edges.

Referring to Fig. 7, it is clear that a probe X from the upper left corner of the
top-central region to the bottom right corner of the right-central region cannot intersect
a parallel pair of edges. Because of the size and position of the central region, this
probe must intersect Q, meaning it intersects a nonparallel edge pair. Along with a
probe parallel to X that intersects the upper right-hand corner of Q this defines a
section which can only contain nonparallel edge pairs, and thus can be parallel probed
until three are collinear on the histogram. Using the earlier counting argument with
n-2 edges, since the other two parallel edges cannot be within the section, shows
finding an edge pair can require up to 2n- 5 additional probes.

Finally, one confirmation probe of the nonparallel edge pair will distinguish the
edges on P from the pair on -P. Note that there is no ambiguity beween P and -P
for the parallel edge pairs.

LEMMA 8. With restriction to origin and parallel probes, 2n + 23 X-ray probes are

sufficient to identify the lines that contain the first pair of edges and a point on one of the
two edges.
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Proof The above strategy will identify the lines that contain a pair of edges and
a point on one of the two edges. The final accounting of probes is as follows. Four
probes were used initially to define a section to probe, at least two of which can serve
as parallel probes. Three more parallel probes can identify an edge pair, with the
center three probes incident on a parallel pair of edges. Three origin probes found the
slopes of these lines. Two parallel probes will widen the strip to 361/4. Up to five
probes between the two edges will identify that this edge pair is also parallel, and
three more are necessary to origin probe it. Two more probes widen the new strip,
two more enlarge Q, and two diagonal probes select a nonparallel section. 2n-5
parallel probes in this section will locate a nonparallel edge pair, the first two of which
were the diagonal probes. Three more origin probes find the equations of these lines.
Finally, there is the confirmation probe. Thus two edges can be determined in a total
of

4+3+3+2+5+3+2+2+2+ (2n-5-2)+3+ 1 2n +23

probes. Any point on these two edges within the appropriate section is on the boundary
of P. [3

A complete probing strategy for P could perhaps be constructed along these lines
by repeating the process for each pair of edges. However, since O(n) edge pairs can
be parallel this would lead to a quadratic number of probes. A simpler strategy can
be developed once we know a point on the boundary of P.

3.4. Boundary probes. The power of the finger probe is that it returns a point on
the boundary of the polygon. To get a similar effect, we define the boundary probe,
which relies on the observation that sending an X-ray line probe through a known
point on the boundary of a convex polygon identifies another point on the boundary
of the polygon. This means that once we have identified the coordinates of any point
p on the boundary of the polygon, any X-ray probe through p determines another
boundary point. If we also are given a boundary point we can formulate our first
probing algorithm.

THEOREM 9. With restriction to origin, boundary, andparallel probes, 5n + 19 probes
suffice to determine a convex n-gon P.

Proof By Lemma 8, 2n+23 probes suffice to find a boundary point and to
semi-verify two edges, in the terminology of Cole and Yap 1]. Cole and Yap give a
strategy requiring 3n finger probes to determine polygons which can be adapted by
using boundary probes in place of finger probes.

Starting from one of the semi-verified edges, we will walk along the polygon,
conjecturing vertices based on the intersection of the semi-verified edge and the line
defined by the next two known points. Each of the n vertices will eventually be probed,
and each of the n- 2 other edges will have at most two interior points probed, for a
total of Sn+19. [3

Being clever about reinterpreting the parallel probes may reduce the total by O(n)
more probes since once the edge one of them passed through is determined, a probe
on an unverified edge can be recorded. No doubt, the additive constant of Lemma 8
can be lowered by more careful arguments.

Note that Cole and Yap’s optimal 3n-1 strategy cannot be adapted to X-ray
probes since they probe along a semi-verified edge to obtain a vertex, which will not
work with X-ray probes unless the location of the other vertex is known.

3.5. Close probes. If the measurements we have been using were performed on
real sensing devices, there will be some uncertainty with respect to accuracy. Thus for
us to completely determine an n-gon we must know that no edge has length less than
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this uncertainty, or else we could never find the edge. Knowing a lower bound on the
length of all the edges e gives us extra information about the polygon. We can exploit
this with a collection of close probes, where each probe depends on intersecting a point
on the boundary within some fraction of e of another close probe.

Close probes present a problem because they suggest strategies that are somehow
"unfair" as they require additional information. Certainly in any physical implementa-
tion they would be extremely nonrobust. The virtue of close probes is that they enable
us to find a boundary point in a constant number of X-ray probes, as opposed to the
linear probing strategy described above.

LEMMA 10. TWO lines that contain a pair ofedges ofa convex polygon P and a point
on one of the two edges can be determined in 37 X-ray probes including close probes.

Proof Our strategy is similar to that used in Lemma 8, but modified to take
advantage of close probes. It should be noted that there is no fraction a such that
parallel probes within ae of each other are guaranteed to intersect the same edge pair.
The reason is that the angle between two edges can be arbitrarily close to r, so even
a long edge can slip between two seemingly close probes. Thus the largest angle between
edges will have to be bounded to take advantage of close probes.

We will replace the linear strategy of searching a bounded section of P for an
edge pair by the following constant one. Within the bounded section of P, send two
more parallel probes, giving four probes intersecting P labeled from left to right a, b,
c, and d. By the argument in the proof of Lemma 8, a and b determine the steepest
increasing slope possible between b and c, and probes c and d determine the steepest
decreasing slope. We define 0v as the greater of the two angles formed by these steepest
increasing and decreasing slopes with the horizontal, so 0v represents the angle nearest
to vertical which can occur within the section without violating convexity. An edge
pair will be found within seven close probes spaced e cos (0)/8 apart between b and
c. Seven are required because up to two vertices, one each from the upper and lower
vertex chains of P, may slip between the close probes.

Thus we can use the strategy of Lemma 8, substituting the two parallel and seven
close probes for the linear edge pair search. Using the counting argument of Lemma
8 with this change, we can determine the first edge pair in 37 probes.

THEOREM 11. 3n + 33 X-ray probes (including close probes) are sufficient to deter-
mine a convex polygon P given a point 0 within P.

Proof Lemma 10 enables us to find an edge pair in 37 probes instead of the
2n + 23 of Lemma 8. Substituting the new strategy for the old improves Theorem 9 by
2n 14 probes, for a total of 3n + 33.

It is certainly possible that these constants can be reduced. Other strategies
involving close probes are no doubt possible.

It would be nice to find an efficient X-ray probe simulation of a finger probe. It
is possible by modifying the above strategy as follows. Make one of the parallel close
probes along the desired probing line and then, if it hits on a parallel edge, perform
additional boundary probes through the located point to finish the description of the
edge pair, and calculate what the finger probe returned. However, since this constant
will be over twenty it is unlikely the simulation can prove useful in any context.

4. Bounds for verification. A lower bound on the number of probes required to
determine an object can be based on a comparison to the verification problem. Suppose
we are given the representation of a polygon P. How many probes will be necessary
to test whether P correctly describes a particular object? It is obvious that any lower
bound to verification represents a lower bound to the determination problem, since it
presupposes knowledge of the polygon.
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For verification, clearly each vertex and edge must be confirmed. Otherwise, P
could have a triangle on any unconfirmed edge or be truncated before any unconfirmed
vertex. Since an X-ray probe passes through two edges or vertices, and there are at
least 2n points of interest, the trivial lower bound is for n probes. It can be easily
shown that three probes do not suffice to verify a triangle, since no matter how the
three probes are taken the object would be indistinguishable with one of four or more
sides. We conjecture that the actual bound for verification is (3n/2)+k for some
constant k. This is based on the observation that although n/2 probes are sufficient to
verify the edges given the vertices or verify the vertices given the edges, it appears at
least n probes are necessary to verify either the vertices or the edges independently.
This conjectured lower bound is sufficient.

THEOREM 12. (3n/2)+6 X-ray probes are sufficient to verify a convex n-gon P.
Proof Given the polygon to verify, three parallel probes are sufficient to verify

the existence of a nonparallel edge pair and three origin probes are enough to define
the hyperbola of it. One final probe to verify that P is not reflected through O identifies
a boundary point.

From this boundary point, n boundary probes can verify the vertices. The remain-
ing n- 2 edges can be verified with (n-2)/2 probes, each bisecting a different pair
of edges. Since P is the convex hull of its vertices, none of these probes can have
length other than expected without violating convexity, unless there exists another
vertex. [3

5. Open problems and extensions. We have given strategies for probing with X-rays.
In particular, we have shown that complete information about a convex n-gon can be
obtained with a linear number of carefully planned X-ray probes. Still, the power of
X-ray probes is not well understood. For example, no algorithm is known that decides
whether or not a given collection of X-ray probes (and answers) determines the probed
object.

An obvious extension of our results would be to three or more dimensions. Since
the boundary probe generalizes to a finger probe in three or more dimensions, and
both parallel and origin probes can identify edge pairs from slices of polytopes, a
higher-dimensional probing strategy can be based on ideas in Dobkin, Edelsbrunner,
and Yap [3].

A different type of probe to consider would measure the area or volume of
intersection with a half-plane or half-space instead of a line. Such an "Archemedian"
probe in two dimensions would have as its derivative an X-ray probe. In three
dimensions, its derivative is a cross-sectional area probe. We have proved linear upper
and lower bounds for determination with half-plane probes 13 ]. An interesting question
is whether better probing strategies will result by having access to two different devices,
such as finger and X-ray probing.

It is also worth considering the computational complexity of determining the
location of the probes. Finally, a further study of X-ray photograph probes may
generalize some of these results to simple polygons and provide some insight into
standard image-reconstruction methods.

6. Acknowledgments. We thank Vasant Rao for motivating the problem and for
his discussion of results from the field of signal processing. We also thank Raimund
Seidel for suggesting the construction used in the proof of Lemma 5.

Note added in proof. A 2n lower bound for determination can be shown by a
topological argument. See [14] for details.
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DEFERRED DATA STRUCTURING*
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Abstract. We consider the problem of answering a series of on-line queries on a static data set. The
conventional approach to such problems involves a preprocessing phase which constructs a data structure
with good search behavior. The data structure representing the data set then remains fixed throughout the
processing of the queries. Our approach involves dynamic or query-driven structuring of the data set; our
algorithm processes the data set only when doing so is required for answering a query. A data structure
constructed progressively in this fashion is called a deferred data structure.

We develop the notion of deferred data structures by solving the problem of answering membership
queries on an ordered set. We obtain a randomized algorithm which achieves asymptotically optimal
performance with high probability. We then present optimal deferred data structures for the following
problems in the plane: testing convex-hull membership, half-plane intersection queries and fixed-constraint
multi-objective linear programming. We also apply the deferred data structuring technique to multi-
dimensional dominance query problems.

Key words, data structure, preprocessing, query processing, lower bound, randomized algorithm, compu-
tational geometry, convex hull, linear programming, half-space intersection, dominance counting

AMS(MOS) subject classifications. 68P05, 68P10, 68P20, 68Q20, 68U05

1. Introduction. We consider several search problems where we are given a set of
n elements, which we call the data set. We are required to answer a sequence of queries
about the data set.

The conventional approach to search problems consists of preprocessing the data
set in time p(n), thus building up a search structure that enables queries to be answered
efficiently. Subsequently, each query can be answered in time q(n). The time needed
for answering r queries is thus p(n) + r. q(n). Very often, a single query can be answered
without preprocessing in time o(p(n)). The preprocessing approach is thus uneconomi-
cal unless the number of queries r is sufficiently large.

We present here an alternative to preprocessing, in which the search structure is
built up "on-the-fly" as queries are answered. Throughout this paper we assume that
an adversary generates a stream of queries which can cease at any point. Each query
must be answered on-line, before the next one is received. If the adversary generates
sufficiently many queries, we will show that we build up the complete search structure
in time O(p(n)) so that further queries can be answered in time q(n). If on the other
hand the adversary generates few queries, we will show that the total work we expend
in the process of answering them (which includes building the search structure partially)
is asymptotically smaller than p(n)+ r. q(n). We thus perform at least as well as the
preprocessing approach, and in fact better when r is small. We do so with no a priori
knowledge of r. We call our approach deferred data structuring since we build up the
search structure gradually as queries arrive, rather than all at once. In some cases we
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show that our deferred data structuring algorithm is of nearly optimal efficiency, even
in comparison with algorithms that know r, the number of queries, in advance.

In 2 we exemplify our approach through the membership query problem. We
determine the complexity of answering r queries on n elements under the comparison
tree model. In 3 we present a randomized algorithm for the membership query
problem whose performance matches an information-theoretic lower bound (ignoring
asymptotically smaller additive terms). We then proceed to exhibit deferred data
structure for several geometry problems. In 4 we show that deferred data structuring
is optimal for the following two-dimensional geometric problems: (1) Given n points
in the plane, to determine whether a query point lies inside their convex hull. (2) Given
n half-planes, to determine whether a query point lies in their common intersection.
(3) Given n linear constraints in two variables, to optimize a query objective function
(also linear). Our algorithms are proved optimal by means of a tight lower bound
(under the algebraic computation tree model) in 4.4. In 5 we consider dominance
problems in d-space. We present theorems about the deferred construction of Bentley’s
ECDF search tree [2].

In this paper all logarithms are to the base two.

2. General principles of deferred data structuring. In this section we develop the
basic ideas involved in deferred data structuring. Let X {xl, x2,"’’, xn} be a set of
n elements drawn from a totally ordered set U. Consider a series of queries where
each query q is an element of U; for each query, we must determine whether it is
present in X.

If we had to answer just one query, we could simply compare the query ql to
every member of X and answer the query in O(n) comparison operations. This would
be the preferred method for answering a small number of queries. On the other hand,
if we knew that the number of queries r were large, we could first sort the elements
of X in p(n)= O(n log n) operations, these building up a binary search tree T for
the elements of X. We could then do a binary search costing Q(n)= O(log n) com-
parisons for each query; this takes O((n + r).log n) comparisons.

We proceed to determine the complexity (number of comparisons) of answering
r queries on the set X; we do not know r a priori, and each query is to be answered
before we know of the next one.

2.1. The lower bound. We first prove an information-theoretic lower bound for
this problem.

THEOREM 1. The number of comparisons needed to process r queries is at least
(n + r).log (min {n, r})- O(min {n, r}) in the worst case.

Remark. Note that neither of the strategies mentioned above (linear search, or
sorting followed by binary search) achieves this bound for all r-< n.

Proof If we could collect the r queries and process them off-line, we would have
an instance of the SET INTERSECTION problem where we have to find the elements
common to the sets X ={xl, x2,’", x,} and Q ={q,..., qr}. We will prove a lower
bound of ((n+ r).log (min {n, r})) comparisons for determining the intersection of
two sets of cardinalities n and r. This off-line lower bound will hold afortiori for the
on-line case in which we are interested. We present the argument for the case r_<-n;
the other case is symmetrical.

Since we are interested in lower bounds on this problem, we can restrict our
attention to only those cases where X f Q . In this case the algorithm has to
determine the relation of each element in X to each element in Q. An adversary can
ensure that for any two elements in Q there will be at least one in X whose value lies
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between them. In other words, the elements of Q will partition X into at least r-1
nonempty classes. Each such class will consist of all those members of X which lie
between two consecutive values in the total ordering of Q. We shall give an information-
theoretic lower bound by counting some ways of arranging X and Q to satisfy the
above constraint.

There are r! ways of ordering the elements in Q. Given a total order on Q, there
are (r 1) ways of separating the elements in Q by some arbitrary r 1 elements from
X. The remaining elements of X can be placed arbitrarily. There are r+ 1 available
slots as determined by the r ordered elements of Q. This can be done in (r + 1)n-r+l
ways. Let I be the total number of interleavings (ofX and Q) possible when S (3 Q .
Then the number of possible arrangements specified above is a lower bound on the
value of I"

I>= r!.(r- 1)!.(r+l) n-r+l.

Since the algorithm has to identify one out of (at least) this many possible arrangements
the lower bound is given by log I"

log I _>- (n + r). log r- 2r log e.

Here e represents the base of the natural logarithms. [3

2.2. Upper bounds. We now present two approaches to obtaining an upper bound
which comes within a multiplicative constant factor of the lower bound. The first
approach is based on merge-sort, while the second is based on recursively finding
medians.

2.2.1. An approach based on merge-sort. The following algorithm comes within
a constant factor of the lower bound. It uses a recursive merge-sort technique to totally
order the elements in X. The merge-sort proceeds in log n stages. At the end of a stage
the set X is partitioned into a number of equal-sized totally ordered subsets called
runs. Each stage pairs off all the runs resulting from the previous stage and merges
them to create longer runs. These stages are interleaved with the processing of a set
of queries, until a single totally ordered run remains, whereafter no more comparisons
between elements ofX are required. To process a query implies a binary search through
each ofthe existing runs. The number of queries processed between consecutive merging
stages or, equivalently, the minimum length of a run before the ith query, are chosen
appropriately.

This algorithm ensures that the size of each run is at least L(i) before the ith
query. A suitable choice for L(i) is (R)(i log i). Since the length of a run must be a
power of 2 we will choose

L(i) 2 [lg(ilgi)].

The processing cost of going from a stage with runs of length 1 to runs of length L(i)
is O(n log L(i)). Thus the total cost of processing in answering r queries is O(n log r).
The search cost for the ith query is upper bounded by n. [log (L(i) + 1) ]/L(i). Summing
over the first r queries, the search cost is bounded by

L----" [log (L(i) + 1)] O(n log r).
i=1

THEOREM 2. For r <--n, the total cost of answering r queries is O( n log r).
When r > n, we note that the set X will be completely ordered by our strategy.

All queries are then answered in time O(log n) by binary search.
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Proof. The processing cost and the search cost are each O(n log r), so that the
total cost of answering the first r queries is O(n log r).

2.2.2. An approach based on recursive median finding. We now describe an alterna-
tive approach based on median finding; a specification of the algorithm in "pseudo-
pascal" follows. The algorithm builds the binary search tree Tx in a query-driven
fashion. Each internal node v of Tx is viewed as representing a subset X(v) of Xmthe
root represents X, its left and right children represent the smallest (n-1)/2 and the
biggest (n- 1)/2 elements of X, respectively, and so on. Let LSon (v) and RSon (v)
represent the left and right children of v, respectively. We can now think of building
Tx as follows. For each internal node v, expansion consists of partitioning X(v) into
two subsets of equal sizemelements smaller than the median of X(v), which will
constitute X(Lson (v)), and elements larger than the median, which will make up
X(Rson (v)). We label v by the median of X(v). Thus a node at level represents at
most n/2 elements of X. Subsequently, LSon (v) and RSon (v) may be expanded.
Since the median of X(v) can be found in 3Ix(v)[ comparisons [12], the expansion
of node v takes 31x(v)l comparisons. If we begin by expanding the root of Tx (which
represents the entire set X), and then expand every node created, Tx can be built up
in 3n log n comparisons.

The search for a query can be thought of as tracing a root-to-leaf path in Tx. The
key observation is that for any given query qj, we need only expand those nodes visited
by the search for qj; this is the query-driven tree construction referred to earlier. After
each expansion, at most one of the resulting offspring will be visited. The first query
ql is answered in O(n + n/2 +. .) O(n) operations while building up one root-to-leaf
path of Tx. The time taken to answer ql is thus within a constant factor of the time
for a linear search. In the process of answering ql, we have developed some structure
that will be useful in answering subsequent queries; any future search that visits a
node that is already expanded will only cost us a single comparison to proceed to the
next level of the search; there is no further expansion cost at this node. Nodes that
remain unexpanded will be expanded when other queries visit them. When n queries
that visit all n leaves have been answered, Tx will have been completely built up. In
essence, we are dispensing with an explicit preprocessing phase, i.e., we are doing
"preprocessing" operations only when needed. The cost of building the data structure
is distributed over several queries.

DETAILED DESCRIPTION OF THE ALGORITHM. With every node in the tree we associate
a set of values and a label, both of which may at times be undefined.

Main body
Step 1. Initialize the tree, Tx, with the n data keys at the root.
Step 2. Get a query q.
Step 3. Result -SEARCH (root, q).
Step 4. Output the result.
Step 5. Goto Step 2

procedure SEARCH (v: node; q:query): boolean;
Step 1. If (v is not labeled) then EXPAND (v).
Step 2. If (label(v) q) then return true.
Step 3. If (v is a leaf node) then return false.

Actually it represents slightly fewer elements, since each node picks up one element of X as its label.
This does not matter, as we are deriving an upper bound.
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Step 4. If (q < label(v)) then return SEARCH (left_child(v), q).
Step 5. If (q > label(v)) then return SEARCH (right_child(v), q).

procedure EXPAND (v: node);
Step 1. S set(v).
Step 2. m MEDIAN_FIND (S).
Step 3. label(v) m.
Step 4. if (IsI- 1) then return.
Step 5. Sl[XlX S and x< m].
Step 6. Sr x x S and x > m].
Step 7. set(leftchild(v)) SI.
Step 8. set(rightchild(v)) Sr.

It should be noted that the two subsets, Sl and St, are computed by the procedure
MEDIAN_FIND as part of the process of finding the median. There is no extra work
associated with determining these two sets once the median has been found.

In order to analyze our algorithm, let us define a function on n and r as follows:

[3n log r+ r log n,
A(n, r)

(3n + r) log n,

Note that A(n, r) O((n + r). log min (n, r)) since r. log n -<_ n. log r for r_-< n.
THEOREM 3. The number of operations needed for processing r queries is no more

than A( n, r).
Proof. Consider the case r <- n. No more than r nodes will be expanded at any

level of Tx, after r queries. For nodes in the top log r levels, the total cost is thus less
than 3n log r. This is because all nodes may be expanded at each of the first log r
levels. The expansion of a node v entails finding the median of X(v) and this requires
at least 31X(v)l comparisons in the worst case [12]. For i> [log r] the node-expansion
cost at level is O(r. n/2i). This is because the cost of expanding a node at level is
at most 3. n/2. Summing over all but the first [log r] levels, the cost of node expansion
at these levels is O(n). In addition to the expansion cost, we have to consider the cost
associated with search; this is at most log n comparisons per query. The search
component of the cost is thus always less than r log n.

When r exceeds n, the expansion cost can never exceed the cost of constructing
Tx completely; this cost is 3n log n. Again, note that the factor of 3 comes from the
median-finding procedure. ]

2.3. A general paradigm for deferred data structuring. We are now ready to state
the general paradigm for deferred data structuring. This paradigm will isolate some
features essential for a search problem to be amenable to this approach, and will
simplify our description of the geometric search problems considered in 4 and 5.
It also enables us to identify some problems where this approach is not likely to work.

Let II be a search problem with the following properties. (1) The search is on a
set S of n data points (in the above example, S X). (2) A query q can be answered
in O(n) time. (3) In time O(n), we can partition S into two equal-sized subsets $1
and $2 such that (i) the answer to query q on set S is equal to the answer to q on
either $1 or $2; (ii) in the course of partitioning S we can compute a function on S,
f(S), such that there is a constant time procedure, TEST (f(S), q), which will determine
whether the answer to q on S is to be found in S or S,_. (In the above example
f(S) MEDIAN (S) and TEST is a simple comparison operation.)
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Under these conditions, we can adopt the deferred data structuring approach that
builds the search tree gradually. We illustrate this paradigm by several geometric
examples in 4 and 5.

3. A randomized algorithm. In the last section we saw a deterministic algorithm
to answer r queries in O((n+ r).logmin {n, r}) time using deferred data structures.
The upper bound of Theorem 3 exceeds the information-theoretic lower bound by a
factor of 3 if we use the median algorithm given in [12]. Finding the median of n
elements takes 3n comparisons and this is what leads to the gap between the upper
and lower bounds. A careful implementation would reduce the constant factor to 2.5
by passing down certain partial orders generated in the median-finding algorithm from
parent to children nodes. More easily implemented algorithms given in [3] would yield
even higher constant factors. There is an algorithm due to Floyd [7] which computes
the median in 3n/2 expected time. Its use would reduce our constant to 3/2. Here we
present a randomized algorithm in which the number of comparisons will be optimal
(with high probability).

The randomized algorithm differs from the one in 2 in just one respect. The
median of the set of values stored at a node was used earlier to get a partition for the
purposes of node expansion. Here we will use a mediocre element for the same purpose.
The mediocre element will be chosen to be quite close to the median. More precisely,
the rank of a mediocre element from a set of size will lie in the range t/2 + 2/3. We
will use randomized techniques to compute a mediocre element efficiently. First, a
random subset of size O(t5/6) is chosen from the elements. The median of this random
subset is a good candidate for being a mediocre element. It takes + O(t5/6) comparisons
to pick a random sample and test its median element for "mediocrity" (see Step 5
below). This sampling is repeated until a mediocre element is found. The call to the
procedure MEDIAN_FIND, in the algorithm outlined in 2, should be replaced by
a call to the procedure MEDIOCRE_FIND outlined below.

procedure MEDIOCRE_FIND (T: set of values): value;
Step 1 Let t-lTI.
Step 2 Pick a random sample S of size 2. It/6] + 1 from T.
Step 3 m - MEDIAN_FIND (S).
Step 4 Compute rank (m) by comparing with each element of T-S.
Step 5 If rank (m) is not in the range (t/2)+t2/3 then goto Step 2.
Step 6 Return m.

Note that in Step 4 we need not compare tn with elements of S since we assume that
the procedure MEDIAN_FIND implicitly gives us the partition of S with respect to
m. At the last few levels we will revert to deterministic median finding since the node
sizes will be too small to justify randomization. A good choice is to use procedure
MEDIOCRE_FIND for the first log n-5 levels and procedure MEDIAN_FIND

thereafter. The randomized algorithm leads to the following theorem.
THEOREM 4. Let T( n, r) be the total number ofcomparisons made by the randomized

algorithm in answering r queries on n elements. Then the following holds with probability
greater than 1 log r/ fl n,

T(n,r)<_{(l+a)(nlgr+rlgn), r<=n,
(l+a)(n+r) log n, r> n,

where fl depends on the value of the constant a.
The remainder of this section is devoted to the proof of this theorem. The proof

will be organized into five lemmas.
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The use of mediocre elements (instead of the median) may result in uneven splits,
causing an imbalance in the binary search tree being created. Nevertheless, the following
lemma shows that the higher of the new binary search tree cannot be much worse than
log n. We also show that the number of elements associated with each node at level
is close to n/2i. Let the size of a node in the search tree be the number of elements
associated with that node.

LEMMA 1. Let si be the size of some node at level i. Then,

ni 1- <_--si_--<n 1+

provided n _-> 22, where n n/2.
Proof. We will prove one side of the inequality by means of induction on the

levels. The inequality is clearly true at the root (i 0) since so n. Suppose the inequality
/3 We now partition the s_ elementsholds up to level i- 1, i.e., si__-< n_. (1 +20/n_.

about the mediocre element. Let s denote the larger of the two partition sets. By the
2/3 Using the fact thatdefinition of the mediocre element we have Si<=Si_l/2-Jr i-.

(l+x)<--l+a.x,O_--<a_--<l we get,

( tsini 1 + "-57t1 11"22/3+’n/3]’3
For ni -> 22, we note that,

11.22/3 40 21/3’+m. _--<20.
3 ;73]

This implies the desired result,

S n 1 +

provided n _-> 22. l-]

LEMMA 2. The height of the binary search tree in the randomized algorithm will be
log n + O(1).

Proof At level k log n-5 we will no longer be using mediocre elements to
expand a node. Instead, we use the median of the set of elements stored at a node to
partition those elements. At this point Lemma 1 is still applicable since nk--32_-> 22
and we have,

Skink 1+ _--<

Thus, the total number of levels is no more than k + 8. The height of the tree is
bounded by log n+3. [3

From Lemma 2 it follows that the cost of searching in the randomized binary
search tree will be close to optimal. Let us now consider the cost of constructing the
tree, in particular the total cost of node expansions. The following result shows that
the median of the random sample is a mediocre element for the entire set with very
high probability.

LEMMA 3. Let p( t) be the probability that a single iteration of the random sampling
does not come up with a mediocre element for a set of size t. Then,

1
p(t) --<_ 2. t/2. exp (-4. 1/6) --.

4t
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Proof. Let T be a set of size to which a single iteration of the random sampling
process has been applied. First, a random subset S of size s(t)- 2.f(t)/ 1 is chosen,
where f(t)- ITS/6]. The median of S is tested for being a mediocre element of T. In
other words, the rank of the median of S should be in the range t/2 +/- 2/3 in T. Let
P(xr) be the event that the element Xr (the element of rank r in T) is the median of S:

f(t) s(t)
f(t) < r -f(t).

Let d(t)= /3. We will refer to f(t) and d(t) as f and d, respectively, to simplify the
following description. Clearly,

)p( t) P(xr) + P(xr)
r r t-

r=f+l t/2+d 2f rf+l f f 2" f
We make use of Stirling’s formula:

n[ (2n)1/ e
,, 1 1

12n+l 12n

to derive the following inequality upon considerable simplification:

p() < 2-f/ exp].
Given the choices forf(t) and d(t) the bound on p(t) follows immediately. The second
pa of the inequality given below is also easy to verify:

1
p(t) <2. 1/. exp (-4t/) <--.

Consider now the overall cost of expanding the nodes in the randomized algorithm.
First, there is the cost of finding the medians of the small random samples. Lemma 5
will show that the cost of finding the medians of the small random samples is small
even when summed over the entire tree. More impoant is the cost of deciding whether
the median for the sample is a mediocre element for the entire set. There is no cost
associated with the actual paitioning since the testing for mediocrity" implicitly
determines the precise paition (see Step 5 of the procedure MEDIOCRE_FIND).
Consider the ith level in the tree being constructed. Let m 2 denote the maximum
number of nodes at this level. The sizes of the sets associated with the nodes at this
level must lie in the range (n/2)20. n/3, where n n/m is the average size of these
sets. Supppose each application of the random sampling yielded a mediocre element.
This would imply that the total cost of testing for mediocrity is n. However, there will
be some bad instances where we do not generate a mediocre element. Let the number
of such instances be s at the ith level. The next lemma shows that with high probability
s is bounded by era, where e is an appropriately small constant. Let c denote the cost
of testing for mediocrity at level i. When s N e. m we have

cNn+n.e 1+ (l+).n.

Since n > 1 at all levels it is clear the N 21.e.
LEMMA 4. Let C denote the sum of c over all but the last O(1/e) levels, P(C

(1 + ). n. log r) N log r/k. n.

Proo Let the random variable denote the number of bad instances in l=
(1 + e).m iterations of the random sampling at level i. We already have bounds on
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p(t), the probability of a single iteration on a node of size being bad. The iterations
at level do not use equal-sized sets. Therefore let p denote the largest value taken
by p(t) at the nodes of that level. Let E(’) and D(sr) denote the mean and deviation
of some random variable ’. The Chebyshev inequality states that P(I-E()I>=
A. D(’)) -< 1/A 2. Since E(sri)= l.p and D(i)=(1.p.(1-p)) 1/2 we have the following:

1 .p. (l-p) e
P(’ _-> l- m) _-< when p

m.e2 =2"(l+e)"

Using the bounds on p(t) and the lower bound on the size of a node at level we get,
P(s>em)=P(c>-(l+a).n)<-k/eZ.n for all but the last O(log I/e) levels, k is a
small constant. Choosing /3 e2/k and summing the probability over the first log r

levels yields the required bound.
LEMMA 5. When r < n, the total cost offinding the medians of the random samples

is O(n5/6. r 1/6) with probability 1-log r/ft. n.

Proof The cost of finding the median at a node of size is 3 t. Let the sizes of the
two children of this node be k. and (1 k). t, where k lies between 1/2 and 1. The cost
of finding the medians for the children will be proportional to C(k). 5/6, where
C(k)=(kS/6+(1-k)5/6). Clearly, C(k)is maximized at k=1/2. Define C= C(1/2) =21/6.
Thus, the cost of finding the medians at a single level increases by at most a factor of
C in going from level to + 1. We know that the cost of median finding at the first
level is 3. n 5/6. Hence, the total median-finding cost for the first log r levels is

3. n 5/6" (1 + C + C2 clgr-1),

This sums to O(n5/6. r 1/6) since C _-< 21/6. When r > n the bound on the median-finding
cost becomes O(n). In our analysis so far we have ignored the repetitions in the median
finding for a given node. This will be necessary since not every median of the random
sample will be a mediocre element for the entire set. However, the analysis in Lemma
4 also applies to the median-finding cost since it just bounds the number of repetitions
of the mediocre finding process at a level.

Theorem 4 follows immediately from Lemmas 2, 4, and 5.

4. Planar convex hull and linear programming problems.
4.1. Point membership in a convex hull. In this section we consider the following

problem. We are given a set P-{Pl, P2,""", Pn} of n data points in the plane. Data
point p is specified by its two coordinates p (Px, Piy). The convex hull of P will be
denoted by CH (P). We are required to answer a series of queries: "Is the query point
qj (qjx, Cby) included in CH (P) ?"

We first present two solutions based on the preprocessing approach. Neither of
these is optimal for all values of r. Let BCH (P) denote those points of P which lie
on the boundary of CH (P). A single query can be answered in O(n) time as follows.
Compute the polar angles from qj to all the data points. The query point is included
in CH (P) if and only if the range of angles -> 180. Alternatively, we can answer r

queries by first constructing CH (P) in time O(n log h), where h is the number of
points in BCH (P) [6], [11]. Now choose a point, O, in the interior of CH (P) and
divide the plane into h wedges by means of h semi-infinite lines originating at O and
going through each of the h vertices of CH (P). Each wedge contains exactly one edge
from the boundary of CH (P). In any wedge, all points on the same side of this edge
as O must lie inside CH (P). To answer a query we first determine the wedge in which
it lies in O(log h) time by doing a binary search with respect to the angles subtended
at O. We can now test the query point with respect to the edge of the CH (P) which
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lies in that particular wedge to decide the membership in CH (P). This requires a total
of O((n + r). log h) operations to answer r queries.

Our approach to solving the point membership problem using deferred data
structuring is based on the Kirkpatrick-Seidel top-down convex-hull algorithm [6].
The edges on the boundary of CH (P) consist of an upper chain and a lower chain.
Each of these is a sequence of edges going from the leftmost to the rightmost point
in P. Consider a vertical line which partitions P into two nonempty subsets. Such a
line will intersect with exactly one edge of each chain; these edges will be referred to
as the upper tangent and the lower tangent corresponding to the line. The tangents
corresponding to a vertical line which partitions P into subsets of equal size (which
we call the median line) are called the tangents of P. Kirkpatrick and Seidel show that
a tangent can be computed in O([P[) operations.

We now describe our deferred data structure. In the following description we only
refer to the upper chain and tangents; analogous reasoning applies to the lower chain
and tangents. The data structure consists of a binary search tree Tp in which each
internal node v represents a subset P(v) of P (where P(root)= P). Associated with v
is an x-interval Rv=[xL(v), XR(V)]; P(V) consists of exactly those data points whose
x-coordinates lie in Rv. We expand a node by computing the median line of P(v).
The members of P(v) are partitioned into two subsets: points lying to the left of the
median line and points lying to its right. These are associated with the two children
of v. The tangent for P(v) can now be computed in O(IP(v)l) operations. It is possible
that the tangents corresponding to the two vertical lines demarcating R may be adjacent
in the chain. In fact, the two tangents may be the same. In these degenerate cases we
do not need to compute the tangent of P(v). Such degeneracies can be identified from
the tangents corresponding to the vertical lines bounding R (these tangents will have
been computed by ancestors of v). If at a node we find that both the upper and the
lower tangent are degenerate, we will not expand the node; such a node is a leaf of
Tp. Since at least one new tangent is discovered each time we expand a node, the
number of internal nodes of Tp (and hence the number of leaves of Tp) will never
exceed h.

The search for a query traverses a root-to-leaf path in the search tree. A node is
expanded when it is first visited. At any node v the search progresses to its left or right
child depending on the x-coordinate of the query point. In addition, we test whether
the query point lies below the upper tangent (extended to infinity in both directions)
of P(v). If this test fails at any node along the search path we know that the query
point lies outside CH (P). Similar tests apply to the lower chain/tangent.

Figure 1 shows an example in which two queries q l and q2 have resulted in the
expansion of the root and its two children. The query ql lay to the left of the median
line of P, and above the lower tangent of P (extended to the left by dotted lines). This
caused LSon (root) to be expanded; at this point we find that ql lies below the lower
tangent of the left child and is thus outside CH (P). Note that the lower tangents of
root and LSon (root) meet at a point of P; this means that we will never again compute
a lower tangent in the right-subtree of LSon (root). Similarly, q2 expands the right
child of the root node; it is found to lie between the upper and lower tangents of
RSon (root), and is thus in CH (P).

THEOREM 5. The number of operations for processing r hull-membership queries is

O(A(n,r)).
Proof The depth of Tp never exceeds log n. Moreover, a node at level can be

expanded in time O(n/2i). This fits our paradigm. An analysis similar to the proof of
Theorem 2 establishes the result.
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Tangent lines

Median lines

Query points

FIG. 1. Membership in a hull" two queries and the resulting development of Tp.

4.2. Intersection of half-spaces. We consider the problem of determining whether
a query point qj=(qjx, qjy) lies in the intersection of n half-planes. Let H=
{hi, h:,.., h,} denote the set of lines which bound the half-planes. We assume that
each half-plane contains the origin. If not, we can apply a suitable linear transformation
in O(n) time to bring the origin into the common intersection (provided the intersection
of the hi is nonempty). This can be done by finding a point in the interior of the
intersection [8] and mapping the origin onto this feasible point. We can also test in
linear time whether the intersection is empty [8]. Let Hi denote the half-plane (contain-
ing the origin) which is bounded by the line hi. We assume in this section that the
intersection of the Hi is bounded--in 4.3 we will show that the case of an unbounded
intersection region is easily handled.

The notion of geometric duality (or polarity) [4], 11 will prove extremely useful
in the solution of the next two problems. In the plane this reduces to a transformation
between points and lines. The dual of a point p (a, b) is the line lp whose equation
is ax + by + 1 0, and vice versa. A more intuitive definition is illustrated in Fig. 2.

Y

p (a,b)

ax+by+l---O

FIG. 2. Duality ofpoints and lines.
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The line lp is perpendicular to the line joining the origin to the point p. If the distance
between p and the origin is d, then the dual line lp lies at a distance 1/d from the
origin in the opposite direction.

We will now apply the duality transformation to the intersection of the half-planes
under consideration. The dual of the line hi is a point, which we will denote by Pi;
we denote by P the set of these points. The dual of the intersection of the Hi is the
set of all points in R2 not in CH (P). The dual of qj is a line Lj. The query point q is
in the intersection of the Hi if and only if L does not intersect CH (P). Thus our
problem reduces to determining whether each of a series of query lines intersects the
convex hull of a set of points.

The search tree and the node-expansion process are exactly the same as in 4.1.
At each node v, we compute the intersection of L with the median line of P(v). We
know that L must intersect CH (P) if one of the following holds: (1) the intersection
point lies between the upper and lower tangents of P(v); (2) Lj intersects one of the
tangents of the current node. If not, we must continue the search in the left or right
child of v, depending on the slopes of L and the tangent. These three possibilities are
illustrated in Fig. 3 by lines L1, L2, and L3, respectively. In the case of L3, we see
that any intersection of L3 with CH (P) must lie to the left of the median line; we
therefore continue the search in LSon (v).

The following theorem results.
THEOREM 6. The number ofoperationsforprocessing r half-plane intersection queries

is O(A(n, r)).

4.3. Two-variable linear programming. Let L(f) be a two-variable linear program-
ming problem with n constraints and the objective function f, which is to be minimized
subject to these constraints. The algorithms of Dyer [5] and Megiddo [8] can find the
optimum for a single objective function in time O(n). We consider a query version of
the linear programming problem. Each query is an objective function f, and we are
asked to solve L(f).

The preprocessing approach to this problem consists of finding the intersection
of the half-planes defined by the constraints. This can be done in O(n log n) time by
divide-and-conquer. The set of half-planes is partitioned into two sets of almost equal

L3

\1 "L1

/- .r./ Tangent lines

__J j, Median lines

+ / Query lines
/

+ :

+ +
/

/

FIG. 3. Example for testing line intersection with a hull.
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sizes. The intersection of half-planes in each subproblem can be found recursively;
the two intersections can then be merged in linear time 11]. A binary search for the
slope of the objective function then answers each query in O(log n) time.

As before, we resort to the geometric dual to solve the problem. We may again
assume without loss of generality that the feasible region RL is nonempty and contains
the origin. Each of the n constraints defines a half-plane Hi; RL is the intersection of
these half-planes. Using the notation of 4.1, the dual of R is the exterior of CH (P).

To begin with, we will assume that R is bounded. This implies that the origin in
the dual plane lies in CH (P). The objective function f can be looked upon as a family
of parallel lines in the primal. Depending on the slope of f, we need only consider
the set of parallel lines above or below the origin. This set of lines dualizes to a
semi-infinite straight line with the origin as one endpoint. We call this the objective
line gi, and note that it intersects the boundary of CH (P) at one point which
corresponds to the optimum solution.

The search tree and node expansion are as in 4.2. While searching at a node v,
we compute the intersection, if any, of gi with the median line of P(v). If there is no
intersection or if the point of intersection does not lie between the tangents, the search
proceeds to the left (right) child of v if the origin lies to the left (right) of the median
line. Otherwise, we proceed in the opposite direction. The search terminates if g
intersects a tangent of P(v).

When R is unbounded, the origin in the dual plane does not lie in CH (P). If
g does not intersect CH (P), the solution to the problem is unbounded. This can be
detected by computing in O(n) time the polar angle from the origin to all points in
P; this is done once, at the beginning. If g lies outside the cone defined by this range
of angles, it does not intersect CH (P). If g intersects CH (P), we use the same search
procedure as in the bounded case. The two points in BCH (P) which subtend the
extreme angles at the origin are joined by a tangent. Intersection with this tangent is
ignored for the termination criterion above.

Figure 4 shows an unbounded feasible region, and the corresponding convex hull
in the dual. Two objective functions fl and f2 and their dual objective lines are shown.
The arc in the dual indicates the locus of objective lines (e.g., g) that do not intersect
CH (P), and hence have unbounded optima.

/gl- .......... fl

Primal Plane Dual Plane

FIG. 4. Unbounded linear-programming search example.
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THEOREM 7. The number ofoperationsfor processing r two-variable linear program-
ming queries is O(A(n, r)).

4.4. Lower bounds under the algebraic tree model. The information-theoretic lower
bound of 2 is not valid for the geometric problems we have been considering in this
section. In 2 we were working with the comparison-tree model of computation,
whereas we are allowing arithmetic operations here. We therefore use the algebraic
tree model of computation [1].

An algebraic computation tree is an algorithm to decicide whether an input vector,
a point in Rn, lies in a point set W_ Rn. The nodes in the tree are of three types"
computation nodes, branching nodes, and leaves. A computation node has exactly one
child and it can perform one of the usual arithmetic operations or compute a square
root. A branching node behaves like a node in a comparison tree, i.e., it can perform
comparisons with previously computed values. It has exactly two children correspond-
ing to the possible outcomes of the comparison. Aleaf is labeled either "Accept" or
"Reject," and it has no children. Each addition operation, subtraction operation or
multiplication by a constant costs zero. Every other operation or comparison has a
unit cost. The complexity of an algebraic computation tree is the maximum sum of
costs along a root-leaf path in the tree. If W

_
Rn, then C(W), the complexity of W,

is the minimum complexity of a tree that accepts precisely the set W. For any point
set S

_
R, let # (S) denote the number of connected components of W. It was shown

in 1 that C(W) I(log (W)).
We now show a lower bound of O((n + r). log min { n, r}) algebraic operations for

processing r hull-membership queries on n data points. We will in fact show that this
bound holds when the r queries are processed off-line. The bound is obtained through
a reduction from the SET DISJOINTNESS problem, defined as follows. Given two
sets X {x, x2" x,} and Q {q, q2" qr}, determine whether their intersection is
nonempty. This problem is a simpler version of the SET INTERSECTION problem
mentioned in 2. We first prove a lower bound on SET DISJOINTNESS.

THEOREM 8. Any algebraic computation tree that solves SET DISJOINTNESS
must have a complexity of f((n+ r).log min {n, r}).

Proof. Assume without loss of generality that r_< n. Every instance of SET DIS-
JOINTNESS can be represented as a point (x,..., xn, q,..., qr) in R+r. Let
WR+r be the set of all points representing disjoint sets. The complexity of the
problem is fl(log (W)), where (W) is the number of connected components of W
1]. Consider instances for which the q are distinct. The elements of Q can be ordered

as {q) < q) <. < q(r)}, where (i) represents the index of the ith smallest value in
{q,...,q}. Let S(i)={x’q)<x<q+l}, for l<=i<=r-1. Define W*=
{/3"lSt(i) [n/(r-1)], 1-<i-<r-1}, W*_ W. The subsets of W* corresponding to
different choices of St’s are separated by hyperplanes of the form x q. These
hyperplanes are entirely disjoint from W. This means that if two points in W* are
separated by these hyperplanes then they must also be separated in W. Hence, the
number of components of W is at least as large as the number of ways of partitioning
{Xl, x,. , x,} into the S’s as per the definition of W*. A counting argument shows
that this is at least as large as

n!
r!
(L(n/r-1)J!)-"

From this it follows that the complexity is 12((n + r). log r).
THEOREM 9. The complexity of processing r hull-membership queries is

r). log min { n, r}).
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Proof By reduction from SET DISJOINTNESS in O(n+ r) time. Without loss
of generality, assume that the elements of both sets lie in the interval [0, 2zr). Each
element xi maps onto a point pi on the unit circle with polar coordinates (1, xi). This
constitutes our data set P; note that BCH (P)-- P. Each element qj of Q maps onto a
point with polar coordinates (1, qj). The point r lies in CH (P) if and only if qj X.
Thus SET DISJOINTNESS an+r HULL_MEMBERSHIP. VI

The lower bound extends to the problems in 4.2 and 4.3.

4.5. Effect of the number of points on the convex hull. In this section we return to
the problem of determining whether a query point lies within the convex hull of n
given data points. We show that a substantial improvement is possible when h, the
number of data points on the boundary of the convex hull, is much smaller than n. It
is clear that the guarantees of Theorem 4 are too weak in such a case, since it is possible
to find CH (P) in O(n log h) operations by the Kirkpatrick-Seidel algorithm; sub-
sequently, queries can be answered in time O(log h) each. This gives a time bound of
O((n + r) log h) for answering r queries. This may seem to contradict the lower bound
of Theorem 9 but recall that in the lower bound reduction all n data points were on
the boundary of the convex hull. When r exceeds h, the algorithm of 4.1 achieves a
time bound of O(n log h+rlog n), since node expansion costs add up to only
O(n log h). The cost of searching, however, unfortunately grows as r log n because
the depth of Tp may grow as log n even though the number of leaves is only h.

To get around this difficulty we construct, in a dovetailed fashion, two binary
search trees Tp and TD. Let T be the fully expanded version of the search tree
constructed by the algorithm of 4.1. It has h leaves and can be constructed in
O(n log h) time. The two trees Te and TD will be partially expanded versions of T.
Te is the version obtained by processing queries according to the algorithm of 4.1.
The other tree TD is obtained by partially constructing T through a deferred depth-first
traversal.

The depth-first traversal of a tree with leaves can be looked upon as consisting
of phases, each of which ends when a new leaf is reached. Similarly, the depth-first
construction of TD can be broken down into h phases. These h phases are interleaves
with the processing of the first h queries on the search tree Te. Each phase can also
be looked upon as the processing of a judiciously chosen query on the tree TD. Thus
the cost of the deferred construction of TD has the same upper bound as that for Te.

When r exceeds h, the tree TD will be fully constructed after the first h queries
have been processed on Te. At this point Te itself may not be fully expanded; in fact
only one leaf may have been exposed in it. Since the CH (P) is now completely
determined by TD we can do away with the two search trees for further query processing.
We now resort to the wedge method to answer each query in time O(log h) (see 4.1).
Since the cost of constructing To is O(n log h) the following theorem results.

THEOREM 10. The cost of processing r hull-membership queries is O(A’(n, r, h)),
where

n log r,
A’(n, r, h)=

(n + r). log h,
r=< h,
r>h.

Analogous results hold for the problems in 4.2 and 4.3.

5. Domination problems. In this section we investigate a problem related to point
domination in k-dimensional space. This problem does not fit directly into the paradigm
presented at the end of 2. However, a higher-dimensional analogue of divide-and-
conquer enables us to adapt our technique to such problems.
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Let Pi denote the ith coordinate of a point p in k-space. We say that p dominates
q if and only if Pi -> qi for all i, 1 _<- -<_ k. Bentley [2] considers the dominance counting
problem which is also called the ECDF Searching Problem. In this problem we are
given a set P {Pl, P2"’" Pn} of n points in k-space. For each query point q, we are
asked to report the number of points of P dominated by q.

Bentley uses a multidimensional divide-and-conquer strategy to solve this problem.
He constructs a data structure, the ECDF tree, which answers each query in O(logk n)
time following a preprocessing phase requiring O(n logk- n) time. This result holds
for fixed number of dimensions (k) and for n a power of 2. However, a more detailed
analysis due to Monier [9] shows the validity of this result for arbitrary n and k. In
fact, Monier shows that the constant implicit in the O result is 1/(k-1)!. In the
following analysis we too will assume that the number of dimensions is fixed and that
n is a power of 2. Our results can be generalized to allow for arbitrary k and n by
invoking the results due to Monier.

The basic paradigm of multidimensional divide-and-conquer is as follows: given
a problem involving n points in k-space, first divide into (and recursively solve) two
subproblems each of n/2 points in k-space, and then recursively solve one problem
of at most n points in (k 1)-space. When applied to the dominance counting problem,
this paradigm yields the following search or counting strategy:

(1) Find a (k- 1)-dimensional hyperplane M dividing P into two subsets P and
P2, each of cardinality n/2. We will assume that M is of the form Xk C. Hence, all
points in P have their kth coordinate less than c, while those in P2 have their kth
coordinate greater than c.

(2) If the query point q lies on the same side of M as P (i.e., qk ) then
recursively search in P only. It is clear that the query point cannot dominate any
point in P2.

(3) Otherwise, q lies on the same side of M as P2 (i.e., qk ) and we know that
q dominates every point of P in the kth-coordinate. Now we project P1 and q onto
M and recursively search in (k-1)-space. We also search P2 in k-space.
In Fig. 5 we illustrate this strategy for two-dimensional space.

In one-dimensional space the ECDF searching problem reduces to finding the
rank of a query value in the given data-set. The one-dimensional ECDF search tree is
an optimal binary search tree on the n points in P. The k-dimensional ECDF tree for

X 1 M:X X 1 M:X

ql

0 c 0 c

FIG. 5. The two cases for dominance counting in 2-space.

q2
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the n points in P is a recursively built data structure. The root of this tree contains
M, the median hyperplane for the kth dimension. The left subtree is a k-dimensional
ECDF tree for the n/2 points in P1, the points in P which lie below M. Similarly, the
right subtree is a k-dimensional ECDF tree for the n/2 points in P2, the points in P
which lie above M. The root also contains a (k 1 )-dimensional ECDF tree representing
the points in the P1 projected onto M.

To answer a query q, the search algorithm compares qk to , the value defining
the median plane M stored at the root. If qk is less than c then the search is restricted
to the points in P1 only. The algorithm then recursively searches in the left subtree.
If, on the other hand, qk is greater than c then the algorithm recursively searches in
the right subtree as well as the (k-1)-dimensional ECDF tree stored at the root. For
the one-dimensional ECDF tree the algorithm is the standard binary tree search. For
fixed k, the preprocessing time to build the k-dimensional ECDF tree is p(n)-
O(n logk n), and the time required to answer a single query is q(n)= O(logk n).

We now apply the deferred data structuring technique to the k-dimensional ECDF
tree. As before, we do not perform any preprocessing to construct the search tree. The
ECDF tree is constructed on-the-fly in the process of answering the queries. Initially,
all the points are stored at the root of the k-dimensional ECDF tree. In general, when
a query search reaches an unexpanded node v we compute the median hyperplane,
My, and partition the data points around My. The two sets are then passed down to
the two descendant nodes of v. We also initialize the (k-1)-dimensional ECDF tree
which is to be created at v. Even these lower-dimensional trees are created in a deferred
fashion depending upon the queries being answered. The application of deferred data
structuring to the ECDF tree results in the following theorem.

THEOREM 11. The cost of answering r dominance search queries in k-space is
0 F n, r, k) ), where

n logk r+ r logk n, r_--< n,
F( k)n, r,

n logk n + r logk n, r > n.

Proof The proof will be by induction over both k and n. It is easy to see that the
time required to answer a query remains unchanged by the process of deferring the
construction of the ECDF tree. This proof will concentrate on the node-expansion
component of the processing cost. Clearly, we need not consider the case where r > n
since the node-expansion cost cannot exceed the total preprocessing cost of the
nondeferred ECDF tree. Let f(n, r, k) denote the worst-case node-expansion cost for
answering r queries over n data points in k dimensions using a k-dimensional ECDF
tree. When r exceeds n we have f(n, r, k) O(n. logk n) since n queries, each leading
to a different leaf, are sufficient to fully expand the ECDF tree. We will now prove
that f(n, r, k) O(n. logk r) when r _-< n.

The basis of this induction is the case where k- 1. Consider the one-dimensional
ECDF tree. It is an optimal binary search tree and we can invoke Theorem 3 to show
the validity of this theorem. This establishes the base case of our induction over k, in
other words, f(n, r, 1)--O(n. log r) when r_-< n. The induction hypothesis is that the
above result is valid for up to k- 1 dimensions, i.e., f(n, r, k- 1) O(n. logk- r) when
r_-< n. We now prove that it must be valid for k dimensions also. At the second level
of our nested induction we concentrate on the k-dimensional ECDF tree and use
induction over n. It is clear that the k-dimensional ECDF tree for n- 1 points will
satisfy the above theorem for r <_-n. We now assume that the result is valid for up to
n- 1 points in k dimensions. To complete the proof we show that, under the given
assumptions, the result can be extended to n points in k dimensions.



900 R. M. KARP, R. MOTWANI, AND P. RAGHAVAN

Consider the root node, say V, of the k-dimensional ECDF tree for the n points
in P. It contains a median hyperplane, say My, which partitions the n points in P into
two equal subsets, P1 and P2. Recall that P1 is the set of all those points in P which
lie below My; P2 is the set of those points in P which lie above My. The left and right
subtrees of V are the k-dimensional ECDF trees for P and P2, respectively. We also
store at V a (k-1)-dimensional ECDF tree, say T, for the projections of the points
in P1 onto My. This lower-dimension tree creates a kind of asymmetry between
and P2. This asymmetry can complicate our proof considerably. Therefore, for the
purposes of this proof only, we will make a simplifying assumption about the structure
of the ECDF tree. We assume that V also contains a (k-1)-dimensional ECDF tree,
say T2, for the projections of the points in P2 onto My.

The search procedure for the ECDF tree is also modified to introduce symmetry.
Given a query q, we first test it with respect to the median hyperplane My. If it lies
above My the search continues in the right subtree of V and in T1. On the other hand,
if q lies below My we continue the search in the left subtree of V as well as T. The
search in T2 is redundant because q, lying below My, cannot dominate any point in
P2. These modifications are made not just at the root but at all nodes in an ECDF
tree. It is not very hard to see that these modifications can only increase the running
times of our node-expansion algorithm. Moreover, these changes entail performing
redundant operations which do not change the outcome of our algorithm. It is clear,
therefore, that any upper bounds on the node-expansion costs for the modified ECDF
tree also apply to the original deferred data structure.

We now proceed to complete the induction proof for r <- n. Let r denote the
number of queries which lie below the median hyperplane My. These queries continue
the search down the left subtree of the root. Let r2 r- r denote the remaining queries
which continue the search down the right subtree as they lie above the median
hyperplane My. Consider the node-expansion costs involved in processing these
queries. Finding the median hyperplane My requires O(n) operations. The r queries
lying below My are processed in the left subtree of V (a k-dimensional ECDF tree
on n/2 points) and in T2 (a (k-1)-dimensional ECDF tree on n/2 points). The
remaining r queries are processed in the right subtree of V (a k-dimensional ECDF
tree on n/2 points) and in T1 (a (k-1)-dimensional ECDF tree on n/2 points). This
gives us the following bound on the total node-expansion cost entailed by processing
r queries:

f(n,r,k)= max ,r,k + ,r,k + ,r,k-1
r14-r2

+ ,r2, k-1 +O(n

Using the induction hypotheses we know the exact form of the functions on the
right-hand side ofthe inequality. In particular, we know that these functions are convex.
This implies that the right-hand side of the inequality is maximized when r r- r/2.
Putting together all this we have the desired result

f(n, r, k) O(n. logk r), r_-< n.

Again, note that this result is valid only for fixed k and n a power of 2. The constant
implicit in the O will, in general, depend on k. Monier’s detailed analyses [9] of
Bentley’s algorithm also extends our result to arbitrary n and k.

Bentley [2] actually has a slightly better bound on the preprocessing time for
constructing ECDF trees. He makes use of a presorting technique to improve the bound
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to O(n. logk- n) for k-dimensional ECDF trees on n points. He first sorts all n points
by the first coordinate in O(n-log n) time. This ordering is maintained at every step,
especially when dividing the points into two sets about a median hyperplane for some
other coordinate. Consider the two-dimensional ECDF tree. Initially, all n points are
stored at the root in order by the first coordinate. After the first query, these n points
are partitioned about a median hyperplane and passed down to the children nodes.
The ordering by the first coordinate is maintained during this partition. Let P1 denote
the points being passed down to the left subtree, P2 denotes the points passed down
to the right subtree. In the original ECDF tree we would have constructed a one-
dimensional ECDF tree for the points in P1 and stored it at the root. Instead, we now
just store the points of P, in order by the first coordinate, at the root. This process is
repeated at every node in the two-dimensional ECDF tree. We now use the two-
dimensional ECDF tree as the basic data structure in our recursive construction of a
k-dimensional ECDF tree. In effect, we have done away with the one-dimensional
ECDF tree. The preprocessing cost for constructing the presorted k-dimensional ECDF
tree becomes O(n. logk-1 n) + O(n" log n). The new data structure is as easily deferred
as the previous one and we have the following result.

THEOREM 12. The cost of answering r dominance search queries in k-space is

O(G(n, r, k)), where

a(n,r,k)={nlogn+nlogk-1 r+rlogkn, r<--_n,
n logk-1 n / r logk n, r > n.

Proof The proof follows from a straightforward modification of the proof for
Theorem 11. Note that cost of presorting is subsumed by the node-expansion cost
when r>n. [3

6. Conclusion. The paradigm of deferred data structuring has been applied to
some search.problems. In all cases, we considered on-line queries and developed the
search tree as queries were processed. For the problems studied, our method improves
on existing strategies involving a preprocessing phase followed by a search phase. An
interesting open problem is to design deferred data structures for dynamic data sets
in which insertions and deletions are allowed concurrently with query processing.

The nearest-neighbor problem 13] asks for the nearest of n data points to a query
point. The problem is solved using Voronoi diagrams in O(log n) search time; the
Voronoi diagram can be constructed in O(n log n) time. There is no known top-down
divide-and-conquer algorithm for constructing the Voronoi diagram optimally. The
obvious top-down method of constructing the bisector of the left and the right n/2
points (see 14] for a definition of the bisector of two sets of points) fails, since sorting
reduces to computing this bisector. It remains an interesting open problem whether a
deferred data structure can be devised for the nearest-neighbor search problem. Note
that the techniques of 2 can be used to solve the one-dimensional nearest-neighbor
problem.
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Abstract. We study sets that are truth-table reducible to sparse sets in polynomial time. The principal
results are as follows: (1) For every integer k > O, there is a set L and a sparse set S such that L e

(k+l)-tt S,
but there is no sparse set S’ such that L <= I_tt St. (2) There exist a sparse set S and a set L such that L <= S
but there is no integer k such that for some sparse S’, L <= t.tt S’. (3) The class of sets that are bounded
truth-table reducible to tally sets is equal to the class of sets that are many-one reducible to tally sets. (4)
The class of sets having polynomial-size circuits is equal to the class of sets that are truth-table reducible
to tally sets.

Similar results are developed for truth-table reducibilities that are computed nondeterministically in
polynomial time or in polynomial space.

Key words, truth-table reducibilities, polynomial time, polynomial space, sparse sets, tally sets,
hierarchies
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1. Introduction. In recent years the class of sparse sets has received a great deal
of attention by those researchers who study the structure of complexity classes and of
complexity-bounded reducibilities. Perhaps the most prominent results are those that
show how the complexity of sparse sets depends on the basic open questions of
complexity theory such as the P ? NP problem. Efforts by Berman [8], Fortune [14],
and Mahaney [22] led to the following result: the class P is equal to the class NP if
and only if there is a sparse set that is NP-complete [22]. Similarly, results by Karp
and Lipton [16], Long and Selman [21], and Balcizar, Book, and Sch6ning [4]
culminated in results such as the following: the class PSPACE is equal to the union
(PH) of the classes in the polynomial-time hierarchy if and only if there exists a sparse
set S such that PSPACE relativized to S is equal to PH relativized to S if and only if
for all sparse sets S, PSPACE relativized to $ is equal to PH relativized to S [4].

In the context of developing a structure theory for complexity classes and com-
plexity-bounded reducibilities, we would like to develop intrinsic characterizations of
reduction classes or degrees of a given set; i.e., for a set A characterize, in terms of
properties other than reducibilities, the class of all sets B such that B <-tnP A or B < - Aor B =-A, etc. Similarly, we would like to develop intrinsic characterizations of
reduction classes for a class of sets; i.e., for a class C of sets describe the class of all
sets B such that for some C C, B -< P C, B < C, or B C. The results in the last
paragraph suggest that this will be very difficult since, for example, the appropriate
characterizations of the class of sets that are T-<raP-reducible to sparse sets might
require a solution of the P ? NP problem. A few such characterizations are known:
the class of sets that are <= --reducible to sparse sets is the class of sets with polynomial-
sized circuits (attributed to A. Meyer in [7]); the class of sets that are =< Pr-equivalent
to tally sets is the class of sets with self-producible circuits (Balcizar and Book [2]);
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the class of sets that are p-isomorphic to tally sets is the class of sets with small
generalized Kolmogorov complexity (Allender and Rubinstein [1]). Other character-
ization theorems in terms of language-theoretic properties have been developed by
Book [9], Book and Selman [12], and Balcizar, Diaz, and Gabarr6 [5].

The known characterizations described in the last paragraph as well as the apparent
difficulty in obtaining additional characterizations led the authors to investigate proper-
ties of some of the polynomial-time reducibilities to sparse sets. In the current paper
we report on the results of that investigation.

Consider the various polynomial-time reducibilities to sparse sets. Here we investi-
gate the reduction classes of truth-table, bounded truth-table, k-truth-table for each
positive integer k, and many-one reducibilities to sparse sets and also to tally sets.
The main results may be summarized as follows"

(1) For every k>0, there exist a sparse set S and a set L such that L <-k+l-,, S,
but there is no sparse set S’ such that L _-< ’_, S’. Thus, the class of sets that are bounded
truth-table reducible to sparse sets can be decomposed into a properly infinite hierarchy
based on bounding the number of queries that are allowed.

(2) There exist a sparse set S and a set L such that L -< S but there is no integer
k such that for some sparse set S’, L =< ’_, S’. Thus the class of sets that are bounded
truth-table reducible to sparse sets is properly included in the class of sets that are
truth-table reducible to sparse sets.

(3) The class of sets that are bounded truth-table reducible to tally sets is equal
to the class of sets that are many-one reducible to tally sets.

(4) The class of sets having polynomial-sized circuits is equal to the class of sets
that are truth-table reducible to tally sets.

It should be noted that the sparse sets S and the sets L found in results (1) and
(2) can be constructed in time 2(n).

The proofs of the main theorems are stronger than the theorems themselves. First,
they allow us to extend the results of (1)-(4) to the setting of truth-table reducibilities
that are computable nondeterministically in polynomial time where the functions that
generate the list of queries and the truth-table condition are both computable nondeter-
ministically but are single-valued. Second, they allow us to extend the results of (1)-(4)
to the setting of truth-table reducibilities that are computable deterministically and
also nondeterministically in polynomial space. In this case the polynomial space bounds
and the fact that the reducibilities are nonadaptive yield the notion that only a
polynomial number of queries are generated so that the reducibilities can be viewed
as restrictions of the PQUERY and NPQUERY operators introduced by Book
[10]. Third, they yield new proofs of results of Watanabe [27], [28] showing that no
sparse set can be -<_ P-hardr for the class of sets accepted deterministically in exponential
time, where r is any of the bounded truth-table reducibilities.

The paper itself is organized in the following way. Section 2 is devoted to
establishing notation and reviewing definitions. In 3 we describe the relations between
the reduction classes for the polynomial time-bounded truth-table reducibilities to
sparse sets. Section 4 is devoted to the proofs of the theorems yielding (1) and (2),
even though the theorems themselves are stated in 3. In 5 we point out how the
relations described in 3 can be extended to the cases of nondeterministic polynomial
time-bounded truth-table reducibilities and of polynomial space-bounded truth-table
reducibilities. In 6 we describe the results about sparse sets and the class of sets
accepted deterministically in exponential time.

2. In this section we review some definitions and establish notation.
Throughout this paper we will consider the alphabet ; {0, 1}. The length of a

string x will be denoted by Ix I. The cardinality of a set X will be denoted by
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For a set X and an integer n, X" ={x X[Ix n} and X" ={x X IxI<= n}. For a
set X, Xx denotes the characteristic function of X, and X Z*-X.

For an oracle machine M, L(M, A) denotes the set of strings accepted by M
relative to oracle set A, and L(M)= L(M, () denotes the set of strings accepted by
M when no oracle queries are made (or allowed). We assume that the reader is familiar
with the well-studied complexity classes P, NP, and PSPACE and with their relativiz-
ations. In particular, recall that set A is Turing-reducible to set B in polynomial time,
written A _-< - B, if A P(B).

We are particularly concerned with truth-table reducibilities that are computed
in polynomial time. Recall the following definitions (see 19] for the details and formal
definitions)"

(i) Set A is many-one reducible to set B, written A <_.e B, if there is a function

f that can be computed in polynomial time with the property that for all x, x A, if
and only if f(x) B.

(ii) For every k> 0, set A is k-truth-table reducible to set B, written A-<’_. B,
if there exist polynomial-time computable functions f and g such that for all x, f(x)
is a list of k strings, g(x) is a truth table with k variables, and x A if and only if the
truth-table g(x) evaluates to true on the k-tuple (XB(Y),""", XB(Yk)), where f(x)=
(y,"" ", y).

(iii) Set A is bounded truth-table reducible to set B, written A <-’, B, if there is
an integer k such that A -< ’_, B.

(iv) Set A is truth-table reducible to set B, written A _-< B, if there exist poly-
nomial-time computable functions f and g such that for all x, f(x) is a list of strings,
g(x) is a truth table with the number of variables being equal to the number of strings
in the list f(x), and x A if and only if the truth-table g(x) evaluates to true on
(XB(Y), XB(Yk)), where f(x)= (y, Yk).

In the above definitions we did not specify how a truth-table g(x) with k variables
is represented, because the representation does not matter as long as it evaluates each
truth value in polynomial time (see [19] for several equivalent formulations). What is
important to notice is that the polynomial-time truth-table reducibility is equivalent
to nonadaptive polynomial-time Turing reducibility. In other words, in the above
definitions (ii) and (iv), we may regard the truth-table evaluator g as a (k + 1)-variable
function, with the first variable x in E* and the rest bl,’", bk in {0, 1}. The function
g is required to run in polynomial time and satisfy the condition that g(x, bl, , bk)
1 if and only if the intended "truth-table" g(x) evaluates to true on values (b, , bk).

For any truth-table reducibility r computed in polynomial time and any class C
of sets, let Pr(C) {Althere exists C C such that A _-< Pr C}. Also, for any reducibility
r computed in polynomial time, A ---rP B denotes the fact that A <-rP B and B --r

< P A
so that for any class C of sets, we let --P(c) denote {Althere exists C C such that
A p C}. In addition, we write P-(C) for P(C). In 5 we will also consider truth-table
reducibilities computed nondeterministically in polynomial time and truth-table
reducibilities computed in polynomial space; similar notation will be used.

Recall that a set S is sparse if there is a polynomial q such that for all n,
IIs II--< q(n)- Let SPARSE denote the class of all sparse sets. Recall that a tally set
is any subset of {0}*. Let TALLY denote the class of all tally sets.

For any A and B, the symmetric difference (A-B)kJ (B-A) is denoted A/k B.

3. In this section we study the relationships between certain classes that contain
every set in P and every sparse set. These relationships are displayed in Figs. 1
and 2.

Consider the class P and the class SPARSE. Clearly, these two classes are not
comparable. It is well known that both the class P and the class SPARSE are properly
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included in the class P,, (SPARSE). Also, it is clear that both P and SPARSE are
properly included in the Boolean closure of their union. This latter class is of indepen-
dent interest.

Schfning [25] considered sets A of the form A B/S, where Be P and S
SPARSE. Since A B/h S, S A/h B so that S being sparse implies that for some
polynomial h and all n, I[(a/k B) =" --< h(n). Such a set a is called polynomially close
to P. Sch6ning proved that a set is polynomially close to P if and only if it is in the

P,,(SPARSE) P/poly

BooICI(P,,,(SPARSE))

e_,,(SPASI

P2_,,(SPARSE)

P,_,,(SPARSg) P,_,,(P-CCOSF)

P-CLOSE P,,, (SPARSE)

P SPARSE

FIG. 1. L L represents L L2.

Boolean closure of P U SPARSE. Here, we refer to the class of sets that are polynomially
close to P as the class P-CLOSE, so P-CLOSE {A Ifor some B P and S SPARSE,
A= B/S}= {Alfor some B P, AAB is sparse}.

Since PU SPARSE is properly included in both P,,(SPARSE) and P-close, it is
appropriate to try to compare these two classes.

PROPOSITION 3.1. The classes P,,(SPARSE) and P-CLOSE are not comparable.
Proof First, we show that there is a set in P,, (SPARSE) that is not in P-CLOSE.

The proof is taken from that of Proposition 3.4 of Schfning [25].
Let T_{0}* be a set not in P and let A={x{O, 1}*lOIXlT}. Clearly, T

P-CLOSEO Pro(SPARSE) and A P,. T so that A P,, (SPARSE). Now A is not in
P-CLOSE; otherwise, there would be a set B P and a polynomial h such that for all
n, (A/k B)--<n -<- h(n). Then the following algorithm would recognize T in polynomial
time, contradicting the choice of T.

input 0n;
determine how many of the first 2h(n)+ 1 strings of size n

(in lexicographic order) are in B;
if this number exceeds h(n) then accept else reject.

Second, we show that there is a set in P-CLOSE that is not in P,,(SPARSE). This
was pointed out by Dr. Jos6 BalcS.zar [29]. Recall that a set A is strongly hi-immune
for P if every -<_,,P-reduction from A is one-to-one almost everywhere. It is clear that
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P,,(TALL) P/poly

P., (TALLY) Pt.,, (TALLY)

TALLY-CLOSE

P TALLY

FIG. 2. L L represents L c L2.

the class of strongly bi-immune sets is closed under complementation. Balcfizar and
Schfning [6] have shown that there exists a sparse set S that is strongly bi-immune;
hence, is also strongly bi-immune. Since , is strongly bi-immune, every -< P -reduction
from S is one-to-one almost everywhere. Hence, $ cannot be many-one reducible to
a sparse set, i.e., S is not in P,,(SPARSE). But since $ is sparse, S is in the Boolean
closure of SPARSE and, hence, in P-CLOSE.

COROLLARY. The class Pro(SPARSE) is not closed under the Boolean operations.
Proof If Pm(SPARSE) were closed under the Boolean operations, then PLJ

SPARSE P,(SPARSE) would imply that the Boolean closure of P [.J SPARSE would
be included in Pro(SPARSE). But the Boolean closure of PLJ SPARSE is P-CLOSE,
so this would contradict Proposition 3.1.

The reducibility =< 1P., is weaker than the reducibility -< P,.. Thus, we would expect
the class P,, (SPARSE) to be properly included in the class PI.,t(SPARSE). The next
result shows that this is true and also shows that the class P-CLOSE is properly
included in the class PI_,(SPARSE).

PROPOSiTiON 3.2. Both of the classes Pro(SPARSE) and P-CLOSE are properly
included in P1-tt SPARSE).

Proof From the definition it follows that P,, (SPARSE) is included in
PI_,(SPARSE). Thus, we show first that P-CLOSE is included in P_,(SPARSE).

Let A P-CLOSE so that there exist B P and S SPARSE such that A B A S.
Let Mo be a polynomial-time-bounded deterministic machine that recognizes B. Con-
sider the following algorithm.

input x;
determine whether x is in B by running Mo on x;
if x B then query the oracle about x

if the answer is "no" then accept
else reject

else query the oracle about x
if the answer is "yes" then accept

else reject
end.

It is clear that this algorithm operates in polynomial time and that, relative
to the set S, it recognizes A=(B-S)U (S-B). Hence, this algorithm witnesses
A-< P_, S.

Finally, we note that the fact that P-CLOSE and P,, (SPARSE) are not comparable
shows that both of the inclusions P-CLOSE PI.t,(SPARSE) and P,, (SPARSE)
P_,(SPARSE) must be proper.
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In the proof of Proposition 3.2, it is shown that P-CLOSE is included in
P_,(SPARSE). This is done by arguing that ifA B/ S, where B is in P, then A <- _,, S;
the fact that S SPARSE plays no role in that argument. Now A B/ S if and only
if S B A A, so that it is also the case that S -< P_, A and, hence, A 1P_tt So We conclude
that P-CLOSE is included in -= 1P_,(SPARSE), and the proof of Proposition 3.1 shows
that this inclusion is proper. Since SPARSEc P-CLOSEc _=P_,(SPARSE) c_

PI-tt(SPARSE) and both P P
-1-tt and -<--t are transitive, we conclude that--- 1P_,(P-CLOSE) P_,(SPARSE) and PI_tt(P-CLOSE) Plott(SPARSE).

There is a useful result due to K/bbler [17] (see also K6bler, Sch6ning, and Wagner
[18]).

PROPOSITION 3.3. For every set A, the class ofsets B such that B <-i, A is precisely
the Boolean closure of the class {C IC <= P, A}.

COROLLARY. Th8 class Pb,(SPARSE) is equal to the Boolean closure of
P,(SPARSE).

The reader may note that the analogue of Proposition 3.3 holds in recursive
function theory, where ----<b, and are witnessed by total recursive functions.

From the Corollary we see that Pb,(SPARSE) can also be expressed as the Boolean
closure of Pk.,(SPARSE) for any k > 0. Thus, if Pb,(SPARSE) can be decomposed
into an infinite hierarchy based on the number of questions asked, i.e., Pk_,(SPARSE)
Pk/I_,(SPARSE) for all k, then there is no k> 0 such that Pk_,(SPARSE) is closed
under the Boolean operations. The fact that Pb,(SPARSE) can be so decomposed is
the main result of this paper.

THEOREM 3.4. For every k > O, Pk.tt(SPARSE) P(k+I)_tt(SPARSE). Hence, for all
k, Pk-tt (SPARSE) # Pbtt (SPARSE) and Pk-tt (SPARSE) is not closed under the Boolean
operations.

Theorem 3.4 will be proved in 4.
Consider the class P,(SPARSE). From the definitions of <-Itt and _-< tPt, it follows

that Pbtt(SPARSE)_ P,(SPARSE). The fact that this inclusion is proper is the next
result.

THEOREM 3.5. The class Pb,(SPARSE) is properly included in the class
Ptt(SPARSE).

Theorem 3.5 will be proved in 4.
Consider the class PT(SPARSE). Recall that PT(SPARSE)=P/poly, where

P/poly is the class of sets with polynomial-sized circuits studied by Karp and Lipton
[16]. From the definitions of <-tPt and -<_ P, it follows that Ptt(SPARSE)c_G__ PT(SPARSE).
We will see that this inclusion is not proper, that is, P,(SPARSE)= PT(SPARSE). In
this context, it is desirable to consider the class TALLY of tally sets and the classes
P,(TALLY) and PT(TALLY).

The relationship between sparse sets and tally sets has been studied by many
researchers. For example, Hartmanis [15] showed that every sparse set S is nondeter-
ministically polynomial-time equivalent to some tally set, while Long [20] showed that
this relationship does not hold for strong nondeterministic polynomial-time Turing
reducibility. Sch6ning [24] proved that for every sparse set S there is a tally set T such
that S is deterministically polynomial-time Turing-reducible to T. The following result
relates sparse sets and tally sets by deterministic polynomial-time Turing- and truth-
table reducibility. The reader should notice that it is not being claimed that for every
sparse S there is a tally set T such that P(S)= P(T); indeed, Long [20] has shown
that this is not the case.

THEOREM 3.6. P/poly PT(SPARSE)= Ptt(SPARSE)= Ptt(TALLY)
PT(TALLY).
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Proof From the definitions of _-< ,P, and _-< and the fact that TALLY
_
SPARSE,

it follows that Ptt(TALLY)
_
P,(SPARSE)

_
PT(SPARSE) and P,(TALLY)

_
PT(TALLY) Pr(SPARSE). Recall that tally sets are self-printable in polynomial time,
that is, there is a deterministic polynomial time-bounded oracle transducer that for
any tally set T will compute on input 0 the list of strings in T of length at most
n. Since _-< is the nonadaptive version of <_-, it follows that PT-(TALLY)_
P,(TALLY).

It is known that for every sparse set S there is a tally set Ts such that S P(Ts).
Since =< is transitive, this means that P(S)_P(Ts). Hence, Pr(SPARSE)_
Pr(TALLY). [3

The results in Theorem 3.6 suggest that the class of tally sets be considered with
respect to truth-table reducibilities. The situation is quite different from that regarding
the sparse sets.

THEOREM 3.7. P,, (TALLY) Pbtt(TALLY).
Proof. The proofwill follow from Proposition 3.3 once it is shown that P,(TALLY)

is closed under the Boolean operations. Closure under complementation follows from
the fact that complementation is always taken relative to a tally set" if T {0}*, then
T {0}* T. Closure under intersection follows from the fact that there is a polynomial-
time computable pairing function (,)’{0}* x {0}*- {0}*, for if f witnesses A _-<,P T
and g witnesses B Pm T2, then x A fq B if and only if (f(x)’, g(x))
{(om, on)lom T1,0n T2}. [3

COROLLARY. Let r be any of the bounded truth-table reducibilities. Then there is a
sparse set S such that there is no tally set Twith S <- T. Thus, Pr(TALLY) # Pr(SPARSE).

Proofi Since P,(TALLY) Pbt,(TALLY), Pr(TALLY) P,(TALLY), and
Pr(TALLY) is closed under the Boolean operations. If r# btt, then Pr(SPARSE) is
not closed under the Boolean operations by Theorem 3.4, so P(SPARSE)#
Pr(TALLY). Thus, Pb,(TALLY)=P,,(TALLY)c P,(SPARSE)c Pbt,(SPARSE) and
so Pbtt(SPARSE) Pbt,(TALLY). [3

Recall that a set A is in P-CLOSE if and only if there is a set B P and a set
S SPARSE such that A B/k S. This suggests that we consider the class of sets A
such that there is a set B P and a set T TALLY such that A B/k T. We refer to
this class as TALLY-CLOSE. It follows from a result of Sch6ning [25] that TALLY-
CLOSE is the Boolean closure of P t_JTALLY. From Theorem 3.7 it follows that
TALLY-CLOSE is included in P,(TALLY). That the inclusion is in fact proper follows
from the proof of Proposition 3.1.

The proof of Proposition 3.1 shows that there is a set in P,,(TALLY) that is not
in TALLY-CLOSE. The proofof Proposition 3.2 shows that TALLY-CLOSE is included
in P_tt(TALLY). Since P,,(TALLY)= P_,(TALLY), this shows that TALLY-CLOSE
is properly included in P,(TALLY).

Notice that similar to the situation with SPARSE, we have P(TALLY-CLOSE)
P(TALLY) and P,(TALLY-CLOSE) P,(TALLY).

4. In this section we will prove Theorems 3.4 and 3.5. The proof of Theorem 3.4
is carried out .in two steps, the first establishing that P_,(SPARSE) P2_,(SPARSE)
and the second that for all k > 1, Pk.tt(SPARSE) P(k+I_,(SPARSE).

It will be convenient to use the following notation: for each integer h > 0, SPARSEh
is the class of sparse sets S such that for all m > 0, where Ph is the
polynomial defined for all m by ph(m)= mh+ h. Notice that for every sparse set S
there is an integer h > 0 such that S SPARSEh, and for all integers h > 0, SPARSEh
SPARSEh+I.
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THEOREM 4.1. PI_,,(SPARSE) # P2_,,(SPARSE).
Proof. For any set A, let LI(A)= {xlexactly one of 0I’‘1+1 and x is in A} so that

LI(A) <=.,, A. We will construct a sparse set A such that for all sparse sets S,
LI(A) P_, S, i.e., LI(A) is in P2_,,(SPARSE) but is not in PI_,(SPARSE). The construc-
tion will be by stages.

Assume an enumeration of -<P.,-reductions" {M,,li, j>-1}, where for each pair
i, j, Mi,j is a polynomial-time-bounded oracle machine that for each input x generates
the query string f(x) and the 1-tt-evaluator gj(x). (Notice that for every j and every
x, &(x) is a function from {0, 1} to {0, 1}.)

For each triple i, j, h let Ri,j,h be the predicate that is true if and only if LI(A)
L(Mo, S) for all S SPARSEh. Our goal is to construct A such that A is sparse and,
for every triple i,j, h, Ri,j,h is satisfied. This will yield LI(A) PI.,(SPARSE).

Let (i, j, h) be a "tripling" function that enumerates all of the triples i, j, h.
Stage O. Let no 1. Let Ao
Stage a (i, j, h)> 0. Let q be a polynomial that bounds the running time of

Select n ns such that n _>- ns-1 + 2 and 2"-2 > Ph (q(n)). For each 1-u-condition t, let
G, {x " I&(x) t}. Since each gj can take at most four possible values, there exists
some such that o, II--> 2"-2. Choose a fixed with this property.

Consider each possible 1-u-condition t.
Case 1. t(0) t(1) 1. In this case, for all x e G,, x e L(Mo, S) so that L(Mo, S) f’l

G, G, for all S e SPARSEh. Let As := As_. Then LI(As) f’) G, and so LI(As)"
L(Mo, S)" for all S e SPARSEh.

Case 2. t(0) t(1) 0. In this case, for all x e G,, x e L(Mo, S) so that L(Mo, S)
G,= for all S e SPARSEh. Choose an arbitrary x in G, and let As := As_ l0 {x}.
Then LI(As) fq G, {x} # and so LI(As)" # L(Mo, S)" for all $ e SPARSEh.

Case 3. t(0) 0 and t(1) 1.
Subcase 3.1. Suppose thatf is not one-to-one on G,, so there exist x, y e G,, x # y,

and f(x)=f(y). Let As := As-1U {x}. Then we have that for all S e SPARSEh, x
L(Mo, S)" if and only if y e L(Mo, $)", where x and y are as in the construction. But
x LI(As)" and y LI(As)" so that for all S SPARSEh, L(As)" # L(Mi,j, Sn).

Subcase 3.2. Suppose that f, is one-to-one on Gt. Let As := As-1U {0"+}. Then
we have that LI(As)" fq Gt- Gt. But for all S SPARSEh, IIL(M,j, S) fq Gtll <-

< G, II. Hence, for all S SPARSEh, Ll(As) L(Mo, S)".
Case 4. t(0)- 1 and t(1)- 0. This is symmetric to Case 3.
End of Stage a i, j, h).
We have constructed As such that for all a and all n- ns, LI(As)" # L(Mo, S)"

for all S SPARSEh. Letting A := U As, the choice of ns such that 2%-2> ph(q(n))
guarantees that for all a, no string added to A at an earlier or a later stage can cause
the relationship established at stage a to change, i.e., for all a and n- ns, LI(A)=
LI(As) ". Thus, for all S SPARSEr, L(Mo, S) LI(A). 3

The proof of Theorem 4.1 may be viewed as the simplified version of the proof
of Theorem 4.2 below.

THEOREM 4.2. For every k > 1, P_,(SPARSE) Pk+).,(SPARSE).
Proof. Let k >- 2. For any set A, let Lk(A) {Hi Uk Ifor each i, 1 <- <- k, [uil-

lull- n; the number of strings in the following list that are in the set A is odd: 0k<"+l),
Ul0(k-1)(n+l), Ul"’" UiO(k-i)(n+l), u Uk}. It is clear that Lk(A) < k+l)-tt A.
We will describe a specific sparse set A such that for every sparse set S it is not the
case that Lk(A)<=_,, S. This will allow us to conclude that P(k+I_,,(SPARSE)#
P_,,(SPARSE).

Let k _-> 2 be fixed. Let {f} be an enumeration of the polynomial-time computable
functions that for any string x yields a list of k strings (i.e., the list of queries). Let
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(gj) be an enumeration of all polynomial-time computable functions that for any single
string x yields one ofthe 22k k-tt-conditions. We can enumerate all ofthe ’_tt-reduction
machines as (M) where on input x, Mi,j computes the list f(x) (xl," , Xk) and the
k-tt-condition g(x).

We want to construct a set A such that for every integer n and every integer r,
0 - r k, there is at most one string in A of the form Ul Uk-rOr("/) and there is at
most one string in A having length lUl Uk_rOr(n/l) kn + r. Thus, A will be sparse.
Furthermore, A must satisfy the condition that for all i,j and every sparse set S,
Lk(A) L(Mid, S); to accomplish this latter point it is sufficient to show that for some
n > O, Lk(A)" # L(M,,), S)".

The construction of A will be by stages so that for all i, j, there are infinitely many
opportunities to diagonalize against Md. At stage a (i, j, h), the machine Md and
the polynomialp are considered. At the end ofstage a (i, j, h), the following condition
will be satisfied" for every sparse set S SPARSEh, L(Mi,, S)kn # Lk(A)kn.

Let (i, j, h) be a "tripling" function that enumerates all of the triples i, j, h. Let
e=l/(16k2).

Stage O. Let no- 2k/3 and A .
Stage a (i, j, h > 1. Let q be a polynomial that bounds the running time of Mi,.

Choose n such that n kns_ + 1 and 2 ph (q(kn)). Let n n.
For each of the 22k k-tt-conditions t, let Gt {x kn gj(x) t}. Then there must

exist some such that GII 2k/2k- 2k-2" Choose any fixed with this property.
Case 1. f is not one-to-one on G.
In this case, there exist x, y G with x y and f(x)=f(y). Thus, for any set

S SPARSEh, x L(M,, S) if and only if y L(M,, S). Let A := As-1U {x), and
notice that y is not in As. This means that x Lk(As) and y Lk(As), and so we
conclude that for every S SPARSEh, Lk(As)k" L(M.j, S)k.

Case 2. f is one-to-one on G.
Recall that f always outputs a list of k strings. Let f(x)- (Xl,’’’, Xk.
Subcase 2.1. There exist r, l-r-k, and z such that Hr(z)=df

has size IIn (z)ll--> 2(k-(1/4))n.
This implies that there exist u,vE", uv, such that

2(k-e-(5/4))n and Iln(z)f’l{v},(-l)"ll>-2(--(5/4". (Choose u such that H(z)f-I
{u};(-)" has the maximum size. Then its size is at least 2(k-(/4))" 2-"= 2(k-(5/4))n.
Choose v such that the size of H(z)f-I{v}, (k-l)" is the next largest. Then [[H(z) f-I
{/)}(k--1)nl[ e ]lH,(z)-{u}(-’)"ll 2-" >-(2(’-(’/4))n--2(k-’)n) 2

NOW we claim that we can extend As_l to As to satisfy the requirement that for
any S e SPARSEr, L(M,, s)n# Lk(As)n. Since the proof of this claim involves a
long inductive argument, we state a technical lemma and leave the proof of the lemma
to the end.

LMa. Suppose there exist a set Go_ Zn, a function f(x)= {Xl,""", x_a) on G
and two strings u, v n satisfying the following conditions:

(1) f is one-to-one on G, and for all r <= k 1, [xl <- q( ten ).
(2) IIGCl oil 2(k-e-(5/4))n and IIGCl VII->-2(k--(5/4)", where U= {/,/}Z (k-l)n and

V {v}E(-)-"
Then, there exists a set C c_ {y kn _<_ [yl <- k(n + 1)} such that for all r, 0 <- r <- k- 1,
[IC fq"+[I-<-1, and having the property that for every set S SPARSEh, and every
(k-1)-tt-condition t, it is not the case that for all x G, x L(C) if and only if
t(Xs(X,), Xs(X-,))= 1.

Note that by letting G H(z) and f(x) (x, ., x_, Xr+l, ", Xk) the
hypothesis of the lemma is satisfied. Let be the fixed k-tt-condition we chose such
that G,[[ _-> 2 "-2, and let to and t be the two (k-1)-tt-conditions induced by by
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removing the rth input, i.e., for any k-1 bits of inputs bl,"’, br-1, br+l,’’ ", bk,
to(bl," , br-1, br+l,’’’, bk)-- 1 if and only if t(bl,..’, br-1, 0, br+l,’’ ", bk)-- 1
and tl(bl, , br_l, br/l, bk) 1 if and only if t(bl," , b_l, 1, b+l," , bk) 1.
Then, by the lemma, for any S SPARSEh, it is not the case that for all x H(z),
x Lk(C) if and only if to(Xs(xl)," ", Xs(X-l), XS(Xr+I)," ", Xs(Xk)) 1, nor the
case that for all xHr(z), XLk(C) if and only if tl(Xs(Xl)," "’,Xs(x-l),
Xs(x+l)," , Xs(Xk)) 1. Since Xr Z for all x H(z), for any S SPARSEh, depend-
ing upon whether or not z is in S, we have that t(Xs(xl),’", Xs(Xk)) is either equal
to to(Xs(Xl), Xs(X-l), Xs(Xr+l), XS(Xk)) or equal to tl(Xs(xl), Xs(Xr-1),
XS(Xr+I)," ", Xs(Xk)). This implies that it is not the case that for all x Hr(z), x Lk(C)
if and only if t(Xs(xl)," , Xs(Xk)) 1. By letting As := A-I U C, we have established
that Lk(A,)kn L(Mi,j, S) k" for every S SPARSEh.

Subcase 2.2. The conditions for Subcase 2.1 do not hold.
There are two sub-subcases.
Subcase 2.2.1. t(0,..., 0)--0. For every set S SPARSEh and every x Gt, x

L(Mi,j, S) implies that there exists r, 1 _-< r-< k, with Xr S. Since IXrl <-- q([xl) q(kn),
there are only Ph (q(kn)) < 2 such x. Thus,

k

IIL(M,, , S) f3 G,I[-<- E [[H (z)ll < k" 2". 2(k-l < 2
r=l zS

(since ke 1/(16k)< 1/8). However, if As := A_I U {0k("+l)}, then every element of
Ek" enters Lk(a,). It follows that G,

_
Ek, Lk(A)k, andso ][L(A)" t3 G, >- 2"-2 >

2k-l/8)". This implies that Lk(A)# L(M,j, S) for all S SPARSEh.
Subcase 2.2.2. t(0,. , 0)= 1. Similarly to the argument in Subcase 2.2.1, we can

conclude that for every S SPARSEh, I]L(M,j, S) f3 G,]] < 2k-1/8))". Let
Then every element of Ek, enters Lk(A). It follows that G,

_
Ek"

_
Lk(A)k" and so

liLk(A,,) k" CI a, I1,11 >2k"-2k > 2(k-(1/8))", which implies that Lk(A) # L(M,j, S)
for all S SPARSEh.

This concludes the proof for Subcase 2.2 and, hence, for Case 2 and Stage a.

Let A U _->1

Since the justification for the stage construction of set A was given as the construc-
tion was carried out, we can conclude that for every choice of i, j, h, and every set
S e SPARSEh, Lk(A) # L(M,.j, S). F]

Now we prove the lemma. We state and prove a stronger statement.
LEMMA (in stronger form). For each j, 1 <-j <- k- 1, the following holds. Suppose

there exist a set G
_
Ekn, a function f(x) (Xl," ", xj), a constant c, and k-j + 1 strings

ul, Uk-j-1, Uk-j, Vk-j in E" satisfying the following conditions:
1- 2jke.(o) 1/4<- c <-

(1) f is one-to-one on G, and for all r<=j, ]Xrl<=q(kn);
(2) if U.+I is defined to be {u Uk_j_I}E (j+l)n and U. {ul lgk-j-lUk-j}jn,

Vj { ul"’" Uk-j-1Vk-j}EJ", then G
_

Uj+I, G CI Uj >- 2J-)", and G (3 Vj
Also assume that there is a set B such that
(3) for every i, j + 1 <- <- k, B (3 zk"+ll -< 1, and
(4) for every i, 0<-_ <-j,

Then, there exists a set C {ylkn <= ]Yl <- kn +j} such that for every i, 0 <= <=j,
,k"+ll <= 1 and, in addition, C has the property thatfor every set S SPARSEh and every
j-tt-condition t, it is not the case that for all x G, x Lk(BW C) if and only if
t(Xs(xl), Xs(Xj))= 1.
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It is easy to verify that the above statement implies the lemma used in the proof
of Theorem 4.2.

Proof of Lemma. j 1. Let C {ul""" Uk-10"/}. This choice of C satisfies the
requirements; otherwise, there exists a sparse set S and a j-tt-condition such that for
all x G, x Lk(B C) if and only if t(Xs(xl) 1.

CLAIM 1. IIL(B t_J C) Cl OII->- 2’-" and IIL(B t_J C) GII2’-".
Proof. Since by hypothesis O

___
Ue and B contains no strings of length kn or

kn + 1, the set U {u uk_}E must be included in L(B) or in L(B) depending
on whether there is an odd number or an even number of strings in {0, u u_O+} (’l B. If the string u u_O+ is added to C, then membership
in L(B CI C) (or in L(B CI C)) will not change for those strings in U2- U1, but
membership in L(B U C) (or in L(B U C)) will change for strings in U. Thus, either
Lk(B LJ C) f-) G 110 U, and Lk(B LJ C) CI G O u with both values being
no less than 2(-c", or IIt(n LJ C) GII- IIG U, and IIz(n LJ C) GII- IIG- u[I,
with both values being no less than 2(-". [-1

CLAIM 2. If for all x G, x Lk(B LJ C) if and only if t(Xs(X)) 1, then IIL(B
c)cl GII <2 or IIL(B t-J C)Cl GII <2".

Proof There are four cases.
Case 2.1. t(0)= t(1)=0. This implies Lk(BLJ C)f) G=(.
Case 2.2. t(0)= t(1)= 1. This implies that XLk(BLJ C) if and only iff(x)S.

Since f is one-to-one, Ilt(n 3 C) GII -< Ils--<()ll < 2.
Case 2.3. t(0)= 1, t(1)= 0. This implies that x Lk(BLJ C) if and only iff(x) S.

Since f is one-to-one, [[Lk(BLJ C)CI GII <-IIs=<(ll <2.
Case 2.4. t(0)= t(1)= 1. This implies that Lk(BCI C)f-I G=(.
This concludes the proof of Claim 2. [3

Recall that 2(1-"> 2". Thus, Claims 1 and 2 yield a contradiction. Hence, the
proof of the lemma for j 1 is complete. [3

Proof of Lemma. Inductive step. Let j be such that 1 <j-< k- 1. Consider two
cases.

Case 1. Suppose there exist r, l<-r<-j, and z such that either [[Hr(z)CI UjlI_->
2(j-’)" or IIH(z) VII_->2(-’, where Hr(Z)={xGIxr=z, where x .is the rth
element in f(x)} and c’= c + ke.

Assume, without loss of generality, that IIH(z) UII-> 2(J-’). Then, there exist
u, veE", u# v, such that IIH(z) U_lll>_-2(J-’-’) and IIH(z)C V_lll-->2(--’’)
where Uj_l {ul Uk-jU}E(-" and Vj_l {Ul Uk-V}E-l)" and c"= c’+ e. Con-
sider the induction hypothesis for j- 1, set Hr(z) U, function f’(x) (x," ,
x+, ., x), constant c", and strings ul," ", Uk-j, U, V e E". Then we can check that

(0) <-c<=5 2jke implies 1/4<= c"= c+(k+ l)e =<1/2-2(j- 1)ke;
(1) f’ is one-to-one on Hr(z) f’) Uj (otherwise, f would not be one-to-one on G)

and for all i, Ixl <- q(kn).
(2) H(z) f-) Uj c__ Uj and liNt(z) f3 U f3 U-lll- IIH(z) C U-ll--> 2(-’-’) and

IlU(z) U -,11- liNt(z) tq v-lll >= 2(J-l-c")n.
Also, B satisfies conditions (3) and (4). By the induction hypothesis there exists

a set C1 such that for all sparse sets S SPARSEh and all (j-1)-tt-conditions t, it is
not the case that for all xHr(z)f’lU, XLk(BI,.JC1) if and only if
t(Xs(Xl),’’’, XS(Xr-1), Xs(Xr+l),’’’, Xs(Xj)): 1. Let C C1.

CLAIM. For every sparse Se SPARSEh and every j-tt-condition t, it is not the
case that for all x e G, x e L(BU C) if and only if t(Xs(Xl),"’, XS(Xr-1), Xs(X),
Xs(Xr+I), Xs(Xj))--1.
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Proof Suppose that this is false. So for some j-tt-condition and some sparse set
SSPARSEh, xL.(BU C) if and only if t(Xs(Xl)," ",XS(Xr-1), Xs(Xr),
Xs(Xr+I),’’’,Xs(Xj))=I. For this j-tt-condition t, there are two induced (j-
1)-tt-conditions to and t such that to(Xs(X),’", Xs(Xr-), XS(Xr+I),’’’, Xs(Xj))= 1
if and only if t(Xs(xl), ", Xs(Xr-1), O, Xs(Xr+l), ", Xs(X)) 1, and
t(Xs(x), ", Xs(xr-), Xs(Xr+l), ", Xs(X)) 1 if and only if t(Xs(Xa), Xs(Xr-),
1, Xs(Xr+),’", Xs(x))--1. Depending upon whether or not z is in S, we have two
possibilities: either

(a) for all x6Hr(z), XLk(BUC) if and only if to(Xs(xl),’" ",XS(Xr-1),
,S(Xr+l), XS(Xj)) 1, or

(b) for all xHr(z), xL(BUC) if and only if h(Xs(X),’" ",Xs(Xr-),
Xs(Xr+,), Xs(X))= 1.

Either case contradicts the induction hypothesis, l-1

Case 2. The condition specifying Case 1 is false.
Let C {u Uk__Uk_O("+}. Assume, by way of contradiction, that for some

sparse set S, some j-u-condition t, and all x G,
(.) x Lk(B U C) if and only if t(Xs(X,), ", Xs(Xj)) 1.

CLAIM. IIL(B c)n GN UI[->2u-)" or I[Lk(BU c)n or1 vll >=2u-)".
Proof Since by hypothesis O___ U)+ and B contains no strings of length <=kn +j,

the set Uj+ {u... Uk_)_}E()+)" must be included in Lk(B) or in Lk(B), depend-
ing on whether there is an odd number or an even number of strings in

0(j+)(n+{0k("+ UlO(k-("+, Ul Uk-)- } n B. By adding C
{U /,/

tj(n+l)/
"’’Uk-- g_jt to B, the membership in Lk(BU C) (or in L(BU C)) will

not change for those strings in U/- U, but the membership in Lk(B U C) (or in

Lk(B U C)) will change for those strings in U. Thus we have that either G N U c_c_ U
Lk(BU C) and GO V_ U)+I- U_ Lk(BU C)] or[GO U_ U_ Lk(B C) and GN
V)
_
U+I U

_
Lk(B U C)]. Therefore, we have either L(B C) G n U

IIGN ull>--2u-c>" or IIL(BUC)NGn vll= IIGn vll_->2u-c>", n
Now consider the j-tt-condition in (.).
Subcase 2.1. t(0,. , 0) -0. Then, for all x G, x Lk(BU C) if and only if there

exists r, l<-r<-_j, such that xrS. But for each r and each zS, IIHr(z)n UII <2
and H,(z) n v < 2U-c’)-. So,

J
IIL(BUC)NON UII -<_ X X IIHr(z)n UII <j" 2""" 2U-c’)"<=2U-c’+k")"=2u-c)",

r=l zS

and similarly, IILk(BU C)n GN Vll <2-c". This contradicts the above claim.
Subcase 2.2. t(0,. , 0) 1. Then, for all x G, X Lk(B U C) N G if and only

if there exists r, 1 =< r =< k, such that Xr S. But then

IIL(B U C) n O n ull--< E E IlHr(z) N ull < 2
r=l zS

and [[Lk(B U c)n Gn vll <2(-c". Again, we have a contraction.
This concludes the proof of Case 2 and, hence, the proof of the inductive step.
Now we turn to the proof of Theorem 3.5. To a very large extent the proof follows

the outline of the proof of Theorem 3.4, and so only a sketch will be given here.
THEOREM 4.3. Pb,(SPARSE) # P,(SPARSE).
Sketch of the proof. For any set A, let Lo(A) {u u, llUl] lu, n; the

number of strings in the following list that are in the set A is odd: 0""+1),
uO("-)("+), u... uO("-)("+), u... u,}. It is clear that L(A) < P, A. We
will describe a specific sparse set A such that Loo(A) ., S for every k and every
sparse set S.
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Similar to the proof of Theorem 4.2, we assume an enumeration of polynomial-
time-bounded deterministic machines witnessing bounded truth-table reductions" Mi,j,k
computes the ith polynomial-time function f that generates k queries and the jth
polynomial-time function gj that generates a k-tt-condition.

The following lemma is established in the proof of Theorem 4.2.
LEMMA. For any pair k, h of positive integers and any machine M that witnesses

an instance of a <-l_tt-reduction, there exist arbitrarily large n and a finite set B
(xlkn<-_lxl<-k(n+ 1)} such that

(1) for any m, kn<=m<-k(n+l), IIn   ll_-<l, and
(2) Lk(B)kn # L(M, S)k" for all S , SPARSEh.
At stage a (i, j, k, h), consider the machine M,, k which operates as follows"

on input x whose length is at least k2 and is a multiple of k, say Ixl kn, and any
set C, simulate Mi,,k on O"-k)"x relative to C;

on input x whose length is less than k2 or is not a multiple of k, reject.

The machine M,,g witnesses an instance of a <=’_,-reduction so that for the
2polynomial Ph the lemma shows that there exist an integer n > n-I + k and a finite

set Bc_{xlkn<-Ixl<=k(n+l)} satisfying (1) and (2) of the lemma. Then, Lk(B)k"#
S)k for all S SPARSEhL(M,j,k,

Letting n n, define A by adding strings in {x[ n2<-_ Ixl <-_ n(n + 1)} to A_ as
follows" 0(n-k)’u u0(k-)(’+) A if and only if u tliO(k-i)(n+l) B, where
1 -< -< k and [Ul[ [ul- n. Thus, for any x E’, x L(A) if and only if there
exists yLk(B)k" such that .’=-0(n-k)y. This implies that L(A)fq{O("-k)"}Ek’=

S)k" L(M k, S) f’] {0(n-k)’}Ek" SO that Loo(A){0("-g)"}Lg(B) g"
# {0("-g)"}L(M,j, ,

L(Ma,g S) for all S SPARSEr. [3
In the proofs of Theorems 4.1, 4.2, and 4.3, it is easy to verify that the set A is

computable in time 2(") and, hnce, that each of the sets Lk(A), k _-> 1, and Loo(A) is
in DEXT (= >o DTIME (2")).

5. Consider the proofs given in 4. If we look carefully, it becomes clear that
bounding the time needed to compute the reducibilities served as a method ofbounding
the number and the lengths of the query strings and nothing else. Thus it is reasonable
to consider other reducibilities specified in such a way that the number and the lengths
of the query strings are bounded by a polynomial in the length of the input. This
section is devoted to such considerations.

Consider reducibilities computed nondeterministically in polynomial time. Ladner,
Lynch, and Selman [19] defined =<NPtt in such a way that =<NPtt =<NTP, Later, Book,
Long, and Selman 11 considered a variation of the notion of < NP, by requiring that
both the function that generates the list of queries and the function that generates the
tt-condition be functions that are computed nondeterministically but are single-valued.
It is this notion of <=P that is considered here.

It is clear that for any set A and any of the reducibilities r considered here,
Pr(A) NPr(A). What we have here are the observations that simple modifications of
the proofs of Theorems 4.1, 4.2, and 4.3 yield the following results.

THEOREM 5.1. (a) For every k > O, NPk.tt(SPARSE) NP(k+)_tt(SPARSE).
(b) NPbtt(SPARSE) y NPtt(SPARSE).
(c) There is no k such that Pk+I)_tt(SPARSE) NPk.tt(SPARSE).
(d) Ptt(SPARSE) if= NPbtt(SPARSE), that is, P/poly NPbtt(SPARSE).
Proof. In the proofs of Theorems 4.1 and 4.2, we enumerate, instead of

<- ’_,-reduction machines {M}, < NPk.,-reduction machines (N,}, and construct a sparse
set A in the same way. Then, for all i,j, and all sparse sets S, Lk(A) L(Ni., $), and
hence Lk(A)C=NPk_,(SPARSE). Recall that for all sparse sets A, Lk(A)
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P(k+I)_,t(SPARSE). This proves parts (a) and (c). A similar modification yields a proof
for part (b). A similar modification of the proof of Theorem 4.3 yields a proof of
part (d). [3

Unlike the set A constructed in the proofs of Theorems 4.1 and 4.2, the set A
constructed above is not known to be computable deterministically in exponential
time. Note that in stage a (i,j, h) of the construction, we need to simulate function

f on all strings of length kn (where n n) in order to determine their membership
in A or in A. Since the function f is only known to be computable nondeterministically
in polynomial time, no deterministic exponential time bound is known for the computa-
tion of all of the f.

We can interpret parts (c) and (d) of Theorem 5.1 as asserting that the (potential)
additional computational power of nondeterministic operation is not sufficient to
overcome the power of a deterministic machine to make additional queries, even though
these queries are made in a nonadaptive (truth-table) manner to sets that are sparse.

Analogous to Theorem 3.6, we have the following fact.
THEOREM 5.2. NP/poly= NPT(SPARSE)= NPtt(SPARSE) NPtt(TALLY)

NPT(TALLY).
Proof The proof that NP,(TALLY)= NP(TALLY) is just like the proof that

P,(TALLY) P(TALLY). The proof that NPT(SPARSE)= NPT(TALLY) is just like
the proof that PT(SPARSE)= PT(TALLY). The result follows since NP,(TALLY)_
NP,,(SPARSE). [3

Now consider reducibilities computedin polynomial space. Assume that all queries
are of length bounded by a polynomial in the length ofthe input. The various truth-table
reducibilities are nonadaptive and the list of queries must be computed and stored on
a work tape before any evaluation is carried out; thus, even with polynomial space-
bounded machines, only a polynomial number of queries can be made. Book [10],
Book and Wrathall [13], and Balczar, Book, and Sch6ning [3] have investigated the
Turing reducibilities computed by deterministic and nondeterministic polynomial
space-bounded oracle machines that in any computation make only a polynomial
number of queries. For any set A, the class specified by deterministic machines of this
type is denoted PQUERYT (A) and the class specified by nondeterministic machines
of this type is denoted NPQUERYT(A). It is known [3] that for any set A,
PQUERYT (A)= PT(QA) and NPQUERYT (A)= NPT (Q)A), where Q is any set
that is < e

=,,- or -< --complete for PSPACE. As reducibilities, let A =<9 B denote
A PQUERYT (B) and let A <-PQ B denote A NPQUERYT (B); notice that
PQUERYT () NPQUERYT () PSPACE. On the other hand, it is shown in [10]
that there is a sparse set S such that PQUERYT (S)# NPQUERYT (S).

By considering functions computable deterministically in polynomial space, we
can define the various truth-table reducibilities computable deterministically in poly-
nomial space and view them as restrictions of _-< Q. Again observing that the role of
the polynomial time bounds in the proofs in 4 is only to restrict the number and
length of queries, we see the following facts.

THEOREM 5.3.
(a) For every k > 0, PQUERY., (SPARSE)# PQUERY(+)_, (SPARSE).
(b) PQUERYb. (SPARSE)# PQUERY. (SPARSE).
(c) There is no k such that Pk+I_.(SPARSE)_ PQUERYk_. (SPARSE).
(d) P.(SPARSE) PQUERYb. (SPARSE), that is, P/poly

PQUERYb. (SPARSE).
By considering functions that are computable nondeterministically in polynomial

space but are single-valued, we can define the various truth-table reducibilities compu-
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table nondeterministically in polynomial space and view them as restrictions of < NPQ
--T

Combining the arguments needed for the proofs of Theorems 5.1 and 5.3, we see the
following facts.

THEOREM 5.4.
(a) For every k > 0, NPQUERY,., (SPARSE)# NPQUERYk+I)_, (SPARSE).
(b) NPQUERYb, (SPARSE) NPQUERY, (SPARSE).
(c) There is no k such that P(k+)_,(SPARSE)_ NPQUERYk_, (SPARSE).
(d) P,(SPARSE) NPQUERYb, (SPARSE), that is, P/poly

NPQUERYb, (SPARSE).
Parts (c) and (d) of Theorems 5.3 and parts (c) and (d) of Theorem 5.4 can be

interpreted as asserting that the (potential) additional computational power of space,
as opposed to time, is not sufficient to overcome the ability to make additional queries,
even though these queries are made in a truth-table (nonadaptive) manner to a sparse
set.

Even though there is a sparse set S such that PQUERYT (S)# NPQUERYr (S),
an argument of Long [20] can be used to show that for every sparse set S1 there
is a sparse set S2 such that NPQUERYr(S1)PQUERYr(S2) and, hence,
PQUERYr (SPARSE) NPQUERYr (SPARSE). We will show something somewhat
stronger.

THEOREM 5.5. Each of the following classes is equal to PSPACE/poly:
(a) PQUERYT (SPARSE);
(b) PQUERY, (SPARSE);
(c) PQUERY, (TALLY);
(d) PQUERYr (TALLY);
(e) NPQUERYr (TALLY);
(f) NPQUERY, (TALLY);
(g) NPQUERY, (SPARSE);
(h) NPQUERYr (SPARSE).
Proofi First, we show that all of the classes listed in (a)-(h) are equal. Notice that

each class is included in NPQUERYr (SPARSE), and PQUERY, (TALLY) is included
in each of these classes. Thus, it is sufficient to show that NPQUERYT (SPARSE)
NPQUERYT- (TALLY) NPQUERY, (TALLY)_ PQUERYt, (TALLY). The first
inclusion follows from the proof of Hartmanis [15] that NPr(SPARSE)=
NPT-(TALLY). The second inclusion follows from the argument that PT-(TALLY)-
P,(TALLY) in the proof of Theorem 3.6. The third inclusion follows from Savitch’s
Theorem [23].

Second, recall that PSPACE/poly=PSPACET-(SPARSE) so that each of the
classes in (a)-(h) is included in PSPACE/poly. Long [20], among others, has shown
that for any sparse set S there exist a sparse set S: (=prefix set of S) and a deterministic
polynomial-time oracle machine Mo that, relative to $2, will enumerate $1. Let q be
a polynomial that bounds the running time of Mo. Let L PSPACE (S1) and let M1
be a deterministic polynomial space-bounded oracle machine that witnesses this.
(Notice that Savitch’s theorem allows us to take M as deterministic since there is no
bound on the number of oracle queries.) Let M: be a machine that on input x first
simulates Mo to compute in time q(Ixl), a list containing precisely the strings in S
and then simulates MI’S computation on x, using the list to determine whether a query
string is in S1 instead of actually querying the oracle. Clearly, L(M:, S:) is in
PQUERY (S:)_ PQUERY (SPARSE) and L= L(M:, S:). Since L was taken
arbitrarily in PSPACEr(SPARSE), this yields the fact that PSPACE/poly_
PQUERYr (SPARSE). lq
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Consider reducibilities computed deterministically by machines that use work
space log n. Recall that =<g is transitive. For any fixed k, the queries may be computed
one at a time and the answers stored so that the list of k answers can be stored in
log n space. Thus, the reducibilities <og_

k-,,, k > 0, can be defined. For every set A and
every k > 0, let DLOGk.,t (A) denote the collection of sets B such that B <log

k-tt A. Also,
for every k > 0, let DLOGk_, (SPARSE) denote the union of all classes DLOGk.t, (S)
as S takes values in SPARSE. Then we have the following fact.

THEOREM 5.6. For every k > 0, DLOGk., (SPARSE)# DLOGk+I)., (SPARSE).

6. Consider the proofs given in 4. The proof of Theorem 4.2 is such that for
every k > 0 the set that witnesses the fact that Pk_,(SPARSE)# P(k+I)_,(SPARSE) is a
set that can be accepted by a deterministic Turing machine that runs in exponential
time, that is, in the class DEXT= tJc>o DTIME (2c"). Hence, there is no sparse set
that can be _-< ’_,-hard for DEXT. This yields a new proof of a result of Watanabe
[27], [28].

THEOREM 6.1. Let C be any class oflanguages that contains every language accepted
deterministically in exponential time, i.e., DEXT C. Then for every k there is no sparse

P rset that is <= k_,-ha d for C.
Similarly, the proof ofTheorem 4.3 is such that for every k > 0 the set that witnesses

the fact that Pb,,(SPARSE)# P,(SPARSE) is a set that is in the class DEXT. Hence,
there is no sparse set that can be =< ’,-hard for DEXT. This leads to the following result.

THEOREM 6.2. Let C be any class oflanguages that contains every language accepted
deterministically in exponential time, i.e., DEXT

_
C. Then there is no sparse set that is

<= ,-hard for C.
COROLLARY. No sparse set is bounded truth-table hardfor deterministic exponential

time.
COROLLARY. No sparse set is bounded truth-table completefor deterministic exponen-

tial time.
Results similar to Theorems 6.1 and 6.2 and the corollaries have been reported

by Balcfizar and Sch/Sning [6] and by Berman and Hartmanis [7], both dealing with
-<-P Watanabe [27], [28] has developed similar results for < P-hard sets for DEXT
and has shown that any such set must have density greater than log log n.

It is important to point out that all of the results presented here have to do with
sets reducible to sparse sets. There are other results in the literature showing that the
polynomial time truth-table reducibilities can be separated. Of particular interest are
the results in an important new paper by Watanabe [26]. Recall that DEXT denotes
the collection of all languages accepted deterministically in exponential time.

(1) For every integer k there exists a <=lk+l)_t,-complete set for DEXT which is
not --<kP_tt-complete for DEXT.

(2) There exists a -<-complete set for DEXT which is not --<_bP,-complete for
DEXT.

(3) There exists a -< --complete set for DEXT which is not -< ,P, complete for
DEXT.

Thus, there is a properly infinite hierarchy of complete sets for DEXT based on
the different (nonadaptive) bounded truth-table polynomial-time reducibilities.
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AN APPROXIMATION SCHEME FOR FINDING
STEINER TREES WITH OBSTACLES*

J. SCOTT PROVAN"

Abstract. We consider the problem of constructing a Steiner minimal tree connecting a given set K of
points and lying inside a polygonally bounded, not necessarily simply connected region R in the plane. We
first define the path-convex hull of K in R, which is a "sufficiently small" subregion of R guaranteed to
contain the Steiner minimal tree. We then give an e-approximation scheme to find the Steiner minimal tree
in R by reducing it to a Steiner tree problem on a "visibility graph" associated with K and the path-convex
hull of R. This will be a fully polynomial approximation scheme when K is restricted to lie on a small
number of interior points and boundary polygons of R. Several techniques are given which further reduce
the region in which the Steiner minimal tree is known to lie, and which extend known results for the Steiner
minimal tree problem without obstacles.

Key words. Steiner tree, approximation, polynomial algorithm, fully polynomial approximation, visibil-
ity graph
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1. Introduction. The Steiner minimal tree with obstacles problem (SMTO) studied
in this paper is described as follows: Let R be a polygonally bounded region of the
plane, that is, a connected (not necessarily simply connected) closed region of the
plane whose boundary is made up of a finite number of straight-line segments, and
let K be a set of terminal points lying in R. A spanning graph for K in R is a finite
set of straight-line segments lying entirely in R and connecting all pairs of points in
K. The length of T, l(T), is the sum of the Euclidean lengths of the line segments in
T. SMTO is the problem of finding the Steiner minimal tree for K in R, that is, a
spanning graph for K in R having minimum length, which must necessarily be a tree
(see Fig. 1). The special case where R is the entire Euclidean plane is the classical

(a) polygonally bounded region (b) Steiner minimal tree

FIG.
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Steiner minimal tree problem, and has a long history [3], [4], [5], [8], [10], [12], [14],
18], [26]. SMTO has drawn less attention 15], 16], [25], although the related problem
of shortest paths in the presence of obstacles has been fairly well studied [17], [22],
[23], [28]. An important closely related problem is the Steiner tree problem in graphs.
Here R is described as a graph G whose edges are given arbitrary lengths. The spanning
graphs and Steiner minimal trees are drawn from the edges of G, with lengths defined
accordingly. This problem has also been well studied [7], 13], [24], [27], [29], although
little connection has been made between it and the Steiner minimal tree problem.

SMTO is known to be NP-hard [10], even in the case where R R2. In fact even
efficient approximation schemes are unlikely to exist, in the following sense. For a
given instance (K, R) of SMTO, let T* be the Steiner minimal for K in R. For e > 0,
an e-approximation for T* is a spanning graph T for K in R satisfying

l(T)<-(l+e)l(T*).

A fully polynomial approximation scheme for SMTO is an algorithm which, for any
input (K, R) for SMTO and every e >0, gives an e-approximation to the Steiner
minimal tree for K in R in time which is bounded above by a polynomial in 1/e and
the length of the input describing (K, R) (see [11, 6.1], for a discussion of fully
polynomial approximation schemes). The construction of [10] shows that a fully
polynomial approximation scheme cannot exist for SMTOmeven when R is restricted
to be R2munless P NP (see [19, 4], for details).

In a recent paper [19] the author studies the connection between the Steiner tree
problem on graphs and the classical Steiner minimal tree problem. The notion of
path-convexity is used to effectively restrict the region in which the Steiner minimal
tree is known to lie. As a result, polynomial-time algorithms exist to find Steiner
minimal trees, or e-approximations thereof, when the terminals are located on the
boundary of the restricted region. The purpose of this paper is to extend these results
to SMTO, using some interesting recent results in the study of Steiner trees and
obstacle-avoiding paths. The paper is organized as follows. In 2 the notion of
path-convex hull is introduced, and it is shown that a solution to SMTO always exists
in any path-convex hull. An efficient algorithm is given to find a path-convex hull,
which makes use of the visibility graph of Lozano-Perez and Wesley 17] and the results
of Bienstock and Monma [1]. Section 3 gives a scheme for producing an e-approxima-
tion to SMTO. By applying the method of Erickson, Monma, and Veinott [9] this
scheme is shown to be a fully polynomial approximation scheme in the case where
the set of terminals lies on a small number of boundary polygons and interior points
of K. Section 4 shows how results of Bienstock and Monma [1], Gilbert and Pollak
[12], Cockayne [5], and Hwang et al. [14] can be extended to shrink the size of a
path-convex hull, and thus improve the complexity of the approximation scheme.

2. The path-convex hull. A typical input for SMTO consists of a list of terminal
points, together with a description of the boundary 0R of the enclosing region R. This
latter set can be assumed to consist of a collection Po, , Pm of simple (not necessarily
convex) polygons with Po the exterior boundary of R and P1," ", P, the boundaries
of the interior obstacles (see Fig. 1). If we denote by pO and P the interior and
exterior, respectively, of polygon i, then R 2 (p U P1 t_J. [_1 pO,,,). The P1, ",

are assumed to have pairwise disjoint interiors and to be contained inside Po. The
themselves need not be disjoint; indeed, an important special case is the Steiner tree
problem on a plane graph with a given straight-line layout, where the Pi are the
boundaries of the faces of the graph. It may also be that the exterior or interior
boundaries are absent, as with the classical Euclidean minimal Steiner tree problem.
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The most general description of a region with finite straight-line boundary also includes
the case where the Pi are nonsimple, though having connected interior. We remark,
however, that in this case R can be separated at the cutpoints of the Pi into regions
with simple boundary polygons, and SMTO can be solved by solving smaller SMTOs
separately on each subregion (see, for example, [19, 2]).

In this paper we will actually treat the discrete minimal Steiner tree problem (see
[10]); that is, we will assume that Euclidean distances are computed only to some
predetermined number of digits’ accuracy. Since the results in the paper concern
e-approximations to SMTO anyway, this is not a serious restriction, although it allows
intermediate complexity results to be stated without concern for the possible manipula-
tion of irrational numbers.

Throughout the paper we will use V to denote the set of vertices in t_J im=l Pi, and
will use v and k to denote the cardinalities of V and K, respectively. We first describe
a method for finding a "sufficiently small" subr.egion in which the Steiner tree is known
to lie, and give properties of this region. Let R be a polygonally bounded, connected
subregion of R. Then the exterior boundary of R can be traversed "clockwise" by a
closed walk (a polygon with possibly repeated vertices and edges)
F."/)o, el, /)1," , /)r--l, er, /)r "-/)0, where for 1,. ., r, e [v_, v] is the straight-
line segment connecting v-i and vi, and no point of R lies immediately to the left of
e when traversed from vi- to vi. The perimeter of R is defined to be

where Ile,[I II/)i- v,_,ll. (See [19] for a more comprehensive discussion of these terms.)
The region R is a path-con/)ex hull of K in R if it contains K and has minimum
perimeter over all such regions. Path-convex hulls correspond to convex hulls for the
classical Steiner minimal tree problem [12, 3.5] and to path-convex regions for the
Steiner tree problem on graphs [1], [19]. Their significance in SMTO is given by the
following result. Its proo,f is identical to that of Theorem 3 in [19].

THEOREM 2.1. Let R be a path-convex hull of K in R. Then there exists a Steiner
minimal tree for K in R which lies entirely in R.

Next we turn to the problem of constructing a path-convex hull for K in R. Here
we make use of a generalization of the notion of "visibility graph" introduced by
Lozano-Perez and Wesley [17] (and by Shamos [22] under the name "viewability
graph.") For any set S of points in R, define the S-visibility graph for R to be the
graph whose vertices are V t.J S and whose edges consist of those pairs of vertices
whose connecting straight-line segments lie entirely in R and contain no point of V (.J S
in their interiors (see Fig. 2). Visibility graphs have been studied in relation to the
shortest path problem [17], [23], [28], where the following theorem is implicit.

THEOREM 2.2. The shortest Euclidean length path in R between any two points u
and v can always be chosen to lie in the {u, v}-visibility graph for R.

We also note that the S-visibility graph has n Vt.J S] nodes and at most n2

edges, and the same methods for constructing visibility graphs (e.g., [23], 2) can be
applied to construct the S-visibility graph in time O(n2 log n). We next prove a variant
of Theorem 2.2 which will be useful for,constructing the path-convex hull for K in R.

LEMMA 2.3. Any path-convex hull R ofK in R has its exterior boundary composed
of edges of the K-visibility graph for R.

Proof. Let F be the closed walk traversing the exterior boundary of R, specified
so that the edges of F contain no points of V t.J K in their interior, and let v be a
vertex of F at which two or more noncollinear edges of F meet. Suppose v is not in
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FIG. 2. The K-visibility graph.

V t3 K. By the choice of v there must exist a pair of successive edges [u, v], Iv, w] in
F which are noncollinear and whose convex angle contains no other edges of F passing
through v. Now since v is not in V LI K, there exists a point v’ on [u, v] sufficiently
close to v so that Iv’, w]_ R and the triangle vv’w contains no element of K in its
interior. It follows that the closed walk F’ obtained by replacing u, v], v, w] by u, v’],
Iv’, w] in F has the property that F’ lies entirely in R, encloses K, and has smaller
length than F, a contradiction. Thus every such point v is in V t3 K, and the theorem
follows. [q

The problem of finding the path-convex hull now reduces to that of finding the
minimum length closed walk surrounding K in the K-visibility graph Gn for R. This
is facilitated by using two results. The first is due to Bienstock and Monma [1, Thm.
1] and, although it is stated in that paper for plane graphs, it applies as well to G/.
A shortest path tree for K in Gr rooted at r K is a tree consisting of a union of
shortest paths, one from r to each of the other vertices of K.

THEOREM 2.4 (Bienstock and Monma). Let T be any shortest path tree for K in
R. Then there exists a path-convex hull ofK in R which contains T.

The second result is proved in Theorem 1 of [20]. For path F, let F-1 be the path
obtained by traversing F in reverse order.

THEOREM 2.5. Let G’= V’, E’) be a graph embedded (not necessarily in planar
fashion) in the plane, and let P be a simple polygon in the plane such that no edge of G’
crosses P. For s V’ let ’ be the shortest path tree for V’ in G’ rooted at s. Then a
minimum length walk in G’ enclosing P and containing s can always befound in theform
F t.J { (u, v)} F-I, where (u, v) is an edge of G, and F, and F are the paths in ’froms to u and v, respectively.

We are now in a positiion to give an algorithm to find the path-convex hull of K
in R. An example is given in Fig. 3.

PATH-CONVEX HULL ALGORITHM
Input: Polygonally bounded plane region R, terminal set K R.
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(a) Steps 1-2 (b) Steps 3-5

(c) The path-convex hull

FIG. 3. Path.convex hull algorithm.

’(e)

Output: A path-convex hull of K in R.
The algorithm:

1. Construct the K-visibility graph G/ for R.
2. Find a shortest path tree T for K in GK. Let P be a clockwise traversal of T

(taken as a region). "Thicken" P by making each of its repeated vertices and
edges distinct, and delete all edges of GK which cross an edge of P. Call the
new graph G’= (V’, E’).

3. For each s V’ construct a shortest path tree rs for V’ in G’ rooted at s. Let
C’s C’(e) be a minimum-length circuit enclosing P formed by adding a single
edge e to %, and let C be the associated closed walk in G.

4. A path-convex hull of K in R is that region R enclosed by a minimum-length
walk C among those found in step 3.

From Lemma 2.3, Theorems 2.4 and 2.5, and the fact that the shortest P-enclosing
walk in G’ will always be a circuit, it follows that the above algorithm finds a path-convex
hull. For the complexity of the algorithm: the dominating computation is step 3, which
involves finding V’] shortest path trees in G’. Each tree can be found in time O(I V’[2)
using Dijkstra’s algorithm [6], and determining enclosure of P can be done directly
using "winding angles" (see [20]). Since V’I _<-2(u+ k) we have the following result.

THEOREM 2.6. The path-convex hull algorithm correctly finds a path-convex hull of
K in R in time O((u + k)3).
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3. An approximation scheme for the Steiner tree problem with obstacles. In this
section we give a procedure which for any e > 0 produces a graph G, containing K
and contained in R, such that a Steiner tree for K in G is an e-approximation to the
Steiner minimal tree for K in R. The following simple lemma is central to such a
construction.

LEMMA 3.1. Let R be a path-convex hullfor K in R. Then any Steiner minimal tree
T* for g in R has l(T*) >= 1/2p ().

Proof. Simply note that T* itself is a connected subregion of R containing K,
with p( T*) 21( T*). Since R is a path-convex hull for K in R, the inequality
follows, l-]

We next state three properties of a Steiner minimal tree for K in R which were
noted by Gilbert and Pollak [12, 3.3, 3.4, 8.2] for the classical Steiner tree problem,
and whose generalization to SMTO is immediate. A free Steiner point in T* is a vertex
of T* which is not in V t_J K.

Free Steiner Point Property. A free Steiner point in T* has exactly three adjacent
edges in T*; each pair of edges forms a 120 angle.

Wedge Property. Let/ be a triangle, one side of which is in OR and the opposite
angle is at least 120. If no point of V k.J K is in A, then neither is any free Steiner point.

Number of Steiner Points Property. The maximum number of free Steiner points
in T* is at most k-2.

The first two properties are used to prove the following important technical lemma.
For any 6 > 0, define S to be that set of points in R of the form (i6, j6), where and
j are integers.

LEMMA 3.2. Let T* be a Steiner minimal tree of K in R, and let u be any free
Steiner point in T*. Then for any 6 > O, there is at least one point of V k.J K k_J S which
is visible from u, and whose distance to u is at most 26.

Proof. Suppose there is no point of S which satisfies the requirements of the
theorem. Let v be a point of the form (i6, j6) which lies nearest to u. Then u v < <
26, and so v is not visible from u. This means that the line segment [u, v] must cross
some line segment [w, x] of OR, with w, x V, at a point v’ visible from u. Sweep the
line u, y] along y w, x] from y v’ toward x and w, respectively, until either a point
of V k.J K is intercepted or else we arrive at points y w’ and y x’ with Ilu- w’ll--
Ilu- x’ll 26. In the first case we have a point of V U K satisfying the requirements
of the theorem. In the second case, since Ilu-v’ll < it must be that _w’ux’> 120.
By the Free Steiner Point Property for u the triangle/ w’ux’ contains at least one
of the edges of T* adjacent to u, and hence at least one vertex of T*. But since /
contains no element of V k.J K, then by the wedge property it can contain no free Steiner-
point either, a contradiction. Thus the theorem is proved. [3

We can now give an approximation algorithm for SMTO which is similar to the
procedure given in [19] for the Euclidean minimal Steiner tree problem.

APPROXIMATION ALGORITHM FOR SMTO
Input: Polygonally bounded plane region R, terminal set K

_
R, e > 0.

Output: Spanning graph T in R with l(T) <- (1 + e) l(T*).
The algorithm:

1. Find a path-convex hull/ of K in R.
2. For 6 (p(R)/(12k-24))e, construct the S U K-visibility graph G (V, E)

for/.
3. Return the Steiner minimal tree T of K in G.
THEOREM 3.3. The tree T given by the approximation algorithm for SMTO is an

e-approximation to the Steiner minimal tree for K in R.
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Proof. Let T* be the Steiner minimal tree for K in R, chosen by Theorem 2.1 to
lie entirely in/. Choose, for each vertex v of T*, the nearest vertex v’ in V V LJ K LJ S
which is visible from v, so that by Lemma 3.2 ]]v-v’ll _-<23. For each edge [u, ] of
T* let u’ and v’ be the associated vertices as chosen above and let Fu be a shortest
path from u’ to v’ in R, so that by Theorem 2.2 Fu can be found in the KLJ
{u’, v’}-visibility graph for/ and hence it is in G. Let T’ be the union of the edges
of Fu, taken over all edges [u, ] in T*. We claim that T’ is an e-approximation for
T*, and therefore so is the Steiner minimal tree for K in G. First observe that for
each edge [u, v] in T*, the path F’: ’,u,[u u], u,[u,v], v,[v,v’], v’isapathfrom
u’ to v’ in R, and thus,

/(r) </(r)

-< I1,, v + 2r3,

where r- 0, 1, or 2, depending on whether 0, 1, or 2 of u and v are free Steiner points
in T*. Summing over all edges of T*, and using the Number of Steiner Points Property
and the 120 property for T*, we get

l(T’) _-< l(T*) / 6(k 2)3

I( T*) +-p(R ).

But by Lemma 3.1 we have l(Y*) _-> 1/2p(/). Thus l(T’) _<- (1 + e)l(Y*), and this completes
the proof of the theorem. El

Theorem 3.3 now allows us to solve SMTOmat least to within an e-approxima-
tionmby reducing it to a Steiner tree problem on graphs. This reduction, moreover,
has the following important property.

COROLLARY 3.4. Let c be any class of instances of SMTO having the property that
there exists an algorithm to find the Steiner minimal tree for any of the associated graphs
G whose running time is polynomial in the size ofG. Then there exists afully polynomial
approximation scheme for SMTO on the class .

Proof. Simply note that R can be enclosed by a square with sides of length at
most 1/2p(/), and so the number n of vertices in G is at most

,+k+ ,+k+

which is a polynomial in ,, k, and 1/e. Since G can be constructed in time O(n log n),
the theorem follows. El

Thus any algorithm for finding Steiner minimal trees in graphs that performs well
on the graphs G can be used to find efficient e-approximations, or even fully poly-
nomial approximation schemes, for SMTO. Several possibilities can be found in the
literature. The most promising in this context, however, appears to be that of Erickson,
Monma, and Veinott [9], since it can take advantage of the essentially planar nature
of SMTO. In order to use their method, we first prove a preliminary result related to
planarity and SMTO. Let be a graph laid out in the plane such that the edges of

are represented by straight-line segments. For re,ices u and v in , denote by
d (u, v) the Euclidean length of a shoest path in G from u to v. The graph U is plane
if it contains no crossing edges, and weight planar if every pair (u, v) and (w, x) of
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crossing edges has the property

Ilu-vll/llw-xll> d(u, w)/d(v,x).
LEMMA 3.5. G is weight-planar.
Proof Since we assume that no edge of G contains any vertices of G in its

interior, if the line,segments [u, v] and [w, x] cross, the intersection point y must lie
in the interior of R This means that there must be a point y’ in the interior of, say,
segment [y, u] such that y’ is visible from w. By using the triangle inequality, we have

u v + w x u y’ll + Ily’- y + Ily w + v y + Ily x

> Ilu -y’ll / w-y’ll / IIv-yll / Ily- xll
>-d(u, w)+d(v,x). [3

In Theorem 5 of 19] it is shown that the Steiner minimal tree for a weight-planar
graph is plane. We thus have the following theorem.

THEOREM 3.6. The Steiner minimal tree for G is plane.
The method of Erickson, Monma, and Veinott applies to finding minimum-

concave-cost flows in "k-planar" networks and is a significant generalization of the
method of Dreyfus and Wagner [7] for finding Steiner trees in graphs. We restate their
method here in the context of SMTO. We suppose that the terminal set lies on a subset
Q1," ", QI of bou.ndary polygons of/ and in addition comprises points QI+I," ", Qr
in the interior of R, which for simplicity we will take to be polygons with one vertex.
Each terminal u is assigned to a unique Q on which it lies, and we use the phrase "u
is on Q" to denote this. For each Q and each pair u and v of terminal points on Q,
define an interval [u, v) between vertices u and v to be the subset of terminal points
on Qincluding u but not including vvisited by traversing Q clockwise from u to
v. We will let u, u) denote all of the terminals on Q. Define a multi-subinterval of K
to be any nonempty subset I of K of the form I -[a, b)U... U [ap, bp), where each
[a, b) is an interval for a distinct Q, j 1,...,p. Note that Q,.-., Qv do not
necessarily comprise all of the Q. Denote by the collection of multi-subintervals.

It turns out that when the Steiner minimal tree for K in G is known to be plane,
it can be built up from Steiner minimal trees in G for sets I by recursively "patching
together" trees for smaller multi-subintervals into trees for larger ones. To be precise,
for any I and vertex v of G, define C(v, I) to be the minimum cost of a spanning
graph T for IU {v} in G, and if [I[_->2 define B(v, I) to be the minimum cost of a
spanning graph T for I U {v} in G having the property that v is either in K or has
at least two adjacent edges of T. The following recursive equations linking C and B
are exactly equations (2’) and (3) in [9], when applied to SMTO (cf. also equations
(1) and (2) in 19])"
(1) C(v, I) min {B(u, I)/ d(u, v)},

V

(2) B(v, I)= min {C(v, I)+ C(v, 12)}.
I1, I2,

I1,12 partition

By initializing C(v, {a}) d(v, a) for a K and then solving (2) and then (1) success-
ively for I of increasing cardinality and v V, we obtain the length of the Steiner
minimal tree for K in G as C(a, K {a}) for any a K. The actual Steiner tree can
be obtained by an appropriate labeling.

To analyze the complexity of computing C(a, K-{a}), let n be the number of
vertices in G. Let qi be the number of terminal points on Qi, with a taken to be on
Q1, and let q q Ni=2 (q + 1). Then each evaluation of equation (1) takes O(n) steps,
each evaluation of (2) takes O(q) steps, and 15[-< q2, for total time O(nq2(n + q)) to



928 J. SCOTT PROVAN

compute C(a, K-{a)), plus an additional O(n3) time to compute all shortest path
distances. The important thing to note here is that the term q does not depend on e,
but only on the location of the terminals in R. We thus have the following result.

THEOREM 3.7. Forfixed c, there exists a fully polynomial approximation scheme for
any instance (K, R) of SMTO, where K lies on at most c boundary polygons and interior
points of R.

Proof. If K lies on at most c boundary polygons and interior points of R, then
it must do so for any path-convex hull R of K in R as well. Further q kc, and so
the complexity of the above algorithm is O(nk2(n / k)). The theorem then follows
from Corollary 3.4. D

4. Improvements on the lath-convex hull. Theorem 3.7, although sufficient to give
an a priori bound on the complexity of solving an instance of SMTO, can be
strengthened considerably. For one thing, the set of c polygons on which K is required
to lie is allowed to include the exterior polygons of the path-convex hull as well as
the actual boundary polygons of R. It turns out, in fact, that in the sense of Theorem
3.7 it is always more efficient to work with the smallest possible region known to
contain the Steiner minimal tree for K in R. To be precise, for any polygonally bounded
region S containing K define b(K, S) to be the minimum number ofboundary polygons
and interior points of S whose union contains all points of K. Then b(K, S) essentially
determines the exponent c in the procedure given in Theorem 3.7, and hence should
be minimized in order to minimize the complexity of the procedure.

LEMMA 4.1. Let (K, R) be any instance of SMTO and R any connected polygonally
bounded subregion of R containing K. Then b(K, ) - b(K, R).

Proof. Let Q1," ", Qr be any set of boundary polygons and interior points of R
containing all points of K. Take any Qi and suppose that Qi bounds an interior
forbidden region QO (the case for the exterior forbidden region is symmetric). Since
/ t QO__ and / is connected, then QO is entirely contained in ( for one of the
boundary polygons (j defining/. But since K is contained in/ then all of the points
of K on Q must also be contained in tj. Thus by assigning, for i- 1,. ., r all points
of K on Q to be on the associated polygon Q we have K contained on at most r

polygons and interior points of R. By taking r- b(K, R) the lemma follows. [

It is known [2] that the computation of b(K, S) is NP-hard. The proof of Lemma
4.1 tells us, however, that for any choice of boundary polygons and interior points of
R whose union contains K, we can always find at least as few of the same in any
subregion/ also containing K. Thus the search for smaller regions containing a Steiner
minimal tree can only offer an improvement even if a nonoptimal choice of boundary
points and polygons is made.

The discussion thus far makes it clear that any method which can decrease the
size of a subregion of R known to contain a Steiner minimal tree for K will increase
the efficiency with which the Steiner tree can be found. The literature suggests several
important ways this can be done for both the classical Steiner minimal tree problem
and the Steiner tree problem on graphs, which have interesting extensions to SMTO.
They can, moreover, be applied to any combination, since they require no particular
global conditions on the region on which they are applied. In what follows, therefore,
We let R loosely refer to any region known to contain a Steiner minimal tree for the
given instance of SMTO.

4.1. Minimal lath-convex hulls. The path-convex hull algorithm, as given in 2,
will not necessarily give the setwise minimal path-convex hull for K in R. Bienstock
and Monma [1] give valuable insight concerning minimal path-convex hulls in the
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context of planar graphs. We first summarize the results in 2 of that paper (in
particular, Theorem 2 and Lemma 3) as they apply to SMTO. The proof follows
essentially the discussion in that paper.

THEOREM 4.2 (Bienstock and Monma). Let T be any shortest path tree for K in
R. Then there is a unique setwise minimal path-convex hull ofK in R which contains

T, and further, R contains the unique maximal set of terminal points on the exterior

boundary of any path-convex hull ofK in R.
This means that the best we can do as far as placing points on the exterior boundary

of a path-convex hull is to find the unique minimal path-convex region containing any
arbitrarily chosen shortest path tree T. One such method is given in 2 of [1]. When
treating SMTO, however, we can do this by a simple modification of the path-convex
hull algorithm given in 2 of this paper. We first modify the circuits C’s(e) found in
step 3 by pushing their sides "inward" as much as possible. Specifically, let Fx be the
unique s-x path in ’s, x V’, and let e (u, v) be labeled such that Fu is to the "left"
of F relative to the P found in step 2. Now form the "rightmost" s-u path F’" s

Uo, ul," , Uk U in G’ passing to the left of P by setting Uk+ V and for k, k
1, , 2 recursively choosing the first edge (ui_, ui) in a clockwise sweep from (u, u+)
satisfying (a) l(Fu,) =/(Fu,_l)q-du,_lU, and (b) the path Fu,_, u,..., /’/k passes to the
left of P with respect to F U{e}. Find the analogous "leftmost" s-v path F’" s=
Vo, Vl, , v2 v, passing to the right of P by the mirror image of the procedure given
above. Then F’U{e}U (F’)- will contain a unique P-enclosing circuit C(e), with
corresponding walk Cs(e) enclosing K in R. We now appeal to the following result.

LEMMA 4.3. The boundary of a minimal path-convex hull of K in R is among the
C(e) found in the modified procedure given above.

Proof. Let C be the boundary of the minimal T-enclosing path-convex hull of K
in R, so that the associated walk C’ in G’ is the innermost P-enclosing circuit in G’.
Now choose any s in C’ and let r be the tree found in step 2 of the procedure, with
Fx, x e V’, the associated s-x paths in r. The weight-planarity of G’ ensures that the
F do not have crossing edges. Since C’ encloses P, then there must be at least one
edge e (u, v) e C’ r whose associated circuit C’s (e) encloses P. Let C" C’s’(e) be
the circuit produced from C’(e) by the modified procedure given above. When we
construct C", we find it has the same length as C’, and hence C" completely encloses
C’ as well as containing both e and s. Now suppose C’ C" and assume by symmetry
that they differ on their "left-hand" sides with respect to e and s. Let F’’s
uo,"" ", ue u be the left-hand path of C" and let be the largest index for which
(u_, ui) is not on C’. If (x, u), u_ x ui+, is the corresponding edge of C’ adjacent
to ui, then (x, u) must occur in a clockwise sweep from (ui, u/) to (u_a, u). Further,
since C’ has minimal length, Fu, and Fx have the same length as the corresponding
sections of C’, and hence /(F,,)=/(Fx)+ dx,,,. Finally, since F, lies outside C’ and
does not cross F,,, the path Fx, ui,..., Uk must pass to the left of P with respect to

F U {e}, and this contradicts the choice of u_. Thus C’= C" and so the corresponding
walk C(e) is the boundary of a minimal path-convex hull of K in R. l-1

The modified procedure now chooses, in step 4, the unique innermost of the
minimum length C(e) found in the modified step 3. Since the (unique) innermost
C"s(e) for each s can be found in additional time k)2) (again using
"winding angles"), and the innermost of the C(e) overall s e V’ can be found by a
single pass through the IE’I v’l edges of the set of these cycles, then there is no resulting
increase in complexity using the modified procedure. We thus have the following result.

COROLLARY 4.4. A path-convex hull of K in R containing the unique maximal set

of vertices on the exterior boundary can be found in time O((,+ k)3).
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4.2. Path-convex hulls with respect to interior forbidden regions. For the purpose
of bounding the size of the region containing a Steiner minimal tree it is necessary to
take a path-convex hull with respect to the exterior polygon (if one exists) of R. The
results of 2 apply as well, however, when the path-convex hull is taken with respect
to any boundary polygon (cf. [1, 3] for planar graphs). To be precise, for inerior
polygon Pi of R, conceptually turn the visibility graph GK "inside-out," so that Pi
forms the exterior boundary. Now the Pi-path-convex hull of K in R is defined to be
the path-convex hull with respect to the new layout, and both the results and the
path-convex hull algorithm in 2 apply in this context. Define the Pboundary of any
polygonally bounded region/

_
R to be the boundary polygon of R enclosing Pi (or

enclosed by P if P is the exterior boundary). Then generalizing to Corollary 4.4 we
have the following result.

COROLLARY 4.5. For any boundary polygon P of R, a P-path-convex hull of K in
R containing the unique maximal set of vertices on its Pi-boundary can be found in time

O((, + k)3).
The modified path-convex hull algorithm can thus be applied successively to each

boundary polygon Po,"" ", P,,, resulting in a region R* which, in a sense, contains
the unique maximal set of terminals on its boundary polygons which can be achieved
by using P-path-convexity alone.

4.3. Convex hulls. As a consequence of the discussion in 2, we obtain a property
of the region R* which is analogous to the convex hull property given in [12], 3.5.
Let R be any polygonally bounded region, and let v be a point on boundary polygon
P of R. Then v is called a simple boundary point of R if it is not a terminal point and
is contained in no other boundary polygon of R. By applying the procedure given in

2, we have the following result.
COROLLARY 4.6. Let R be a P-convex hull ofK in R. Then every, simple boundary

point of the P-boundary of R has its interior angle (with respect to R) greater than or

equal to 180.
4.4. Steiner hulls and extensions. Cockayne [5] and Hwang et al. [14], in the

context of the classical Steiner tree problem, provide methods for further reducing the
size of a region known to contain the Steiner minimal tree. The reduced regions are
often much smaller than the path-convex hull, and the methods used are significantly
different from those related to the construction of the path-convex hull. To extend
these methods to SMTO, we first give the basic constructions of Cockayne and of
Hwang et al. as they apply to SMTO. Let F be a path in some boundary polygon P
connecting points (not necessarily vertices) u and v of Pi, and let A be a path in R
connecting u to v, which is otherwise disjoint from F. Finally let S be the region
enclosed by F U A. Both of the proposed criteria require the following common
condition:

(1) S- A contains neither pO nor any point of K.

The criteria now differ depending on the precise structure of A. In what follows, angles
will always refer to interior angles with respect to S.

3-point criterion(Cockayne). A=[u, a]U [a, v] such that (1) holds and

(2) aK;

(3) uav >= 120.
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4-point criterion (Hwang et al.). A =[u, a] U [a, b] U [b, v] such that (1) holds and

(2) a, b, K and [a, b] is a boundary edge of R;

(3) uab and abv are both convex and at least 120;

(4) the point O of the intersection of [u,b] and [a,v] satisfies uOv >

uab + abv 150.
To find F and A satisfying the 3- or 4-point criterion in O(k(u+ k)2) time, look

at each terminal (or pair of terminals connected by a boundary edge) and check each
pair of adjacent edges in the K-visibility graph to see whether or not the 3- (or 4-)
point criterion is satisfied. Note that since OR forms a planar graph, the number of
boundary edges connecting pairs of terminals is O(k). The key results of Cockayne
and Hwang et al. (Theorem 1 of [5] and the main theorem of [14]) can be extended
to SMTO via the following theorem.

THEOREM 4.7. Let F and A, as described above, satisfy either the 3-point or 4-point
criterion. Then the region S- A contains no part of a Steiner minimal tree for K in R.

Proof. First, let T’ be the Steiner minimal tree for K in the region R’ obtained
from R by removing all obstacles lying inside S. Then l(T’)-< l(T*), the length of the
Steiner minimal tree in R, and so if T’ can be shown to be shorter than any spanning
graph passing through S-A, then T* will also contain no part in S-A. Second, let
Fo be the (unique) shortest path from u to v in S (without obstacles), and let So be
the region enclosed by A U Fo. Then a simple convexity argument shows that T’ must
be contained entirely in So.

Case 1. Suppose that all angles of A are convex. Then Fo--[u, v], and we can
apply the results of Cockayne and of Hwang et al. as cited above. The proofs of these
theorems say, in effect, that if (i) a (and b, respectively) are in K, (ii) So-A contains
no elements of K, and (iii) T is a spanning graph for K which passes into So only via
the edges [u, a] and [a, v] ([b, v], respectively), then that part of T in So-A can be
replaced by appropriate segments of A to yield a smaller length spanning graph for
K. (The requirement in these theorems that u and v belong to K is irrelevant here.)
Since that is precisely the situation in this case, T’ can contain no part in S-A.

Case 2. Suppose that F and A satisfy the 3-point criterion, with uav >- 180.
Then So A, and we are done. ]

Theorem 4.7 can be used to produce a region, similar to Cockayne’s "Steiner
hull," that is guaranteed to contain the Steiner minimal tree for K in R. Such a region,
which will be called the path-Steiner hull for K in R, is obtained by successively
performing the following operation until it can no longer be applied.

Wedge operation. Let F c: p and A be paths as defined above which satisfy either
the 2- or 3-point criterion, and let S be the region enclosed by F A. Replace S by
A, and take the P-path-convex hull of K in the resulting region.

Figure 4 shows the application of a wedge operation. Theorem 4.7 along with
Theorem 2.1 immediately imply the following corollary.

COROLLARY 4.8. A path-Steiner hull ofK in R always contains a Steiner minimal
tree for K in R.

The next result gives the complexity of finding a path-Steiner hull.
THEOREM 4.9. Let m be the number ofboundary polygonsfor R. Then a path-Steiner

hull for K in R can be found in 0((rn + k) v + k)3) steps.
Proof We first prove that the wedge operation can be applied at most 6(m + k) 12

times. To show this, start with the graph G whose vertices are the points of K, together
with a point v chosen in the interior of polygon P, i= 1,. ., m, and whose edges are
of the form (u, v) where u K is on P. Then G is bipartite and planar, with m + k
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FIG. 4. Wedge operation.

vertices. Now each time a wedge operation is performed, we add an edge to G
connecting the points a (and b) in A to the vertex vi such that F

_
Pi. The wedging

operation may coalesce obstacles; in this case the points a (and b) are connected to
the appropriate vi so as to preserve planarity in G. We also note that a point may be
attached to the same boundary more than once, so that multiple edges are created.
The 2- and 3-point criteria imply, however, that each time a point a (or b) is attached
to boundary Pi, it lies on an angle of at least 120 interior to P. Thus a point cannot
be attached more than three times to the same boundary, and so edges in G can have
multiplicity no greater than 3. The construction of G ensures that it always remains
bipartite and planar, and has edge multiplicity at most 3. Since a bipartite planar graph
with n vertices and no multiple edges can have no more than 2n-4 edges, G can have
at most 6(m + k)-12 edges. Further, a new edge is added for each wedge operation,
and so the number of wedge operations is at most 6(m + k)-12, as asserted.

For the complexity of the entire process, we note that the wedge operation will
add no new vertices to V U K, since if either u or v in F is not a point of V U K, then
replacing S by A will make this point a simple vertex of P with interior angle less
than 180. By Corollary.4.6, the P-path convex hull/ will not contain this point, and
hence by Lemma 2.3, OR will contain no new vertices. It follows that the P-path-convex
hull can be computed in time O((,+ k)3), and since this dominates the search for
points satisfying the 2- and 3-point properties, then the overall complexity is O((m +
k)(, + k)3) as required. [3

To end this section, we show how the 2- and 3-point criteria can be extended
considerably by applying them in groups, so as to ignore obstacles which would prevent
them from being applied individually. In particular, let F and A be paths as defined
for the 2- and 3-point criteria, with S the enclosed region. Consider the following
condition.

r-point criterion. A [u, al] U [al, a2] U. U Jar, v] such that (1) holds and

(2) if all obstacles are removed from inside S, then there exists a series of wedging
operations which can be performed to reduce S to A.

An example is given in Fig. 5, where the 3-point wedging operation can be applied
successively with FI=F, A=[u, ai] U [al, V] and Fi [u, ai-1], Ai=[ai-1, ai]LJ[ai, v]

2,. ., r. As an extension to Theorem 4.7 we have the following result.
COROeeARV 4.10. Let F and A as described above satisfy the r-point criterion.

Then the region S-A contains no part of a Steiner minimal tree for K in R.
Proof The proof follows from repeated applications of Theorem 4.7, when we

use the argument in the first paragraph of the proof of that theorem. [3
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FIG. 5. r-point criterion.

As a simple application of Corollary 4.10, we can relax the requirement in the
4-point criterion that ,_uab and abv be convex, for if either angle fails to be convex,
then the r-point criterion applies by twice using the appropriate 3-point criterion. The
wedging operation can now be extended to F and A, thus satisfying the r-point criterion
to add to the repertoire of operations which reduce the region known to contain the
Steiner minimal tree. It is immediate from the proof of Theorem 4.9 that the wedging
operation continues to be limited to 6(m + k)- 12 applications, with complexity O((u +
k)2) time per application. Unfortunately the complexity of finding F and A satisfying
the r-point criterion now dominates the wedge operation itself. It is not even clear
that the r-point criterion can be recognized in time which grows polynomial in r,
although it is polynomial for fixed r.

5. Summary and extensions. As shown in this paper, SMTO provides a rich class
of important Steiner tree problems whose solution methods draw from both graph
theory and computational geometry. The results in 4, moreover, show the areas where
the greatest improvement in computational complexity can be achieved. Particularly
intriguing are results extending the material in 4, since this is where the specific
geometry of the Steiner minimal tree pays a critical role. An interesting extension to
the work in this paper is suggested by the work of Shiffer and Van Wyk [21]. Supppose
the region R has boundaries made up not of straight-line segments, but rather of
smooth non-self-intersecting curves. There exist straightforward analogues to most of
the results in this paper, although the description and complexity of the corresponding
procedures are significant unresolved issues. Little has been done even for the associated
problem of shortest paths with obstacles, and so we leave this whole area as an
interesting topic for future research.

Acknowledgment. The author would like to thank Dan Bienstock for pointing out
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Abstract. In this paper we show that nondeterministic space s(n) is closed under complementation for
s(n) greater than or equal to log n. It immediately follows that the context-sensitive languages are closed
under complementation, thus settling a question raised by Kuroda [Inform. and Control, 7 (1964), pp.
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1. Introduction. In this paper we show that nondeterministic space s(n) is closed
under complementation for s(n) greater than or equal to log n. It immediately follows
that the context-sensitive languages are closed under complementation, thus settling
a question raised by Kuroda in 1964 [9]. See Hartmanis and Hunt [4] for a discussion
of the history and importance of this problem, and Hopcroft and Ullman [5] for all
relevant background material and definitions.

The history behind the proof is as follows. In 1981 we showed that the set of
first-order inductive definitions over finite structures is closed under complementation
[6]. This holds with or without an ordering relation on the structure. If an ordering is
present the resulting class is P. Many people expected that the result was false in the
absence of an ordering. In 1983 we studied first-order logic, with ordering, with a
transitive closure operator. We showed that NSPACE [log n] is equal to (FO+ pos TC),
i.e., first-order logic with ordering, plus a transitive closure operation, in which the
transitive closure operator does not appear within any negation symbols [7]. Now we
have returned to the issue of complementation in light of the recent results on the
collapse of the log space hierarchies [10], [2], [14]. We have shown that the class
(FO+ pos TC) is closed under complementation. Our main result follows. In this paper
we give the proof in terms of machines and then state the result for transitive closure
as Corollary 3. The question of whether (FO + pos TC) without ordering is closed under
complementation remains open.

Our work in first-order expressibility led to our proof that nondeterministic space
is closed under complementation. However, because first-order expressibility classes
are not directly relevant to the proofs in this paper, we omit those definitions here.
The interested reader should refer to [7] for all these definitions. Note that the proof
of Theorem 3.3 in [7] is more complicated than the proof of Theorem 1, though it is
quite similar to it. The same is true of the proof in [6] that the first-order inductive
formulas are closed under complementation.

2. Results.
THEOREM 1. For any s(n) >= log n,

NSPACE [s(n)] co-NSPACE [s(n)].
Proof We do this by two lemmas. We will show that counting the exact number

of reachable configurations of an NSPACE[s(n)] machine can be done in

Received by the editors August 6, 1987; accepted for publication (in revised form) November 2, 1987.
This research was supported by National Science Foundation grant DCR-8603346.

? Computer Science Department, Yale University, New Haven, Connecticut 06520.
The configuration of a Turing machine is the contents of its work tapes, the positions of its heads,

and its state. Note that for s(n)>= log n, the number of possible configurations is less than csn for some
constant c, and thus can be written in O[s(n)] space.
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NSPACE [s(n)] (Lemma 2). Lemma 1 says that once this number has been calculated
we can detect rejection as well as acceptance. Note the similarity between Lemma 1
and a similar result about census functions in [12].

LEMMA 1. Suppose we are given an NSPACE [s(n)] machine M, a size s(n) initial
configuration, START, and the exact number N of configurations of size s(n) reachable
by Mfrom START. Then we can test in NSPACE Is(n)] ifM rejects.

Proof Our NSPACE [s(n)] tester does the following. It initializes a counter to 0,
and a target configuration to the lexicographically first string of length s(n). For each
such target either we guess a computation path of M from START to target and
increment both counter and target, or we simply increment target. For each target that
we have found a path to, if it is an accept configuration of M then we reject. Finally,
if when we are done with the last target the counter is equal to N, we accept; otherwise
we reject. Note that we accept if and only if we have found N reachable configurations,
none of which is accepting. (Suppose that M accepts. In this case there can be at most
N- 1 reachable configurations that are not accepting, and ourmachine will reject. On
the other hand, if M rejects then there are N nonaccepting reachable configurations.
Thus our nondeterministic machine can guess paths to each ofthem in turn and accept.)
That is, we accept if and only if M rejects.

LEMMA 2. Given START, as in Lemma 1, we can calculate N--the total number
of configurations of size s(n) reachable by Mfrom START in NSPACE [s(n)].

Proof Let Nd be the number of configurations reachable from START in at most
d steps. The computation proceeds by calculating No, N1, and so on. By induction
on d we show that each Nd may be calculated in NSPACE [s(n)]. The base case d =0
is obvious.

Inductive step. Given Nd we show how to calculate Nd+. As in Lemma 1 we
keep a counter of the number of d + 1 reachable configurations, and we cycle through
all the target configurations in lexicographical order. For each target we do the
following: Cycle through all Nd configurations reachable in at most d steps; again we
find a path of length at most d for each reachable one, and if we do not find all Na
of them then we will reject. For each of these Nd configurations check if it is equal
to target, or if target is reachable from it in one step. If so then increment the counter,
and start on target +1. If we finish visiting all Nd configurations without reaching
target, then just start again on target + 1 without incrementing the counter. When we
have completed this algorithm for all targets, our counter contains Nd+. Since N is
bounded above by cs") for some constant c, the space needed is O[s(n)].

To complete the proof of the lemma and the theorem note that N is equal to the
first Nd such that Nd--Nd+I.

Remark. In our original statement of Theorem 1 we made the assumption that
s(n) is space-constructible. However, the standard definition of a nondeterministic
Turing machine having space complexity s(n) is that, "... no sequence of choices
enables it to scan more than s(n) cells... ," [5]. Thus, the above proof works even if
s(n) is not space-constructible. We just let s(n) increase as needed.

The following corollary is immediate.
COROLLARY 1. The class of context-sensitive languages is closed under com-

plementation.
Proof Kuroda showed in 1964 that CSL= NSPACE [n] [9].
The kth level of the log space alternating hierarchy (Ek ALOG) is defined to be

the set of problems accepted by alternating log space Turing machines that make at
most k-1 alternations and begin in an existential state. Recently Lange, Jenner, and
Kirsig [10] showed that this hierarchy collapsed to the second level, ;2 ALOG. This
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result was then extended by several authors [2], [14] who showed that the log
space oracle hierarchy collapses to LNL. Here L= DSPACE [log n], and NL=
NSPACE[log n]. The logspace oracle hierarchy is given by EIOLOG=NL, and
Ek+l OLOG NLkLG. In the case of the polynomial time hierarchy, the oracle and
alternating hierarchies are identical, but they appeared to be different in the log space
case. We knew that the log space oracle hierarchy is equal to (FO + TC). This, together
with the above results, led us to expect Theorem 1. The following is again immediate.

COROLLARY 2. The log space alternating hierarchy and the log space oracle hierarchy
both collapse to NSPACE [log n].

In [7] we showed that NL is equal to (FO+pos TC). In Theorem 3.3 of [7] we
also showed that any problem in NL may be expressed in the form TC [](0, max),
where is a quantifier-free first-order formula, and 0 and max are constant symbols.
It now follows that the same is true for the class (FO+ TC).

COROLLARY 3. (1) NSPACE [log n] (FO+pos TC) (FO+TC).
(2) Anyformula in (FO+TC) may be expressed in the form TC[](0, max), where

q is a quantifier-free first-order formula.
Michael Fischer has observed that we can now diagonalize nondeterministic space

and thus easily prove a tight hierarchy theorem for nondeterministic space. Although
Corollary 4 is not new, our techniques give a much simpler proof than was previously
known. (See Chapter 12 in [5] for the old proof.)

COROLLARY 4. For any tape-constructible s( n)>= log n,

implies

NSPACE [t(n)] NSPACE [s(n)].

3. Conclusions and directions for future work. Most of the interesting questions
concerning the power of nondeterminism remain open. We still do not know whether
nondeterministic space is equal to deterministic space, or whether Savitch’s Theorem
15] is optimal. It is interesting to consider whether our proof method can be extended

to answer these questions, or to tell us anything new about nondeterministic time.
Soon after we proved Theorem 1, Tompa et al. [1] gave two extensions: they

proved that LOG(CFL)--the set of problems log space-reducible to a context-free
languagemis closed under complementation, and they showed that symmetric log space
(cf. [11], [13]) is contained in ZPLP, "... the class of errorless probabilistic Turing
machines running in O[log n] space and polynomial expected time." We suggest the
following open problems.

(1) Is (FO without _-< / pos TC) closed under complementation?
(2) Is symmetric log space, equivalently (FO/pos STC), closed under com-

plementation?
(3) Is NL equal to a complexity class that was previously known to be closed

under complementation, e.g., L, AC1, or DSPACE [log2 n]?
(4) In the proof of Theorem 1 we made use of the linear space compression

theorem, Theorem 12.1 in [5]. Our actual construction multiplies the space bound by
a factor of about eight. It is interesting to ask how much this can be reduced. Note in
particular that if we could complement log n times, while only increasing the space
bound by a constant factor, then it would follow that NL AC1.
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Abstract. The equational properties of iteration, when combined with composition and pairing, are
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Introduction. Iteration plays a fundamental role in the theory of computation: for
example, in the theory of automata, languages, formal power series, the semantics of
flowchart algorithms, and in the solution of domain equations. Since iteration almost
never occurs in isolation, but in conjunction with other basic operations such as
function composition, it makes sense to study this operation in the context of algebraic
theories, or clone of operations. The equational properties of iteration, when combined
with composition and pairing, are captured by the notion of iteration theory, which
was introduced in [BEW]. We believe, although all of our evidence will not be exhibited
here, that every iterative construction satisfies at least the properties of iteration theories.

In this paper, axioms are given for several varieties of iteration theories that
occur naturally in the semantics of programming languages, i.e., those generated by
theories of trees [EBT], theories of sequacious functions [CCE], theories of partial
functions, and theories of both sequacious and partial functions with distinguished
predicates. Since a set of equational axioms for all iteration theories has already been
found [Es80], we show which additional equations must be added to obtain a set of
axioms for these subvarieties. If one is convinced that these varieties have some intrinsic
interest, as we are, then the simple axioms for these varieties yield some important
information as to their essential properties. It should be noted that the framework of
iteration theories is purely algebraic; i.e., these theories make no use of order, metric,
or other additional structure. Nevertheless, this framework is adequate for the treatment
of the semantics of flowchart algorithms.

I. Preliminaries. Although we do not assume any acquaintance with iteration
theories, we will assume the reader has some familiarity with the calculus of algebraic
theories as presented in [CCE], and later in [BEW] and [Es80]. For some background
information on iteration theories, see [CCE] or [BEW]. Other papers that make use
of algebraic and/or iteration theories include the ADJ group [ADJ], Benson and
Guessarian [BG], Courcelle [BC], Nelson [EN], Stefanescu [St] and Troeger [DT].
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0. Notation. We will use E to denote a ranked set, i.e., a collection of pairwise
disjoint set En, n _>-0. The value of a function f: X- Y on an element x X will be
written variously as

xf, f(x), (x,f), f,,.

If A is a set, A* is the set of all finite sequences of elements of A, including the empty
sequence A. A+ is A*-{A}. We let A denote the set of all finite and infinite sequences
of elements of A. The set of nonnegative integers is denoted N, and for each n e N,
n] { 1,. , n}. We will sometimes identify the set X with the set X x 1].

1. Iteration theories. An iteration theory is, briefly, an algebra which satisfies the
same identities as the unfoldings of finite flowchart schemes (see [BE] for an analysis
ofthe equational properties offlowchart schemes). Equational axioms for these algebras
were given in [EsS0]. As algebras, iteration theories are many-sorted, where the set of
sorts is the set N x N of ordered pairs of nonnegative integers. The algebras have
several constants and three operations which correspond to three fundamental control
structures in flowchart algorithms: composition (or sequencing), tupling (a case state-
ment), and iteration (or looping).

An equivalent and somewhat simpler description of these structures is possible
when we use the terminology of elementary category theory. An algebraic theory T
[WL], [CCE] is a category whose objects are the nonnegative integers such that for
each positive integer n, there are n distinguished "injections"

in:ln

i--1, 2,"" ", n, which make n the coproduct of 1 with itself n-times. More precisely,
for any n morphisms gi" 1 p, 1, , n, there is a unique morphism g" n - p such
that

in" g gi

for each i. (We will omit the subscript on when the target is clear from context.) The
uniquely determined morphism g, written (g,..., gn), is called the source tupling of
the morphisms gi. In particular, for each n there is a unique morphism

0n :0- n.

We will assume that when n 1, the co-product injection 11 is the identity morphism
1 1. A theory morphism o:T T’ between algebraic theories is a functor which
preserves objects and the distinguished co-product injections.

It may be shown that the source tuplings ofthe distinguished injections correspond
to functions n]- [p], for all n and p in N. This correspondence is bijective whenever
12 22, a condition satisfied whenever there are at least two morphisms 1 - p, for some
p. From now on, we identify any such function with the corresponding morphism.
These morphisms are called the base morphisms in any algebraic theory. In particular,
the identity function n n corresponds to the identity morphism 1 n n in T.

For any pair of morphisms f" n -+ p, g" rn - p with the same target, there is a unique
morphism (f, g): n + rn - p such that in+m" (f, g) in" f, for 1 _--< _--< n, and (n +j).+,,
(f, g) =j,,. g, for 1 -<j _-< m. The morphism (f, g) is the source pairing of f and g.

If f/" n - p, 1, 2, the morphism

f +f2 nl + n2 -p +P2,

called the separated sum of f and f2, is defined as the source pairing of fl" in1 and
f_ in2, where in1 p Pl +P2 and in2 P2-* P +P2 are base morphisms corresponding
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to the inclusion and translated inclusion functions. The separated sum operation is
associative.

The following useful identities concerning source pairing and sums were proved
in [CCE], where we assume that the sources and targets of the indicated morphisms
are appropriate:

(1.1) (fl / gl)" (f / g2) (fl" f2) / (gl" g2),

(1.2) (f + g)" (f, g)= (f" f2, g" g2),

(1.3) (0p, g) g (g, 0p),

(1.4) (f, g)-h (f. h, g. h).

In [Es80] it is proved that an iteration theory may be defined as an algebraic theory
equipped with an operation ", which takes a morphism f: n-p/ n to a morphism
f:n- p, and which satisfies the identities (1.5)-(1.8) below:

(1.5) Left zero identity: (0,+f)*=0n+f, where f:m-p+m.

(1.6) Right zero identity: (f+ 0,)* =f, where f: m - p.

(1.7) Pairing identity: (f,g)*=(h*,gt.(lp, h*)), where h=f.(lp+,,g*), f:n-
p+n+m andg:m-p+n+m.

(1.8) Commutative identity:

(1" r/.f. (lp+nl),""" m" r/.f. (lp+ /m))*= n" (f" (lp + r/))*,
where f: n --> p + m, r/" m - n is a surjective base morphism, and r/" m - mare base with rh’r/= r/.

In any algebraic theory satisfying (1.5)-(1.7), the equation (1.8) is implied by the
following implication:

(1.9) Functorial dagger: if g" n - p + n and " m --> n is a surjective base morphism
such that r/. g f. (lp + r/), for f: m - p + m, then r/. g* f*.

It is shown in [Es83] that the fixed-point identity

(1.10) f f (lp,f),f n -->p+ n

is a consequence of the other conditions.
An iteration theory morphism q" I-> I’ between iteration theories is a theory

morphism which preserves dagger; i.e., (f*)q (fq)*, for all f:n-->p+n in/.

2. Theories as algebras. If we so wish, we might define an algebraic theory as an
N x N sorted algebra

T--{T(n,p): n,p>-O},

having, for each n-> 1, n distinguished constants in T(1, n), for i[n], and the
following operations:

composition:

source tupling:

T(n, p)x T(p, q)- T(n, q),

f, g---f, g;

T(1, p)n- T(n, p),

fl,""" ,f. --(f,,""" ,fn)
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which satisfy the following identities:

(2.1) f. (g. h)=(f, g). h forallf T(m, n),

(2.2)

(2.3)

(2.4)

(2.5)

g T(n,p), he T(p, q),

(1,,...,n,).f=f g. (1,, n,)= g forallf6T(n,p), g T(m, n),

in’(fl,’" ",fn)--fi, i[n] forallf T(1, p),

(1,’f,’’’,nn’f)=f forallfr(n,p),

(11) 11.
The first two identities ensure that T is a category with T(n, p) as the set of morphisms
n -p, and with (ln,..., n): n--> n as the identity morphism; thenext two make the
distinguished morphisms co-product injections. Equation (2.5) identifies the identity
morphism 1 - 1 with the co-product injection 1 --> 1. It should be noted that (2.1)-(2.5)
are not independent. As an algebra, an iteration theory is an N N sorted algebra
equipped with an additional family of operations

*:(n,p+n)- T(n,p),

f-f*
which, in addition to the theory identities (2.1)-(2.5), also satisfy the dagger identities
(1.5)-(1.8) above. An iteration theory morphism is just a homomorphism between the
corresponding algebras. An iteration theory morphism is determined by its values on
scalar morphisms, i.e., morphisms with source 1. An iteration theory morphism is
injective if and only if it is injective on scalar morphisms.

We will feel free to treat iteration theories as either categories or many-sorted
algebras, whichever seems more appropriate.

3. Some special base morphisms. In any theory, we denote the identity morphism
s- s as Is. The base morphism 1p with value is denoted ip. This notation can be
ambiguous when 1, but the context will prevent confusion. For positive integers k
and s, we denote by k’s" S- ks the morphism

(3.1) ,s= 0(i_1) 1_ ls + O(k-i)s "S -’ ks,

for 1,. ., k. Here, l must be the identity s--> s due to the fact that the source of
the morphism /’s is s. For example, when i---2, ’ corresponds to the function
mapping Is] to s + i. For use in V, note that for any morphism A: 1 s, the k-fold
sum

may be written as the tuple

A+A+...+A:k-ks

Note also that the base identity S2"-> S
2 is the tuple

,. ,s). s.(, ", s -4. Trees. Let E be a ranked set. We let Xp {Xl,’’ ", Xp}.
DEFN,Ia’ION 4.1. A E-tree t:l-p is a partial function

t: N*-)EO Xp
such that dom (t), the domain of t, is a prefix closed set containing the empty word
h. Furthermore, for each word w in N*, we have the following:

(4.1.1) If wtE,, n>0, then wisdom (t) if and only if i[n].
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(4.1.2) If wt Xp Eo, then for each i, wi is not in dom (t), i.e., w is a leaf of t.
A E-tree np is an n-tuple (tl,’’’, tn) of E-trees lp. The words in
dom (t) are the vertices of t, and for v in dom (t), vt is the label of the
vertex v.

Thus, there is a unique E-tree 0 p, for any p. The composite t.g of the tree t’l p
with the tree g (gl,’", gp)’P q is the tree t. g obtained by attaching a copy of
to each leaf of labeled xi. More precisely, for each w, v in N*, if wt x then (wv, t. g),
the value of t. g on wv, is vg. The algebraic theory identities force the definition of
the composite of (tl, tn)" n - p with g "p q to be

t g," t," g).

The operation of composition is associative. (A rigorous discussion of the algebraic
theory of trees can be found in [EBT].)

If t" 1 - p + 1 is a E-tree the iteration equation for t is the equation in the variable
z" l-p

z=t’(lp, Z).

For all trees t’l-p except the tree with At xp+l, the iteration equation for has a
unique solution, denoted t*. In the case that At Xp+, if we define t* to be the tree

’0p,

where " 1 - 0, is any fixed tree, then the operation of iteration t- is a total operation
on all scalar trees. The operation is extended to all vector trees t" n - p + n using the
pairing identity (1.7). Note that 1 . (See [BEW] for an analysis of how can be
defined in other theories when the iteration equation does not have a unique solution.)

DEFINITION 4.2. If is a E-tree 1 - p, and w is a word in dom (t), then wt is the
subtree of at w, defined by the equation

(u, wt)=(wu)t,

for all u in N*.
DEFINITION 4.3. For any E-tree ’1 0, (ETR, ) is the algebraic theory of all

Z-trees. In this theory, the operation is defined as above, so that 1 . We let
denote the ranked set obtained from E by the addition of a new letter _t_ to Eo. (E_tr, _t_)
is the subtheory of (E+/-TR, _t_) consisting of all E_-trees having only finitely many
subtrees wt, w N*. The trees in E+/-tr are the "unfoldings" of finite flowchart schemes.

It is shown in [BEW] that both theories (ETR, ) and (E_tr,_l_) are iteration
theories. Moreover, (E_tr, _L) is the free iteration theory freely generated by E (see
[Es80], [BEW]). From now on we will write "Ztr" instead of "(E+/-tr, _t_)." The inclusion
E Etr will usually be denoted r/. In the sequel, we will identify any letter r in E with
the corresponding tree. Note that in Ztr the distinguished morphism in" 1 n is the
tree with At xi. This tree will henceforth be denoted x.

FACT 4.4. It is proved in [Es80] that an algebraic theory T (equipped with a
dagger operation) is an iteration theory if and only if T satisfies all of the identities
valid in Etr, for each E.

5. Sequacious functions. Theories of sequacious functions were introduced in
Elgot [CCE]. These functions model the sequence of states produced by the atomic
actions occurring during the operation of a machine which follows a sequential
flowchart algorithm. It may be easier to follow the formal Definition 5.1 if the reader
interprets the set A in Definition 5.1 as the set of all possible states of the memory,
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and interprets f: n- p as a machine operating on A which takes inputs on any one of
n input lines. If the computation is successful, a finite number of states will have been
produced and the final state will determine one ofp output lines. When the computation
is unsuccessful (either nonterminating or abortive), a finite or infinite number of states
will occur during the run of f, and no output line will be determined.

DEFINITION 5.1. Let A be any set. A sequacious function f: n -* p on A is a function

f:A+x[n]UAA+[p]U A

such that the following conditions hold:

(5.1.3)

vf v, any v e A.
If (a,j)f= (v, i) A/ x [p], a A, then for all u in A*, (ua, j)f= (uv, i);
similarly, if a, j)f w A, then (ua, j)f uw, all u in A*.

If (a,j)f= (v, i) A/ x [p], then v av’, for some v’ in A*; similarly, if
(a, j)f= w A, then w aw’, for some w’ A.

The properties (5.1.1)-(5.1.3) imply the following.

5.2. A sequacious function is uniquely determined by its values on arguments of
the form (a, i) A x [n].

If u and v are sequences in A, we sometimes write u^v for the sequence obtained
by concatenating u and v; u^v- u if u is infinite.

The composite f. g of the sequacious functions f: n p and g:p- q is obtained
by standard function composition. The source tulling of sequacious functions f 1 - p,
i[n], is the sequacious function n-p whose value on (a, i) is the value of f on
(a, 1). If in "1 - n is the sequacious function determined by the requirement

(a, 1)in=(a,i),

it is easy to check that with the functions in as co-product injections, i [n], the
sequacious functions on A form an algebraic theory. We now define the operation of
iteration in this theory.

Let f: n - p + n be a.sequacious function on A. We will define f* n - p by making
use of some fixed element _1_ in A. Given (a, i) in A x [n], we consider the sequence

(Uo, io), (Ul, il),

where (a, i)= (Uo, io), and where, for all j, (/’/j+l, /j+l) is defined if

uj, ij)f uj+l p + i+l).
Either (u, i) is defined for all j => 0, or not. If not, let j be least such that

(uj, i)f a+ x [p] U A.
In this case we define

(a, i)f*=(uj, iy)f.

In the case where the sequence (u, ij) is infinite, the sequence ofwords (uj) is increasing,
by (5.1.3), and has a limit, say, u. The word u is finite if and only if the sequence (uj)
is eventually constant. In this second case we define

(a, i)ft u^_t_.

Now f* has been defined for all arguments in A x [n], and its values elsewhere are
determined by the requirements (5.1.1)-(5.1.3). Note that 1* is the sequacious function



VARIETIES OF ITERATION THEORIES 945

taking (a, 1) to a ^_t.. The resulting algebraic theory of sequacious functions is denoted
(Seq(a), _1_).

THEOREM 5.3. The theory (Seq (A), _1_) is an iteration theory.
It can be proved that, aside from satisfying the dagger identities (1.5)-(1.7), the

sequacious functions satisfy the functorial dagger implication, and hence the commuta-
tive identity (1.8).

6. Partial functions. Given a nonempty set A, the theory Pfn (A) is defined as
follows: a morphism f: n-* p is a partial function

f:ax[n]- ax[p].

The distinguished morphism

i,:ax[1]--> ax[n]

is the total function taking (a, 1) to (a, i). Composition is standard function composition
and the source tupling of the partial functions f/: 1 -* n is the function f: n - p defined
by

(a,i)f=(a, 1)f.

It is easy to see that Pfn (A) is an algebraic theory. Moreover, in Pfn (A), there
is a unique morphism _L: 1 0, the function which is always undefined. We turn Pfn (A)
into an iteration theory by defining f* as follows: given f: n-p+ n and an element
(a, i) in A x[n], consider the sequence

(Uo, io), (u, i),

defined by (uo, io)=(a,i), and (uj+,p+ij+a)=(uj, ij)f Now, either the sequence is
defined for all j, or there is a least j such that either f is undefined on (uj, i) or
(uj, i2)f A x [p]. In the latter case, we define (a, i)f*=(uj, i)f In the former, the value
of f* on (a, i) is undefined.

THEOREM 6.1. Pfn (A) is an iteration theory.
One proof of this theorem may be found in [BEW].

7. Congruences. A congruence on an algebraic theory T is a family ofequivalence
relations, one on each set T(n,p), n,p>-O, which is compatible with the theory
operations of composition and source tupling; i.e., if f gi, then fl"g f2"g2, and
(fl,""" ,f,,)(g,’’’, g,,). An iteration theory congruence is a theory congruence
compatible with the dagger operation: i.e., f* g* whenever f g. If q:T- T’ is a
morphism between iteration theories, then ker (q) is an iteration theory congruence
on T, wheref g (ker q) iffq gq. Conversely, if is an iteration theory congruence
on T, the collection T/ of -equivalence classes forms an iteration theory in the
usual way, and the canonical map : T T/ is an iteration theory morphism, where
fg is the -equivalence class off Congruences, as well as iteration theory morphisms,
are determined by their scalar components.

II. The method. An iteration theory identity is an equation f=f’ between terms
built from a ranked set, say , with 12 infinite for each k >_- 0, from constants i,, n ],
n > 0, using the operation symbols for composition, source tupling, and iteration. We
let fterm denote the N N-sorted algebra of terms. If T is an iteration theory, a
rank-preserving function h" fterm- T is a homomorphism if h preserves the constants
and the operations. Thus, for example, (f. g)h =fh. gh. An identity f=f’ is valid in
T if fh =f’h for every homomorphism h fterm- T.
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If K is a class of iteration theories, we let id (K) be the set of all identities true
in T for each T in K. The variety generated by a class K, V(K), is the class of all
iteration theories T such that each identity in id (K) is true in T.

In this paper, we are concerned with the problem of showing that for each of
several classes K of iteration theories, some subset Ax of identities has the property
that T e V(K) if and only if each identity in Ax is valid in T. In other words, we want
to show that Ax axiomatizes the variety V(K).

Our method to prove that a set Ax (along with the axioms for iteration theories)
correctly axiomatizes a variety V will be the same in each case. We will prove two
facts. For any ranked set E, let denote the least iteration theory congruence on Etr
such that fh f’h for each equation f=f’ in Ax and each homomorphism h" iqterm
Etr. First we prove that if ’Etr A is any iteration theory morphism from Etr into
a theory A in V, then is contained in ker (), the iteration theory congruence induced
by on Etr. Second, we prove that the quotient theory Etr/= is itself in V. The Basic
Theorem below shows that these facts are sufficient to show that Etr/= is freely
generated by E in V, and thus the axioms are complete. The difficult part is proving
that Etr/ is itself in the variety. We will do this in two steps" by finding an explicit
description for representatives of the -congruence classes, and then using this descrip-
tion to show how to embed the theory in one of the generating theories of the variety.
Thus, in each variety considered here, the free structures are subtheories of the generating
theories.

BAsic THEOREM. Suppose that for a given variety V and set of equational axioms
Ax, the following conditions hold"

(1) IfA V, then for any iteration theory morphism Etr A, tp t’ whenever
tt’.

(2) The quotient theory Etr/ is itself in V, where is defined as above. Then
Etr/ is freely generated in V by the composite rl" K, where r/" E- Etr is the inclusion
and"Etr- Etr/= is the canonical map taking a tree to its equivalence class. Further,
an iteration theory T is in V if and only if each axiom is valid in T.

Proof. Let be the intersection of all congruences on Etr of the form ker (),
for " Etr--> A an iteration theory morphism whose target is in V. Then it is easy to
see that Etr/-= is the free theory in V freely generated by

/. =" E Etr- Etr/=.
By (1), there is a unique iteration theory morphism a "Etr/ Etr/= such that

Etr .. Etr/=

Etr/
commutes. By (2), since Etr/-- is freely generated by r. _-" E- Etr Etr/--, there is
a unique iteration theory morphism, say 1, such that

Etr Etr/---

Etr/
commutes. But then both a and are necessarily isomorphisms, thus proving the first
part of the theorem. The second statement follows from the fact that if each axiom is
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valid in T, then T is a quotient of a theory of the form Etr/, for a sufficiently large
ranked set E. Thus T is in V, so the theorem is proved.

Example. Tree varieties. Let V denote the variety generated by the iteration
theories (ETR, +/-), for each E. We show that Vis axiomatized by the set of axioms for
all iteration theories, i.e., Ax is empty and is the identity congruence. Indeed, by
our method, there is nothing to do to satisfy (1) above. And, since for any E, the theory
Etr is a subtheory of (ETR, +/-), Etr is in V. Since the tree theories Etr are free in the
class of all iteration theories [BEW], V is the variety of all iteration theories.

We will use a slight generalization of the above theorem as well. For each ranked
set E, let F be a ranked set disjoint from E and let Er denote the ranked set E F.
The corresponding set of terms over Or has constants for each letter in F as well.
Suppose that K(F) is the class of iteration theories A such that for each Fn there
is a distinguished morphism TA:I n in A. Morphisms between theories in K(F)
preserve these distinguished morphisms. Homomorphisms from terms to theories in
K(F) preserve constants in F. It is easy to see that Ertr is freely generated in K(F)
by E.

COROLLARY. Suppose that for a given variety V of theories in K (F), and a set of
equational axioms Ax, written using terms in r, the following two statements hold:

(3.1) IfA V, then for any iteration theory morphism q :Ertr- A, tq t’q whenever
tt’.

(3.2) The quotient theory Ertr/ is itself in V, where is as above. Then Ertr/
is freely generated in V by the composite r , where r/: -> Ertr is the inclusion
and r :Ertr-> ,rtr/ is the canonical map taking a tree to its -equivalence
class.

IIl. Axiomatizing sequacious functions. In this section, we axiomatize the variety
SEQ of iteration theories generated by the theories (Seq (A), +/-), for each set A. The
axioms turn out to be particularly simple: in addition to the axioms for iteration
theories, we need add no new axioms. Thus, for each ranked set E, the congruence
in the Basic Theorem is the least congruence on Etr, the identity congruence. We need
show only that Etr is in SEQ. This fact will follow immediately from the theorem below.

In the proof of Theorem 1 we will make use of sets B and Ao B*, where

B=U (Y_.,. x [n]: n>-- 1)UY-.U{+/-}.

Recall that +/- is a letter not in E used to define 1 . The use of Ao causes a notational
problem. The elements of Ao are finite sequences of elements of B, and sequacious
functions on Ao involve sequences of elements of Ao. We will denote concatenation
of words on B by juxtaposition, and will use (al, , ak) to denote a finite sequence
in Ao.

THEOREM 1. For Ao as above, there is an injective iteration theory morphism

qo: Etr (Seq (Ao), +/-).

Proof Since this argument is a model for many to come, we will give a detailed
proof. Since Etr is freely generated by E, to define Oo we need specify the value of Oo
only on each letter in E.

We define opo when r En, n _-> 0, as the sequacious function determined by the
following conditions (recall 1.5.2). Let y be a word on B, say y-8162’’’ 6k, k >=0,
where 8i B, 1, , k. Then, if k > 0 and 81 (o-, il) E En X n ], n > 0,

(1.1) (, trqo) ((y t%... k), il);
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otherwise, if k or n is 0 or 61 # (tr, j),

(, o) (% ).

Thus, for all y in Ao, all o- in X,, n _-> 0, the value of trqo on 3’ is an element A x n O A.
The point of this construction is that the sequacious function F, tqo determined by
the tree determines the tree itself in the following sense. If 3’ codes the label of a
path in to a vertex v, Ft on 3’ will produce the sequence of words obtained from 3’
by deleting, from left to right, the letters in 3’ perhaps followed, at the end, by the
element yr. On words that do not code a path in t, F, will abort.

Example. Let r be a letter in El and suppose that a and/3 are in X2. Let be
the finite tree tr./3:1 - 2. Then

and

X X2

(r, 1)(fl, 2)Ft=(((cr, 1)(/3,2), (fl, 2),h),2) inAx[2],

(r, 1)(a, 1)Ft ((r, 1)(a, 1), (a, 1),/3) ina3o.
In order to prove the resulting iteration theory morphism qo is injective, we restate
some of the preceding definitions in the form of a proposition. In (2.3) below, when
3"Ao and 6=(6’,j)A-x[p], we will understand (3",6) to mean ((3",6’),j)
a- x [p].

PROPOSITION 2. Suppose that t:l - p is a tree in Etr. Write F, for tqo, and let 3" be
an element of Ao:
(2.1) If xj, then 3"F, 3’, j);

(2.2) If or. On, for some tr in Go U {_1_}, then 3"Ft % o-);

(2.3) If or. (q,. , t,), for some tr in E,, n >_- 1, and if 3’ (tr, i)^3" ’, then 3"Ft
(% ,’F,,);

otherwise

rF, (r, ).

We now show that qo:Etr- Seq (Ao) is injective. Assume that and t’ are distinct
trees 1-p in Etr. We use induction on the length of the shortest word v such that
vt # vt’ to prove that 3"F, # 3"Ft,, for some element 3’ in Ao.

Case 1. v-h. In this case the labels of the roots of the two trees are distinct.
Suppose, say, that tr. (q,. ., tk) and t’= tr’. (t,. , t). One of the letters tr and
tr’ may be _L. Then by (2.2) and (2.3),

If t’= xj 1 p, then

AFt (A, r) # (A,j) AFt,.

If is also a variable, say Xk, AF --(A, k). The basis step is complete.
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Case 2. v iw, t= o-. tl, tk) and t’= r. (t,..., t), for some k_>-j. Suppose
that ti t, where 1---i-< k. Then by the induction hypothesis there is some element
3/’ in Ao with

If we let y (r, i)y’, then

3/Ft (3/, 3/’ Vt, 3/, 3/’Ft 3/F,
The proof is complete.

We have completed the proof of the following theorem.
THEOREM 3. For any ranked set E, the iteration theory :Etr is in the variety SEQ,

since it is isomorphic to a subtheory of a theory of the form (Seq (Ao), 2.). Hence, the
variety SEQ is the variety of all iteration theories.

IV. Partial functions. In this section two main theorems are proved. First, an
axiomatization is given (Theorem 12) for the variety PFN generated by the class of
all iteration theories of the form Pfn (A). In the course of the proof, the free iteration
theories in this variety are explicitly exhibited. Second, it is proved (Theorem 13) that
there is only one way to define the dagger operation ? in any theory Pfn (A) so that
the resulting structure is an iteration theory. The latter result solves problem 3.9 in
Part 2 of [BEW] and is analogous to Theorem 4.3 in [AM].

PROPOSITION 1. There is a unique morphism 1 - 0 in any iteration theory T in PFN.
Proof. This condition is evidently an equational one, viz.,

(1.1) f-g forallf, g:l0,
which is satisfied in any theory of the form Pfn (A) and hence in each theory in PFN.
We now set out to show that this condition, together with the axioms for iteration
theories, axiomatizes PFN. Let denote the least iteration theory congruence on Etr
such that

(2) fg,
for all f, g: 1 -*0.

PROPOSITION 3. If q :Etr- Pfn (A) is any iteration theory morphism, then is
contained in ker (q).

Proof In Pfn (A), a morphism f:l -* 0 is a partial function

Thus f must be the empty function.
FACT 4. It is proved in [BT] that the least theory congruence such that (2) holds

is also the least iteration theory congruence such that (2) holds.
DEFINITION 5. A tree t" 1 - p, p >= 0 in Ztr is co-accessible if no leaf of is labeled

by a letter in o and, for each nonleaf vertex v in dom (t), there is some u in N* with
(vu) xi; i.e., there is some path from v to a leaf of labeled x, for some i [p].

Thus a tree 1 - 0 is coaccessible if and only if the root is a leaf labeled 2..
We introduce additional terminology. If t’l- p is a tree in Ztr, and v N* is a

vertex in dom (t), then we define the "label of the path to v in t," lab (v) for short,
as follows.

DEFINITION 6. If V is a vertex in dom (t), then lab (v) in is the word on the
alphabet (Zn [n]: n=> 1) defined by induction on the length of v as follows:

(6.1) If v h, then lab (v) h (h empty word):
(6.2) If v iw, and r. (tl,. ., tn) then lab (v) (r,/)^lab (w), where lab (w)
is the label of w in t.
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PROPOSITION 7. If and t’ are distinct co-accessible trees 1- p in tr, then there
is a leaf vertex v of t, say, labeled xi, for some p], such that lab (v) is not the label
of a path to a leaf labeled xi in t’.

Proof. Since and t’ are distinct, there is some vertex w in the domain of both
trees such that wt wt’. We may assume that wt is not +/-. If w is not a leaf of labeled
xi then some extension v wu is a leaf vertex of labeled xi. But then lab (v)=
lab (w)^lab (u) and lab (v) is the required path label.

We will need the following terminology in the proof of the next proposition. In
any theory, we say a morphism f: n - p factors through 0 if there is a morphism g n - 0
such that f=g. Op. In the theory Etr, if v is a vertex of the tree t’l-p, we call v a
0-vertex if vt factors through 0 but for no proper prefix w of v does wt factor through
0.

PROPOSITION 8. For any tree t:l - p, p _-> 1, in tr, there is some co-accessible tree
t’ with t’.

Proof. Let tl,’’" tk be all subtrees of which are distinct from +/- and which
factor through 0. If k--0, then itself is co-accessible. Let X be the set of all 0-vertices
v such that vt tk. Let t^:l- p + 1 denote the tree obtained from by relabeling all
vertices v in X as Xp+l and deleting the remaining vertices from the subtree t. Since

has finitely many subtrees, is in Etr. Also, by construction,

(8.1) t= .(lp, tk).

Let f= (lp, +/- "0p). Then

(8.2)

and f has at least one fewer subtrees distinct from +/- which factor through 0. In this
way, in finitely many steps we obtain a co-accessible tree t’ with t’-t.

In the next argument, we give a construction similar to that used to prove Theorem
III.1.

PROPOSITION 9. There is a set Ao and a theory morphism qo: tr- Pfn (A0) such
that if and t’ are distinct co-accessible trees 1 p, then tpo t’qo.

Proof. Let B (En In]: n >_- 1) and let Ao B*, the set of all words on B. Again,
to define o we need only define the image try0 of each letter in E. On +/- and the letters
in o the value of trqo is forced to be the empty function. Let w (61, il)’’" (k, ik),
k >_-0. If tr is in ,, n >= 1, then if k_-> 1 and 61 =r, rqo is defined by

(9.1) (w, crqo)= ((62, i2) (6k, ik), il);

otherwise, if k 0 or

(Thus, (h, trqo) is undefined.)
CLAIM.

(w, o’oo) is undefined.

(9.2)

(9.3)

If w is lab (v), where v is a leaf of labeled xi, then (w, tqo)= (h, i).

If w is not the label of a path in to a leaf labeled by some xi, (w, tqo) is
undefined.

The claim is easily proved by induction on the length of w. Now the proof is
completed by using Propositions 7 and 8.
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Example. Let tr be a letter in E and suppose that a and /3 are in E2. Let be
the finite tree er. fl:l-+ 2. Then, writing tOo as F,,

t-- O"

Xl X2

and

(or, 1)(fl, 2)F, (a, 2),

(tr, 1) F, aFt is undefined.

PROPOSITION 10. For any tree t:l- p there is a unique co-accessible tree t’:l- p
with t’.

Proof The proof follows from Propositions 9, 3, and 8.
PROPOSITION 11. tr/ belongs to PFN since tr/ is isomorphic to a sub-iteration

theory of Pfn (Ao), where Ao is the set defined in Proposition 9.
By the Basic Theorem II.1, we obtain the desired result.
THEOREM 12.

(12.1) tr/= is the free theory, freely generated by , in the variety PFN;

(12.2) the axiom (1.1) axiomatizes PFN.

Uniqueness. In [BEW], it was asked whether there is more than one way to define
the iteration operation ? so that the theory of partial functions Pfn (A) is an iteration
theory. We devote the remainder of this section to answering the question negatively.

UNIQtJENESS THEOREI 13. In each theory Pfn (A) there is only one way to define
? on partial functions f: n - p + n in such a way that the operation " satisfies all valid
iteration theory identities.

We may not define f* arbitrarily on f: n - p + n, since for example the fixed-point
identity (14) must hold.

In view of the pairing identity (see below), we need only consider the case that
f: 1-p+ 1.

Let f: A - A x p + 1 be a partial function in Pfn (A). Let a A. We consider the
following finite or infinite "f-sequence for a":

a ao, al, a2,

where

aof (a,, p+ 1), alf (a2,p+ 1),....

Either for some i, af is undefined (we say "f is eventually undefined on a") or
af= (b,j), for some j e [p] (we say "f is eventually successful on a with value (b,j)"),
or the sequence is infinite. In the last case, we say "f cycles on a."

Let

S {a e A: the f-sequence for a is finite},

C A- S {a A: f cycles on a}.

It is easy to see that the value off* is determined on the elements of S by the fixed-point
identity

(14) f*=f.(lp,f*).
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Indeed, if a S, then f* is undefined on a if f is eventually undefined on a, and
af (b, j) iff is eventually successful on a with value (b, j). Thus, the only question
unresolved by this particular identity is how f* behaves on elements in C. We wish to
show that if f cycles on a, f* must be undefined on a.

Using the following identity"

(15) If" (/3 + 11)] ___ft./3,
where f’l-p + 1 and /3"p-+ 1, we see that we may also assume that p 1, since f
cycles on a if and only if f. (/3 + 11) cycles on a.

In the discussion we will use two versions ofthe pairing identity: forf: n -+ p + n + m,
g’m-+p+ n+m,

(16) (f, g)*= (h*, g*.(lp, h*)),
where h f. (1p+,, g*);

(17) (f g)* ((f. p)*" (lp, k*), k*),
where k g. (lp +0m, (f" p)*, 0p+ lm), and p’p+ n+ m-p+ m+ n is the base permu-
tation

p lp +(0m + ln, lm +On).

(See [BGR] or [BEW] for a derivation of the pairing lemmas.) Note that (16) is I.(1.7).
We shall also use the following fact:

(18) (f-)* =f*,
for all f: n -+ p + n, where

f2=f’(lp+On,f).
Now let f" A- A [2] be a partial function. Define the partial function f" A-

A [3] as follows"

xf’= (y, 3) if xf= (y, 2) andf cycles or is eventually undefined on x,

xf iff is eventually successful on x,

undefined, otherwise.

Note that

(19) If fl’3-2 is the base morphism (11+01,01+11,01+11) then, f’./3=f; also,
if f’ is eventually successful on x, then f’ is "immediately successful on x,"
i.e., xf’= (y, j), for some j [2].

Now, by the pairing identity (17) above,

f’>*(01 -+- 11) (02 -’{- 11, k*,
where

But by (16),

k=f’. (11--O1, (01 ’]- 11 "-’-01) "l’, O1-- 11)

=f’" (1, +0,, 01 -{- 11, O1-{’- 11)

=f’.=f

f’)* f’* h*>,(01-- 11)" (02+ 11, (1,,
for some h. Hence, if f cycles on x, so does f’, and if xf* is defined, so is xf’*.
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The previous discussion and the identity (15) allow us to assume thatf: A - A x [2]
is a partial function such that

(20) If f is eventually successful on x, then xf=(y, 1) for some y; i.e., f is
immediately successful on x. Further, there is some ao A such that f cycles
on ao and aof is defined.

Suppose that

(21 aof* b, 1 ),

and let c A be some element such that c b. Let hc :A- A be the constant function
with value (c, 1), and let

so that

g=f’(hc+ll),

g ft hc.

Thus, aog*= alg*= (c, 1), by the fixed-point identity (14), where aof=(al,2).
We now define the two partial functions fl and f2:l- 3 as follows:

fl=f.(1,+0,+1,) and f2=g+0,.

Using version (17) of the pairing identity, we see that

(11 -01)" <fl,f2)*--f" <11, (g2),),

by property (20) off Further,

(11+01)" (f,f)* =f" (11, (g2),)=f. (11, g*),

by (18) above. But using version (16) and property (20),

(11 -01)" <f,f2>t-- (f2)t _ft.

But then,

aof*= aof" <11, g*)= alg*;

and the value of the right-hand side is alg*=(c, 1), contradicting (21).
We have thus proved the following: if the Y-operation is defined on Pfn (A) so

that the resulting theory is an iteration theory, then there is only one way to define it
on any given partial function f: 1--> p + 1; namely, if f cycles on x, f* is undefined at
x. Otherwise, the value xf* is determined by the fixed-point identity.

When defining the element c above (after (21)), we assumed that the set A contains
at least two elements. In the case that A is a singleton, there is a much easier argument.
Indeed, if f: 1-> 2 cycles on ao but aof* is defined, consider the function

g =f. (_1_. 01 + 11).

Then g =f, since aof= (ao, 2), and ao is the only element in A. But

g* =f* _1_ 01,

by (15), so that aof* is undefined, a contradiction. The Uniqueness Theorem 13 is
proved.
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V. Sequacious functions with predicates.
A. The theory of one generalized predicate.
DEFINITION 1. Let T be the iteration theory (Seq (A), 3-) (i.e., 1 3-). Let s be

an integer greater than 1. A sequacious function A 1 -> s in T is a (generalized) predicate
if, for all a A, there is some i Is] with

aA=(a,i).

When we wish to emphasize that A will have a fixed interpretation as a generalized
predicate in T we will write

Seq (A, _l_, A)

for this theory. Let SEQ (A) be the variety of all iteration theories generated by theories
Seq (A, 3-, A), for each A. In this section we will show that the identities (a.1)-(a.3)
below axiomatize SEQ (A).

PROPOSITION 2. Any generalized predicate A:I -> s satisfies the following identities
in T.

(a.1) A. (1,,..., 11)= 1,,

(a.2) A. (A+...+A) =A. p,

where there are s A’s in the sum and p s--> s2 is the base function taking 6 [s] to

(i-1)s+i;

(a.3) (A. y)*: A. y. (lp+3-),
where y s p + 1 is any base function.

If is any ranked set, let Ea be the ranked set obtained by adding a new symbol
A of rank s to (as well as the letter 3_ to o). Let be the least iteration theory
congruence on Zatr such that

(a.l’)

(a.2’)

(a.3’)

A. <11, 1> 11,

a. (a+. .+a)a. p,

(A y)*A y. (1,+3-),
where p and y are the base functions described in (a.2) and (a.3) above.

FACT 3.1. For each tree t’l - p,

tA.(t,’’ ",t).

FACT 3.2. Suppose that =A. (A. U 1, A" uS), where each ui’s-p. Then,
for the composite of the base j," 1 - s with u i" s - p,writing uj

t A (u’,, u2, u).

We call a scalar tree in EAtr "A-separated" if for any word w in dom (t) and
for each [s], (wi)t # A if wt A; is "alternating" if for each w in dom (t) of even
length, wt A. Note that if is both alternating and A-separated then for w in dom (t),
wt A if and only if the length of w is even. In particular, is A-rooted. The A-separated
alternating trees will be shown to be representatives of -equivalence classes.

We state four lemmas, proved later, which are enough to prove the axiomatization
theorem.

LEMMA 4. If q :ZAtr- Seq (A, 3_, A) is any iteration theory morphism mapping the
letter A 1 --> s to the generalizedpredicate A 1 -> s in Seq (A, 3_, A), then tq t’q whenever
t-t’.
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LEMMA 5. For every tree t:l-p in Zatr there is a A-separated alternating tree
t’ 1 - p with t’.

LEMMA 6. There is a particular iteration theory morphism

o:Yatr Seq (Ao, +/-, A)

such that to t’po if and t’ are distinct A-separated, alternating trees.
LEMMA 7. Eatr/ is isomorphic to a subtheory of the theory Seq (Ao, +/-, A) of the

previous lemma.
Let r/:E- Eatr be the obvious inclusion function, and let a:Eatr- Zatr/ be

the canonical map taking a tree to its -congruence class.
THEOREM A. Eatr/ is freely generated by q na :E- EAtr/ in SEQ (A) and the

identities (a.1)-(1.3) axiomatize SEQ(A).
Remark. From Lemmas 5-7 it follows that for each scalar tree there is a unique

A-separated, alternating tree t’ with t’, so that the free theories Eatr/ are concretely
described by these trees.

We need only prove the lemmas.
Proof ofLemma 5. In fact, we show how to obtain a A-separated alternating tree

t’ by an inductive procedure. The difficult part of the procedure ensures that no two
A-labeled vertices are adjacent. It will follow that if the procedure is applied to
alternating trees, the result is also alternating. We know that any scalar tree in Eatr
may be obtained from the atomic and base trees (i.e., those trees of height at most 1)
using the operations of scalar iteration and composition in the form

t= to"
where to:l k, and ti:lp, for i= 1,. ., k.

The base and atomic trees are clearly A-separated. For each base/3:1 p

and the right-hand tree is alternating. If tr E,, then

for an appropriate base y, and again the right-hand tree is alternating. (There are s
o-’s and n A’s on the right-hand side.) The tree A itself is A-separated and alternating.

Now assume that t:l-p+ 1 is A-separated and alternating. We will show that
there is a/X-separated alternating tree t’, with t’ t*.

Recall that is A-rooted. For notational simplicity, assume A: 1 - 2, so that

t= A. <t, t:>.
Case 1. One (or both) of ti, i-- 1, 2, is the base Xp+
Suppose that just t2 is Xp/l. In this case, we use the fact that if

t= f’ (g, 0p + 11),

then t*=(f*, g)*, and in this case f*.g= A. (q, _L.Op+). The details of the other
cases are similar and are omitted.

Case 2. Otherwise (see Fig. 1 for an example). Call a leaf v of

t= A" (t,, t2).
"/-bad" (i 1, 2) if v is labeled Xp+ and v is the ith successor of a vertex labeled A.
Let the trees ?, 71, 72:1 p + 3 be obtained from t, tl, t2 by relabeling the /-bad leaves
xp+l+i, i= 1, 2. Now define h :3p+3 by
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FIG.

(Figure 2 indicates the triple h for the tree in Fig. 1.) Note. If/3:3 1 is the unique
base morphism, then ?. (lp +01,0p q-)-- t. A similar statement holds for ?, i= 1, 2.

CLAIM 1. h*:3p is A-separated (i.e., each component of h* is A-separated),
since 71 and ?2 are not A-rooted and there is no A-labeled vertex in h having a leaf
labeled Xp/l as an immediate successor (see Fig. 3 for the same example).

Let g 3 p + 3 be the composite of h with

f (1p+l + 02, 0p+l q- A, 0p+l ql_. m).

CLAIM 2.

g*= (t* tl "(lp t*), t2 "(lp

Proof It is easy to see that there is a unique solution to the iteration equation for
g. Let k’3- p denote the morphism on the right-hand side of (,). We will show that

g.(lp, k)=k.

Indeed,

f" (lp, k)=(lp, t, A. (tl "(lp, t*), 2 "(lp, t*>), A" (tl "(lp, tt), 2 "(lp,

(lp, t*, t*, t*),

FIG. 2
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FIG. 3

since A. (t, t2) and t- (lp, t*)-- t*. But then,

t*h. f. (lp, k)= (?, ?1 ’2) (lp, t*,

(?, ?, ?2). (1 v +0,, 0v +/3). (lv, t*)

(t, t,, t:)" (lp,

(t*, t "(lp, t*), t2 "(lp,

Thus g*= k, as claimed.
CLAIM 3. g h.
Indeed, g is obtained from h by attaching the tree A" (xp+2, Xp+3) to any leaf of

the components of h labeled Xp++i, i= 1,2. But such leaves have immediate pre-
decessors labeled A, by construction. Using Facts 3.1 and 3.2 and the fact that h has
only finitely many A-rooted subtrees such that some successor of the root is labeled
xp+l+i, i= 1, 2, it follows that g h.

By Claim 3, and the fact that is an iteration theory congruence, it follows that
h* g*. Thus the first component of g*, namely t*, is congruent to the first component
of h*, which is a A-separated tree.

Note. Since was already alternating, the first component of h* is also alternating.
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A similar but much simpler argument shows that if each tree ti, i-0,..., k is
A-separated and alternating, and

t= to" (tl,’’’, tk)

then we can construct a A-separated alternating tree t’ congruent to t.
Lemma 4 is obvious. Lemma 7 follows immediately from Lemmas 6 and 5.
We only sketch the proof of Lemma 6, since it is similar to previous arguments.

Let Tv denote [s]*, the collection of all finite sequences of elements in [s] (which we
think of as "truth values"), including the empty sequence A. Let B denote the union
of the sets Zn x [n], n -> 1, with the set Z {_1_}. Let C be B*. Finally let Ao Tv x C.
We consider the theory Seq (Ao, _1_, A), in which the generalized predicate A is defined
below. In the following definitions, let

s= (bib2" bk, cl cj) Ao.
We let

_
denote the pair (A, _1_) in Ao. The predicate A in Seq (Ao, , A) is defined as

follows:

A=(,bl) ifk->l,

(, 1) otherwise.

For o- Zn, n => 0, let trqo be the sequacious function determined by the condition

stro (s^(b2 bk, c2"’’cj),jl)

:^(A, tr) otherwise.

ifk>0,j>0 and Cl=(tr, jl);

It is not difficult to show that if and t’ are distinct A-separated alternating trees then
trpo t’qo.

This concludes the proof of the lemmas and Theorem A is established.

B. The theory of several binary predicates. In this section, we show that the variety
SEQ (II) generated by theories of sequacious functions equipped with a finite set II
of binary predicates is isomorphic to the variety SEQ (A), for a generalized predicate
of the appropriate rank.

Let II (rl, r2," ", rr} be a set of new letters and let 2;n denote the ranked set
obtained from Z by adding the set II to 2.

For 1,- ., r we define trees in Zntr as follows.
DEFINITION 8.

A1=Tr’l2
Aj+I Trj+I (Aj + Aj) I 2j+’.

For k 1,. ., r, let/3k" 2k 1 denote the unique base morphism and by induction we
define the base maps ," 2k - 2, for 1 <- -< k -< r, as follows.

DEFINITION 9.

’1 11+ 11(= 12"2-> 2),

for <- k,

when i=k+l,

,k+ (t,k, ,k),

k+l

as an abbreviation, we omit the superscript,

(9.a) /"k v for 1 -< k _-< r.
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Let denote the least iteration theory congruence on En tr such that

(c.1) cr/" (11, 1)-= 11 for each [r],

(c.2) 7ri" (Tri+Tri)=Tr" (1+02+11) foreach i[r],

(c.3) r, (Trj + 7rj) 7rj (Tri + 7r) (1 + p + 11) foreachi,j[r],

(c.4) JAr" y]*---- At" y" (lp+_L).

In (c.3), p:22 is the nontrivial base permutation, and in (c.4), y:2 p+l is any
base morphism; Ar :1 2 was defined in Definition 8. Below, the axiom (c.3) is used
only when # j.

Let SEQ (H) denote the variety of iteration theories generated by the theories
Seq (A, _L, II) in which each letter 7r in H is interpreted as a binary predicate. We will
prove that Entr/= is freely generated in SEQ (H) by E. The proof will be easy once
we show that, in fact, if s 2 and A:I s is a new letter, then the theories Eatr/
and Entr/= are isomorphic. (Here is the congruence on Eatr defined A.) We need
some preliminary facts.

PROPOSITION 10. For each pair i, k with 1 <- <- k <= r,

(10.1) Ak" k 11,

(10.2) Ak" u/k-- 7ri,

(10.3) Ar" Ui =-- 7ri,

(10.4) ui" (11, 11) fir.

Proof. The proofs of (10.1) and (10.2) are by induction on k. When k= 1, A 7rl
and u{ is the identity base morphism. Also, 7rx. ill-= 1, by (c.1). Assume that (10.1)
is true for k. Then,

Ak+l" k+l TJ’k-t-1 (Ak -[" Ak) (k, k>
==+1" (11, 11)

11.
Now for (10.2), if i k,

w+" <w, wi> by the induction hypothesis,

i" (k+l + =k+l) <11 +0,, 1, +01, O + 11, O1 + 11)

= " (1+1)

i"

If i= k+ 1, then

+’ (a + a). (# +)Ak+l /k+l T/’k+l

r+l (11 + 11)

T/-k+

The proof (10.2) is complete. Clearly, (10.3) is a special case of (10.2). Equation (10.4)
is obvious, since there is a unique base morphism n 1, for n-> 1.
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We define an iteration theory morphism q :Entr-* Eatr (where A: 1 --> s, s 2r), as
the unique morphism extending the following function:

rr for each r in E,

for lir.
POPOSTON 11. For each pair of trees t, t’: n p in Entr,

if t’ then t t’.
us, ifn Entr Entr/ and :Etr Etr/ are the canonical morphisms, there is
a unique iteration theory morphism Entr/ Etr/ such that thefollowing diagram
commutes:

ntr atr

ntr/= ,atr/

Proof of the Proposition. It is enough to prove that ticp tl#, where ti is the term
on the left-hand side of (c.i) for i6 [4], and t’i is the right-hand term, since ker (.
is an iteration theory congruence on Entr. Thus, we must prove the following facts:

(11.1) A. /i" (11, 11) 11,

(11.2) A. vi" (A" vi+A" vi)A vi" (1+02+1),

(11.3) A. v (A. vj+A. pj)A, pj. (A. vi+A. vi). (l+p+ll),

#j, p" 2 2 the nontrivial permutation.

(11.4) [" r" (" r-1 +" r-1)" ’’’" (" 1 +’" "+" 1)"

[" r" (a" r_l+a r--1)"---" (" 1+’" "+a" Pl)" T] (lp+),

where y" 2 p + 1 is any base morphism.
Proqf of ll.1. A.v,.(l,l)=A.(l,...,l)l,by(a.1).
Proofof 11.2. We use the base morphisms ’* defined in the preliminaries. First,

re" (k. v + A vg) vg. (A + A) (vg + vg), and for any base morphism v" s 2,

. (a+a)=(a+...+a). (,,"
But applying (a.2),

,v ,"" ", *sv )" (i + i)"

Calculating, for j e[s], the value of the base function p (W 2’*, W,). (vi+ vi)
on j is four if jvi =2 and 1 if jvi= 1. Thus this function is exactly the function
V (1 +02+ 1).

The proof of (11.3) is similar and is omitted.

Proof of 11.4. For k 1,. ., r, we define morphisms E" 2 as follows"

E A v,

E+ A" v+ (E+E).
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Then

Er--A" Pr" (A. Pr--,d-A" Pr--,)’’’’" (A" p,+" .d-A.

We will show that for each k [r], there is a base morphism Crk" 2 2 such that

Ek A O"k

Indeed, when k 1, o’1 vl, by definition

E+ A u+ (E + E)

=A. u+ (" r+A. r)

" m+," (A + X). (+ ,)

=. (X+...+A). . (+),

for a base ( (see the preliminaries). p. . (r + r),

where p" 2r 2r+r is the base morphism given in (a.2). Let

r+ p. . (r +

Now to prove (11.4), we have that

[." (’-,+" -,)’..." (’m+’"++/-" m)" ]t

[Er. /]t [A, O.r. /]t

by (a.3),

Er" 3/. (lp q-_L)

--[A, /dr, (A. /r_l-l-A, /dr_l)..." (A. /dl-II-o, .-{-A. /]1)" ")/]" (lp-t-l),

completing the proof.
With somewhat more work, we can show that in fact, err is the identity, so that

(11.5) Er A.

Define an iteration theory morphism O’Eatr-Entr as the unique morphism
extending the function

r- tr for each r in E,

AI. A (= 3T (Trr_l _IL qTr_l).,. (,r __. .1_ 7rl). 1 -e 2r).

PROPOSITION 12. For each pair of trees t, t"n->p in Eatr,

ift= t’ then tb =- t’$.

Thus, as in Proposition 11, there is a unique iteration theory morphism

0 ^" EAtr/ - Entr/=
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such that

commutes.

ZA tr qi tr

atr/ ntr/--

Proof It is enough to prove that tiq--t’itp, where t is the term on the left-hand
side of (a.i), i= 1, 2, 3, and tl is the right-hand term, since ker (q. Kn) is an iteration
theory congruence on Zatr. Thus we must show that

(12.1) Ar’(1,,"" ", 11)--= 1,,

(12.2) At" (Ar+’’’+Ar) At" p,

where there are s- 2 A’s in the sum and p’s- s2 is the base function taking i [s]
to (i-1)s+i and

(12.3) (At. ")/)’ A ’)/" (lp + _L),

where 3/" s -* p + 1 is any base function.

Proof of 12.1. This is the case that k= r in (10.1) of Proposition 10. Formula
(12.3) is the axiom (c.4). In order to prove (12.2), we may prove the following by
induction on k:

(12.a) Ak" (Ak+"" "+Ak)----Ak" Ok, k[r],

where Pk" 2k 22k is the base morphism defined by

(12.b) ipk (i- 1)2k + i.

Note that Pr- P, SO that (12.a) will imply (12.2). In the induction step of the proof,
we use (12.c), established by repeated use of (c.3)"

(12.c) Ak" (7]’k+1-31-"" "t-’Trk+l)Trk+l"(Ak-[-Ak)’Tk, ke[r].

where ’k" 2k+1-- 2k+1 is the base morphism defined as follows"

i’rk 2i 1 if I _--< _--< 2 k

2(i 2k) if 2k =< 2k+l.

We omit the remaining details.
PROPOSITION 13. For any tree in Zatr and t’ in Zntr,

1 4) t0(p,

(15) t’=-- t’ qoO.

Thus, both q and d/ induce iteration theory isomorphisms between ZAtr/ and Zntr/--=.
Proof We must prove the following facts:

(15.a) A. ,r. (A. ,r_+A" ’r-1)" ..." (A" ’1+’’ .+A. ,1) A,
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(15.b) 7ri A Pi,

for each i[r]. But (11.5) is the former assertion and (10.3) is the latter.
Now it is an easy matter to prove Theorem B.
THEOREM B. Eritr/= is freely generated in SEQ (H) by

r/" n" E --> Xntr/---

where r/:E-> Entr is the inclusion. Thus, (c.1)-(c.4) axiomatize SEQ (II).
Indeed, Entr/= is in the variety since EAtr/ is isomorphic to a subtheory of

Seq (Ao, II, &z), when A is interpreted as Ar. Using Propositions 11 and 12 and Theorem
A, we see that any rank-preserving function Z--> Seq (A, II, &z) extends to a unique
iteration theory morphism

Xntr/-= - Seq (A, H, &Z).

Remark 16. If II is infinite, it follows from the fact that II is the direct limit of
its finite subsets that the union of the identities (c.1)-(c.4) correctly axiomatizes the
variety SEQ (II) generated by theories Seq (A, &z, H).

VI. The variety PFN (A). Let A: A-> A x [s] be a partial function, s >-2. A is a
predicate on A if, for each a cA, there is some e[s] such that aA=(a, i). We let
Pfn (A,A) denote the iteration theory of all partial functions A x[n]- A x[p], in
which A denotes some fixed predicate. PFN (A) is the variety generated by all theories
of the form Pfn (A, A). In this section we will axiomatize PFN (A) and find all free
theories, using the Basic Theorem.

Let E be a fixed-ranked set, and let Ea denote the ranked set obtained from E by
adding a new letter A to Es. Let be the least iteration theory congruence on Eatr
such that 1) and 2) below hold.

1) A-axioms:

(1.2) a.(A+...+a)=a.,

(1.3) (A. 3’)t A. 3’. (1, + _L),

where ’" s - s2 is the base morphism taking s] to s(i 1) + i, and where 3" s --> p + 1
is any base morphism.

2) &z-axiom"

(2.1) f2_, all f: 1->0.

Note that 2) is equivalent to fg, for all f, g’l-->0. We show that the axioms
corresponding to 1) and 2) suffice. The first lemma is obvious.

LEMMA 3. For any iteration theory morphism q Eatr--> Pfn (A, A), the congruence
is contained in ker (q).
In order to show that Eatr/ is in the variety PFN (A), we introduce a slight

variation of the notion of a "co-accessible tree." Recall the definition of a A-separated,
alternating tree from V.

DEFINITION 4. A A-separated alternating tree t" 1 - p is almost co-accessible if no
leaf is labeled by an element of Eo and, for each nonleaf vertex v in dom (t) which is
not labeled A, there is an extension w vu such that wt xi, for some [p].
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Thus a A-separated alternating tree 1 -* 0 is almost co-accessible if each successor
of the root (which must be labeled A) is a leaf (labeled by 2_). Further, if each subtree
of the form A. (2_. 0p,..., 2. 0p) is replaced by 2. in an almost co-accessible tree,
the resulting tree is co-accessible. See Fig. 4 for an example of an almost co-accessible
tree which is not co-accessible.

LEMMA 5. For any tree t:l-p in EAtr there is a A-separated alternating almost
co-accessible tree t’ with t’.

Proof Using the A-axioms, we can find a A-separated alternating tree congruent
to t, and using the 2.-axiom and only a slight modification of the argument in IV,
we can get an almost co-accessible tree congruent to t.

We again make use of the label lab (v) of a vertex of a tree in Eatr (see IV.(2))
to prove the following lemma. To avoid fatigue, in the next lemma we will say a tree
t:l- p is admissible if is A-separated, alternating, and almost co-accessible.

LEMMA 6. There is a set Ao and a predicate Ao on Ao and an iteration theory
morphism q :Eatr- Pfn (Ao, Ao) such that tq t’q whenever t’, and both and t’ are
admissible.

Proof Let B= (En x[n]: n_->l), let C={A}[s] and define

Ao=(C B)*. C,

the set of alternating words which begin and end with a letter of the form (A, i) and
every other letter has the form (tr, j). Now we define the images Aq Ao and trq, for
each r in En, n >-1.

Let w (A, il)v. The predicate Ao is given by

wAo (W, il),

the partial function o’q is defined by:

wo-q (u,j) if w (A, i)(o-,j)u for some u Ao,

undefined otherwise.

FIG. 4
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The point of these definitions is the following:
If w lab (v), where v is a leaf labeled xi of an admissible tree t:l p, and if v

is the jth successor of a vertex (labeled A) then

(6.1) (w, t)= ((a,j), i);

otherwise,

(6.2) (w, t) is undefined.

Both of these statements may be proved by induction on the length of w. But if
and t’ are distinct admissible trees 1 p, there is a word w which is a label of a path

to a leaf v of t, say, labeled xi and which is either not the label of a path to a leaf of
t’ or is the label of a path to a leaf of t’ labeled _1_ or xj, j i. Thus the lemma is proved.

Together, the lemmas yield a proof of the main result of this section.
THEOREM 7. Zatr/= is freely generated by

r/. :E - tr- Eatr/

in PFN (A). The identities (1) and (2) axiomatize PFN (A).
Just as in V, we may alternatively consider the variety PFN (H) of iteration

theories generated by theories of the form Pfn (A, H), where H {Try, ", r} is a set
of binary predicates on A. Using the same methods as in V, it is possible to show
that this variety is the same as PFN (A), where A: 1 - 2.

VII. Summary of the axioms. The variety SEQ is the variety of all iteration theories
and is axiomatized by the identities listed in I.(1.5)-I.(1.8).

PFN is axiomatized by the one axiom schema"

(1) f=g allf, g 1- 0.

SEQ (A) is axiomatized by the three schema:

(2) A’(ll,’’ ", 11)=11,

(3) A. (A+. .+m)=A" p,

where there are s A’s in the sum and p:s s2 is the base function taking [s] to

(i-1)s+i, and

(4) (A V)*=m y" (lp+-L),

where y s - p + 1 is any base function.
SEQ (H) is axiomatized by

(5) 7ri. (1, la)= 1 for each [r],

(6) 7r. (Tri+Tr)=cr. (1,+02+1,) foreach i[r],

(7) 7r (Trj + 7r) 7rj (Tri + 7r) (1 + p + 1) foreachi, j[r],

(8) JAr. ]t._ mr ,)/. (lp 4- _L).

In (7), p 2- 2 is the nontrivial base permutation, and in (8), y:2 --> p + 1 is any base
morphism; mr :1- 2 was defined in V, Definition 8.

PFN (A) and PFN (l-I) are axiomatized by adding the axiom (1) to the axioms
for SEQ (4) and SEQ (H), respectively.
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Abstract. We show that computing the volume of a polyhedron given either as a list of facets or as a

list of vertices is as hard as computing the permanent of a matrix.

Key words, volume, polyhedra, complexity, P-complete

AMS(MOS) subject classification. 68A20

1. Introduction. Recently there has been some interest in establishing the computa-
tional complexity of determining the volume of convex bodies in R n. Elekes [2] and
Bfirfiny and F/iredi [1] have shown that it is even difficult to closely approximate
volumes of convex bodies defined by certain types of oracles. These hardness results
complement the approximation algorithm of Lovfisz [4].

Lovfisz [4] also enquires about the complexity of computing the volume of a
rational polytope given either by listing its facets or by listing its vertices. He conjectures
that these problems are hard. In this paper we confirm Lovfisz’s conjecture, and show
that both problems are as hard as computing the matrix permanent, (see Valiant [6]).
We cannot quite describe the problems as : P-complete, since they are not in the class
# P as defined by Valiant [6]. However, since we have no wish to define yet another
complexity class, we state our results relative to # P.

Let us now be more specific. Consider first Problem 1.
Problem 1. Let P= P(A, b) {x [": Ax-<b} be a polyhedron. A, b have rational

entries where A= (a0) i= 1, 2,. ., m,j-- 1, 2,. ., n, and b= (hi), i= 1, 2,. -, m. We
shall use the notation of Schrijver [5] to describe problem size. Thus if x =p/q is
rational where p, q > 0 are relatively prime integers, then

size (x)= 1+ [log2 (Ipl+ 1)]+ [log2 (q+ 1)]
and

size (A, b) m(n + 1) + E size (bi) + E size (ai).
i:l i:lj:l

L= size (A, b) will be used as our measure of problem size. Since we can (by linear
programming) determine in polynomial time whether or not vol (P)= 0 and whether
or not vol (P) o, we can assume without loss of generality that 0<vol (P)<

We shall prove two theorems. The first shows that computing vol (P) is # P-hard.
THEOREM 1. Computing vol (P(A, b)) is #P-hard, even when A is totally uni-

modular.
There is a technical difficulty in stating the converse of this theorem. It may be

encapsulated in the following problem.
Problem. Is size (vol (P)) polynomially bounded in L?
It is not too difficult to show that vol (P) is a rational, p! q, say. We can also show

that vol (P) cannot be too large. The difficulty is that q does not appear to have a

* Received by the editors July 1, 1987; accepted for publication November 15, 1987.
? Department of Computer Studies, University of Leeds, Leeds LS2 9JT, United Kingdom.
$ Department of Computer Science and Statistics, Queen Mary College, London E1 4NS, United

Kingdom and the Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213.
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bound polynomial in L. The problem stated above thus seems to be an open (and
possibly difficult) question. We show later that the difficulty disappears if we restrict
ourselves to any class of polyhedra whose vertices can be scaled to become integer
lattice-points by a polynomial size transformation. We conjecture that the answer to
our problem is in the affirmative, but we are at present only able to state the following
result in terms of approximation.

THEOREM 2. Let e > 0 be rational Given a # P-complete oracle, in time polynomial
in L and size (e), we can compute such that

(1.1) 1’-vol (P(A,b))[<e. V1

COROLLARY 1. Suppose we restrict our attention in Theorem 2 to any class of
polytopes for which size (vol (P)) is bounded by a polynomial in L. Then, using a
# P-complete oracle, vol (P) can be computed exactly in time polynomial in L.

Let us now consider Problem 2.
Problem 2. Let X {X1, X2, , X,,} be a set of rational points in ". Let P(X)

be the convex hull of X. We shall consider the problem of computing vol (P(X)) when
X is given as an n x m matrix (xij), i= 1, 2,..., n, j 1, 2,..., m.

THEOREM 3. Computing vol (P(X)) is #P-hard.
This time we have no difficulty in stating the converse result because, as we will

show, size (vol (P(X))) is polynomially bounded in size (X).
THEOREM 4. Computing vol (P(X)) is #P-easy.

2. # P-hardness of Problem 1. Let B {0, 1 } and C B". We will consider a single
linear inequality

(2.1)

in n, with a > 0 an integer vector. Define the polytope

(2.2) P={xn" arx b, O-xe}

where eT" (1, 1, , 1), and let

(2.3) K C f) P.

We shall wish to regard (2.1) as being parameterised by b, in which case we will write
P(b) or K(b) for emphasis. The following problem is known to be #P-hard (see [3]).

#KNAPSACK
Input. Positive integers al, a2,’" ", an, b.
Problem. Determine N ]K[.
We Turing reduce # KNAPSACK to computing the volumes of certain polyhedra. For
x 6 C, let Ixl eTx denote the number of I’S in x.

Now consider the following problem, which may appear rather artificial, but will
be required later.

# PARITY
Input. As for # KNAPSACK.
Problem. For i= 0, 1 let Ni ]{x K" ]x]-= (mod 2)}[. Determine

(2.4) D No- N1.
LEMMA 1. # PARITY is # P-hard.
Proof. Suppose we have a procedure for # PARITY. Let M eta + 1, and consider

the set of (n + 1) # PARITY problems, as above, corresponding to the inequalities

(2.5) (a+ Me)7"x -< b+ rM (r=O, 1,. ., n).
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Let N(r)= [{xE K" Ix[ r}[. It follows, by an easy analysis, that the rth #PARITY
problem defined by (2.5) determines the value

r--1

D(r)=(-1)"N(r)+ E (-1)J(’)
j=0

A straightforward calculation now yields

N=2"-1+ (-1
r=0

Thus a polynomial number of calls to the #PARITY procedure, plus polynomial
additional time, would solve #KNAPSACK.

We now turn to the proof of Theorem 1.

Proof of Theorem 1. Assume we have some procedure for determining vol (P).
Let A= {xE "" aTX=< b, x->0}. Note that A is bounded with vol (A)= b"/(n!l-L= aj).
Let U be the uniform measure on subsets of A such that U(A)= b". Note that U is
related to volume for a subset E of A by the equation vol (E)/vol (A)-- U(E)/U(A).
Thus our procedure for determining vol (P) can easily be modified to determine U(P),
and we will assume this has been done. Let Ej {x A. xj _--< 1} for j 1, 2, , n and
Ej (A-Ej). Then clearly P N j=l Ej. Now, for each v C, define

Ev={X A: x>v} N= E.
Note that E, is either empty or is an n-simplex (actually its closure is). The well-known
inclusion-exclusion formula (see, e.g., [7]) now yields

U(P)= X (-1)IvIu(/v)
vGC

It is easy to show that

Thus

U(E’-,) 0 ifarv> b

(b--aTv)" ifaTv<= b.

U(P)= E (--1)l*l(b--aTv) "-vGK

Suppose that b is an integer, and/3 real such that b _-</3 < b + 1. The integrality of a
then implies that K (/3) K (b). Thus, writing F(fl) U(P(fl)), it follows that

(2.6) F(fl)= Y (-1)lvl(fl-arv) n.
vK(b)

Let/3 be a rational p/q with p, q > 0 relatively prime. It follows from (2.6) that q nF(/3)
is an integer such that q"F()<=(2p) ". Thus size (F(/3))=<n(size (/3)+ 1). Thus the
procedure for calculating U(P) can be used to determine F(fl), provided/3 has size
polynomial in L. Now, expanding the terms in (2.6), we see that

(2.7) F(/3) ai/3 "-i
i=0

where

(2.8) ai (-1)i(n ]v[(aT)i,) E (-1) (i=O, 1,...,n).
vK(b)

Observe, in particular, that ao vKb) (--1) I*1 D, as defined in (2.4). This is 4 P-hard
to compute (Lemma 1). It follows, a fortiori, that it is #P-hard to determine the
coefficients of the polynomial F. But we may do this as follows:
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(i) Determine F(fl)= U(P(fl))= n! I-Ii"=- aj vol (P(fl)) for ,8 b+ k/(n+ 1), k=
0,1,...,n.

(ii) Solve (in polynomial time) the resulting system of linear equations determined
by (2.7).

We observe that none of the numbers involved in the computations is very large.
For example, it follows from (2.8) that the ai are integers such that lai] <- (4eTa) ".

There is one final point. The statement of Theorem 1 claims that it remains true
when A is totally unimodular. This follows by making the substitution

yj=ajx (j= 1, 2,-..,n)

in the system (2.2) defining P. The constraints are then easily transformed into a totally
unimodular system The theorem now follows

Remark The problem we have proved hard may be viewed in either of the
following ways:

(i) If X is a point chosen randomly from the uniform probability distribution on
the unit hypercube, then it is hard to compute the probability that X satisfies a single
linear inequality.

(ii) Integrating the step-function

q,(x) 1 (b aTx _-< 0)

=0 (b--aTx> 0)

over the unit hypercube is # P-hard.
Note that the function 0 in (ii) is not even continuous. However, we may integrate

0 explicitly over k variables, using (2.6). This gives the piecewise polynomial function

qk(X)= /b--.Tx) (-- 1) Il(b aTx- Tfi)k

where ,Rk and a, xR"-k This function is readily shown to be of class Ck-

Hence we have the conclusion that it is hard to integrate such a function over the unit
hypercube. In fact, since the description of qk continues to be of polynomial size for
k O (log n), the conclusion can be strengthened further.

3. # P-easiness of Problem 1. We will go straight into the proof of Theorem 2.

Proof of Theorem 2. Since P is bounded, we have [5, Thm. 10.2]

(3.1) Pc__F={xeN"" Ixl <= D= 24"2r(j= l, 2, n)}.

Now let s [mn224"3L+"/e], and divide F into s" subcubes of side 6 2D/s. These
subcubes fall into three classes:

(i) interior (wholly) to P;
(ii) exterior (wholly) to P;
(iii) boundary.

We will estimate V vol (P) by the total volume of the interior cubes, V. Thus V /6",
where I is the number of interior cubes. Clearly V-> I7, and the error E V-V is
bounded above by J6", where J is the number of boundary cubes. We show later that

(3.2) J <= mn2sn-,
and hence J6"<-_ e as required.

The counting machine h [6] which computes I works as follows. Each copy
chooses one of the integer vectors t, where 1 -<_ t -< s (j 1, 2, , n) in time propor-
tional to n size (s). It then tests, in polynomial time, whether the subcube

F’= {x 6 I"" -D+(tj- 1)8_-<xj_-<-D+ tg,j= 1,2,.-., n}
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is interior. Note that this is equivalent to

t laijl<= bi+ ao{D-(tj-1/2)}t (i=1,2,...,m).
j=l j=l

It is clear that the sizes of all numbers involved, in particular s, are polynomial in L.
The output of is I, from which I" is calculated.

It remains only to prove (3.2). If

P= {xe R"" arx_-< bi(i= 1, 2,-.., m)}

then let Hi {x e N"" afx bi }. Call a subcube F’ of F intersected if Hi f’l F’ for
some 1 _-< i-< m. Let K be the number of intersected subcubes. Clearly K -> J. Each
subcube F’ projects onto n squares Fj in the coordinate planes, i.e., if F’=
{X n. iik Xk Uk _[_ ( (k 1, 2,. , n)} then Fj {x: xj 0 and Uk <- Xk <---- Ilk -- (k
j)}. The total number of distinct squares is clearly ns "-l. Construct a mapping from
the intersected cubes to the squares as follows.

For each intersected cube F’ choose some such that Hi f-)F’ (e.g., the least
such i). Choose j so that

[aijl l_<mka_<xn la,.I.

Suppose two intersected cubes map to the same square with the same value of i. Then
there exist points x, x’ within the two cubes such that

a.r, x a fix’ bi,

XjXj and Ix-x’l<-_ (kj).

Thus Xj--Xj<--kj laikl/laijl<--(n-1)& Therefore at most n cubes can map onto the
same square for a given i. Since there are only m values of i, at most mn cubes map
onto the same square. Hence K <= mn ns"- rnns"-, and (3.2) follows.

Proof of Corollary 1. Suppose we know that size (vol (P))<-p(L) for some poly-
nomial p(L). Take e 1/p(L) in Theorem 2. We know that V= a/b for integers
a, b-<2’, and V-I-<_ e. Having computed , we can use continued fractions to
compute V exactly in polynomial time (see, e.g., [5, Cor. 6.a]). [3

Finally, we give a simple example of a class of polyhedra for which vol (P) has
polynomial size.

LEMMA 2. IfP is integral, then size (vol (P))= O(L3).
Proof. Let P--{x"" aTx -< b(i 1, 2," , m)} and be such that every vertex of

P has integer coordinates. Now P has a triangulation using only its own vertices. If
tr is a simplex of this triangulation, then

vol (tr) . det =-., say,
VO V1 V

where vi(i =0, 1,. ., n) are vertices of P. Now v is an integer. Hence vol (P)= v/n!,
with v= v, i.e.; n!vol (P) is an integer. Now (3.1) implies

vol (P)<=28’L+’.
Hence

size (vol (P))<=8nL+ n+ [log2 (n!+ 1)]+ 1,

and the result follows.
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4. 4P-hardness of Problem 2. We shall again reduce the counting problem
4KNAPSACK to volume computations of the relevant form. We will make the
following two additional assumptions for KNAPSACK:

(4.1) There are no 0-1 solutions to aTx b.

We can ensure this simply by replacing aj by 2aj (j 1, 2,. ., n) and b by 2b + 1 in
(2.1). This does not affect the value of N.

T(4.2) b > e a.

__eTIf this is not true on input, then we can add a variable X,+l with a,+l a-b+ 1,
and replace b by b + a,+l. This adds 2" to the value of N.

Now let P=P={xE"’a’x<=b,O<=x<=e}. Then (4.2) implies that 1/2e=
(1/2,1/2,..., 1/2) is an interior point of P. Now, substituting y 2x-e, transform P1 to

P2 {Y "" aY--< b’, -e=<y<- e},

where b’=2b-eTa>O. Note that x{0, 1}"P .- y6{-1,+l}"P2. So we have
reduced 4 KNAPSACK to computing N [YI, where

Y={yP2"y=+l (j= 1,2,...,n)}

{y(1), y(2),..., yN)}, say.

The constraints defining P2 can be written as

(4.3)
Ay 1,

-y_--<l, y<_-I (j=l,2,...,n)

where A a/b’. Now 0 is an interior point of P. Consider the polar P* [5, Chap. 9],
where

P* {z "" z’u _-< 1 for all u P2}
(4.4)

=conv {A, el, e,..., e,, -el, -e,...,-e,}.

The second equality in (4.4) merely states the well-known relationship between the
facets of P and the vertices of P2*.

We show that N can be computed from vol (P*) and vol (/32"), where /32* is the
polyhedron obtained by using (b+1/2) in place of b in the definition of P1 before
transforming to P*. Since P2*,/32* are defined as convex hulls, Theorem 3 will follow.

Now polarity yields a one-to-one correspondence between the (nondegenerate)
vertices ofP not lying in facet {y Pe" ATy 1} (i.e., members of Y) and the (simplicial)
facets of P* not containing the vertex A. Observe that the facet corresponding to y(’)
has vertex set A(t) {yt)ei" 1, 2, , n} for 1, 2, , N. Thus there is a decompo-
sition of P2* into simplices o1, cr,..., rN, where rt =cony ({A} LJ A(t)). Hence

N

vol (P2*) E vol (o5)

1

n!;

:2 b-aT"x(t)

n 2b era

(t)
Yl el

since y’) + 1



VOLUME OF A POLYHEDRON 973

where x’) =1/2(e+y’)) is the zero-one solution to (2.1) which corresponds to y’). Thus,
using (4.2),

1 N b_aT"x(t)
n vol (P2*) :ra2 t= 2b-e

bN-S

2b-era
where S tN_l arxt>. Furthermore

1 ’2 (b+1/2)S-S
-n!vol(2) (-b--;- era

where we have used, in the notation of 2, K(b)= K(b +1/2), so that N and S are
unchanged.

Now N can be easily computed from vol (P2*) and vol (P2)- Finally note that S
is an integer with 0< S_-< 2"b, so that the numbers involved are of polynomial size.
Thus Theorem 3 has been proved.

5. +P-easiness of Problem 2. Let us first show that size (vol (P(X))) is poly-
nomially bounded. Indeed we can prove quite straightforwardly that, for m > n >_- 1,

(5.1) " size (vol (P(X)))<=3mnZL
where L size (X). To see this, let A be the least common multiple of the denominators
of entries of X. Then size(A)<=mnL. Now AX contains integer vectors and
vol (P(AX))= A" vol (P(X)). Since P(AX) can be decomposed into simplices (see
proof of Lemma 2), it follows that n! vol (P(AX)) is an integer. Hence

n!A" vol (P(X))
vol (P(X))

expresses vol (P) as a ratio of two integers. Noting that vol (P(X))_-<2 n/, (5.1) follows.
The proof of Theorem 4 is similar to that of Theorem 2, and so we will only give

an outline. Now

P(X)_ F1 ={x":lxjl-<-2L(j 1, 2,..., n)}.
Let s [m’n226mn2L+n(l-’+l)+:z] and divide F1 into s" subcubes of size 61 2L+l/s./Our
counting machine computes the number I1 of subcubes which intersect P(X). The
estimate of volume is then I1’/m !. Note that this time we use an overestimate, rather
than an underestimate, of the volume.

We can now reduce the testing for the intersection of an individual subcube with
P(X) to the solution of a single linear program.

To establish this claim, for simplicity let us assume we translate and scale
the problem to that of testing the intersection of the cube E=
{x ": -1 <- xj _-< 1 (j 1, 2, , n)}, with the polytope P conv {xl, X2, Xm }.
Then E P if and only if there exists a /" such that

[y,I < 1 and ,yrx > 1 (i 1 2,. tn)i--
i=1

This can be tested by solving the linear program

minimise z eT (/1 + /2)
subjectto xf(,l--/2)_->l(i=l,2,...,m)

and by checking whether min z < 1.
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The error in the volume estimate is again bounded by the total volume of the
subcubes which intersect the boundary of P(X). Since P(X) has less than m" facets,
this is at most

m,nZs,-16,

(see the proof of Theorem 2 with rn replaced by rn"). By (5.1), this is at most 2-2(+1),
and so vol (P(X)) can be computed exactly using continued fractions.

6. Remarks. Our results leave open two interesting questions. The first is the
problem raised in 1 concerning the size of description of polyhedral volumes. The
second is as to whether it remains hard to approximate the volume in either Problems
1 or 2; i.e., for some given e > 0, is it hard to obtain an estimate of the volume V
such that (1 e) < ’/V< (1 / e) ? Our methods appear to shed little light on this issue,
but we conjecture that this approximation problem is also hard. Finally, we observe
that determining the volume of a polyhedron in fixed dimension is easy. We simply
determine the complete face-lattice of the polyhedron, triangulate it, and then use the
formula for the volume of a simplex.
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FAULT TOLERANCE IN NETWORKS OF BOUNDED DEGREE*

CYNTHIA DWORK, DAVID PELEGt, NICHOLAS PIPPENGERt, AND ELI UPFAL?

Abstract. Achieving processor cooperation in the presence of faults is a major problem in distributed
systems. Popular paradigms such as Byzantine agreement have been studied principally in the context of a
complete network. Indeed, Dolev [J. Algorithms, 3 (1982), pp. 14-30] and Hadzilacos [Issues of Fault
Tolerance in Concurrent Computations, Ph.D. thesis, Harvard University, Cambridge, MA, 1984] have shown
that fl(t) connectivity is necessary if the requirement is that all nonfaulty processors decide unanlmously,
where is the number of faults to be tolerated. We believe that in forseeable technologies the number of
faults will grow with the size of the network while the degree will remain practically fixed. We therefore
raise the question whether it is possible to avoid the connectivity requirements by slightly lowering our
expectations. In many practical situations we may be willing to "lose" some correct processors and settle
for cooperation between the vast majority of the processors. Thus motivated, we present a general simulation
technique by which vertices (processors) in almost any network of bounded degree can simulate an algorithm
designed for the complete network. The simulation has the property that although some correct processors
may be cut off from the majority of the network by faulty processors, the vast majority of the correct
processors will be able to communicate among themselves undisturbed by the (arbitrary) behavior of the
faulty nodes.

We define a new paradigm for distributed computing, almost-everywhere agreement, in which we require
only that almost all correct processors reach consensus. Unlike the traditional Byzantine agreement problem,
almost-everywhere agreement can be solved on networks of bounded degree. Specifically, we can simulate
any sufficiently resilient Byzantine agreement algorithm on a network ofbounded degree using our communi-
cation scheme described above. Although we "lose" some correct processors, effectively treating them as
faulty, the vast majority of correct processors decide on a common value.

Key words, fault tolerance, communication, bounded-degree network, expander graph

AMS(MOS) subject classifications. 68M10, 68M15, 68R10

1. Preliminaries. In 1982 Dolev [D] published the following damning result for
distributed computing: "Byzantine agreement is achievable only if the number of faulty
processors in the system is less than one-half of the connectivity of the system’s
network." Even in the absence of malicious failures connectivity + 1 is required to
achieve agreement in the presence of faulty processors [H].

The results are viewed as damning because of the fundamental nature of the
Byzantine agreement problem. In this problem each processor begins with an initial
value drawn from some domain V of possible values. At some point during the
computation, during which processors repeatedly exchange messages and perform
local computations, each processor must irreversibly decide on a value, subject to two
conditions. No two correct processors may decide on different values, and if all correct
processors begin with the same value v, then v must be the common decision value.
(See [F] for a survey of related problems.) The ability to achieve this type of coordina-
tion is important in a wide range of applications, such as database management,
fault-tolerant analysis of sensor readings, and coordinated control of multiple agents.

A simple corollary of the results of Dolev and Hadzilacos is that in order for a
system to be able to reach Byzantine agreement in the presence of up to faulty
processors, every processor must be directly connected to at least fl(t) others. Such
high connectivity, while feasible in a small system, cannot be implemented at reasonable
cost in a large system.

As technology improves, increasingly large distributed systems and parallel com-
puters will be constructed. However, in any forthcoming technology, the number of

* Received by the editors June 17, 1986; accepted for publication (in revised form) November 3, 1987.
f IBM Almaden Research Center, San Jose, California 95120-6099.
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faulty processors in a given system will grow with the size of the system, whereas the
degree of the interconnection network by which the processors communicate will, for
all practical purposes, remain fixed.

Despite these negative results, distributed systems are widely used and parallel
computers are being built. This suggests that the correctness conditions for Byzantine
agreement are too stringent to reflect practical situations. In particular, Byzantine
agreement guarantees coordination among all correct processors, by necessarily omit-
ting up to faulty processors. In many situations it may suffice to guarantee agreement
among all but O(t) processors. In other situations a simple majority consensus may
suffice. Similarly, in clock synchronization, or in firing squad synchronization, it may
suffice for a vast majority of the correct processors to be synchronized.

In the traditional paradigm for distributed computing described above, the correct-
ness conditions describe the states of all nonfaulty processors. In this paper we propose
a new paradigm for fault-tolerant computing in which correctness conditions are
relaxed by "giving up for lost" those correct processors whose communication paths
to the remainder of the network are excessively corrupted by faulty processors. Such
a processor is called poor. While any network of bounded degree must contain some
poor processors, in this paper we show that their number can often be kept quite small,
even in networks of constant degree. Further, we argue that this type of cooperation
may fit well most applications of, say, Byzantine agreement. All known algorithms
guarantee only that if at mostf-<_ < n/ 3 processors fail then at least k -> n -fprocessors
will mutually agree on a value. Our results show that we can eliminate the costly
connectivity condition requiring f(nt) edges by employing an appropriately chosen
bounded-degree network of n + O(t) processors and still guarantee agreement among
n correct processors. Our paradigm admits deterministic solutions in networks of small
constant degree to such fundamental problems as atomic broadcast, Byzantine agree-
ment, and clock synchronization.

We present a general simulation technique by which for almost any regular graph
G, the vertices (processors) of G can simulate an algorithm designed for a complete
network in such a way that the number of poor processors in G is small. The crux of
the simulation is a transmission scheme for simulating the point:to-point transmissions
of the complete network by sending messages along several paths of G in such a way
that there will always be a large set of correct processors capable of communicating
among themselves as if they comprise a fully connected subnetwork, independent of
the behavior of the faulty processors.

For consensus problems we can often do better than in the general simulation by
employing a compression procedure based on the existence of compressor graphs [P].
This procedure is iterative and local in nature, and cannot by itself guarantee agreement.
However, it can be used to "sharpen" dichotomies in that if a sufficiently large majority
(e.g., all but O(t log t)) ofthe correct processors have the same value, then the procedure
converges and strengthens this majority (e.g., to all but + 1).

Our model of computation is identical to that commonly used in the Byzantine
literature. Specifically, each processor can be thought of as a (possibly infinite) state
machine with special registers for communication with the outside world. The pro-
cessors communicate by means of point-to-point links, which are assumed to be
completely reliable. The entire system is synchronous, and can be thought of as
controlled by a common clock. At each pulse of the common clock a processor may
send a message on each of its incident communication links (possibly different messages
on different links). Messages sent at one clock pulse are delivered before the next pulse.

For each of our transmission schemes there is a specific lower bound b on the
number of clock pulses needed to simulate one complete round of message exchange
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in the simulated network. For simplicity we assume that the common clock sends a
"super-pulse" every b rounds. A processor simulates round r of the original algorithm
at the rth super-pulse.

Since we cannot hope to solve the Byzantine agreement problem exactly on
networks of bounded degree, we introduce the notion of almost-everywhere agreement
(denoted a.e. agreement), in which all but a small number of the correct processors
must choose a common decision value.

More precisely, a protocol P is said to achieve t-resilient X agreement, where X
is any term, if in every execution of P in which at most processors fail all but X of
the correct processors eventually decide on a common value. Moreover, if all the
correct processors share the same initial value then that must be the value chosen.
Note that the traditional Byzantine agreement problem is just 0 agreement.

A protocol solves a.e. agreement if it solves X agreement for some X such that
X/(n-t)-O as n-*.

Our first result applies only to fail stop, omission, or authenticated Byzantine faults.
TIqEOREM 1. For all r>-5 there exists a constant e e(r) such that for all < en

almost all r-regular graphs (i.e., all but a vanishingly smallfraction ofsuch graphs) admit
a t-resilient algorithm for O(t) agreement.

The remaining results apply to unauthenticated Byzantine failures.
THEOREM 2. For all r >-5, almost all r-regular graphs admit a t-resilient algorithm

for O(t) agreement, where <- n 1-, for some constant e e(r), where e(r)-O as r- n.
The next theorems describe explicit graphs for which the set of poor processors

is small.
TIEOREM 3. The n node butterfly network (degree 4; see 2.3 for definition) admits

a t-resilient O(t log t)-agreement algorithm for <-_ cn/log n for some constant c.
The result of Theorem 3 can be improved for a family of networks obtained by

superimposing a compressor of degree 5 on a butterfly network.
THEOREM 4. There exists a constant c and a network of degree 9 that admits a

t-resilient O( t)-agreement algorithm for <- cn/log n.
In the case of unauthenticated Byzantine failures, we achieve O(t) agreement

only for <= cn/log n. If > O(n/log n) then it is easy to show that the number of poor
processors is linear in n. The existence problem for an O(t)-agreement algorithm in
this case remains open. However, we solve this problem on graphs of unbounded but
still relatively small degree.

THEOREM 5. For every 0 < e < 1 there exist a constant c c( e ), graphs G ofdegree
0(n ), and t-resilient 0 t)-agreement algorithms for <= en.

Finally we present a purely combinatorial characterization of networks which
admit p(t) agreement for any function p. When p(t) 0 our characterization coincides
exactly with the (2t + 1)-connectivity requirement for the traditional Byzantine agree-
ment cited above [D].

2. Simulation results. In 2.1 we describe a general strategy for simulating on
one network any algorithm designed for another network, describing what we mean
by "simulation." In 2.2 we discuss a general scheme for implementing our strategy,
and in 2.3 we make all of this more concrete by presenting the simulation of a
complete network by a butterfly network. In 2.4 we show that our general scheme
can be implemented on almost all regular graphs of bounded degree. Finally, 2.5
briefly discusses our results under more restrictive fault models.

2.1. The general simulation. For simplicity, we take the simulated network to be
completely connected. Let A be an algorithm designed for a fully connected network
H. Consider an arbitrary network G over the same set of vertices (processors) as in
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H, and suppose we wish to simulate A on G. We need only specify the simulation of
communication between processors; a direct message from a processor u to its neighbor
v in H can be simulated in G by sending the message from u to v through various
paths, and supplying v with a method for determining the correct value of the message,
e.g., by taking the value appearing in the majority of the paths. Taken together, the
particular choice of paths and the supplied decision method constitute a transmission
scheme. Of course, even if u and v are correct processors the faulty processors may
be so placed that all or most of the paths from u to v are corrupted. Thus, even
if a processor is correct, it may be unable to properly communicate with the other
processors.

Let a transmission scheme for G be fixed. Let T be a subset of the vertices of G
(think of .T as the set of faulty processors). A pair of nodes (u, v) G is successful
with respect to T if, whenever all the processors not in T follow the transmission
scheme correctly, the simulation of a message transmission from u to v always succeeds
(i.e., v decides correctly on the value sent by u). Let POOR (G, T) be a minimal set
of correct nodes such that every pair of nodes, u, v T t_J POOR (G, T) is successful
with respect to T. (Note that this set need not be unique.) Let p(G, t)=
max {[POOR (G, T)[ such that T V, IT[ t}. As we will show in Theorem 2.1 there
is a p(G, t)-agreement algorithm resilient to failures for every graph G and suitable
choice of t. We are therefore interested in finding graphs G for which p(G, t) is small.
Such graphs are the subject of 2.3 and 2.4.

THEOREM 2.1. LetA be an algorithmfor the traditional Byzantine agreementproblem
designed for network H, let G be a graph with the same number of vertices as H, and let
TS be a transmission schemefor simulating on G message transmissions in H. Let A(TS)
be the simulation ofA on G using the transmission scheme TS to simulate messages sent
on H. For every t, if A is guaranteed to work correctly on H in the presence of at most

+ p(G, t) faults, then A(TS) achieves p(G, t) agreement on G in the presence of up to

faults.
Proofi Let T be a set of faulty processors in G. A(TS) simulates the execution of

A on H by simulating the processors in a one-one fashion. By definition, the processors
not in POOR (G, T) can communicate among themselves as if they comprised a fully
connected subnetwork, so the simulated communication among this set of processors
is successful. The behavior of the correct processors in POOR (G, T) may appear to
be faulty. These are the processors we give up for lost. Since A is guaranteed to work
correctly even in the presence of t+p(G, t)>-[POOR (G, T)I failures we are done. 71

In order to use the transmission schemes described here the processors must have
some knowledge of the topology of the system. The amount of knowledge needed,
and how this quantity depends on the types of faults considered, are subjects for
further research.

2.2. A class of transmission schemes. We now describe in more detail a specific
class of transmission schemes, called three-phase transmission schemes. Let G be any
network in which we may specify the following sets. For every node v we specify sets
of processors Fin(/)), Font(V) _.. V, each of fixed (but not necessarily constant) size s.
For each node w in Fin(V (Font(/))) a path from w to v (v to w) is specified. In addition,
for each ordered pair of nodes (u, v) we specify s vertex-disjoint paths from Font(U)
to Fin(/)

The transmission of a message x from u to v consists of three phases. In the first
phase the message is broadcast from u to every node in Fout(U through the specified
paths. Thus, at the end of the first phase a copy of x is received by all nodes of Font(U).
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(Those processors in 1-’out(U whose path from u contains faults may have received an
incorrect version of the message, or nothing at all.) In the second phase the s (possibly
corrupted) copies of u’s message are sent along the vertex-disjoint paths from Fout(u)
to I’in(V). In the third phase these (possibly corrupted) copies of u’s message are routed
to v along the specified paths from Fin(V) to V. Thus, v receives s (possibly corrupted)
copies of u’s message. Finally, v takes the value appearing in the majority of the copies
that arrived to be the actual message. (If no majority exists then a default value is
taken.) Clearly, v could be making a mistake, even if it is a correct processor.

Let T be some set of nodes on.the network (again, think of T as the set of faulty
processors). A node u is said to be out-bad with respect to T if at least - of the specified
paths to 1-’out(U) contain a vertex in T. Intuitively, if T is the set of faulty processors
and u is out-bad with respect to T, then at least of the processors in [’out(U) may
receive a corrupted version of the message x. Similarly we say v is in-bad with respect
to T if at least of the paths from Fin(V) to v pass through some node of T. Let
BAD (G, T) be the set of nodes in the network G which are (either out- or in-) bad
with respect to T. Let b(G, t)=max {[BAD (G, T)[ such that T V, ITI--t. Recall
that, informally, p(G, t) is an upper bound on the number of poor processors in G
when no more than processors fail. The next claim bounds the number of poor
processors in terms of the number of bad processors.

CLAIM 2.2. Let s be the size of the sets F. For all < s/4, p(G, t)<-_ b(G, t).
Proof. We will prove that for any T V, POOR (G, T)___ BAD (G, T). The claim

then follows immediately from the definitions. Let T be some subset of V of size at
most t. We will show that for any two processors u and v not in BAD (G, T), any
message m sent from u to v according to the three-phase transmission scheme is
correctly received by v. This follows from the following argument: since u is not
out-bad, rn will reach at least of its first-phase destinations correctly. Thus at the end
of the first phase, at most s/8 copies of m have been corrupted. In the second phase,
since every copy is transmitted along disjoint paths, at most more copies might get
hurt. Finally in the third phase, since v is not in-bad, at most an additional s/8 copies
can be corrupted. Over all, at most s/4+ < s/2 copies of the message might be lost.
Therefore the majority of the copies will arrive intact, so v will recognize the message
correctly.

Remark. It will sometimes be necessary to consider a more relaxed type of
three-phase transmission scheme in which each node v (1-’out(U) [.J Fin(W)) may appear
on at most two of the paths between these two sets (once as an endpoint and at most
once more as an intermediate node). The paths have to remain otherwise disjoint. For
such a scheme we can prove that if s is the size of the sets F, then for all < s/8,
p(G,t)<-b(G,t).

2.3. Simulation of a complete network on the butterfly. In this section we show
how to simulate a complete network on a simple degree-4 network known as the
butterfly [U]. All we have to do is specify a transmission scheme. This is done losing
at most O(t log t) processors in the presence of faults (i.e., at most O(t log t)
processors will be bad as defined in 2.2).

An m-butterfly is a communication graph G,=(V,,,E,) with V,=
{(a, i)lO<=a<=m-1, 0<_-i-<_2"-1}. The set of edges E, connects (a, i) to (b,j) if and
only if b=(a+ 1)(mod m) and j is either identical to or differs from it in the ath
least significant bit.

On the butterfly we use a version of the three-phase scheme for transmitting a
message from u =(a, i) to v=(b,j). To do this we need only specify the out- and
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in-sets and the three sets of paths. All messages are sent only through forward links
(i.e., from a node (c, k) to a node ((c+ 1)(mod m), l) but not in the other direction).
We take s=2" and define the sets F by Fin((C, k)) Fout((c, k)) {(c, 1)[0-< 1-<_2"- 1}.

The paths are defined as follows. The forward edges of any node u span a full
binary tree of height m whose leaves are all the nodes in [’out(U), and the paths are
chosen according to this tree. The second-phase paths connect every node (a, k) in
Fout(u) to (b, k) in Fi,(v) by (b-a)(mod m) edges connecting every intermediate node
(c, k) to ((c+l)(mod m),k). The third-phase paths from Fin(U to U are defined
in a way similar to the first-phase paths, using the dual tree based on the backward
edges. More specifically, the path from a node (c, k) is directed to its neighbor
((c+ 1)(mod m), l) with the cth bit of matching that ofj.

This completes the description of a three-phase transmission scheme for the
butterfly network. We now analyze the resiliency of this scheme.

CLAIM 2.3. b(Gm, t)= O(t log t).
Proof Let us measure the amount of "damage" that a faulty processor p can

cause to correct senders in the first phase. Keeping p fixed and looking at all possible
senders u whose paths to Fout(U) contain p we see that p can block at most 1/2 of
the outbound paths for its 2 "distance i" neighbors. Summing up to distance log 16t,
the total damage caused by faulty processors (measured in "number of dominated
paths," or "number of destroyed copies") is

( 1)21/2+41/4+. "+21g16’21og16-------S 2"= (log 16t)2".

The number of nodes that might lose 6 or more of their paths due to interruptions of
distance log 16t or less is therefore bounded by log 16t(2"/(2m/16))= 16t log 16t.
NOW, let u be any processor for which less than 6 of the paths from u to [’out(U)
contain a faulty processor at distance log 16t or less from u. We claim u cannot be
out-bad. This would imply that the number of out-bad nodes is also bounded by
16t log 16t. To prove the claim, note that if less than 6 of u’s out-bound paths are
corrupted at distance log 16t or less, then even if we assume the existence of up to
distinct faulty processes at distance log 16t or more from u, these faults damage at
most t2m/2lg6’= 2"/16 of the out-bound paths from u, so less than of the paths
from u to Iout(U) are corrupted, and by definition u is not out-bad. The analysis for
the in-bad nodes is identical. Thus, b(G", t)_-<32t log 16t.

COROLLARY 2.4. p(G", t)= O(t log t).
Proof. The proof is immediate from Claims 2.2 and 2.3.
COROLLARY 2.5. For all m, there exists a t-resilient O( log t)-agreement algorithm

running on G" for <-cn/log n for some constant c.

Proof. The proof is immediate from Claims 2.1 and 3.1.
The next claim shows that this bound on almost-everywhere agreement is optimal

for the butterfly network.
CLAIM 2.6. p(G", t)= (t log t).
Proof Given t, let k [log t], and choose the faulty nodes to be {(i,j)[ i=0, k- 1,

j=0,... ,2k---l}. This choice completely disconnects the set of nodes {(a, b)la=
0, , k- 1, b 0, , 2k-- 1}, which is of size => log t, from the remainder of the
network.

2.4. Almost all regular graphs have good transmission schemes. Let H(r, n) be the
set of regular graphs of degree r and size n. Let h(r, n)= IH(r, n)l--> (n/r)"r/2[Bo]. We
will show that for almost every r-regular graph G, p(G, t) O(t/ log t) for large



FAULT TOLERANCE IN NETWORKS OF BOUNDED DEGREE 981

values of t. This is done by first showing that for all r_-> 5 almost r-regular graphs G
have three-phase transmission schemes for which b( G, t) O(t+ log t) for

O(n -), for appropriate B, e.

LEMMA 2.7. _For every r>--5 there exists a constant a a(r), 0<a<l, such that
h( r, n )( 1 O(n-1/4)) ofthe h( r, n r-regular graphs have thefollowing expansion property:
Every subset of vertices U such that U] <= an has at least Ul(r- 3) neighbors outside U.

Proof We turn the set H(r, n) into a probability space by giving every graph
G H(r, n) the same probability. A proof that a random graph G H(r, n) possesses
the properties (1) and (2) with probability at least 1-O(n -1) implies Lemma 2.7.

The study of the probability space H(r, n) presents a special difficulty since no
explicit representation of the set H(r, n) or a direct procedure for constructing a
random element in H(r, n) are available. Recently, Bollobis [Bo] derived a method
for studying H(r, n) through a related, more simple probability space (r, n). Our
proof is based on this new approach.

We start with a set,

W(r, n)={(v, i)[v 1,..., n, i= 1,..., r}.

A configuration F is a partition of W into rn/2 pairs {(v, i), (v’, i’)}. Let (r, n) be
the set of all configurations of W(r, n). A configuration F defines an r-degree multigraph
(with possible self loops), with vertex set V {1,..., n} in which v is connected to
v’ if F includes a pair {(v, i) (v’, i’)} for some 1 _<- i, i’_< r.

Let (r, n) be the set of all configurations that define a proper r-regular graph.
Bollobis was able to show that [(r, n)l e(-r2-1)/4[c(r, n)l. Thus, if we turn (r, n)
and (r, n) into probability spaces by giving all their elements equal probability, an
event that holds with probability 1-O(n-) in (r, n) also holds with probability
1-O(n -1) in (r, n). Furthermore, each graph G H(r, n) is obtained from precisely
(r!)" configurations. Thus, to prove that an event holds with probability 1-O(n-1) in
H(r, n) it is enough to prove this result in the space (r, n), where the analysis is
substantially easier.

We first obtain a lower bound for the number of edges with at least one endpoint
in a given set of vertices U. Let/3 and a _-< e-Zr-4. Let E be the event: There is a
subset of vertices U, ]U[ k <= an, that are endpoints of less than r- k distinct edges.
The event E implies that at least flk edges in the graph connect two vertices of U. Thus,

Prob (E) =<k"=
Since

Prob (El) E (er)3k
kon

For klog n, each of the terms in the sum is bounded by O(n-1/2); thus, the sum of
the first log n terms is bounded by O(n-/3). For k -log n each term in the sum is
bounded by

(e(a+)ra(-))k <= n -2

by the choice of a and . There are less than n terms in the sum; thus, Prob (E)=
O(n-’/3).
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Let E2 be the event: There exists a subset of vertices U,] U[ <-_ an that has less than
IUl(r-3) neighbors outside U. Conditioning on/, the complement of the event E,
we know that the vertices of U are endpoints of at least (r-fl)[ UI edges. We bound
Prob (E2[ ffl) by the probability that the other endpoints of all these edges are in a set
of size (r 3)1UI. Thus,

k=, (r-3)k n

<_()k((rZ) )(r-a)k((r3)k) r-fl k

Again we distinguish between two cases. If k-< log n then since 2-/3--1/2, each term
in the sum is bounded by O(n-1/2). If klog3 n then each term is bounded by
(erra/2(ra)l/2) k, and thus, by the choice of a, is bounded by O(n-2).

Thus, the expansion property holds with probability Prob (/2)>= Prob (/[/1)
Prob (/1) >-- 1 O(n-/3). ]

CLAIM 2.8. Let G- (V, E) be a graph satisfying the following expansion condition"
Every subset of vertices U such that U <-_ an has at least 21U neighbors outside U. Then
G has the following superconcentration property: Every two subsets of vertices U, W of
size U] W <-an are connected by lU paths which are vertex-disjoint except that a
node in U W, in addition to being an endpoint, might appear as an intermediate node
on one other path. item.

Proof We use the following extension of Menger’s theorem.
THEOREM [Br, p. 167]. If a and b are two nonadjacent vertices of_a simple graph

G, then the maximum number of vertex-disjoint paths between a and b equals c6(a, b)-
minAIAI, where the minimization is taken over all vertex sets A that do not contain either
a or b and whose removal disconnects a from b.

Assume that our graph G V, E) contains a pair of sets U, W that do not satisfy
the property. Let k uI- wl, Consider the graph H--(V’, E’) obtained from G as
follows: The set of vertices V’= V+ U’+ W’+ {s, t}, [U’] ]W’[ k. The vertex s is
connected to all u’, u’ U’ and the vertex is connected to all w’, w’ W’. The
connections between the vertices V are as in the graph G, and the vertices in U’U W’
have the same connections as the corresponding vertices in U U W. Existence of k
disjoint paths connecting s to implies the superconcentration property. The above
theorem implies that if there are no k vertex-disjoint paths connecting s to then there
is a set A, IA < k that disconnects s from t.

We will prove that the existence of such a set in H violates the expansion property
of G. Assume that a set A, [A[ < k disconnects s from t. Let a ]U t3 A[, b [Vf3 A
and c [W (3 A[, a + b + c < k. By the expansion property A f’) V can disconnect only
a set of size 1/2b from the rest of the set V. Thus, the set V-A has a connected component
V’ of size at least Vl-b. By the expansion property the set U A has at least 2(k a)
neighbors in V and the set W-A at least 2(k-c) neighbors in V. Since a + b + c < k,
2(k-a)>b and 2(k-c)>b; thus both U-A and W-A are connected to the
connected component V’ and there is a path connecting s to that does not use the
set A.

CLAIM 2.9. For all r >-5, for every graph G in H(r, n), if G has the expansion and
superconcentration properties, then there exists a three-phase transmission scheme for G
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subject top(G, t) O(t1+ log t) for . O(n-’),for some 0< < e < 1, e e(r), where
e - O as r- o.

Proof. In this proof all logarithms are to the base r-3. Let d- [log t] and let
8=log ((r-1)/(r-3)). For each vertex u in G, let D(u) denote the set of vertices in
G at distance d +4 from u. By the expansion property, and the fact that r-3 >_-2,
[D(u)[-> 16(r-3) d. We choose l-(U)-’-I-’in(U) rout(U to be an s=9(r-3)d <-tn ele-
ment subset of D(u). This leaves us free to use the same inbound paths as outbound
paths. Specifically, we choose an arbitrary breadth-first search tree of G rooted at u,
and use its branches to define paths between u and the elements of F(u). Finally, by
the superconcentration property there are s "almost vertex disjoint" paths between F(v)
and F(w) for every two nodes v, w of G. For each pair of nodes we specify a partic-
ular set of such paths. This completes the specification of the transmission scheme.

It remains to analyze the damage that can be caused by the faulty processors and
to show that it cannot be too large. Let u be an arbitrary correct processor and let p
be a faulty processor at distance from u. Then p can affect the paths from u to at
most (r- 1)d+4-i elements of F(u). At most r(r- 1) i- vertices u are at distance from
p. Thus p can corrupt at most r(r- 1)a+3 elements in sets F(u) for vertices u at distance
from p. Summing up for all distances _-< d and all faulty processors we see that the

faulty processors can corrupt at most tdr(r-1)d+3 paths in total. Therefore, assuming
that this damage is distributed in a worst-case fashion for the transmission scheme
(optimal for an adversary),

b(G,t) <-
log tr(r 1)d+3
9(r--3)d/8

8r(r- 1) + log t.

Finally note that by the remark following Claim 2.2 and the fact that s/8 > (r 3) d >__ t,
the same bound applies for p(G, t). Note also that this bound limits the results to

O(n-) for an appropriate < e < 1. [3

COROLLARY 2.10. For every r>=5 almost every r-regular graph has a t-resilient
O(t+ log t)-agreement algorithm, for O(n-), for some 0< i < e < 1. [3

2.5. Results for faults of restricted severity. In this section we briefly mention our
results for the failstop, omission, and authenticated Byzantine models. As with the
unrestricted Byzantine failures (without authentication) our approach is to devise an
appropriate transmission scheme. However, in the failure models considered here two
correct processors can communicate provided they are connected by even one uncor-
rupted path. Thus the poor processors will be only those completely disconnected from
the major portion of the graph. Now, if a graph has good expansion properties, then
it is impossible for processors to disconnect more than O(t) processors. Combining
this with the fact that almost all regular graphs of degree at least 5 enjoy such properties
(Lemma 2.7), we obtain the following result.

THEOREM 2.11. Assuming an authentication mechanism or nonmalicious faults
(failstop, omission), for all r >= 5 there exists a constant c c(r) such that for all <- cn,

(1) almost all r-regular graphs have transmission schemes in which there are at most

O(t) poor processors, and
(2) almost all r-regular graphs admit a t-resilient algorithm for O( t) agreement.

3. Byzantine agreement on compressor graphs. Until this point we have considered
only techniques based on simulations of complete-network algorithms on our bounded
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degree networks. A different approach to reaching agreement in a bounded degree
network can be based on distributed protocols of a local nature. In this section we
consider such an approach and analyze its behavior on a compressor graph.

A graph G is a O-compressor for constant 0 < 1, if for every subset of vertices U
of size UI <- On, the set {vlv has at least half of its neighbors in U} has cardinality at
most UI/2. An explicit construction of compressors of a (very high) fixed degree
(about 817) has been shown by Pippenger [P]. Using a recent result of Lubotzky,
Phillips, and Sarnak [LPS] the degree of explicitly constructed compressors can be
reduced to about 64.

Our interest in compressors follows from our ability to use the compression
property to "sharpen" almost-everywhere agreement to achieve O(t) agreement (which
is asymptotically optimal, as faults can always completely disconnect l)(t) correct
processors). Ultimately, our approach will be to use one of the simulation techniques
of the previous section to obtain p(G, t) agreement and then to sharpen this to O(t)
agreement by using the compressor properties of the graph.

We consider the following scheme for agreement, called the compression procedure.
This procedure is based on simple rounds of the following form. In every round, every
correct processor

(1) sends its value to all its neighbors,
(2) receives the values of all its neighbors, and
(3) chooses as its new value the value held by a majority of its neighbors.
The procedure terminates after some fixed number of rounds.
Let G V, E) be a 0-compressor of size n, and let T be the set of faulty processors

in the network, ]T <=t <- On
LEMMA 3.1. If there are (1-O)n correct processors which share the same initial

value x, then after applying the compression procedure for log n rounds, at most + 1
correct processors will have a value different from x.

Proof Let Vk denote the set of correct processors whose value differs from v after
k rounds of the majority procedure. Let Ak=((2k--1)t+]Vol)/2k, for k->0. We begin
by bounding Ak in terms of n and t.

CLAIM 3.1.1. For every k >-_ O, Ak + <= On.
Proof There are two cases. If Vo] -< then for every k >- O, Ak <---- ((2k 1) + t)/2k

and we are done by the assumption on t. If IVo]> we prove the claim by induc-
tion on k. For k=0, Ak Vol, and Ak+t= ]Vo[+t_-< On by the assumption on the
initial state of the network. Assume the claim inductively for k. Since Ak+--
Ak +(t-lVo[)/2k+l <Ak we are done.

We next bound Vk in terms of Ak.
CLAIM 3.1.2. For every k >-0, [Vk] <- Ak.
Proof We prove the claim by induction on k. For k 0 the claim is trivial. Assume

the claim for k inductively, and consider the case of k + 1. The set Vk/ will contain
all correct processors whose majority of neighbors resides in T U Vk. By the inductive
hypothesis this set has cardinality at most / Ak, which, by Claim 3.1.1, is at most On.
We may therefore apply the compression property to obtain Vk+l[ (t + Ak)/2 Ak+l.

Taking k log n we obtain Vk[ <--_ Ak =< + 1. This completes the proof of Claim
3.1.1. [3

LEMMA 3.2. For every r>--5 there exists a constant 0< 0<1, such that h(r, n)(1-
O(n-)) of the h(r, n) r-regular graphs have the compression property for all subsets U
of size [U[ =< On.

Proof We use the same setting and notation as in the proof of Lemma 2.7. Define
the event E3: There exists a set U, IU[ <-On and a set W,[W[_-<[UI/2 such that half of
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the edges incident on W have one endpoint in W and the other in the set U. Clearly if
a graph has a set U that violates the compression property it is included in the event
E3. To estimate the probability of the event E3 we condition first on the complement
of the event E1 (defined in the proof of Lemma 2.7). Under the condition El, the
vertices of the set W are incident to at least (r-t )lwl edges, and to satisfy the
condition E3 at least half of these edges have their other endpoint in the set U"

Prob (E21l)----< Y
k/2 ((k 0,, r-)/2)k

= e3k/22(r-13+l/2)

For k<=log3n each term in the sum is bounded by O(n-). For k>-log3n each
term is bounded by (er+l/2Or-3/)k<=n -, since /3= and e-2. Thus, Prob (/3) >-

Prob (/31/1) Prob (/1) 1-O(n-1). F1

Combining this with the transmission schemes described in 2.4, we prove the
following.

COROLLARY 3.3. For every r > 5, h(r, n)(1 O(n-1)) ofthe h(r, n) r-regular graphs
admit O(t) agreement, where O(n l-) for some 0< e < 1.

Proof By Lemmas 2.7 and 3.2 almost every r-regular graph enjoys the expansion,
compression, and superconcentration properties. Let G be any such graph. Using the
three-phase transmission scheme of 2.4 to simulate any standard Byzantine agreement
designed for the complete network, we achieve O(tl/ log t) agreement, so at the end
of the simulation at least 1- 0 of the correct processors agree on a value. Since this
satisfies the conditions of Lemma 3.1 we may apply that lemma to obtain the desired
O(t)-agreement.

COROLLARY 3.4. There exists a family of degree 9 networks that admit t-resilient
O( t) agreement for <= an/log n, for some constant a.

Proof Since a butterfly has degree 4 and a compressor has degree 5, there exists
a graph of degree 9 which is both a butterfly and a compressor. We first use the result
of Corollary 2.5 to get an O(t log t) agreement on the butterfly graph, then we use the
compressor to sharpen this agreement. [-I

4. Almost-everywhere agreement on networks of unbounded degree. On a complete
network, t-resilient agreement protocols exist for all < n/3. In contrast, our previous
algorithms can tolerate only O(n/log n) failures. The situation for higher values of
on bounded degree networks remains open. In this section we present an approach
for reaching agreement on networks of unbounded but small degree (which is neverthe-
less much lower than n or t).

THEOREM 4.1. For every e > 0 there exist a constant c c(e), graphs G of degree
O(n) and t-resilient O(t)-agreement algorithms for <= cn.

Proof. For simplicity, we discuss only the case e 1/2. Let G (V, E) be defined
as follows. V contains n--m nodes, partitioned into m pairwise disjoint committees
Ai, 1-<_ _-< m, each of size m. Each committee forms a clique. In addition, every two
committees Ai and Aj are connected by m edges which form a matching between them.
On top of that, we optionally add edges so as to make the graph into a 0-compressor.
As discussed earlier, this property can be achieved by a graph of bounded degree.
Thus the degree of any node in the resulting graph will be O(nl/2).
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Let P be any t-resilient protocol for the traditional Byzantine agreement problem
on a complete network [DFFLS], [PSL], [LSP], guaranteeing agreement whenever the
number of faulty processors is smaller than n/3.

The algorithm we give consists of two main stages plus an additional optional
stage which uses the compressor edges. In the first stage, each committee privately
runs P (appropriately scaled) among its own members. We say a committee is good
if fewer than -] of its members are faulty. Clearly the good committees will reach
agreement among themselves. In the next stage, each committee acts as a single
processor and the whole graph is viewed as a clique of m (composite) processors
which simulate an execution of P. The final optional stage is a compression step, as
described in 3.

The communication between committees is performed by a special protocol COM
which guarantees that processors within a good committee behave uniformly. According
to this protocol a committee A sends a message x to B as follows. Every processor in
A sends x to its neighbor in B. Every node in B now executes the following two steps:

(1) Exchanges with all other processors in B the value received from A;
(2) Adopts as its updated value of x that message received from the majority of

the nodes in B (ties are broken arbitrarily).
Finally, the nodes of B run P on the adopted values for x. The value agreed upon

by the end of the run is taken to be the message sent by A.
We now analyze the behavior of this algorithm. Call a committee Ai good if

ti < m/4, where t is the number of actual faults in A, and bad otherwise.
CLAIM 4.2. In every communication step (i.e., every execution of COM), if the

committee Ai receiving a message is good then all the good processors in it will agree on
the same received value.

Proof This follows from the properties of P and the fact that
COROLLARY 4.3. In every round of the second stage of the main algorithm, the

elements of a good committee will have the same view and will send out the same
messages.

CLAIM 4.4. In every communication step COM, if the receiving committee A and
the sending committee Aj are good, then all the good processors in Aj will agree on the
value that was sent by (the good processors of) A.

Proof Since all the good processors of A send the same message X, and t, t <
m/4, the number of good processes in A receiving X is at more than m!2. Therefore
after the majority step of COM, all the correct processes in A will have the same value
X. By the unanimity property of the algorithm P, all the correct processors in Aj will
eventually agree on X.

CLAIM 4.5. If < n/12 then in the end of the basic main algorithm (without the
final compression step), agreement will be reached between most of the good processors;
at most 3 good processors will reach a wrong decision.

Proof Denote the number of bad committees by b. Clearly b <-4t/m (otherwise,
since every bad committee has at least m/4 faults, there are more than faults overall).
Hence b<(4/m)(n/12)= m/3. Therefore the main algorithm will guarantee that all
the good committees will reach agreement, where in every good committee all good
processors will have the right value. The "confused" good processors are at most those
in the bad committees, whose number is bounded by b(m-m/4)<-(3m/4)(4t/m)=
3t. [q

CLAIM 4.6. If < On/4 then in the end of the algorithm (with the final compression
step), agreement will be reached between most of the good processors; at most + 1 good
processors will reach a wrong decision.
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Proof Upon termination of the basic algorithm, the number of good processors
holding a wrong value is bounded by 3 t, as shown in the previous claim. Thus < On/2,
and l+ t<=4t < On, and by Claim 2.3, after the compression procedure at most + 1
good processors will have a wrong value. ]

This algorithm can be naturally extended for graphs of degree O(n l/k) for k
3, 4,..., by dividing the graph into committees of committees of committees, etc.,
with an appropriate definition of a good committee on every level. We omit the details.

5. Combinatorial characterization of fault-tolerant networks. There is a necessary
and sufficient condition for a system to be t-resilient in terms of the combinatorial
properties of its communication graph. In this section we derive a combinatorial
characterization of graphs that admit p(t) agreement.

For any agreement protocol P let P(T) be any maximal set of correct processors
that always reach agreement under the protocol P, independent of the behavior of the
processors in T (thought of as faulty).

THEOREM 5.1. Let G be a communication graph, let {T/}/k=l be the family of all
possible sets offaulty processors in G, and let {A( T/)}/k_l be a family ofsets ofprocessors
in G. There exists a protocol P subject to P( Ti) A( Ti) for i= 1,..., k, if and only if
for every pair of processors u, v A(Ti) CI A(T), the set Ti (_J T does not disconnect u

from v in G.
Comment. Not that if for all sets T of at most processors A(T) is the complement

of T, then our characterization yields the 2t + 1 connectivity condition for the traditional
Byzantine agreement problem.

Sketch of proof. To prove necessity, we show that if there exist sets T/ and T
which jointly (but not individually) can disconnect correct processors u and v, then
there exist two scenarios, indistinguishable to v, such that in one scenario T is faulty
and u decides on a value a, while in the second scenario T is faulty and u decides
on a value b.

We prove sufficiency by constructing an algorithm with the desired properties.
We briefly describe a few points of our construction.

A processor u transmits a message to v by sending it along all simple paths from
u to v. As the message passes from site to site, each processor appends the name of
the processor from which the message was received. Thus, a message that passes
through faulty processors contains the name of at least one such processor (the last
one). The processor v searches for a set T such that all the messages not passing
through this set are consistent and both u and v are in A(Ti). Let T be the set of
faulty processors in a particular execution of our algorithm. If u and v are in A(T)
then v will try this set and extract the correct value. Crucial to our algorithm is that
v will never extract an incorrect value. This is because by assumption, for all other
relevant sets T, T (_J T will not disconnect u from v. Thus, v receives the message via
at least one fault-free path. Therefore, the faulty processors can at most create an
inconsistent set of values, from which v extracts nothing. I-]

6. Conclusions and open problems. We propose a new paradigm for fault-tolerant
computing, in which correctness conditions are relaxed by accepting the loss of a small
number of correct processors.

This paper concentrates on demonstrating the feasibility of this new approach
and its advantages. In particular, we show that a simple distributed algorithm can
achieve agreement among almost all the correct processors in circumstances in which
Byzantine agreement is not achievable.

Many problems remain open for further investigation. We mention the following:
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(1) What is the minimum number of steps and messages required to achieve X
agreement? Can the efficiency of the algorithms presented in this paper be significantly
improved?

(2) The algorithms presented in this work assume that all the processors know
the topology of the communication network and the communication schemes used by
all other processors. Is this requirement essential for achieving X agreement?

(3) Can X agreement be achieved on a network ofbounded degree in the presence
of more than n/log n (malicious) faults? Note that in this case most of the communica-
tion paths between most pairs of processors include at least one faulty processor.

Acknowledgment. We wish to thank M. Ajtai for helpful discussions.
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NATURAL SELF-REDUCIBLE SETS*

ALAN L. SELMANY

Abstract. To every set A in NP we associate a (collection of) natural self-reducible set(s). We prove
that every disjunctive-self-reducible set in NP is -<-equivalent to one of these natural self-reducible sets
and we show that if certain questions about these sets could be answered, then several significant open
questions about the fine structure of NP would be solved.

Key words. NP, self-reducible, P-selective, P-separable, reducibilities, P-isomorphic

AMS(MOS) subject classification. 68Q15

1. Introduction. All "natural" NP-complete sets are self-reducible but it is not
known whether all NP-complete sets are self-reducible. Self-reducibility is that property
of sets which, for example, makes the problem of finding a satisfying assignment for
a formula of propositional logic polynomially Turing equivalent to the problem of
deciding whether a formula has a satisfying assignment. The theorems of Berman
[Bet78] and Mahaney [Mah82] use the self-reducibility property extensively.

Our motivation is to reveal the mathematical structure of NP. Although hundreds
of NP-complete problems are known, even elementary matters such as whether the
union of every pair of disjoint NP-complete sets is NP-complete remains an open
question. We suggest examination of self-reducible sets in order to gain insight into
questions of this kind. To every set A in NP we associate a (collection of) natural
self-reducible set(s), prefix (RA). Prefix (RA) may be thought of as the set of all prefixes
of accepting computations of some nondeterministic polynomial time-bounded Turing
machine that accepts A. If we could answer certain questions about these sets, then
several significant open problems about the fine structure of NP would be solved.
Along the way some fundamental facts about self-reducible sets are obtained. We
prove that every disjunctive-self-reducible set A is <--equivalent to an appropriate
prefix (RA). (An immediate consequence is the known result that every disjunctive-self-
reducible set belongs to NP [Ko83].)

2. Preliminaries. All languages considered are over the finite alphabet E {0, 1},
and # is a symbol that is not in the alphabet {0, 1}. The reader is assumed to be
familiar with standard concepts and notation of polynomial time-bounded complexity
theory [HU79], [GJ79], but a number of specialized notions are described below.

Let E U DTIME (2cn), and let NE U NTIME (2n). It is not known whether
E NE, but it is a well-known fact that E NE implies P NP [Boo74a], [JS74]. A
tally language is a subset of {1}*. A set S is sparse if there is a polynomial p such that
for every positive integer n,

IIS{O, 1}"ll<-p(n),

Obviously, tally languages are sparse sets. It is known that E NE if and only if every
tally language in NP belongs to P [Boo74b], [HHH74], and Hartmanis [Har83] has
recently shown that E NE if and only if every sparse set in NP belongs to P. Also,
it is known that no NP-complete sets are sparse unless P NP [Mah82].

* Received by the editors August 4, 1986; accepted for publication (in revised form) November 2, 1987.
This research was supported in part by the National Science Foundation under grant DCR86-96082 and by
the National Security Agency under grant MDA904-87-H-2020.

? College of Computer Science, Northeastern University, Boston, Massachusetts 02115.
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2.1. Reducibility concepts. We use the notation <_-x and =< p to denote polynomial
time-bounded Turing and many-one reducibility, respectively. For an arbitrary poly-
nomial time-bounded reducibility <--Pr, a set L is <=-hard for complexity class C if
every set in C is =< r-reducible to L, and a set L is -< e-complete for C if L is =< -hard
for C and L e . By consensus, "NP-complete" means _-< P,, complete for NP, and
"NP-hard" means <=-hard for NP.

It is known that -< and =< p are not identical on the class of recursive sets ILLS75]
If P # NP, then there exist NP-hard sets that are not <- ’.,-hard [Lon82]. However, it
is not known whether there exist =<-complete sets in NP that are not already NP-
complete.

A number of specialized polynomial time-bounded reducibilities have been studied
ILLS75]; of these we need to know disjunctive reducibility, =<. A simple charac-
terization follows: A -<_ B if and only ifthere is a polynomial-time computable function

f’{0, 1}*--> (#{0, 1}*)*

such that for each input word x, x e A if and only if {Yl,"" ", yk}[’l B # , where
f(x) #Yl #Yk.

Reference will be made to truth-table and positive truth-table reducibilities also.
The uninitiated reader need only be aware of the following inclusions:

ptt C
< C <

2.2. Self-reductions. Self-reducibility notions have appeared in the literature in a
variety of guises, but the most useful definition is due to Meyer and Paterson IMP79].
Their definition follows.

DEFINITION 1. A partial order < on * is OK if and only if
(i) every strictly decreasing chain is finite, and there is a polynomial p such that

every finite <-decreasing chain is shorter than p of the length of its maximum element,
and

(ii) x < y implies Ix[ q(lyl), for some polynomial q, and all x and y in *.
DEFINITION 2. A set A is self-reducible if and only if there is an OK paial order

and a query machine M such that M accepts A in polynomial time with oracle A,
and M is restricted so that on any input x in *, M asks its oracle only about words
strictly less than x in the paial order.

Our concern is with sets that are d-self-reducible, i.e., the query machine M also
provides a -reduction. This means that on every input word x, the query machine
M either

(i) decides membership of x in A in polynomial time without queries to the
oracle, or

(ii) computes a set of queries {z,. ., z} in polynomial time so that

All of the known NP-complete combinatorial problems are d-self-reducible, and
Meyer and Paterson [MP79] and Schnorr [Sch76] demonstrated d-self-reducibility of
several problems in NP that are not known to be either in P or NP-complete.

3. Natural self-reducible sets. Given a set A e NP there is an associated poly-
nomial-time recognizable relation RA and an associated polynomial PA such that

(1) A= {xlylyl--pA(lxl) and RA(X y)}.
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A string y of length pA(IXl) such that RA(X y) holds is called a proof that x e A. We
will be performing various manipulations on these proofs, and so for purely technical
reasons it is convenient to assume that associated polynomial-time relations also satisfy
the following condition:

(2) VZlzlPA(Ixl [RA(X, 2)--’)RA(X, y), where y is the prefix of z of length pA(IXI)].

We make this assumption without loss of generality because every polynomial-time
recognizable relation RA that satisfies property (1) can be extended so that it also
satisfies condition (2).

DEFINITION 3. Prefix (RA)--x#ullul-p(lxl) and RA(X, u/)}.
PROPOSITION 1. (i) Prefix (RA) is d-self-reducible. (Namely, x#u prefix (RA)z)

(x#uO prefix (RA) or x#ul prefix (RA)) or RA(X u).)
(ii) A -<P,P, prefix (RA). (Namely, x ACe,x# prefix (RA).)
(iii) IfA is NP-complete, then prefix (RA) is NP-complete.
(iv) IfA is <=-complete for NP, then prefix (RA) is <--complete for NP.
A number of open questions about prefix (RA) will be raised. From the possible

answers to these questions, inferences will be drawn about structural properties of NP.

3.1. Disjoint pairs of NP-sets. The following are two well-known results about
disjoint pairs of recursively enumerable sets (cf. [Sho71]).

(1) For every nonrecursive recursively enumerable set A there exist sets B1 and
B2 such that A B1 U B2, B1 fq Be and B1 and B2 are both recursively enumerable
and nonrecursive.

(2) If B1 and B2 are disjoint recursively enumerable sets, then d(Blt_J
d(B1) U d(Be). In particular, B1 =<x B1 t_J Be and B2 <- B1 U Be.

Now the analogue of result (1) to polynomial-time complexity holds, for Ladner
[Lad75] has shown that for every set A in NP-P, there exist disjoint sets B1 and
in NP-P such that A B1 t_J

Consider the proof of result (2)" To decide B1 with oracle B1U Be, on input x, if
x B1 t_J Be, then reject, else simultaneously enumerate B1 and Be until x is output.
Accept if the enumeration of B1 outputs x and reject if the enumeration of B2 outputs x.

The proof just given certainly suggests that the analogue of result (2) is false.
P B1 U Be for every disjoint pair of sets B1 and BeMore to the point perhaps, if B1 =<x

in NP, then NPf’)co-NP P. (To see this assertion, let B1 NPfq co-NP, let Be
and observe that B1U B2 * is in P.) Since it is unlikely that NP f’) co-NP P, it seems
reasonable to conjecture (assuming P NP) that there exist disjoint sets B1 and Be in
NP- P such that B1U B2 NP- P and B1 xP B1U Be. Neither Ladner’s proof [Lad75]
of the analogue of result (1) nor Sch6ning’s elegant treatment [Sch82] yields a proof
of this conjecture, for their techniques give B1 --< P B1 U Be and Be < P B1 U Be

Let A and B be disjoint sets in NP-P. Let PA and pn be associated polynomials,
and let RA and Rn be any polynomial-time recognizable associated relations. Let
PAn =max (PA, Pn}. Since RA and Rn satisfy both of the defining conditions (1) and
(2), it follows readily that AUB={xIyIyl-pAw(Ixl) and [RA(X,y)vRB(x,y)3}.
Furthermore, [RA(X, y) V RB(X, y)] satisfies condition (2), where PAtAB is the appropriate
bound. Therefore, [RA(X y)V RB(x, y)] is an associated relation for A t_J B. Hence, it
is consistent with our notation to define RAU to be the relation RA Rn.

LEMMA 2. Prefix (RA) < P=a-prefix (RAtAB), ifAB=.
Proof The following procedure gives the reduction.
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input x# u;
if x#u : prefix (RAuB)

then reject
else begin

y:=u;
while RAt3 B (X, y) do

if x#yO prefix (RAuB)
then y := y0
else if x#yl prefix (RAus)

then y := y 1
end;

if RA(X, y)
then accept
else reject

The following theorem follows from the lemma and Proposition 1(iv).
THEOREM 3. IfA and B are <-_-complete for NP, AB=(, then prefix (RAs)

is <---complete for NP.
THEOREM 4. If prefix (RA) VI prefix (Rs) , then prefix (RA) <-- prefix (RA)

prefix (Rs).
Thus, the analogue of result (2) about disjoint pairs of recursively enumerable

sets is true when restricted to prefix sets. For the proof, simply observe that prefix (RA)
prefix (RB)- prefix (RAs) when prefiX(RA) and prefix (Rs) are disjoint. In particular,
the analogue of result (2) for _--<TP-complete sets is true when attention is restricted to
prefix sets, i.e., the union of two disjoint _--<TP-complete prefix sets is _--<vP-complete. We
would like to know whether this is true in general. Because of the following easy-to-
prove proposition, we caution that it probably would be difficult to prove, if it is true.

PROPOSITION 5. If the union of every pair of disjoint sets <--complete for NP is a
<--complete set for NP, then P NP implies NP co-NP.

3.2. P-inseparable sets in NP. A disjoint pair of sets in NP, A and B, are P-separable
if there exists a set L in P such that A L and B

_
L; they are P-inseparable otherwise.

It is known that there exist public-key cryptosystems that cannot be cracked in
polynomial time only if there exist NP-complete P-inseparable sets, and that P # UP
implies the existence of NP-complete P-inseparable sets [GS84]. It is not known
whether this condition follows from the (presumably) weaker hypothesis P # NP. The
following proposition states that if there exist disjoint NP-complete (_-<xP-complete for
NP) sets A and B such that A [_J B is not NP-complete (not <- -complete, respectively),
then A and B are P-inseparable. Thus, if the -<xP-complete sets for NP are not closed
under disjoint union, then that fact has an equally interesting structural implication
(namely, the existence of =<xP-complete for NP P-inseparable sets).

PROPOSITION 6. Let A B E*. If A and B are P-separable sets in NP, then
A <-_ P A (.J B and prefix (RA) <:mP prefix (RA). As a consequence, ifA is NP-complete
(<--PT-complete for NP), then A [.J B is NP-complete (<-_-complete for NP, respectively).

Proof Let L P be a set that separates A and B, A_ L and B_/[ Let a be a
string in the complement of A U B. Define f(x) if x L then x else a. Then, x A <->

f(x) A (.J B andso A <-P,, A kJ B. Notingthatx#u prefix (RA)-x#u prefix (RAn)
and x A, it follows that x#u prefix (RA)-->f(x)#u prefix (RAB). Thus,
prefix (RA) _--<P prefix (RAu).

The case that there exist disjoint NP-complete sets A and B whose union is
is easy to analyze. In this case A B and so it must be the case that NP=co-NP.
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A t.J B is not NP-complete regardless of whether A and B are P-inseparable because
only 5?* can be _-<Pm-reducible to 5?*. However, it remains true that if A and B are
P-separable, then A U B is <_---complete for NP. Namely, A and B are P-separable if
and only if A P. A P implies P NP, from which it follows that 5?* is --<TP-complete
for NP.

3.3. Disjunctive-self-retlucible sets in NP. How specialized are the d-self-reducible
sets prefix (RA)? The answer is they are not very specialized--every d-self-reducible
set can be put into this form.

THEOREM 7. If A is d-self-reducible, then there is an associated polynomial-time
relation RA such that A=- prefix (RA).

Proof. Let A be d-self-reducible, and let the reduction be given by the polynomial
time computable function f. A self-reducing tree for each x57* is constructed as
follows (cf. [Ko83]). The root of the tree is x. For each node y, its children are the
smaller strings Zl," ", Zk. Note that the self-reducing tree for x is polynomial depth-
bounded and that x A if and only if this tree has a path all of whose nodes are in
A. A path has all of its nodes in A if and only if the leaf is in A, and this occurs if
and only if the self-reducing machine for A accepts the leaf without generating further
queries.

Now define RA(X y)=--[y is a path in the self-reducing tree of x such that the leaf
is accepted by the self-reducing machine for A]. RA is clearly a polynomial-time
recognizable relation, and

x A- =lyly pA(IXl) and RA(X, y),
for some polynomial PA. (Existence of PA is guaranteed since f computes relative to
some OK partial order.) Recall that by definition RA and PA must satisfy two conditions
in order for RA to be an associated polynomial-time recognizable relation for A. We
just showed that RA and P3 satisfy condition (1). For this reason, without possibility
of confusion, let RA denote the extension of RA that satisfies condition (2), so that
the resulting relation RA is then an associated polynomial-time recognizable relation
for A.

We know already that A <_- P prefix (RA)
A string x#u belongs to prefix (RA) if and only if u is a prefix of an accepting

path in the self-reducing tree of x. Thus, a string x#u belongs to prefix (RA) if and
only if the string u encodes a sequence y, , Yk, Yshort such that

(i) Yl x;
(ii) for all i, 1,. , k- 1, y+ is a string produced by f on input y;
(iii) if Yshot A, then Yk A, and if Yhot A, then there is a string z such that

Yhot is a prefix of z, z is a string produced by f on input Yk, and z A.
If Yshort A, then Yk is the only oracle call to A. If Yhot A, then the queries to A

are all of the children of Yk in the self-reducing tree of x that start with Yshot. Since
x e A if and only if one of these children is in A, it follows that prefix (RA) <= A. [-]

COROLLARY 8 [Ko83] IfA is d-self-reducible, then A belongs to NP.
Now we will gain further insight by comparing d-self-reducibility with other proper-

ties of sets in NP. A set A is defined in [Sel79] to be p-selective if there is a function

f: 5?* x 5?*- 5?* that satisfies each of the following:
(1) f is computable in polynomial time;
(2) f(x, y) x or f(x, y) y;
(3) xA or yA-f(x,y)A.
The following proposition summarizes known results about p-selective sets that

we will use.
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PROPOSITION 9. (i) [Se179] For every tally language T, there exists a < e=T-equivalent
p-selective set A, and if T NP, then A NP. Therefore, if E # NE, then there exist

p-selective sets in NP-P.
(ii) [Se182] If a set is both p-selective and d-self-reducible, then it belongs to P.
(iii) [Se182] Ifa < P

pit B and B is p-selective, then A is p-selective.
(iv) [Se182] A e P if and only ifA < P and A is p-selective.ptt

By assertions (i) and (ii) of Proposition 9, it is fairly clear that not all sets in
NP-P are d-self-reducible. In [BB86] the notion of self-producible circuit is defined
and it is proved that a set A has self-producible circuits if and only if A is -< -equivalent
to a tally language. Therefore, E NE implies there is a p-selective set in NP- P that
has self-producible circuits. Thus, it is fairly clear that not even all sets with self-
producible circuits in NP-P are d-self-reducible. However, these remarks do not
explain anything about the NP-complete sets because Ko [Ko83] has shown that
NP-complete sets cannot be p-selective unless the polynomial hierarchy collapses to

E. (Specifically, Ko showed that p-selective sets have sparse oracles. The conclusion
follows from [KL80].)

The question of whether all NP-complete sets are d-self-reducible is somewhat
related to the Isomorphism Conjecture of Berman and Hartmanis [BH77]. The follow-
ing proposition is presented without proof, for its proof is straightforward and it is
probably known to others.

PROPOSITION 10. !fA is d-self-reducible and A=-P
io B, then B is d-self-reducible.

All of the known NP-complete combinatorial problems are paddable and every
two paddable NP-complete sets are P-isomorphic [BH77], [MY85]. The Isomorphism
Conjecture asserts that all NP-complete sets are P-isomorphic. The Satisfiability Prob-
lem, for example, is paddable and is d-self-reducible also. Hence, the following
corollary follows.

COrOLLArY 11. Every paddable NP-complete set is d-self-reducible.
Therefore, all of the known NP-complete combinatorial problems are d-self-

reducible. If there exist NP-complete sets that are not d-self-reducible, then there exist
NP-complete sets that are not paddable and so the Berman-Hartmanis conjecture is
false.

Despite Theorem 7 and Corollary 11, we have not been able to extend Theorem
4 to arbitrary d-self-reducible sets. In particular, we do not know whether the union
of every pair of disjoint d-self-reducible sets _-<-complete for NP is a -<-complete
set for NP. By Proposition 5 and Corollary 11, if the two problematic assertions hold,
the Berman-Hartmanis conjecture is true and the union of every pair of disjoint
d-self-reducible sets _-<-complete for NP is a _-<-complete set for NP, then P NP
implies NP co-NP.

Joseph and Young [JY85] have invented a class of NP-complete sets which are
not obviously d-self-reducible, and hence are not obviously paddable. Very few
structural properties are known for these sets. But, it is proved in [JY85] that if one
of these NP-complete sets is not d-self-reducible, then there exist one-way functions.

By the way, d-self-reducibility and paddability are not equivalent notions on NP.
To see this, let A be any p-selective set in NP-P. By Proposition (iii), no d-self-
reducible set can be <_-P,,-equivalent to A, but A P,. A x E*, which is paddable by
definition.

Since not all sets in NP are d-self-reducible, let us raise the question of whether
all sets in NP are -<vP-equivalent to a d-self-reducible set. If this is so, then, assuming
E NE, reducibilities could be distinguished in NP in a very strong way.

PROPOSITION 12. Statement (a) implies statement (b).
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(a) Every set A that belongs to NP- P is <--equivalent to some d-self-reducible set.
(b) E NE implies

r’ D].=:1 C, D[C NP, D NP, C <=r D, and C v.

Proof. Apply Proposition 9(i) to obtain a p-selective set D that belongs to NP- P.
Let C be a _-<re-equivalent d-self-reducible set. Then, by Proposition 9(ii) and (iii),
C pPt, D. l-]

(Let us compare Proposition 12 with Corollary 16 of [Se182]. The latter result
uses a different hypothesis, NP fq co-NP P, to obtain essentially the same conclusion
as in Proposition 12. That assumption is used in order to obtain a set C in NP0 NP- P

p
that is not p-selective. Then, letting D C, C _-<vP D is trivial and C ptt D follows
from assertion (iv) of Proposition 9. In contrast, the sets C and D that are obtained
in Proposition 12 are by assumption two different -<-equivalent sets that belong to
NP and the conclusion follows from Proposition 9(iii).)

If NP contains disjoint sets A and B such that prefix (RA) P,, prefix (RAuB), then
reducibilities could be distinguished on NP.

PROPOSITION 13 (i) If there exist disjoint sets A and B in NP-P such that
prefix (RA) : r.,. prefix (RAu B), then "<=" and "<=,,P differ on NP.

(ii) If there exist disjoint <=r-complete sets A and B such that
prefix (RA) : I" prefix (RA then "<-us complete" and < P -complete are distinct.

Proof. The first claim follows from Lemma 2. For the second claim, by Theorem
3, prefiX(RAus) is =<Ta-complete for NP, but by the hypothesis, it is not
< P -complete.

Is every set in NP-P _-< a,,-equivalent to a d-self-reducible set? We have already
noted that the answer is no, for if E NE, then NP-P contains a p-selective set A
and no d-self-reducible set can be _-<Pro-equivalent to A. It follows that for every
associated relation RA, prefix (RA) :P Ao

Perhaps every set A is <- Ta-equivalent to prefix (RA) for some appropriate associated
relation RA. IS prefix (RA) <--r A for every A and every associated relation RA .9 Assum-
ing P rs NP, the answer is no. The universal set * has an associated relation Rx. that
defines E* as a member of NP such that prefix (Rx.) is NP-complete, and therefore
prefix (Rx.) E*. The proof is easy. Let SAT denote the NP-complete Satisfiability
Problem. Let Rx.= {(x, Y)IY-01xl3 or y l lxl3-1zlz and z is a satisfying assignment of
x}. Rx. is clearly an associated polynomial-time recognizable relation for E*.
Prefix (Rx.) is NP-complete because x SAT.-x#I prefix (Rx.).

The following theorem uses this construction in order to obtain a set A in NP- P
and an associated polynomial-time recognizable relation RA such that prefix (RA) is
--<-complete for NP but A is not <--TP-complete for NP.

THEOREM 14. Assume NP# P.There exists a set A NP-P and an associated
relation RA such that prefix (RA) is <--r-complete for NP and A is not <--complete for
NP. Thus, prefix (RA) A.

Proof. Choose LNP-P. Choose BNP-P such that B<-_aTL but LTeB
[Lad75]. Let Bo={Oxlx B} and let B1- {lxlxE*}. Let Rx. be an associated poly-
nomial-time recognizable relation for E* such that prefix (Rx.) is NP-complete. Let
Rs be any associated relation for Bo and define Rn, so that

RB,(ax, y)=--[a 1 ^ Rv..(x, y)].

Noting that Bof’l B1 , define A Bo U B and let RA R t_J Ra.
Clearly A=-veB, because axAo(a=O^xB) va=l, and xBo0xA.

Therefore, A is not -<-complete for NP.
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<P prefix (RA). Since prefix (R..) is NP-Now we will show that prefix (R.)=X
complete, this will complete the proof:

prefix (R..)=<vP prefix (RB,) (by definition of RB,)
<TP prefix (Rnou ,) (by Lemma 2)

prefix (RA).
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AXIOMATISING FINITE CONCURRENT PROCESSES*

MATTHEW HENNESSY’

Abstract. We re-examine the well-known observational equivalence between processes with a view to
modifying it so as to distinguish between concurrent and purely nondeterministic processes.

Observational equivalence is based on atomic actions or observations. In the first part of this paper we
generalise these atomic observations so that arbitrary processes may act as observers. We show, for a
particular language based on finite (CCS) terms, that the generalised equivalence coincides with observational
equivalence; the more powerful observers do not lead to a finer equivalence.

In the second part of the paper we consider observers which can distinguish the beginning and ending
of atomic actions. The resulting equivalence distinguishes a concurrent process from the purely nondeter-
ministic process obtained by interleaving its possible actions. We give a complete axiomatisation for the
congruence generated by the new equivalence.

Key words, concurrent processes, observational equivalence, noninterleaving

CR classification. F.3.2

Introduction. In [Mill], [Mil2] Milner has developed a semantic theory of pro-
cesses called observational or bisimulation equivalence. Intuitively two processes are
deemed to be equivalent if there is no observational method for distinguishing them.
We observe a process by communicating with it and this act of observation changes
the subsequent behaviour of the process. A suitable formulation of these ideas leads
to observational equivalence. It is the basis of a very elegant semantic theory of
processes and has gained considerable popularity. When applied to algebraic languages
for describing processes it can be characterised equationally [He]. This in turn leads
to transformational proof techniques for showing that a process implementation meets
its specification [Mill].

However, this semantic theory does not treat concurrency as a primitive indepen-
dent notion: every concurrent process is equivalent to a nondeterministic but sequential
process. Consider, for example, the language CCS [Mill]. Here P q represents the
process which consists of two subprocesses in parallel, p and q. As simple examples
of such subprocesses consider aNIL, bNIL, respectively. These are subprocesses which
can only perform one action (called a, b, respectively) and then die. The parallel
process aNILI bNIL is observationally equivalent to a sequential nondeterministic
process, obtained by interleaving the possible atomic actions of the two subprocesses
aNIL, bNIL. In CCS this equivalent process is written as abNIL+ baNIL. In general,
no matter how complicated p and q might be, such a reduction is always possible
although the resulting nondeterministic process may not be syntactically expressible
in the description language under consideration.

The popularity of observational equivalence (and related equivalences) bears
witness to the usefulness of a semantic theory based on interleaving, where concurrency
is reduced to nondeterminism. Nevertheless, at an intuitive level the reduction of
concurrency to nondeterminism seems unsatisfactory; surely one important property
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of a concurrent process is the fact that it is composed of independent and possible
distributed processes.
The aim of this paper is to investigate semantic equivalences which do not reduce

concurrency to nondeterminism. More specifically, we would like to use the basic
paradigm of observational equivalence to develop behavioural equivalences which
reflect in some way the concurrent nature of processes.

To continue this discussion it is necessary to describe in more detail observational
equivalence. Let P denote a set of processes. The operational behaviour of these
processes may be defined by describing the set of moves or actions which they can
perform. By and large we will not be concerned with the nature of these actions nor
with how we assign specific actions to specific processes, although we will see an
example later in the paper. At this stage it suffices to say that for each action a there
is a binary relation over processes; p q means that the process p may perform
the action a and performing this action may transform it into the process q. In general

will be a relation because not every process can perform every action and individual
processes may be capable of performing an action in various different ways.

Observational equivalence, , is defined with respect to such a description of the
operational behaviour of processes. It satisfies the following property:

(,) if p q and p = p’, then q= q’ for some q’ such that p’ q’.

Here p =Y=> p’ may be termed an observation and so (,) may be interpreted as saying
that if p and q are observationally equivalent then they have similar observations. In
fact may be defined to be the largest symmetric relation which satisfies (,). So,
contrapositively, if p is not equivalent to q there is some observation of one which
has no equivalent observation of the other.

When we apply this definition to languages such as CCS we are unable to
distinguish concurrency from interleaving. Let us now look at how, while retaining
the basic paradigm (,), we might modify the definition so as to obtain a more
discriminating equivalence. It uses the basic observations p p’ and we first consider
the possibility of employing similar but more complex observations. The basic observa-
tion p :Y=> p’ may be viewed as a successful communication between an unidentified
external process and the process under observation, p. Indeed, in the usual formulation
of the operational semantics of languages such as CCS, communication is defined as
mutual observation. In this formulation p = p’ is true exactly when a process such as
aq can communicate with p. The effect of this communication on p is to transform it
into p’. It also transforms the observer aq into q. So the total effect of the observation
or communication may be described by

(p, aq) (p’, q).

However, in the definition of observational equivalence given above in (,) no use is
made of the residual of the observer. From the point of view of the definition we may
take as observers the simple atomic processes aNIL; the only observations used are
of the form

p, aNIL) p’, NIL).

This reformulation of observational equivalence leads to the obvious generalisation
where we allow as observers arbitrarily complicated processes. This includes observers
which consist of many subprocesses each independently probing the process under
observation.



AXIOMATISING CONCURRENCY 999

Such a generalised observational equivalence is defined and investigated in 1.
The main theorem of this section states that this increase in the power of observers
does not result in a more discriminating equivalence; the equivalence defined using
arbitrary observers coincides with the equivalence defined using atomic observers only.
This theorem is proved for a particular language based on CCS. However, the proof
is so general that it should be widely applicable.

Faced with this setback we must examine more carefully the implicit assumptions
underlying observational equivalence. One assumption is that observers, no matter
how complicated, have only a monolithic view of the process under observation. They
never get a separate view of subparts of the process nor are they allowed to experiment
independently on these distinct subparts. In a separate paper we investigate generalisa-
tions of observational equivalence where observers are endowed with such powers.
Here we weaken a different underlying assumption.

In the usual operational semantics of languages such as CCS, and the related
observational equivalence, communication (or observation) is taken to be an instan-
taneous indivisible event. However it can be argued that there are at least two events:
the communication as seen by the two processes in question. We postulate that these
two events are different or that they take a certain amount of time. Rather than associate
specific durations with actions, we introduce observers which can distinguish the
initialisation of a communication from its termination. The observational equivalence
based on these new observers is more discriminating. In particular, it can distinguish
concurrency from nondeterminism.

The new equivalence is the topic of 2. It is defined for a simple language for
describing finite communicating processes, based on CCS. The main result of this
section is that the related congruence can be completely characterised by a set of
equations. An equational characterisation is one of the main attractions of the standard
observational equivalence as such equations form the basis for transformational proof
systems for processes. Thus our result provides a basis for a similar type of proof
system which takes into consideration the concurrent nature of processes.

In a final section we briefly examine other formulations of our new equivalence
and related work.

1. Generalised observational equivalence. In this section we reformulate the stan-
dard definition of observational equivalence so as to allow arbitrarily complex ob-
servers. The definition and some general consequences are given in 1.1. In the next
section it is applied to a CCS-like language and we prove that in this setting it is
sufficient to consider simple atomic observers; the addition of the more complex
observers does not add to the distinguishing power of the equivalence. In the final
section we prove that our reformulation of observational equivalence does indeed
coincide with the standard version of observational equivalence, as defined, say, in
[Mil2]. We also provide an equational characterisation of the associated congruence.

1.1. A general notion of observation must take into account not only the effect
the observation has on the observed but also on the observers themselves. Let O, P be
sets of observers, processes, respectively. For the moment we are not interested in the
composition of these objects. We use C to denote 0 x P which we call the set of
configurations. A set of observations is given by any relation C x C. We write
(o, p)-(o’, p’) rather than ((o, p), (o’, p’))e as it is more suggestive. It means that the
act of o observing p changes the observer o into o’ and the observed process p into
p’. We define an equivalence of "indistinguishability" between processes, -p, and a
similar equivalence between observers, -o. Intuitively p pp’ means that there is no
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Oway of observing any different behaviour between p and p while o o means that
both o and o’ have exactly the same observational power. Following these intuitive
ideas we would expect these relations to satisfy the following:

(a) If p.--pp’, then whenever (o,p)(o’, q) there exists a configuration (o", q’)
such that (o, p’)- (o", q’) where o’ "o o" and q .--pq’.

(b) If o---o o’, then whenever (o,p)-(o", q) there exists a configuration (o’", q’)
such that (o’p)-’, (o’", q’), where o" "o o’" and q--. p q’.
In fact, we take (a), (b) (and their symmetric counterparts) to be the definitions of

P, o. The inherent circularity ofthe definition is handled by using maximal fixpoints.
In the formal definition we use the following notation. For R1

_
O x O, R2

___
P x P

let R1 x R2 C x C be defined by ((o, p), (o’, p’)) RI x R2 if (0, 0’) R1 and (p, p’) R2.
DEFINITION 1.1.1. For R1 O O, R2_ Px P define DI(R, R2)__ O x O,

D2(R1, R2) P x P by the following:
(i) (0, 0’) DI(R, R2) if for every p in P (0, p)- c implies (0’, p)- c’ for some

configuration c’ such that (c, c’) R x R.
(ii) (p, p’) D2(R, R) if for every 0 in O (0, p)- c implies (0, p’)- c’ for some

configuration c such that (c, c’) R1 x R. [3

Viewed as a tuple of functions over relations D, D2 are monotonic with respect
to set inclusion. Therefore we may take ---o, "P to be the maximal pair of symmetric
relations which satisfies the equations

R D,(R1, R), R= D(R,, R).

It is straightforward to show that both "o and "’p are equivalence relations and by
definition they satisfy (a) and (b) above. Readers familiar with the standard definition
of observational equivalence should recognise that p, o are attempts at a straightfor-
ward generalisation to include more complicated observers. In 1.3 we will actually
see that the standard observational equivalence may be obtained from ours by restricting
attention to what we will call atomic observers.

We first put a natural restriction on our systems of observations. We wish to
examine how processes react in environments of other processes. Therefore we assume
O- P. Further, we assume that "observing" and "being observed" are the same. So
we assume that every observation relation satisfies

(o,p)-(o’,p’) if and only if (p, o)-(p’, o’).

LEMMA 1.2. If0 P and - satisfies the above condition, then o and p coincide
and are the maximal fixpoints of both of the equations

R=DI(R,R) and R=D2(R,R).
Proof. Because of the symmetry of - it is easy to show

(*) "-oD2("p,"o),

(:*) P D2("" P, O),

from which it follows that "o P.

Let X denote the maximal fixpoint of R D1(R, R). Because of (,) it now follows
that ---p

_
X. To show the converse, it is sufficient to prove X

_
D(X, X) which once

again follows from the symmetry of -.
In the case when O and P coincide the resulting equivalence, "o "P, is called

generalised bisimulation equivalence, and will usually be denoted by ---o. We wish to
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show that in fact there is no need to take observations with respect to the entire set
of observers; a much smaller set will generate exactly the same equivalence. Note that
the definition of---o, ’P can be parameterised with respect to an arbitrary subset of
observers. We are only interested in one particular subset, which we now explain.

An observer o is blind if for every p in P (o, p)- (o’, p’) implies o’ coincides with
o; a blind observer never changes state and therefore cannot perceive any difference
in the process being observed. The observer o is atomic if for every p in P (o, p) (o’, p’)
implies o’ is blind. So atomic observers may make at most one observation. Let A O
denote the set of atomic observers. Definition 1.1.1 can now be modified so as to apply
to A rather than O:

For R
__
A x A, Re

_
P x P let El(R1, R2)

_
A x A, E2(R, R2)

_
P x P be defined

by the following.
(i) (o, o’) El(R1, Re) if for every p in P (o,p)- c implies (o’,p)-> c’ for some

configuration c’ such that (c, c’) R x Re.
(ii) (p,p’)Ee(R,Re) if for every oA (o,p)->c implies (o,p’)->c’ for some

configuration c’ such that (c, c’) R x Re.
Let "OA, ’A be the maximal symmetric solutions to the pair of equations

R, E,(R1, Re), Re Ee(R1, Re).

The equivalence on observers "OA is uninteresting but "A is a formalisation of the
idea that processes are equivalent unless they can be distinguished by atomic observers.
In the next section we show p and "A coincide, at least when applied to a particular
language.

1.2. A simple language. The language used is a simple extension of "finite CCS."
The only innovation is an asymmetric version of the usual parallel combinator I, which
we denote by F. Intuitively pq acts in exactly the same way as P lq except that the
very first action should involve the subprocess p.

Let Act be a set of actions which as usual we assume has the form { ’} w A A, where

A is a given set of names,
A- {, a A}, the complements of names in A,
"- is a distinguished action.

The distinguished action " is used to denote internal invisible actions and in our
language these occur when subprocesses communicate with each other. Communication
is modelled by the simultaneous occurrence of an action such as a with its complement. Notationally it is convenient to assume that complementation is symmetric, i.e.,- a. We use /, % etc., to range over Act unless otherwise stated, and a, b, etc., to
range over the restricted set of visible actions A w A. We will sometimes use VAct to
denote this set, A w A. The language we use is given by the BNF definition

p:-- NILlplp+qlplqlpFq.

For the remainder of the paper we let P denote the set of processes defined by this
language. We assume prefixing,/-, binds stronger than , I, which in turn bind stronger
than +. We also omit most occurrences of NIL, for example, rendering aNIL+ bNIL
simply as a + b.

We now define a system of observations based on this language. The processes
to be observed are all those definable in the language and we use exactly the same
processes as observers. Observation is simply a form of communication. Consequently
the definition of observation relies mainly on what we mean by communication. This
is defined in Fig. 1: p .z q means that p may be transformed into q by performing an
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(I)

(II)
t

p ->p, q --> q’ implies p q ->p’I q’

(III) ap ->p

(IV)

(v)

pp’ impliesp+qp’

q+pp’

p -p’ implies Plq P’lq

P q >P’lq

FIG. 1. Communication.

q p -ff> q p

internal communication. To make the language more expressive we have included a
direct syntactic representation of internal actions and this accounts for rule (I). The
next rule is the principal one: communication is the simultaneous occurrence of
complementary actions, p p’ means that p may perform the action a and thereby
be transformed into p’. So p lq may perform a communication to be transformed into

P’I q’ whenever p p’ and q _0_> q,, i.e., whenever p and q can perform complementary
actions. The remaining rules merely state how external actions are produced and how
actions, both external and internal communications, factor through the operators.
The definition of the observation relation --> is given in Fig. 2. It is the least relation

which satisfies rules (I), (II), and (III). The essential rule is (I) which states that the
basic method of observation is by communication. Rule (II) states that simultaneous
observations are allowed. The final rule states that observation is asynchronous; an
observation is not a simple discrete step but an indeterminate sequence of interactions
between observations.

Examples.

(1) (bo, a(c+ bp)l eq)-->(o, pl eq).

This observation comes about by virtue of two communications between the observer
and the observed, the first via the action a, the second via b.

(2) (a(CbOl 1( ’02 q- d)), a( c + bp eq) --> (Ol Io2, p leq).

(I)

(II)

(III)

olp Z>o’lp’ implies (o,p)->(o’,p’)

(o,, p,) - (o p;), (o, p9- (o’,

implies (o,I o2, plp2)-->(olo’2, P’IIP’2)
(a) c-> c

C C"(b) c--> c, --> implies c --> c’

FIG 2. Observations.
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Here there are also two interactions, but this time they are separated by a communication
internal to the observer.

(3) <ao (bo= + co3), p, gp2)--> <o o2, Pl lP2).
This involves two independent simultaneous observations of different subprocesses of
the observed process, the observer aol observing the subprocess tip and the observer
bo2 4"co3 observing bp2.

(4) (aol bo2 + do3, tiPl cP21 P3) --> (01 Io2, Pl Ip Ip3).
In this case the two independent observations are separated by a computation internal
to the observed process. [3

It is straightforward to prove that this particular observation relation -> is sym-
metric. First we can prove p[q P’lq’ implies q lP - q’lP’, using induction on the
length of the proof of P q P’l q’- Using the same inductive proof method, we can
then show (o, p)-> (o’, p’) implies (p, o)-> (p’, o’).

Following the general definition we therefore have a generalised bisimulation
equivalence "o over P. Following the restricted definition we also have "A over P,
observational equivalence. Superficially this looks much weaker but in fact we have
the following.

THEOREM 1.2.1. p 0 q if and only ifp "A q. l-]

In effect, the weakness of the observers is compensated for by the power of the
observational method.

One direction of the theorem is very straightforward.
LEMMA 1.2.2. p o q impties p "’A q.
Proof. Let -’ denote o n (A x A). Then referring to the definitions in the previous

section, it is sufficient to show

This is immediate because "o satisfies

.o=D(.o,.---o), --o D(o, ---o)
and the set of atomic observers is a subset of the complete set of observers. [3

Note that to carry out this proof we did not need to know the atomic observers.
They are essentially of the form NIL or aNIL. To prove the converse we introduce
the set of sequential observers, observers ofthe form al akNIL, k >- O. We will assume
that the distinguished action - does not appear in any sequential observer. The
complementation notation is also extended to these terms in the natural way:
til" kNIL is the complement of a. akNiL.

The first result we need is that these new observers are no more powerful than
simple atomic ones.

LEMMA 1.2.3. Ifp "A q and (s, p)(NIL, p’) where s is a sequential observer, then
(s, q)-->(NIL, q’) for some q’ such that p’ "-A q’.

Proof. The proof is induction on the length of s. If this is zero or one, then the
result follows by the definition of "A. So we may assume s has the form at.

We can now prove by induction on the length of the proof of (at, p)->(NIL, p’)
that p ->* q for some q such that q- r and (t, r)-->(NIL, p’). (Here ->* is the reflexive
transitive closure of _r_>.) This proof uses in turn the fact that (at, p)-->(t, x) implies
p _r_>, q a_ r for some terms q and r. This means we have the atomic observation
(aNIL, p)-->(NIL, r). By the definition of "A, we therefore have that (aNIL, q)->
(NIL, r’) for some r’ such that r "A r’. Now using the inductive hypothesis on (t, r)->
(NIL, p’), we may assume (t, r’)--> (NIL, q’) for some q’ such that P’’A q’. The atomic
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observation aNIL, q) - (NIL, r’) can be modified to give the observation (at, q) (t, r’),
which when combined with (t, r’)-(NIL, q’) gives the required observation (at, q)-
NIL, q’).

The essential part of the proof of the main result is that all observations can be
sequentialised. This is formalised as follows.

LEMMA 1.2.4. If (0, p)-->(O’, p’), then there exists a sequential observer s such that
(s, o)(NIL, o’) and (g, p)-->(NIL, p’).

Proof. The proof is by induction on the length of the derivation of (o, p)(o’, p’).
(i) o lp o’lp’. This case requires a separate proof by induction on the length

of the derivation of o IP o’lp’. This is straightforward and is left to the reader. Note
that the resulting s will be of length at most one.

(ii) (011 02, plp2)-(ol 0, PlP’) because (01, p)->(o, p) and (02, p2)-->(o’, p’).
By induction we have two sequences s, s2 such that

(Sl, Ol)-> (SlL, 0), (gl, Pl)-> (NIL, p),

s2 0) -> NIL, 0 ’), g2 P2) -> NIL, p).

Let s denote SlS2. (The sequence S2Sl could also be used.) The observation (SlOl)->
(NIL, o) can be transformed into the observation (s,olo2)->(s2,0lo2) and the
observation (s2,02)-->(NIL, o’) can be transformed into (s2,0lo2)-(NIL, olo’).
Therefore, (s, Ol O2)-> (NIL,

In a similar fashion we can derive (g, plp2)->(NIL, PIP).
(iii) (a) o, p)-> o, p). The required s is NIL.

(b) o, p)-> o", p"), (o", p")-> (o’, p’). in this case the proof is similar to part
(ii).

The converse of this lemma is also true.
LEMMA 1.2.5. If (s, o)-> (NIL, o’), (g, p)-> (NIL, p’) where s is a sequential observer,

then

(o, pS-> (o’, p’).

Proof. The proof is by induction on the length of s.

(i) If s is NIL. Here we have that (NIL, o)- (NIL, o’) and (NIL, p)- (NIL, p’).
As in the previous lemma, these can be transformed to (o, p)- (o’, p) and (o’, p)- (o’, p’)
respectively, which leads to (o, p) - (o’, p’).

(ii) s is aNIL. In this case we must use induction on the combined length of the
derivations of (aNIL, o)(NIL, o’) and (NIL, p)(NIL, p’). The base case is when
0-% o’ and pa___p,. In this case olp- o’lp’ and therefore (o,p)->(o’,p’).

There are a large number of induction cases, all of which are straightforward. A
typical example is when

(aNIL, o)(aNIL, Ol)->(NIL, o’),

NIL, p -> NIL, Pl) --> NIL, p’).

The required observation is obtained in this case by combining the sequence of
observations:

<o, p)- <o,, p> <o’, p,>- <o’, p’>.

In this sequence the first observation is obtained by transforming (aNIL, o)->
(aNIL, ol), the second by the inductive hypothesis and the third by transforming
NIL, Pl) -> NIL, p’).
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(iii) More generally, suppose s has the form at. In this case we can apply induction
and the previous case.

If(at, o)-(NIL, o’), then there exists some o" such that (at, o)-(t, o") and (t, o")-
(NIL, o’). (This requires a separate proof.) The first derivation (at, o)-(t, o")gives rise
to a derivation (aNIL, o)-(NIL, o"). Similarly, the derivation (8, p)-(NIL, p’) may
be decomposed into (, p)- (, p") and (, p")- (NIL, p’), with the former also giving
rise to (SNIL, p) - NIL, p").

Now case (ii) may be applied to the pair (SNIL, p)-(NIL, p"), (aNIL, o)-
(NIL, o") to obtain (o, p) - (o", p"). Induction may be applied to (t, o") - (NIL, o’) and
(, p")-(NIL, p’) to obtain (o", p")-(o’, p’). These two observations may now be
combined to obtain the required

(o, p)- (o’, o’).

The result is now obtained by combining these three lemmas.
Proof of Theorem 1.2.1. It is sufficient to show p "A q implies p "o q and to do

so we prove

A C_G__ W2(---A, ",4)"

Suppose p "A q and (o, p)->(o’, p’) for an arbitrary observer o. From Lemma 1.2.4
there is a sequential observer s such that (s, o)->(NIL, o’) and (s, p)->(NIL, p’). Apply-
ing Lemma 1.2.3 we obtain a q’ such that p’ "A q’ and (s, q)->(NIL, q’). From Lemma
1.2.5 it follows that (o, q) -, (o’, q’).

There is a wide variety of modifications which might be applied to the definition
of generalised observational equivalence. However, the same result will apply to each
of these modifications. The essential reason is that all interactions between observers
and processes can be sequentialised and therefore, by Lemma 1.2.3, any attempt to
obtain an equivalence finer than "A is doomed to failure.

We now proceed to show that - coincides with the standard definition of
observational equivalence, as defined, for example in [Mil2].

1.3. Reduction to observational equivalence. In the last section we have seen that we
may confine our attention to atomic observers. We may take atomic observers to be
processes of the form NIL or aNIL for some observable action a. There are other
atomic observers such as NIL NIL, aNIL NIL, zNIL, a NIL NIL) but every observer
is equivalent to one in the basic form.

The effect of these atomic observers may be defined directly on processes. This
gives operational semantics for our language in the usual style of [M1], [He], etc. It
is in terms of next-action relations for every/ Act. These are defined to be the least
relations which satisfy the rules in Fig. 3. These are slightly different than the relations
defined in Fig. 1. We can show that for terms not involving p q if and only if
p _, p, _a_> q,

_
q for some p’, q’; allows silent actions before and after the simple

action
LEMMA 1.3.1. (a) For a# z, p:q if and only if (aNIL, p)->(NIL, q).
(b) p q if and only if (NIL, p)--> (NIL, q), where q is different from p.
Proof. Each direction is a proof by induction on the length of derivations.
Using these action relations we can now define observational equivalence in the

standard way. As is normal, the relation is too discriminating as pd:> q means that
p has definitely made some internal computation. Instead we use the weaker relation

p d:> q means p can evolve to q by making zero or more internal communications.
Formally p q if p is q or p q.
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(I)

(II) p p’ implies p + q ==>p’

q+pp’

(IIi) p ==>p’ implies P lq P’lq

q[Pq]p’

(IV)

Pq==>P Iq

p p’, q =,q’ implies p q =p’l q’

P[" qP’lq’

(V) p p’, p’q implies pq
p=:p, q implies p=q

FG. 3. Asynchronous actions.

DEFINITION 1.3.2. For R
_
P x P let F(R)_ P x P be defined by

(p,p’)F(R) if for every/x in VActw{e} pq
implies p’ q’ for some q’ such that (p’, q’) R. [3

Let be the maximal solution to the equation

R=F(R).

THEOREM 1.3.3. p "’A q if and only ifp q.
Proof. It is sufficient to show

"A -- F(A) and

_c E2(’, ) where =’ =nAxA.

These follow in a straightforward manner from Lemma 1.3.1. l-I
We end this section with an equational characterisation of this relation. As usual

A is not a congruence as it is not preserved by the oper:tor +. Therefore we characterise
the largest congruence contained in "a, . This is defined formally by

P "t q if and only if for every context C[ ], C[p] "A C[q].

THEOREM 1.3.4. t is the least congruence generated by the equations in Fig. 4.
There are many similar results in the literature. See for example [He], [DEN],

[Mil3]. The only novelty here is the presence of the asynchronous parallel operator F.
A similar operator has been used in [Be] and related works. One advantage of

this operator is that it gives a more powerful set of equations.
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(A1)
(A2)
(A3)
(A4)

(B1)
(BE)
(B3)

(I1)
(I2)

(Xl)
(X2)

(x+y)+z=x+(y/z)
x+y=y+x
X+X-X
X 4" NIL x

(x 4/ y)" z x z /y z
(xy)z=xl"(y]z)
x ]" NIL x
NIL]" x NIL

x 4.. ’Ix "Ix

p,’rx t.x
,(x /’,’y)- (x /’,’y)/y

x[y=xy+yx
Let y denote {Ajyj, j J}, J a finite index set.
t.xy=l(xly)+, {z(x ]y),

FIG. 4. A complete set of equations.

Example 1. (xly)lz--xl(y[z). This follows by repeated use of (B1), (B2):
(xlY)lZ (x ly) z + z" (xly)

=(xy+y’x) z+ z(xiy)
(xy)}" z +(yx) z + z" (xly)
x(ylz)+y (x z) + z}’(x]y)
xt’(ylz)+(y" z)x +(z’y)x

=x(y[z)+(y’z+z’y)x
x}’(ylz)+(y[z)}’x

=xl(ylz).
Note that this cannot be derived using the axioms in [He] even though such a particular
instance is derivable. [3

Example 2. The summand notation used in (X2) is justified by the equations
(A1)-(A4)" if J is the set {1,..., n}, then {Ps, J J} stands for the term p +. .+p,;
if J is empty it stands for NIL. The equation X2 gives rise to the more usual interleaving
axiom from [Mill], [He], which is also expressed using this summation notation:

let x, y denote Y {/x,p,, I}, , {hsqs, j J}
where both I and J are finite sets. Then

xly=., {/x,(p, ly), i I}+Y {As(xlys),jJ}+Z {’r(x, lys),/x, Xs}.
This follows because

(X1)
(al)

xly=x’y+yVx

E {ixi y, e I}+E {AsYs V x, j e J}

--E {/,(x, y), e I}+Y {’r(xilYs),/z,--
+E {As(Ys x), J J}+Y {r(x, Ys),/,

by (X2) and reorganisation.
This example shows that the reduction of concurrency to nondeterminism occurs

via the equation (X2). In the next section, where we develop a semantic equivalence
for which this reduction no longer holds, this equation is no longer valid.
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We will merely outline the proof of this characterisation theorem as the proofs
of many similar theorems already appear in the literature. We use =1 to denote the
least congruence generated by the equations.

(1) The first step is to obtain a simple characterisation of---,.
Let p / q if aNIL+p aNIL+ q for some a not appearing in p, q. Then we can

show that p --- q if and only if p =/ q.
(2) Soundness. We can now show that each of the equations satisfies / from

which it follows that p =1 q implies p "A q.
(3) Derivation lemma. If p =e::> q then p =lP +/xq. This is proved by induction on

the derivation of p q.
(4) The characterisation of --- above makes it easy to show that p ’a q implies

(i) p "a q, or (ii) -p "’a q, or (iii) p "a "FQ.

(5) Completeness. Using the equations (B1)-(B4), (X1) and (X2) all occurrences
of I, , may be eliminated from terms. Such terms are called sumforms and it is
sufficient to show p --- q implies p =1 q when p and q are sumforms. Let q be of the
form Y/xiqi. Then by symmetry it is sufficient to show p =1 P +/xiqi for each index i.
Now q q and so p p’ for some p’ such that q "AP’. From (4) and induction

P’ q’, ’P’ =1 q’ or p’ ’q’. Applying Axiom (12) if necessary, we have in each case
that/xp’ =1 iq. By (3) above it follows that p =1P+/xiq. El

2. Adding time. In this section we develop a version of bisimulation equivalence
based on actions or communications which are not necessarily instantaneous. The
result will be a semantic theory in which concurrency is not reducible to nondetermin-
ism. The basic idea has already been outlined in the Introduction. Rather than assigning
specific lengths of time to actions, we simply assume that there are observers which
can detect the beginnings and endings of actions. We could use these basic observers
to develop a general theory of observation as in 1.1. However, a theorem similar to
Theorem 1.2.1 would show once again that atomic observers suffice. Accordingly we
develop the new equivalence along the lines of standard observational equivalence, as
in 1.3. This is the topic of 2.1, where the main theorem is also stated. This is an
equational characterisation of the new equivalence. The next section is devoted to the
proof of this result. In the final section we discuss variations on the new definition of
equivalence and address some natural questions which arise.

2.1. We now assume that the beginning of an action and the termination of an
action are two distinct events. Moreover these distinct events may be observed. Let
S(a) be an observer which can detect the start of the action a and F(a) one which
can detect its termination. Referring to 1.3 we can simply view S(a), F(a) as a new
class of events and define an operational semantics in terms of next-event relations
s_>., . We will also continue to use complete actions, as given by =%.

When we assumed actions were instantaneous, the language used to describe
processes was also sufficiently expressive to also describe possible states which a process
might reach. This is no longer the case. For example, we cannot describe the state
aplbq attains when it initiates an a action but before the action terminates.

We propose a simple solution to this problem. For each visible action a we add
a new prefixing operator as. For example, asp lbsq denotes a process which has initiated
an a action and a b action but has terminated neither. We will continue to use p, q,
etc., to range over processes, terms in the basic language, and s, s’, etc., to range over
the extended language of states. Let E {S(a), F(a), a VAct} w Act; E is the set of
events. We use VE to denote the related set (E- {-})w {e}. The operational semantics
is given in terms of a set of next-event relations =%,, one for each e in E. They are
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defined to be the least relations over states which satisfy the rules in Fig. 5. Rule (I)
is the important new case. The process ap can initiate an a action and thereby be
transformed into the intermediate state asp. This intermediate state can terminate the
a action and thereby be transformed into p. The remaining rules are taken from Fig. 3.

A standard observational equivalence may now be defined using these event-
relations. If R is a relation over states, define G(R) by:

(s, s’) G(R) if for every e in VE s implies s’ : for some t’ such that (t, t’) R.

Let =r be the maximal symmetric solution to the equation

R=G(R).

This equivalence relation we call t-observational equivalence. We are of course only
interested in it as it applies to processes but, as we have seen, states are necessary to
describe intermediate configurations.

We now give some examples of equivalent and inequivalent processes.
Example 1. aNILIbNIL rabNIL+baNIL. This follows intuitively because

aNIL bNIL can initiate an a action and subsequently can initiate a b action without
having terminated the a action; this is not possible of abNIL+ baNIL. Formally
aNILIbNIL asNILIbNIL and abNIL+ baNIL cannot perform a similar S(a)-
move. The only possible S(a)-move is abNIL+baNILasbNIL and obviously
asNILIbNIL rasbNIL; one can perform an S(b)-move which is impossible of the
other. D

Example 2. Let p denote the process

Pl I(q, / q2)/PI (q, + q2)+ (P, /P-)lq, +-(Pl +P2)

where Pl, P2, ql, q2 are arbitrary process then p TP h-(Pl +P2)[ (ql -+- q2).

S(a)
(I) ap=:=asp

asp:=:p

(II) Ipp

(III) Sl =s implies Sl + s2s
S q" S ::S

(IV) Sls implies slSzS]lS

(V) ss, SzS implies slSzS]lS

s, ss s
(vI) (a) ss

(b) ss, s s2 implies s s2

(c) s s, ss implies s s.
FG. 5. Events.
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Note that this equality follows from the axioms (X1), (B2), (A1)-(A3). l-I

Example 3. abNIL+ aNIL[ bNIL 7- aNIL[ bNIL. Intuitively the left-hand side
can, by starting an a-action, get into a state in which it cannot perform a b-action
without first terminating the a-action. This is impossible of the right-hand side.

Example 4. aNILI(bNIL+ cNIL) 7-aNIL[bNIL+ aNILIcNIL+ a(bNIL+
cNIL). Intuitively this follows because in the right-hand side the decision to perform
a b-action or a c-action must be taken either before the action a has commenced or
after it has finished. This restriction does not apply to the left-hand side. Formally this
can perform an $(a)-move to be transformed into the state asNIL[ (bNIL+ cNIL) and
the right-hand side cannot be transformed into an equivalent state. I-1

The equivalence =7- is not a congruence for the usual reasons associated with the
nondeterministic operator +" aNIL 7- zaNIL but bNIL+ aNIL 7- bNIL+ -aNIL.
So when wishing to associate the new equivalence with equational theories we consider
as usual the largest congruence contained in 7-, denoted =. This also has the
following usual characterisation.

LEMMA 2.1.1. P’r q if and only ifp+aNIL7-q+ aNIL for some visible action
a not occurring in p, q.

A useful corollary to this characterisation is that if p q, then both p and q
must have matching z-moves: p :> p’ implies q :> q’ for some q’ such that p’ Tq,
and vice versa for q. This will be useful in the sequel.

We now turn our attention to the problem of providing an equational characterisa-
tion of . A natural place to start is with the equations in Fig. 4. As might be expected,
(X2) is not satisfied by -. For example

aNIL bNIL T a NIL[ bNIL)

as may be readily checked. Condition (X2) is the basis of"interleaving" or the reduction
of concurrency to nondeterminism, associated with the standard observational
equivalence. So its failure is not surprising. However, it remains true when/z is -:

-xy (x y).

A related equation satisfied by is

x -y= xy.

These two, together with (X1), imply the natural equation

xly- (x y).

All the other equations in Fig. 4 remain satisfied by except (13). For example,

a(bNIL+ ’cNIL) 7-a(bNIL+ -cNIL) + acNIL.

The right-hand side can perform an $(a)-move to the state ascNIL; no equivalent
state can be reached by the left-hand side. Once more (13) remains satisfied when
is z;

’(x + ’y) ’(x + ’y) + ’y.

However this is already derivable from (I1), using (A1)-(A3):

z(x + zy) r(x + ry) + x + ry

r(x + ry + x + ry + ry

r(x + zy) + ry.
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However there is an equation very similar in style to (I3) which is true of c.
T"

x (y+ z) x (y+ z)+x z.

This revised set of equations is not complete for - as it ignores the possibility
of communication between subprocesses. A natural additional equation would be

(.) ax Fry ax Fry+ -(x y).

Unfortunately, the addition of this equation will still not give a complete theory. As
(X1) shows, ( plays a more fundamental role than does I. What is required is a
reformulation of (.) in terms of . The additional equation we use is

(C) axl (ax2 " y + z) axl (ax2( y + z) + r(x xly).

We collect all the required equations in Fig. 6. Let -= denote the generated congruence.
The main result of the paper may now be stated.

THEOREM 2.1.2. P q if and only ifp =- q.
The proof of this theorem is the subject of the next section.

2.2. Proof of the equational eharacterisation. We take for granted the alternative charac-
terisation of given in Lemma 2.1.1, although checking this would involve the reader
in very tedious calculations. For example, it is necessary to check that 7- is preserved
by all the operators except +. However, all of the calculations are straightforward and
are simple variations on those found in references such as [He], [Mill], [Mil2].

(A1) (x+y)+z =x+(y+z)
(A2) x + y y + x
(A3) x+x=x
(A4) x + NIL x

(B1) (x +y) z x}" z + y}" z
(B2) (x y)( z x’ (Yl z)
B3 x NIL x

NIL x NIL

(I1) x + ’x ’x

(12)
(NI3) x( (y+ zz) x( (y+ rz)+ x" z

(X1) xly=x(y+y(x

(NX2) ’x" y r(xly)
x( ’y= xy

(C) ax (ax2y+ z) ax (ax2y+ z)+ r(xlx2ly)

FIG. 6. Complete equations for r.

We also leave it to the reader to use this characterisation to check that all the
equations are satisfied by -. Once more the calculations are straightforward. We
therefore concentrate on completeness, showing p q implies p= q. This proof
follows the general outline (given at the end of 1.3) of the previous completeness
proof but in this case the details are more difficult. However the following ingredient
is still straightforward.
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LEMMA 2.2.1. p T q implies
(i) p T q, or
(ii) zp T q, or
(iii) p zq.
Proof. Let us assume that p Tq and let a be a visible action not occurring in p, q.

(a) Suppose that p p’ for some p’ such that p’ Tq. In this case we can show
that a+p Ta+q.

(b) By symmetry if q:,q’ for some q’ such that q’ TP, we can show that
a+zp Ta+q.

(c) If neither (a) nor (b) is possible it follows directly that a +p Ta q-q. [-]

This result will be used in a manner similar to that of the completeness proof of
1.3.
We also need a corresponding derivation lemma. However it will be more straight-

forward to establish this for only a subset of process terms. This subset of terms, called
the simple forms, will play the role of the sumforms in the previous completeness
proof. These are now explained.

The axiom (X1) enables us to eliminate all occurrences of the parallel operator[
from terms, at the expense of introducing the asymmetric operator. This cannot be
eliminated; otherwise we could once more reduce concurrency to nondeterminism.
However we can always reduce terms to a particularly simple form.

DEFINITION 2.2.2. (i) NIL is a simple form (sf).
(ii) If each Pi, P’i, Pj are sfs, then

Z {a,p,p’i, i I}+E {zpj,j J}

is also an sf where/, J are finite index sets. [q

PROPOSITION 2.2.3. Every process term can be reduced to a simple form, i.e., for
every p there exists an sf sf(p) such that p =- sf(p).

Proof. The proof is by induction on the size of p. We proceed by case analysis
on the structure of p.

(i) p is ap’. The required sf is ap’ NIL.
(ii) p is p’p". By induction suppose sf(p’) is Y aqi q’+ zqj. Then

P =2 (aqi’q)Vp"+ (zq)Vp" by repeated use of (B1)

=2Y a,q,((q’ilP")+ r(q IP") by repeated use of (B2), (14).

By induction we may assume sf(qlp") and sf(qj Ip") exists for each i, j. Therefore the
required sf is

Z aiqi ]" sf(ql IP") +Z zsf(q P").

(iii) The remaining cases are similar. [3

We now proceed to state an appropriate version of the Derivation Lemma. In the
actual completeness proofwe are only interested in derivations with respect to r-actions
and S(a)-actions; in the proof we will only need to absorb these kinds of derivatives.
We therefore only need a derivation lemma for these kinds of actions. Moreover the
definition of is completely independent of that of . So we first prove the
required result for and then we prove the corresponding result for s(_..

PROPOSITION 2.2.4 (Derivation Lemma). Ifp is a simple form
p # p’ implies p =- p + zq.

Proof. The proof is by induction on the length of the derivation of p p’. Let us
assume that p has the form app’i + zp’.
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(a) p’ is p’: for some j. Using the equations (A1)-(A4) the proof is immediate
(b) p’ :>p’, for some j. By induction p’:-=j p"+ 7.p’. It follows from (I1) that

rpj’ rp’ + rp’ from which p p + 7.p’ is immediate
(c) aipi’p’i p’ for some i. In this case p’ has the form xly where pi x and

Py.
There are two subcases, which we examine separately
(i) x is p. Here we have a further inductive argument. This time we prove

aip p ap p’i + 7.(x I) by induction on the number of applications of rule (VI)
in the derivation of p y. Let us assume Pl has the form bq qj + 7.q’k.

(a) The number of applications is zero. In this case y is q[qj for some j such
that b is i. We may now apply the new equation (C) to obtain

a,pi 1" ff =- api ]" ff + 7"(p, q q).

(b) Otherwise q, y for some k and also p’ + q, y. Moreover the number of
applications of rule (VI) in this derivation is strictly less than in the derivation of
p’ y. So we may apply induction to obtain

ap (Pl + q’k) =- a,p, (p + q’k) + r(x y).

However p =- Pl + 7.q’k from which it follows that P’i =- Pi’ + q’k by (I1). The required
result now follows.

(ii) The second case is when p x.
By case (i) we know

To complete the proof we now show

7.(p y) =- 7.(pi y) + 7.(x y).

By induction we know p-- p + 7.x. Therefore

ply=-ply+pil’y by (X1)

p y + (p + 7.x) l" y

=-ply+(7.x)gy by (B1)

=-p[y+7.(x[y) by (NX2)

By applying (I 1) we now obtain the required 7.(p [y) =- 7.(p ]y) + 7.(x[y). 13
The proof of the corresponding result for is much more straightforward.
COROLLARY 2.2.5 (Derivation Lemma). Ifp is a sirnpleform p ap [P2 implies

p=-p+ apl’p2.
Proof The proof is by induction on why p ap ]’p2. Let us assume that p

,+has the form aiPilPi 7.ptj.S(a)
(i) For some i, aipl’pi:=:aplp. Then api is ap and pi=>p:. If p’ is p:

we are finished, so assume pp By the previous result p’-= p+7.p:. Therefore
by (NI3) apil’p=- aipl’p + app.

(ii) For some j, p ap [p. By induction p =- p + apl ]’p: and from (I1) it
follows that 7.p 7.p + apl p:. 13

We need one subsidiary, technical result before proving the Completeness
Theorem. What we actually want to show is

(*) ap Ip’ q’ q’.Taql impliesp rqandp’ r
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However, in order to use induction, we will prove a stronger result. Its statement
requires the introduction of some new notation. If X is a multi-set of terms (tl, , tk),
we use [I X to denote the product term tll t2 Ilk. Because of the commutativity and
associativity of [, the exact enumeration of X does not matter. Also if k -0, then [I X
denotes NIL. If X, Y denote multi-sets of the form (aispi, I, {ajsqj, j J}, respec-
tively, we write X < Y to mean there is a one-to-one correspondence f" I - J such that
for every in I Pi rYi for some such that qf(i) :, yi. We abbreviate {t} < {s} to < s
and it is simple to show that < is transitive on terms. This transitivity is used to prove
the following general result about <.

LEMMA 2.2.6. IfX, Yare multi-sets, then Y< XandX w {s} < Yw {t} implies s < t.

Proof. The proof is by induction on the size of X (and therefore also of y). If
X , then the result is immediate. If X {x} then Y {y} and y < x. There are two
possible correspondences between {x, s} and {y, t}. One immediately gives s < t; the
other gives s < y, x < and, by transitivity, we obtain s < t. Otherwise X contains at
least two elements. Let Yi x be the correspondence from Y to X. Consider the
correspondence from X{s} to Y{t}. If this maps s to we immediately have s < t.
Otherwise, by renaming, if necessary, we can assume s is mapped to yl. If x is mapped
to we have s < t, again by transitivity. Otherwise assume Xl is mapped to Y2. Let
X’, Y’ denote X-{x, x2}, Y-{Y1, Y2}, respectively. Then X’ {x} < Y’ {t} and Y’ <
X’. By induction we have x2 < and therefore, once more by transitivity, we have
s<t. l1

LEMMA 2.2.7. I-I {a,sp,, iI}lp rl-I {bjqj,jJ}[q implies {a,sp,, iI}<
{bq,j J} and p --q.

Proof. The proof is by induction on the combined size of the terms. We use the
alternative characterisation of and the characterisation of =7- in Lemma 2.2.1. For
convenience we denote the multi-sets {aip, i I}, {bjqj,j J} by X, Y, respectively,
and the corresponding product terms by x, y.

(a) p =r NIL. Then q 7-NIL, for otherwise the right-hand side could perform
a complete action which could not be matched by the left-hand side. It follows that
x y. We must show X < Y.

Let a denote al for some 1 L Then x plx’, where x’ is I-I{ai, !-{1}. So
for some k J, such that bk is a, y q’! Y’, where y’ is defined in the obvious way
from y and k, qk :> q’ and plx’ q’[y’. Applying Lemma 2.2.1, we have three
possibilities of which we will consider only one" plx’ r r(q’ly’). Using the equation
r(xly) xl zy this may be rewritten as plx’ =r rq’ly’. We may now apply induction
because the combined size of the terms has decreased. We obtain X’ < Y’ and Pl zq’,
where the sets X’, Y’ are defined in the obvious manner. Now p ’q’= q’ implies
apl < asqk from which X < Y follows.

(b) p ,r NIL. Then for some action /x,pp’. So x lpxlp’. Because
x [p y q, it follows that p q’ for some q’ such that x q’ y p’. Applying Lemma
2.2.1 and induction we obtain, at least, X < Y. We must show p q.

The argument we have just completed shows that every complete action of p (and
by symmetry of q) may be matched by a corresponding action of q (respectively p).
It remains to consider initial events. This argument may also be used, by considering
a complete action from q, to show Y< X. In the final argument about initial events

S(a)this fact is used. Suppose p z. It is not too difficult to show z must be of the form
S(a)ar r’. Then x [p x asr r’. So q aw w’ such that Y aw w’ r x lair r’. We

must show aw w asr r’. We do this by applying induction to Y aw w’ x ar r’.
Lemma 2.2.1 gives three possibilities of which we examine one. Suppose
r(yl a,w w’) r x asr r, i.e., Y a,w rw r x as r r’. By induction rw’ r and X w
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{asr} < Yw {asw}. By the previous lemma asr < asw. However induction may also be
applied to obtain Yw {asw} < X w {asr}. Since X < Y we also have asw < asr. The two
facts asr < asw and asw < asr imply asw 7, asr and therefore awl w’ asr[ r’.

A symmetrical argument will show that every initial event of q may be matched
by one from p. It follows that p 7,q.

After this rather delicate proof the following is now straightforward.
PROPOSITION 2.2.8. asPlP’ 7,asq[q’ implies p 7,q and p’ 7,q’.
Proof. The proof is by a direct application of the previous lemma, if we first apply

Lemma 2.2.1. For example, this might give asp lp’ asql W’ from which we obtain
asp < asq, asq < asp, and p’ 7, zq’, i.e., p’ 7- q’. The first result implies q q" for some
q" such that p 7, q" and the second implies p p" for some p" such that p"r q.
These two imply in turn that p 7, q.

We are now ready for the completeness theorem.
THEOREM 2.2.9 (Completeness). P cr q implies p =- q.
Proof. We may assume both p and q are simple forms and the proof is by induction

on the combined size of the terms. We show p + q q. By symmetry p-- q will follow.
Suppose p has the form Y aipi(p +Y zpj. We show q q + aipi (pl and q

q + ,rpj.
(a) pasp[p so qx for some x such that x7,ap[p. Using the

operational semantics we can prove that x must have the form asq]q. Applying the
previous proposition we have p 7, q2. Now using Lemma 2.2.1, possibly
(I2), and induction, we obtain aip aq. Applying Lemma 2.2.1 to p 7,q one typical
possibility is that zp 7, q2. Applying induction we obtain zp q and by (NX2) we
obtain ap p aiq

It remains to show that q =q + aqF q. However, this follows by the second
Derivation Lemma.

(b) p p. So q q’ form some q’ such that p 7,q. Again applying Lemma
2.2.1, induction, and possibly (I2), we have -p -q’. From the first Derivation Lemma
we have q q + zq’ and therefore q q + "rp.

2.3. Remarks. The equations in Fig. 6 are robust in the sense that if we make
various changes to the notion of observation they remain complete. We look briefly
at two possibilities. The observational equivalence =r is based on the partitioning of
time into three distinct phases with respect to a particular action: before the action,
during the action, and after the action. This can be generalised to an arbitrary number
of phases. In this generalisation we are allowed to examine a process an arbitrary
number of times during the execution of an action. This is formalised by adding to
the alphabet new prefixing operators an, for every visible action a and for every n > 0.
The operational semantics is given by the rules

apanp for anyn>0

alpp
D(a)

an+2p an+p

together with the usual rules for complete actions, communication and + and 1. Let
-7, be the observational equivalence generated in the usual way using this operational
semantics. Then we can prove that for processes p, q p q if and only if p q;
the extra increase in the power of observation does not lead to a finer congruence.

Another possibility is to allow observers to perform multiple experiments. This is
formalised by defining relations , where M is a multiset of events. We omit the
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details of the definition as they are rather complicated and tedious. However, the
resulting observational congruence coincides once more with .

The hypothesis that each action has a beginning and an end which are distinct
from each other seems to be the simplest way of associating time with actions. These
two examples indicate that this gives us considerable descriptive power, making
redundant more detailed analysis of the time-dependent behaviour of processes.

For the time-based equivalence T the "interleaving axiom" no longer holds for
processes. However, this was achieved by hypothesising observers which are more
discriminating than processes. These observers are more discriminating in that they
can find differences where processes cannot. At this more elementary level we can
investigate observers observing observers, using instantaneous actions once more to
define an equivalence, as in 1. At this level "interleaving" will once more be valid.
We can then consider processes as particular kinds of observers and at least for simple
processes r can be derived from the more elementary interleaving equivalence on
observers, "-A. The basic idea is to translate processes into observers by

tr: ap-> S(a)F(a) tr (p)

p +p’- tr (p) + tr (p’)

p lp- tr (p) ltr (p’).

In the special case where we do not allow communication we can then prove

p -rq iff tr (p) A tr (q).

It is not known if this is true when communication is allowed. However it seems that
in this way "interleaving semantics" will often be sufficient to explain more complex
notions of behaviour of processes.

Although it is sufficient it may be unnecessary and inconvenient. It would be
preferable to be able to manipulate processes without having to examine their behaviour
at more detailed levels. In the case examined in this paper we have shown that this is
possible. The axioms of Fig. 6 are sufficient to derive all pairs of observationally
congruent, (r), processes. It is therefore unnecessary to translate them into the
observer language and use the axioms at this more elementary level. Proofs using this
method would in general be long since they involve expansion of terms using interleav-
ing. Moreover each variation in the semantics, for example as outlined above, would
necessitate new translations into new observer languages and new axioms for these
underlying languages.

Finally, let us refer to some related work. Many models of concurrent processes
have been proposed where concurrency is independent of nondeterminism. Perhaps
the best known are Petri nets [Re]. However, this is a very operationally oriented
model and it is difficult to impose on it an algebraic framework. Some attempts have
been made (see [Go], for example), but the resulting equivalence on terms is very
weak; although concurrency and nondeterminism are differentiated processes, such as
aNIL+ aNIL and aNIL, are also distinguished. The resulting model of processes is
not very abstract. Similar remarks may be made of the work of Mazurkiewicz [Ma].
The related work on event structures [Wi] is very much concerned with developing
algebraic models for concurrency but no attempt has yet been made to introduce into
these structures a notion of abstract behaviour.

Recently there have been other attempts at generalising observational equivalence
to take concurrency into account. The works known to the author in this direction are
[De], [BO], [Ca], and [G1]. In the first paper a general definition of observational
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equivalence is given for nondeterministic measurement systems. This can be instantiated
to give the usual observational equivalence on CCS or a more discriminating
equivalence called partial-ordering observational equivalence. Partial orders are also
used in [Bo] to generalise observational equivalence and the resulting equivalence is
axiomatised. The basic technique used is to transfer much of the structure of processes
onto the set of actions. Our equivalence can be shown to be strictly finer than theirs.
In [Ca] observational equivalence is generalised by using the notion of locality; the
resulting equivalence, called distributed bisimulation, is also axiomatised. Unlike
it satisfies

p,(x + ’y) lx(x + ’y) + p,y.

Once more r is more discriminating. Finally, [G1] is a good survey of the area of
"interleaving" versus "true concurrency" for processes. A variety of new equivalences
are defined but, unlike the other papers, the algebraic language used is ACP, [Be].
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A LINEAR ALGORITHM FOR TOPOLOGICAL BANDWIDTH IN
DEGREE-THREE TREES*

ZEVI MILLERf

Abstract. Let G be a graph, and f a one-to-one map of G into the positive integers. The bandwidth of
G is B(G)=minf max {If(x)-f(y)l: xy E(G)}, where the max is taken over all edges xy in G and the
min over all maps f. B(G) is related to the matrix bandwidth B(M) for a symmetric matrix M, and knowledge
of the latter parameter is important for the efficient execution of certain matrix operations. The problem of
determining B(G) for arbitrary G was shown by Papadimitriou to be NP-complete, and it was subsequently
proved NP-complete even when G fl, where f is the set of trees with maximum degree 3. Let B*(G) be
the minimum possible bandwidth of any subdivision of G, i.e., any graph obtained from G by inserting
degree-2 points along edges of G. We present an O(n) algorithm for computing B*(G) when G f.

Key words, topological bandwidth

AMS(MOS) subject classification. 05C99

1. Introduction. Let G V, E) be a finite graph with no loops or multiple edges.
A one-to-one map f: V(G) 7/of the vertex set of G into the integers will be called
a layout of G. We let Ifl- max (If(v)-f(w)l: vw E(G)), and we define the bandwidth
of G, B(G), to be B(G) miny Ifl. For convenience, we adopt the convention B(K1)
1, where K1 is the singleton graph.

The problem of determining B(G) for any G has importance in the theory of
sparse matrices. Given an n x n matrix A=(aij), define a graph G(A) by letting
V(G(A)) {1, 2, , n} and declaring that ij is an edge if and only if aij 0 or a # 0.
Suppose we can find a symmetric permutation of the rows and columns of A so that
all nonzero entries lie within the first k superdiagonals or the first k subdiagonals
about the main diagonal. Then clearly B(G(A)) -< k. Conversely if B(G(A)) <= k, then
the stated permutation exists. The problem of finding the permutation with the smallest
k, equivalently, finding B(G(A)), is important in efficiently operating on and storing
matrices, e.g., for Gaussian elimination, systolic processes, etc. Relevant work can be
found in [1], [3], [9].

Recently the importance of bandwidth for complexity theory has been demon-
strated in the work of Sudborough and Monien 1], 15]. The main kind of result has
been that when certain well-known graph problems which are complete for some
complexity class C are restricted to graphs with bounded bandwidth, the resulting
problem is complete for space-bounded or simultaneous space- and time-bounded
subclasses of C. Of course the bandwidth problem for arbitrary graphs 13], and even
for trees of maximum degree 3 [6], is known to be NP-complete.

The problem of given a graph G to determine whether B(G)-< k when k is fixed
was proved polynomial time solvable in [14], with an improvement in [7].

The subject of this paper is the following topological version of bandwidth,
attributed in [3] to R. Graham. For any graph G, let S(G) be the set of all subdivisions
of G, i.e., the set of all graphs obtainable from G by finitely many compositions of
the operation, called elementary subdivision, of replacing some edge xz by two edges
xy and yz, where y is a vertex not previously in the graph. Obviously any H S(G)

* Received by the editors July 30, 1984; accepted for publication (in revised form) October 20, 1987.
This work was supported in part by Office of Naval Research grant N0000 14-85-K-0621.

" Department of Mathematics and Statistics, Miami University, Oxford, Ohio 45056.
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is homeomorphic with G and hence has the same underlying topology as G. The
topological bandwidth of G, B*(G), is defined by B*(G)= min {B(H): H S(G)}.

Topological bandwidth is related to sparse matrices as follows. Given the system
Ax b, construct an equivalent system by replacing some term aixj by the new variable
y and add a new equation aix y. This operation is equivalent to inserting a point
of degree 2 in the edge ij of G(A). Clearly B*(G(A)) is the smallest k such that for
some system A’x b’ equivalent to Ax b by a sequence of the above operations there
is a permutation of the rows and columns which yields a 2k + 1 band form. The new
system may be more efficient to work with if it is not too large, i.e., if the number of
additional degree-2 vertices is not too large.

Another application is in regarding a graph G as a circuit with gates (corresponding
to points of G) laid out linearly for automation purposes 12], 16]. Inserting degree-2
points along edges of G corresponds to inserting drivers along wires of the circuit.
Hence B*(G) is the minimum length of the longest connection over all linear layouts
allowing drivers. This minimum gives a lower bound on the time delay in transmission
between elements of the circuit.

The cutwidth, cw(G), of a graph G is defined as the minimum, over all layouts
f, of maxi [{uvE(G):f(u)<-i<f(v)}[. The relation between B*(T) and cw(T) for
trees T was explored by Chung in [5]. It was shown that cw(T) and B*(T) can be
arbitrarily far apart, but that cw(T) <= B*(T) log2 B*(T) + 2. Recently Yannakakis
has found an O(n log n) algorithm for cw(T) for arbitrary trees T [17].

The relation between cw(G) and B*(G) was also investigated by Makedon,
Papadimitriou, and Sudborough in [10]. They show that for any graph G we have
B*(G) <-mcw(G)+ 1, where mcw is the "modified cutwidth" considered in [10] and
defined earlier by Lengauer in [18]. Since for any graph G we have mcw(G) <-

cw(G) 1, it follows that B*(G) <= cw(G). Makedon et al. also show that for any graph
with maximum degree 3, B*(G)= mcw(G)+ 1. Thus an algorithm for topological
bandwidth in trees of maximum degree 3 is also an algorithm for mcw in such trees.

The main result of this paper is an O(n) algorithm for computing B*(T), where
T is any tree of maximum degree 3. First we develop an O(n log n) algorithm which
contains all the essential graph-theoretic ideas. Some additional data structure then
leads to the O(n) solution. Our result is a contrast to the NP-completeness ofbandwidth
for trees of maximum degree 3, and hence shows that topological structure "alone"
is not the reason for this NP-completeness.

We remark that an O(n log n) algorithm for B*(T) in degree-3 trees is obtained
independently by Makedon, Papadimitriou, and Sudborough, in 10]. They show that
the topological bandwidth problem for arbitrary graphs is NP-complete, they character-
ize graphs with topological bandwidth two, and they explore relations with pebbling
and searching.

We follow standard graph-theoretic notation, as may be found in [2] or [8] for
example. In particular, if G (V, E) is a graph and H is a subgraph of G, then G- H
is the graph obtained from G by deleting all points of H and all edges of G incident
on those points.

2. The main algorithm. Let P be a path joining two end vertices of T. A subtree
a of T is called a hanging from P if it is one of the connected components of T-P.
Thus each such a contains a unique vertex x such that xy E(T) for some y P.
We denote by Z(P) the set of all hangings from P. Let IIPII, the norm of P in T, be
defined by IIPII- 1 / max {B*(a): a Z(P)}. To emphasize the role of T, we sometimes
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write this as [IPllr. We let K,2 (respectively, K1,3) be the tree with a central point
joined to two (respectively, three) endpoints.

We begin with some lemmas.
LEMMA 1. For any tree T there exists a layout of T satisfying Ifl- B( T) such that

f-1 (min f(x)) and f-1 (max f(x)) are both end vertices of T.
Proof. Let g be a layout of T such that Igl- B(T). Let p= g-l(min g(x)) and

q g-l(max g(x)). We may suppose that at least one of p and q is not an end vertex
(or leaf). Let P be the path in T joining p and q, and let Yp (respectively, Yq) be the
set of branches at p (respectively, q) having empty intersection with P. Now define a
new layout gl of T as follows:

fg(x),
gl(x)=2g(p)-g(x),

(2g(q)-g(x),

x V(T)\[ V U V.],
XE rp,
xrq.

Notice that gl just reflects Yp and Yq about p and q, respectively, and Ig[ [gl. If
g-(min g(x)) and g[(max g(x)) are both end vertices, then we are done. If not,
then repeat the above process with g in place of g. Eventually we obtain a layout for
T of the required kind. [3

A path P joining two end vertices of the tree T is called a backbone of T. If f is
a layout of T such that z =f-l(minf(x)) and z2=f-(maxf(x)) are both end vertices
of T, then the backbone P joining Zl and z2 is called a backbone off We also say that
f has backbone P.

Let T*e S(T), and let P be a backbone of T. A layout f of T* will be called a
t-layout of T (t for topological). We call P an optimal backbone of T if there exists
such an f and T* satisfying

(i) Ifl B*(T), and
(ii) the path joining f-(minf(x)) and f-(maxf(x)) corresponds to P under

the subdivision operation (so that f-(minf(x)) and f-(maxf(x)) are endpoints of
T* corresponding to the endpoints of P).

COROLLARY 1.1. Every tree T has an optimal backbone.
Proof Let f be a t-layout of T with Ifl- B*(T). By Lemma 1 we can find a

t-layout g such that g-(min g(x)) and g-(max g(x)) are end vertices Vl and v2
(respectively) while Igl--B*(T). The path in T joining the vertices v and v2 is the
required optimal backbone. [3

Given a layout f of G and H
_

G, the layout of H induced by f is the layout
f" v(n)-, {1, 2,..., v(n)l} which maps the points of H in the same order as they
are mapped by f

LEMMA 2. Let Tbe a nontrivial tree ofmaximum degree 3, P be an optimal backbone
of T, and Z(P) {H1, H2, , Hk}. Then B*(T) IIPIi =- 1 + max B*(/-/).

Proof We start with the lower bound B*(T)=> IIPII. Consider a t-layout of T, say
f" T* 7/for some T* S(T), such that Ifl- B*(T). Let i e $(Hi), 1 =< -< k, be the
hanging from P* (the subdivision of P in T*) corresponding to Hi. Let f be the layout
of Hi induced by f Clearly If, I--> B(Hi) => B*(Hi), so there exist c, d V(Hi) (say with
f(c)<f(d)) such that f(d)-f(c)>= B*(Hi). After translating f to correspond to the
restriction of f to Hi, we find that there is an edge ab E(P*) such that without loss
of generality either

(i) f(a) <f(c) and f(b) >f(d), or
(ii) f(c) <f(a) <f(d).

In either case we get If] => 1 + B*(Hi), so by the arbitrariness of we get Ifl->- IIPll..
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The bound B*(T)-< IIPI[ follows from the layout indicated in Fig. 1. For each i,
1 <-i<=k, we take a layout f of some H 6S(Hi) satisfying If, I--B*(H), Assuming
without loss of generality that the Hi occur along P in indicial order, we place the
layouts f along 77 in the same order so that f and f/l have no overlap for all i. We
then lay out some P* S(P) so that consecutive points on P* are lIP units apart,
min {P*} < minf(x), and max {P*} > maxfk(x) (where we identify P* with points of
77). Of course this requires us to "squeeze in" points of P* into the range ofthe layouts f.
We make room for this by iteratively translating values f (x) greater than the squeezed-
in point one unit to the right. Since consecutive points on P* are IIP[[ units apart, and
since B*(Hi) < P II, we will never have to stretch any pair f (x), f (y), xy E (Hi),
more than IIPll units apart. This defines a layout f: T*- 77 for some T*e S(T). By
construction we have If(x)-f(y)l<=llP[[ for any xye E(P*)U(LJ E(Hi)). Now for
each there is a unique edge wipie E(T), wi Hi, pie P. We choose a wie Hi (to
correspond to wi and Bi), and then find a Pi P* (to correspond to Pie P) that is at
most distance IlP[[ from wi. Letting these wipi be the remaining edges of T*, we get
If[--< IIPII as required. [3

In order to make use of the lemma in the algorithm we need some further notation.
Let T be a tree of maximum degree 3. If the vertices of T are numbered in the

order of a depth-first search (DFS) starting at r, then the resulting numbers s can be
used to define the usual relations on rooted trees: if x and y belong to the same branch
at r and the path in T from r to y passes through x, then we write x -< y. If x -<_ y then
we call x an ancestor of y and we call y a descendant of x. If y is a descendant of x
and xy E (T), then y is a son of x and x is a father of y. If Q is a subtree of T, then
we define head(Q) to be the vertex x Q such that x -< y for all y Q\{x}. For x V(T),
let Bx(T) denote the subtree of T consisting of x and all descendants of x in T. We
write Bx instead of B(T) when T is understood by context. For any subtree 3’--- T
with head(3’) s, we let (3’). be the tree with vertex set V(3’) LJ {g}, where g is a new
symbol, and edge set E(3")LJ{sg}. Thus (3’)s is obtained by attaching a new endpoint
to s. Accordingly, if/3 is a backbone of 3’ which remains a backbone of (3’)s, then we
let be the norm of/3 in (3’)s. We say that Bx is k-primitive (or just primitive when
k is understood) if B*(B)= k and B*(By)< k for all y B. Note that if B and Bz
are distinct k-primitive branches, then Bx tq Bz . If P is a path in T, we say that P
threads the branch B if P passes through x and some end vertex of B.

COROLLARY 2.1. (a) Let B and By be branches of T such that B f3 By--- and
B*(Bx) B*(By)= B*( T). Then any optimal backbone of T threads both B and By.

(b) If T has three branches B, B2, Bx3 having pairwise empty intersection, then
B*(T) >- 1 + mini B*(Bi).

_Proof. (a) Let _P be an optimal backbone of T violating the conclusion. Then at
least one of Bx or By is contained in some hanging C of _P. Thus by the lemma
B*(T) >- 1 + B*(C)>= 1 + B*(B) > B*(T), a contradiction.

FIG. 1. The optimal t-layout of Tfrom Lemma 2.
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(b) By Corollary 1.1 we know that T must have an optimal backbone P. Now
observe that for any optimal backbone P of T one ofthe Bxi, say Bxl, must be contained
in a hanging from P. Hence B*(T)>_- 1 + B*(Bxl)>_- 1 + sin B*(Bi).

COROLLARY 2.2. For any backbone fl ofTwe have B*( T) <-_ lift II. Hence by Corollary
1.1 and Lemma 2, B*(T)-min {ll ll: a backbone ofT}.

Proof. Let Z(fl) {Bj: 1 -<j _-< k}. Using the proof of the upper bound in the lemma
we can construct a t-layout g of T such that Igl-

Thus a backbone/3 of T is optimal (in the sense defined previously) if and only
if [[fill is a minimum among all backbones of T.

Before proceeding to the algorithm we introduce some notation. Let A and C be
trees on which a DFS has been performed with roots x and y, respectively. Denote by
A v C the tree with V(T)- V(A)(.J V(C){r}, E(T)- E(A)O E(C){rx, ry}. The
basic idea in our main procedure LABEL(A, C, r) is to use an inductive knowledge
of B*(A), B*(C) and some additional information (described below) to find an optimal
backbone/3 of A v C and compute B*(A v C)=

Now let z be any tree of maximum degree 3 rooted at a point u. Define h(z) to
be the point of z closest to u which can be on an optimal backbone of z. Also let u(-)
be the number of B*(z)-primitive branches of z. Thus v(r) equals 1 or 2 by Corollary
2.1(b).

COROLLARY 2.3. Let " be a tree of maximum degree 3 rooted at u.
(a) If v(z) 1 then h(z) u.
(b) Suppose u(z)= 2, and let Bx and By be the B*(z)-primitive branches of z. Then

h (z) is the point closest to u on the unique path in joining x and y.
Proof. (a) Let Bz be the unique B*(z)-primitive branch of z. Clearly there exists

a backbone fl of r threading Bz and passing through u. Let a be any hanging of/3.
If a c B, then B*(a)<-_ B*(r)-1 by primitivity of B. If a r-B then B*(a) <-
B*(r)- 1 since otherwise B*(a) B*(r) and hence a would contain a B*(r)-primitive
branch, contradicting the uniqueness of Bz. Thus ]]fill <-- B*(z) so /3 is optimal and
h r) _-< head (/3)= u. But h(r)>=u since u is the root, so h(r) u.

(b) By Corollary 2.1 any optimal backbone
passes through x and y and the claim follows.

We illustrate the conclusion of the lemma in Fig. 2. The curled line indicates an
optimal backbone.

For any s z, let z/s be the tree r-B(z). We will be interested in z/h(-). We
define the signature of r, sign (z), to be the 4-tuple (B*(z), u(z), h(r), B*((z)u)).

We define a nested sequence Tree (z) of subtrees {z} of z, where u - for all i,
as follows. Let r z. If z is a path, then Tree (r) {zl}. Otherwise assume inductively

u=a(r)

(a) v(r)=

h( r)’

(b) v(r)= 2

FIG. 2. h(r) depending on v(r).
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that ’1, ’,’", ’i have been defined. If h(’i)=u, then Tree(’)={’l, ’2,’’’, ’i}.
Otherwise let ’i+l=-i/h(-i). Note that if u has only one son, then "l’[Tree(-r)[ is
a path with endpoint u. We define deck(-) as the ordered list deck(z)=
{sign (’1), sign (-2), ", sign (’/’[Tree (-r)])}, where sign (’1) is the top and sign (’/’]Tree (-r)[)
is the bottom. If L- (11, 12,- .., l,,) and N (nl, n, , nj) are two ordered lists, we
let L0) N be the ordered list (l, 12," lm, tll, r12," tlj). Typically L and N will be
of the form deck (z) for some ’. Ifk<=m, we let Lk =(1, 12,’’’, lk), SO deck (’)k refers
to the top k entries of deck (-). We call these entries frames.

We now introduce the two procedures used in our algorithm. The main one
LABEL (A, C, r) had deck (A) and deck (C) as input, where A and C are nonempty
trees, and deck (A v C) as output. We use it in working our way up T in postorder,
where A Bs, C Bt for s, T, and A v C Bu, where u is the father of s and t. The
second, MAKEDECK T, r) has deck (T) as input, where T is rooted r, and deck ((T)r)
as output. It is called by LABEL in a certain case. The validity of LABEL will be
proved in its description while that of MAKEDECK will follow from some later
lemmas.

Procedure LABEL (A, C, r).
Input. deck (A), deck (C) Output. deck (A v C)

We let Tree (A) {z, -=,. ., Zk}, and Tree (C) {/x, Ix=," -,/z}. Initially we
scan sign ()= sign (A) and sign (/Xl)= sign (C) in deck (A) and deck (C), respec-
tively.

Case 1. B*(A) B*( C) b.
Since u(A)+ u(C)_-> 2, we have u(A)+ ,(C)-> 3 or v(A)= u(C)= 1. We consider

these subcases in turn.
Subcase 1 (a). u(A) + ,(C) >- 3.
By Corollary 2.1(b) it follows that B*(A v C) >-_ 1 + b. But any backbone/3 of A v C

containing r satisfies [[/3 [[-< 1 + b since any hanging a of/3 is a subtree of A or C so
by monotonicity of B* satisfies B*(a) < b. Hence by Corollary 2.2 we have B*(A v C)
1 + b. Clearly u(A v C) 1 since A v C is its own (1 + b)-primitive branch, and h(A v
C) r since (as remarked above) any backbone containing r is optimal. The same/3
satisfies lift lit <- 1 + b since the only additional hanging it has in (A v C)r is the single
point f. Thus B*((A v C)) <- 1 + b. The opposite inequality follows from (A v C) D A v
C and monotonicity of B*. The procedure thus ends with deck(Av C)=
{(l+b,l,r,l+b)}.

Subcase 1 (b). ,(A) ,(C) 1.
Let B c A and By c C be the unique b-primitive branches ofA and C, respectively.

Consider any backbone/3 of A v C which threads both B and By. Each of its hangings
a is either properly contained in B or By, or contains no b-primitive branches. Hence
B*(a)<-b-1, so Ilfl[[<-b and thus B*(AvC)<-_b by Corollary 2.2. The opposite
inequality is immediate by monotonicity of B*. Thus B*(A v C)= b. Obviously u(A v
C) =2 since B and By are two b-primitive branches, and h(A v C)-r since any
optimal backbone must thread Bx and By and hence contains r.

As for B*((A v C)r) we have two cases. If B*(A)- 1, then the assumption u(A)-
,(C) 1 implies that each of A and C has only one endpoint in A v C, and hence
that Av C is a subdivision of a path. Thus (A v C) is a subdivision of g,3, so
B*((A v C))= 2. We then return deck (A v C)- {(1,2, r, 2)}. If B*(A)->_ 2, then the
same /3 above satisfies []fll]r=< b, so B*((A v C))<= b. The opposite inequality again
follows from monotonicity of B*. Hence we return deck (A v C) {(b, 2, r, b)}.
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Case 2. b B*(A) > B*( C).
Subcase 2(a). ,(A)= 1.
Here we can find a backbone/3 of A v C which threads the unique b-primitive

branch B of A and passes through r. Such a/3 satisfies II-<- b, so that B*(A v C)= b
and h(A v C) r. Also u(A v C) 1 since B is unique. Again the same /3 satisfies

1113 Ilr--< b so n*((a v C)r b and by monotonicity B*((A v C)r) b. We then return
deck (A v C)-- {(b, 1, r, b)}.

Subcase 2(b). u(A) 2.
Let Bx and By be the two b-primitive branches of A. Clearly any backbone 13 of

A v C satisfying 1113 b (if such exists) must thread both Bx and By, and head (]3)=
h(A). Also, its hanging (A v C)/h(A) must have B* value -<b-1.

It follows that if B*((A v C)/h(A))= b then B*(A v C)->_ b + 1. Equality follows
since for any backbone 6 of A v C containing r the hangings a all satisfy B*(a)<-
max {B*(A), B*(C)} b so such a 6 satisfies I1 11-<- b+ 1. Also 11611r _-< b+ 1 since the
only additional hanging is a single point, and v(A v C)= 1 since A v C is its own
(b + 1)-primitive branch. Thus we output deck (A v C) {(b + 1, 1, r, b + 1)}.

Suppose on the other hand that B*((A v C)/h(A)) <_- b 1. Take any backbone/3
of A v C threading the two b-primitive branches Bx and By of A. Then every hanging
a of it satisfies exactly one of the following:

(a) a B, or a By with proper containment.
(b) a contains no b-primitive branches.
(c) a (a v C)/h(a).

Each of these implies that B*(a)<-_b-1 so IIll-<_b and hence B*(Av C)=b. Also
head (/3)= h(A) since any optimal backbone of A threads B and By and thus has a
uniquely determined head which must therefore be the same as head (/3). Clearly
9(A v C) 2. As for B*((A v C)r), the argument given above for A v C can be repeated
for (A v C)r to show that if B*((A v C)r/h(A)) <- b 1, then B*((A v C),.) b while if
B*((A v C)r/h(A))= b, then B*((A v C)r)-- b + 1. We conclude that sign (A v C)=
(b, 2, h(A), z), where z= B*((A v C)) depends on B*((A v C),./h(A)) as indicated.
Thus the first frame of deck (A v C) is sign (A v C) as given, so deck (A v C)
(b, 2, h(A), z) O) deck ((A v C)/h(A)).

To summarize, we see that in Subcase 2(b) if B*((A v C)/h(A)) b, then deck (A v
C)={(b+l,l,r,b+l)} while if B*((AvC)/h(A))<=b-1, then deck(ArC)=
(b, 2, h(A), z) O) deck ((A v C)/h(A)). Hence the output of LABEL (A, C) is given
directly in the first case, while in the second the procedure must still produce deck ((A v
C)/h(A)). When this is done z is determined from the last entry, corresponding to
B*((A v C)r/h(A)), of the top frame of deck ((A v C)/h(A)), and the given deck (A v
C) is returned.

Consider then the construction of deck((Av C)/h(A)) which, since (Av
C)/h(A) (A/h(A)) v C, is deck ((A/h(A)) v C). If Ah(A) f, then we do this by
making a recursive call on LABEL (A/h(A), C, r) LABEL (’2, 1, r) after popping
sign (’1)=sign (A) from the top of deck (A) so that sign (’2)=sign (A/h(A)) is avail-
able for scanning. We get as output the required deck ((A/h(A)) v C). If A/h(A)
we cannot make this call and instead use procedure MAKEDECK as follows.

Suppose then that A/h(A)=. Then (A/h(A))v C (C)y, where y is the root
of C, i.e., the son of r in C. Hence we get deck ((A/h(A)) v C) by calling on procedure
MAKEDECK (C, y).

This completes procedure LABEL (A, C, r).

We illustrate the Subcase 2(b) requiring recursion in Figs. 3 and 4. The pointers
in Fig. 4 show the entries to be scanned in the indicated calls to LABEL.
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"r2v

h(rl)

FIG. 3. Determining B*(h v ) from B*(z2 v 71).

sign zl sign/x sign T sign

sign r2 sign ]d, sign ’3 sign

sign ’r sign u, sign rk sign

input into LABEL (rl, ]d’l, r) input into LABEL (r2, ]’$1, r)
after popping sign

FIG. 4. The deck structure in recursion.

The procedure may continue calling itself through possibly k + levels in recursion
(after popping a sign (ri) or sign (/xj) in preparation each time) until either Case 1 or
Subcase 2(a) obtains, where of course A and C are replaced by some ri or j. At this
point the answer cascades back up as in the discussion of Subcase 2(b) to give the
final output of LABEL (A, C, r).

We must now develop the procedure MAKEDECK (T, r) for an arbitrary tree T
of maximum degree 3 rooted at a point r of degree 1 or 2. We begin with some lemmas.

A pendant path in T is a path P in T with endpoints x and y at least one of
which is an endpoint in T and such that deg (z, T) 2 for all z P\{x, y).

LEMMA 3. Let T be a tree. Let P be a pendant path in T from x to y such that
degr (x) 1. Suppose Tp is a copy of T except that edges in P may be subdivided. Then
B*(T) B*(Tp).

Proof. First note that B*(Tp) > B*(T) because any subdivision of Tp is also a
subdivision of T. Thus we need only show the other direction, which we will do by
induction on IT[. Let Q be an optimal backbone of T.

Case 1. P Q . Then P is contained in H, a hanging of Q. By the induction
hypothesis, B*(Hp)- B*(H) since H is smaller than T. Also the hangings of Q other
than H do not contain P, so they have the same B* values whether viewed as subtrees
of T or Tp. Thus, all the hangings of Q in Tp have the same B* values as the hangings
of Q in T. Hence by Lemma 2 there is a t-layout of Tp having bandwidth Q]] B*(T).
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Case 2. P fq Q (y). Let H P’= P y, so that H is a hanging of Q and P’ is a
pendant path in H (which happens to be all of H). This gives the same situation as
Case I with B*(H) B*(Hp,) 1. The same argument as in Case 1 then gives B*(Tp) <-

B*(T).
Case 3. P Q. Then P is the tail of Q and it has no hangings, so by the construction

of the optimal layout of T given by Lemma 2, the points on P will be numbered with
integers spaced JlQH apart at the high end (or low endit does not matter) of the
range of the layout. But then it is easy to push out the high end of the range in order
to fit in the additional points of Tp. This does not change the bandwidth.

Note that there can be no other way for P and Q to intersect because P is pendant.
The proof is thereby completed.

We now pass to a description of deck ((T)) in terms of deck (T). As notation
we let Tree (T)= (3/1, 72,’’’, 7m) and Tree ((T))= (7, 7,""", T). We recall that
g is the endpoint not in T attached to r. We view it as the father of r in a depth-first
search of (T).

LEMMA 4. Suppose T is rooted at a point r satisfying deg (r, T)= 1. Then
deck ((r)r)=deck (r)m_lt) (1, 1, f, 1).

Proofi We begin by showing that y (%), 1 _-< _-< m, and that m p. For the first
claim we proceed by induction on i. It is trivially true for 1. Suppose it is true for
all =< io, where io < m. If h(y) # r, then y has two B*(y)-primitive branches. Since

Yfo- (%o)r by induction, we have B*(ylo) B*(y) by Lemma 3 and hence any optimal
backbone of Ylo must thread the same two branches. Thus h(yo)= h(y) and hence

Yo+ (y+l), so the induction is completed. The fact that m-p follows immediately
since y’ (Y,,)r and h(y,,) r imply that h(y’,,) . Thus Y’+I= so y’,, is the last
element of Tree ((T)r).

We can now complete the proof. First we show that sign (7j) sign (7j) for j < m.
The conditions deg (r, T)= 1, 7; (Tj),, and Lemma 3 imply that B*((7)) B*(7)
B*((7j),) B*(7j), and that the B*(7;)-primitive branches of 7; are identical to the
B*(39)-primitive branches of )9- The condition 7; (7j)r for all j implies h(7;)= h(Tj)
for j < m. It follows that sign (7;) sign (39) for j < m.

For j- m, just observe that 7,, is a path with endpoint r so 7’,, (7,,) is a path
with endpoint . Thus sign (7’) {(1, 1, , 1)}.

The lemma is thus proved.
We now make some observations that lead to a description of deck ((T)r), where

r has degree 2.
LEMMA 5. Suppose that for some integer j<m we have B*(7q) B*((7q)r) for

1 <- q <-_ j. Then
(1) 7’q=(7q)rfor l_-<q=<j+l, and
(2) sign (7) sign (7o) for 1 <- q <-j.
Proof. We start with (1). Proceeding by induction, suppose there is an integer

qo<-j for which (1) is true for all q<-qo, the case qo 1 being trivially true. Since
qo< m we have h(7qo)# r. Thus any optimal backbone of 7qo threads two B*(7qo)-
primitive branches of 700, and since B*(7qo)= B*((7qo)r) any optimal backbone of
(7qo), must thread these same two branches. Hence h(7’qo)=h((7qo)r)=h(7qo), so

7qo+1 (Tqo+l)r and the inductive step is done.
Now consider (2). We may suppose that m > 1 since otherwise the statement is

vacuously true. Take any q in the range 1-<_ q <_-j. By hypothesis B*(7q)= B*((7q),)
and by (1) we have B*(7) B*((Tq),), so B*(7) B*(Tq). By Lemma 3 we have
B*((7) ) B*(7) B*((7q),). Hence the first and last entries of sign (7) are identical
to those of sign (7o). Since q < m we have h(7q)< m, and the argument in (1) can be
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repeated to give h(7) h(3"q) and 9(y)= 9(yq) 2. Hence sign (3’) sign (3"0)- Part
(2) is proved and we are done. l-I

LEMMA 6. Suppose T is rooted at a point r satisfying deg (r, T)- 2.
(1) Let j be the first index, if it exists, such that B*((3’j)r) B*(3’j) (so that

B*((3"j)r)-- B*(3’) + 1). Then

deck ((T)r) deck (T)_I (B*(3’.) + 1, 1, f, B*(T) + 1).

(2) If no such j exists, then
(2a) If deg (r, Y")- 1, then

deck (T)r) deck (T)"-1 B* y" ), 1, , B* y" ).

(2b) If deg r, y" 2, then
(2b’) If 9( y") 1, then

deck ((T)) deck (T)"_IO)(B*(Tm), 1, , B*(T")).

(2b") If 9( y,.) 2, then
deck ((T)) deck (T) (1, 1, , 1).

Proof. (1) Suppose that the stated j exists. Then by Lemma 5 yq (Yq)r for 1 < q <j
and sign (y)= sign (yq) for 1 <-qj-1. As for sign (y), note that any backbone
of y (Yj)r containing satisfies ]]fll[ _-< B*(T) + 1 since all its hangings a satisfy
and hence B*(a)<-_B(yl). Thus h(y) , so sign (yj) is the last frame of deck ((T)).
We have by Lemma 3 and hypothesis B*((yj))=B*(yj)=B*((yj)r)=
B*(yj)+I. Finally 9(yj)=l since y is its own B*(yi)-primitive branch.
Thus sign (y) (B*(yi)+ 1, 1, , B*(yi)+ 1) and hence deck ((T)) =deck (T)j_IO)
(B*(yi) + 1, 1, , B*(y) + 1) as required.

(2) Suppose no such j exists. Since Ym is the last tree in Tree (T), it follows that
h(y") r. Hence there is an optimal backbone of y" containing r. We also have
sign (y) sign (yq) for q < m by Lemma 5.

Case 2(a). We can extend fl to ? thereby obtaining a backbone of (y")r. Clearly
II/![] lift since has the same hangings as ft. Thus B*((y"))= B*(y"). By Lemma
5 we have y’ (y") so B*(y’)= B*(y"), and by Lemma 3, B*((y’m)) B*(y’")
B*(3""). Finally h(3") head (fl) , and 9(y’) 1 since otherwise h(3") # g. Thus
sign (3")= (B*(3""), 1, g, B*(3"")). Clearly 3" is the last element of Tree ((T)). Thus
deck ((r)) deck (r)"_l (B*(T"), 1, , B*(T")).

Case 2(b). Assume first that 9(3’,,) 1. Then any backbone/3 of 3",, (3’") which
threads the unique B*(3"")-primitive branch of 3’,, satisfies lift[[ B*(3""). We can
choose such a fl which contains g. Hence we get B*(3"")= B*(3"") and h(3"")= . As
above B*((3",,))= B*(3’), and 9(3’)= 1 since 3",, has the same unique
primitive branch as 3’m. Thus deck ((T)r)= deck (T),_10)(B*(3’,), 1, r, B* (3’,)).

Now suppose 9(3’")= 2. Since B*(3’")= B*(3"m) any optimal backbone fl of 3’"
must thread the same two B*(3’,)-primitive branches of 3’,, as does/3. Hence h(
head (/3) head (/3) r. Clearly 9(3",,)= 9(3"") 2, and B*((3’")r) B*(3’") as before.
Thus sign (3",,) sign (3""). Also we have 3""+ {}, so sign (3’’m+) (1, 1, , 1). Thus
deck ((T)) deck (T) (1, 1, , 1). The lemma is therefore proved.

The procedure MAKEDECK (T, r) is now essentially given by Lemmas 4 and 6.
For completeness we describe it explicitly.

Procedure MAKEDECK (T, r).
Input. deck (T), where T is a tree of maximum degree 3 rooted at r.
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Output. deck ((T)r)
(1) determine deg (r, T)
(2) If deg (r, T) 1, then

deck ((T)r) deck (T) m--I( 1, 1, ?, 1 ).

(3) If deg (r, T) 2, then
(a) Search deck (T) from top to bottom until you find the minimum j, if it

exists, such that B*((yj)r) B*(yj).
(b) If such a j exists, then

deck ((T)r) <- deck (T)_10) (B*(y) + 1, 1, , B*(yj) + 1).

(c) If no such j exists, then determine deg (r, Ym)" Depending on the answer,
output deck ((T)) according to the conditions defining cases (2a), (2b’),
and (2b") of Lemma 6.

This completes MAKEDECK T, r).

We remark that to determine deg (r, T) and deg (r, y,,) we must maintain a new
fifth entry, having value "1" or "2" to denote deg (r, yj) in sign (y) for all y Tree (T).
We describe the updating of deg (r, y) here, omitting its formal inclusion in the lemmas
and procedures to simplify their presentations.

We suppose then that in procedure LABEL(A, C, r) each frame sign (zi) and
sign (/zj) in deck (A) and deck (C), respectively, has the additional bit deg (x, zi) or
deg (y,/) (respectively), where x and y are the roots of A and C (and thus the sons
of r in T). Our goal is to describe deg (r, yj) in all frames sign (y) of deck (A v C).

Suppose first that any of Subcases l(a), l(b), or 2(a) in LABEL (A, C, r) holds.
Then the output deck (A v C) has a single frame. Since A and C are nonempty we
have deg (r, A v C) 2, so we insert "2" for deg (r, A v C) in the single frame.

Suppose then that Subcase 2(b) holds. The possible outputs are
(a) deck (a v C)= {(b+ 1, 1, r, b+ 1)}.
(b) deck (a v C)= (b, 2, h(a), B*((A v C)r))deck ((a v C)/h(a)).

In case (a) we again insert "2" for deg (r, A v C) as above. Suppose (b) holds. For
the topmost frame we insert "2" again since A and C are nonempty so deg (r, A v C)
2. The remaining frames (those in deck ((A v C)/h(A))) are handled as follows. If
A/h(A) # , then a call to LABEL (A/h(A)v C) was made and hence the degree
entries in the frames of deck (A/h(A) v C) deck ((A v C)/h(A)) have been inserted
by recursion. If A/h(A)=, then a call is made to MAKEDECK (C, y). We then
insert "1" in all frames of the resulting deck ((C)y). The reason is that r (which plays
the role of y in MAKEDECK (C, y)) is an endpoint of (C)y attached to y and hence
has degree 1 in each element of Tree ((C)y).

3. Complexity. We now discuss the complexity of procedures LABEL (A, C, r)
and MAKEDECK (T, r) and the complexity of the resulting algorithm for B*(T) in
trees T of maximum degree 3.

Let T be any tree of maximum degree 3 rooted at a point r. We assume a DFS
on T with associated branches Bx for all x T. Let [deck (T)[ denote the number of
frames (or signatures) in deck (T), so Ideck T)[ [Tree T)[. Our first goal is to estimate

Ideck (r)[.
For the next lemma we recall that a tree T is k-primitive if and only if it is its

own (and hence unique) k-primitive branch, i.e., B*(T)= k and B*(T’)< k for any
proper subtree T’ with r T’.
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LEMMA 7. Let T be a k-primitive tree. Then TI >-2k-1.
Proof Let fk min {p: TI p, T is k-primitive}. We show fk >---- 2k-1 by induction

on k.
For k 1, the one-point tree is k-primitive by convention and has minimum order.

Thus fl -> 1 2. Now suppose f _-> 2- for j < s.
Let T be s-primitive and have minimum possible order. We claim T must have

at least two (s-1)-primitive branches. Suppose first that T has no (s-1)-primitive
branches. Then any backbone/3 of T through r satisfies [[/3 -< s 1, so B*(A) <- s 1,
a contradiction. Similarly if T has only one (s-1)-primitive branch Bz, then any
backbone /3 of T threading Bz and passing through r satisfies [[fill -<- s-1, again a
contradiction. Hence T has at least two (s-1)-primitive branches, so by induction

Irl =f -> 2f_,-> 2"-’.
A sequence of trees T, T2, , T is called monotone if B*(T) > B*(T+), -> 1.
LeMMA 8. For any tree T, Tree (T) is monotone.

Proof Let Tree (T)= {r, r2, r}. Now by definition r/h(r)= r+, l <- i<=
1-1, and B*(r)= 11/3,11 where/3, is a t-backbone of r with head (/3)= h(r). It follows
that r,+, is a hanging of/3, in r. Hence B*(r+,) <= 11/3,[[- 1 B*(r)- 1.

COROLLARY 8.1. Let T be a tree on n points. Then [deck (T)I _-< B*(T) _-< O(log n).
Proof Since Ideck (T)[=[Tree(T) it suffices to prove the inequalities with

[deck T)I replaced by ITree (T) I.
Let Tree (T)= {rl, r2,"" ", rl}. Clearly B*(r)- B*(T), so rl contains a B*(T)-

primitive branch, and hence n I%[--> 2B*(r)-. It follows that B*(T) _-< O(log n). Also
l< B*(T) since Tree (T) is monotone.

LEMMA 9. Let A and C be trees with [AI+[C[= n. Then LABEL(A, C, r) has
complexity O(log n).

Proof We may divide the running time of the algorithm into two parts. In the
first part LABEL makes nested calls on itself of the form LABEL (ri,/j). In the second
part, which may not occur, LABEL calls on MAKEDECK(/jo, y) or
MAKEDECK (%, x) for some jo_-< [deck (C)[ or io =< [deck (A)[. Without loss of gener-
ality let this call be MAKEDECK (&o, Y)-

Consider the first part. Each call requires O(1) time since it consists in scanning
sign (r) and sign (g) and then defining deck (r v &) as a single frame or the result
of pushing a single frame onto the recursively computed deck (ri+ v/) or deck (r v
j+l). The call pops either sign (r) or sign (k) before the next call begins. The total
number of calls is the number of times a frame is popped before the call to
MAKEDECK (/-o, Y). Hence this number is [deck (A)[ +jo, so the time spent on the
first part is O(Ideck (A)] +jo).

In the second part MAKEDECK processes from top to bottom all the remaining
[deck (C)[-jo frames of deck (C). It spends at most O(1) time on each frame since it
only scans for the condition B*((y),.) B(*y) or inserts a new frame at the bottom
ofthe ones it has already checked. The time for the second part is thus O(]deck (C)[-jo).

It follows that the total time of LABEL (A, C, r) is O([deck (A)[ + Ideck (C)]) -<

O(log IA] +log IC[)_-< O(log (IAI [CI)_-< O(log (n2)) O (log n).
LEMMA 10. Let A be a tree with ]A n rooted at r. Then MAKEDECK (A, r) has

complexity O(log n).
Proof The proof is essentially the same as the second part of the proof of Lemma

9.
We can now give an O(n log n) algorithm for B*(T). Later we sketch how it can

be refined to linear time.
THEOREM 1. Let T be a tree of maximum degree 3. Then B*( T) can be computed
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in O( n log n) time.

Proof. Suppose first that has a point r of degree 2.
Now view r as the root of T. Now order V(T) in reverse depth-first search from

endpoints "up" to r (i.e., in postorder). If e is an endpoint, then deck ({e})=
{(1, 1, e, 1)}, (where we recall the convention B*({e}) 1). Now for some x T, assume
inductively that deck (By) is known for each of (the at most two) sons of x. If x has
only one son y, then deck (Bx) can be obtained from deck (By) by calling on
MAKEDECK(By, y). Suppose then that x has sons yl and Y2. We then apply
LABEL (By,, By2, x) and get deck (Bx) as output.

Continuing to work our way up we eventually apply LABEL (Bs,, Bs2, r), where
si are the sons of r. The output, deck (Br)- deck (T), has in its first entry the required
B*(T). The algorithm then halts.

If T has no point of degree 2, then let r be a point of degree 1. We proceed as
above, calling on either LABEL or MAKEDECK as we work our way up T (rooted
at r). Eventually we call on MAKEDECK (B, s), where s is the unique son of r. The
output, deck ((B))= deck (T), gives B*(T) and the algorithm halts.

In either case there are a total of n calls of the form LABEL(By,, By,X) or
MAKEDECK (By, y), each requiring at most O(log n) time by Lemmas 9 and 10.
Hence the total time is bounded by O(n log n).

4. A O(n) time bound. In this section we describe informally a way of lowering
the complexity of our algorithm to O(n).

Let Tree (A) {ri 1 <- <= l} and Tree (C) {yj 1 _-<j _-< k}. The main idea is to
modify procedure LABEL(A, C, r). In the worst case it processes all Ideck (A)I+
Ideck (C)I-<_log IAI +log ICI signatures in deck (A) and deck (C), giving a time bound
O(log n), n IA v CI. We indicate how the addition of new decks that point to gaps
in the sequences {B*(r)} and {B*(y)} permits an O(min {log IAI, log ICI}) implementa-
tion of the procedure.

As motivation, suppose that LABEL(A, (7, r) performs in recursion
LABEL (z Yd, r), say with B*(rc)> B*(yd). Suppose also that for some e> c we
have B*(Ze)=B*(yd) and B*(ri+)=B*(z)-I for c<-_i<-e-1. Then we have the
equivalences B*(rc v /d)<-B*(r)Ce;B*(r+l v 3,d)_--< B*(r)-l, "e;B*(re v 3,d) <
B*(r,)-(e-c). Of course the falsity of the above inequalities yields B*(rc v /d)
B*(r)+ 1 in which case deck (r v )’d) has only one frame. Thus the result of
LABEL(re, )’d, r) telescopes up to decide the result of LABEL(r, )’d, r). As now
constituted, LABEL (A, C, r) performs the O(e-c) operations for achieving the tele-
scoping. Our goal is to do this in O(1) time by using a pair of successive pointers from
a separate deck, one to B*(rc) and the other to B*(re). When the inequalities are false,
we advance the pointer to B*(r) one unit and delete the one to B*(re), and when
they are true we leave both pointers stationary. In this way we can treat entire segments
of deck (A) (or deck (C)), i.e., a sequence of successive frames having successive B*
values, in O(1) time. The result will be that the time spent by LABEL in processing
deck (A) and deck (C) becomes proportional to the number of gaps in the sequence
of B* values occurring in whichever of deck (A) or deck (C) has fewer frames.

To be precise, we define two additional decks, GAP (A) and GAP (C), as follows.
Suppose Rj,,= {r, +1,"" ", to,} is a subsequence of Tree (A) satisfying B*(ri+)
B*(ri) 1, j -<_ -<_ m 1, B*(_) > 1 + B(), and B*(r,,+) < B*(r) 1. We call
a run of Tree (A) (and also of deck (A) under the correspondence between deck (A)
and Tree (A)). For any r Tree (A), let run(r) denote the run of Tree (A) to which r
belongs. For each run R,, there will be two consecutive elements b(R,,), t(Rj,,) in
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the list GAP (A). We let t(jm) point to B*(z) in sign () and b(jm) point to B*(-,)
in sign (-,,). If Rj,, and Rqr are runs with rn < q, then the pointers to Rjm come before
(i.e., above) those to Rqr. The deck GAP (C) is constructed similarly.

Our new procedure LABEL (A, C, r) can be described informally as follows. It
has input deck (A), deck (C), GAP (A), GAP (C), and output deck (A v C) and
GAP(Av C). Without loss of generality we take B*(A)>= B*(C). For brevity we
consider only the first case where log [Cl-<_log IA{; the case log ICl> log IA[ is done
with straightforward but tedious changes. We let bottomdeck(T) be the bottommost
entry of deck (T) for a tree T.

(I) Work your way up deck (A) from bottomdeck (A) to sign (’u), where u
min {j: B*( zj) <- B*( T1)} if B*(’rl)<= B*(T1) and u otherwise. Also work up GAP (A)
until you reach b(run (zu)).

(II) Perform LABEL (z,,)’1, r).
(III) Construct deck ((A v C)) and GAP ((A v C)) as follows.

(A) Suppose B*(z, v /1) 1 + B*(3,1), so that deck (, v 3’1) is the single
frame sign (z, v y) (1 + B*(q), 1, r, B*(q)).
(1) Check if there is a run Rb in Tree (A) one of whose members

satisfies B*(z) 1 + B*(),I). (Note. Such an Rb must be run (z,)
or the run preceding run (,) in Tree (A).)

(2) If there is, then move up to t(Rb) in GAP (A) (up _<-2 pointers)
and follow t(Rob) to the top frame sign (z) of Rob. Now do
sign (z v /) - (1+ B*(/), 1, r, 1 + B*(/1)). Now deck (A v C) is
given by deck (A v C) =deck (A)o_0)sign (z v /1). Note that the
list deck (A)_I may now be regarded as {sign (z v /)}.

(3) If there is no Rb, then let deck(AvC)=deck(A)u_lO)
sign (z v 3’1). Again, the entries {sign (z)}, l<-j<-_u-1, may be
regarded as {sign ( v 1)}.

(4) GAP(Av C) is obtained by making corresponding changes in
GAP (A). Suppose for example that (2) holds, and let run (za v )’1)
R in deck (A v C). IfR is not a singleton, thenR corresponds
to a run R(_ in deck (A) with zo v y appended at the end. Hence
we let t(R)= t(R(_l) while b(Rt3 points to sign
Naturally b(R(t3_) in (GAP(A)) is deleted. All elements of
GAP (A) corresponding to runs aboutR are retained in GAP (A v
C). We omit here the changes appropriate to (3) since similar
changes are described below.

(B) Suppose B*(-, v ’)/1) B*(T1). Then deck (A v C) is given by deck (A v
C) =deck (A)_ 0)deck (z v /1). Now GAP ((A v C)r) is constructed
as follows.
(1) Create GAP (, v Yl) by processing deck (zu v )’1) top to bottom and

forming the pointers appropriate to each run.
(2) Attach GAP (-, v )’1) to GAP (A) as follows.

Let GAP’ (A) be the subdeck of GAP (A) of pointers corresponding
to run (z,-1) and all runs above run (z_).

(a) If B*(z,_) > 1 + B*(3q), then just append GAP (z, v /1) to the
bottom of GAP’ (A) and retain the pointer structure in each.

(b) If B*(zu_)= l+B*()q), then append as above but remove
b(run(z,_l)) from GAP’(A) and t(run(z,v/)) from
GAP (z, v /1). (This has the effect of merging the runs run (z,_)
and run (-, v y) into one in GAP(z, v ’)tl),
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We now examine the complexity of our procedure.
THEOREM 2. LABEL (A, C, r) has complexity O(min {log ICI, log IAI}).
Proof. For brevity we again restrict ourselves to the case B*(A) >- B*(C) and

log C <_- log IAI treated above.
First, (I) and (II) each require O(log (C)I) time since each processes at most

O(B*(/1)) O(log ICI) frames. The construction of deck (A v C) takes O(1) time since
it consists in just appending deck (’u v Yl) below a certain position in deck (A). This
position is accessed in O(1) time since after performing (I) and (II) we are just below
the pointer in GAP (A) that leads to this position.

GAP(A v C) is constructed in O(1) time in case (A), and in O(log ICI) time in
case (B). In (A) we simply adjust one or two pointers at the position of GAP (A)
reached after (I) and (II). In (B) we first construct GAP (-u v /1). This takes O(log
time since we are just scanning frames sign (’i v 7j) of deck (-, v yl) all with B* values
-<_B*(yl). The number of such frames is at most B*(yl) by monotonicity ofTree (’, v
from Lemma 8, and B*(/1)_-< O(log I)’11) O(log ]C]) by Corollary 8.1. We then splice
together GAP (’u v yl) and GAP’ (A) by at worst deleting two pointers (the position
below which we have already accessed), and this is O(1) time. Hence the total time
of LABEL (A, C, r) is O(log ICI), as required.

In a similar way we can define a new procedure MAKEDECK (T, r) which does
the same job as the old procedure MAKEDECK T, r); that is, it constructs deck ((T)r)
from deck (T). By creating additional pointer structure, we can make the new procedure
run in time O(1) instead of the worst-case O(log n) for the old procedure. A brief
sketch of how this is done follows.

As motivation, recall that MAKEDECK(T,r) constructs deck((T)r) from
deck (T) by doing one of the following operations"

(opl) inserting a frame at the bottom of deck (T),
(op2) replacing the bottom frame of deck (T) by a different frame, or
(op3) finding the topmost frame of deck (T) in which B*((9)r) B*(9) (if such

a frame exists), and replacing it and the frames under it (i.e., those associated
with )’t, where >j) by the single frame (B*()9)+ 1, 1, F, B*(/;) + 1).

Notice that to do any one of these operations we need only access an "extreme" frame
of some type" either the bottom frame in deck (T), or the topmost relative to the
property B*((/;)r) B*(39).

This suggests the construction of a new deck; call it FRAME (T). The elements
ofFRAME (T) will be pointers to those frames ofdeck (T) in which B*((/;)r) # B*(9),
and, if not already present among the elements just mentioned, an additional pointer
to the bottom frame of deck (T). These elements will be ordered top to bottom in
FRAME (T) in the same relative order as the frames of deck (T) to which they point.
We can then access the required frame of deck (T) in each case by using either the
topmost or bottommost element of FRAME (T). Finding either of these elements takes
O(1) time since they are at the top or bottom of FRAME (T).

Now the procedure MAKEDECK T, r) operates by invoking MAKEDECK T, r)
and using FRAME (T) to access the frame in deck (T) under which the insertion
specified by MAKEDECK will take place. The resulting construction of deck ((T)r)
takes O(1) time since it involves placing a single frame under or at the accessed frame
of deck (T).

Finally we sketch how the time required to maintain FRAME (T) is dominated
by the complexity of procedures already in use, so that the total complexity of our
algorithm is unaffected (up to a constant term) by the additional pointer structure. To
update FRAME (T) we need to do the following"
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(1) Construct FRAME ((T)r) from FRAME (T) (after MAKEDECK (T, r) has
constructed deck ((T)r) from deck (T)).

(2) Construct FRAME (Av C) from FRAME (A) and FRAME (C) (after
LABEL (A, C, r) has constructed deck (A v C) from deck (A) and deck (C)).

Upon starting task (1), note that we would have already performed one of the
operations (opl), (op2), or (op3) during MAKEDECK (T, r). If (op2) was performed
then FRAME ((T)r) is obtained from FRAME (T) by reorienting the bottom element
of FRAME (T) to point to the bottom of deck ((T)r). The remaining elements of
FRAME (T) remain the same, except now regarded as members of FRAME ((T)r).
If (op3) was performed, then FRAME ((T)r) is just a single element pointing to the
bottom frame of deck ((T)). If (opl) was performed, then the updating depends on
whether

(i) the bottom element of deck (T) has the property B*((%)r) B*(y,), or
(ii) the bottom element of deck (T) does not have this property.

If (i) holds then FRAME ((T)r) is gotten by inserting a new element at the bottom of
FRAME (T), and pointing this element to the bottom of deck ((T)). If (ii) holds,
then FRAME ((T)r) is obtained by reorienting the bottom element of FRAME (T) to
point to the bottom of deck ((T)).

Notice that any of these updates requires at most O(1) time since it involves a
O(1) manipulation (insertion and orientation of a pointer to the bottom of some deck)
at or directly below an element of FRAME (T) already accessed in O(1) time. It is
also easily checked that the deck FRAME ((T)r) so produced has the necessary
properties, namely, elements pointing to the frames of deck ((T)r) in which B*((’Yj)r)Y
B*(3,) and ordered in the natural way, and a bottom element (if not already present)
pointing to the bottom of deck ((T)).

We can achieve (2) in a manner analogous to the construction of GAP (A v C)
from GAP(A) and GAP(C) outlined previously. This requires time
O(min {log IAI, log [CI}) which is already required by the procedure LABEL. Details
of the construction and time bound in (2) are omitted here since they are nearly
identical with the above-mentioned construction and time analysis for GAP (A v C).

Our procedures LABEL and MAKEDECK can now be used to give our linear
algorithm.

THEOREM 3. Let T be a tree of maximum degree 3 on n points. Then B*( T) can
be computed in 0 n time.

Proof We carry out our procedures in the order specified by the proof of Theorem
1. That is, we work our way up T from bottom to top in postorder. Thus we start by
defining deck ((e)) for each endpoint e as before. Now as we meet each new point
x T in postorder, our job is to compute deck (B) given deck (By) for each of the
(at most) two children y of x. If x has two children Yl and Y2, then we apply
LABEL (Bye, Bye, x) to get deck (B) at a cost of log (min (IByl, IBy:I)) time by Theorem
2. If x has one child y, then we apply MAKEDECK (By, y) to get deck (B) at a cost
of O(1) time by the above discussion. At the end we finally obtain deck (Br) deck (T),
where r is the root of T and from that we get B*(T) by scanning the topmost frame
of this deck.

Now let T(n) be the total time required by the algorithm described in the
above paragraph. It follows from the description that T(n / 1) _-<

max__<k<_,/ {T(k) + T(n-k)+log (k)}.
We now claim that T(n) satisfies

T(n)<-An-B log (n)+ C
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for some constants A, B, and C. Of course, the theorem follows from this claim.
Proceeding by induction, suppose the inequality holds for all n -< p. Using the inductive
assumption we then have

T(p+l) <- max {T(k)+T(n-k)+log(k)}
l<k--p/2

(.) --<_ max {Ak B log (k) + A(p k) B log (p k) / log (k) / 2C}
l--k--p/2

max {Ap-log(kB-l(p-k))+2C}.
lkp/2

We now show that there are constants B and C such that the inequality

(**) max {-log(kB-l(p-k))+2C}<-_-Blog(p+l)+C
l--kp/2

holds for p sufficiently large. Clearly (**) is equivalent to minl=k_p/2 {kB-l(p k)
(p/ 1)B2c. Choosing B- 2, we find that for p-> 4 the minimum in the left-hand side
is achieved at k-1 and is therefore (p-1)2. Now with C--2 we get (**) to hold
for p >-_ 4. Thus (**) holds with B- 2 and C --2 for all p >_-4.

Now combining (.) and (**) and observing that Ap<A(p+ 1) we see that the
inductive step is completed. It remains only to choose A sufficiently large relative to
B--2 and C --2 (A_>-20 will do) so that the claimed bound for T(n) holds for n<_-3,
thereby providing the base for the induction. The theorem is thus proved.
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OPTIMAL BOUNDS FOR SOLVING TRIDIAGONAL SYSTEMS
WITH PRECONDITIONING*

PAOLO ZELLINI?

Abstract. Let (1) Tx f be a linear tridiagonal system of n equations in the unknowns xl, , x,,. It
is proved that 3n 2 (nonscalar) multiplications/divisions are necessary to solve (1) in a straight-line program
excluding divisions by elements of f. This bound is optimal if the cost of preconditioning of T is not counted.
Analogous results are obtained in case (i) T is bidiagonal and (ii) T and f are both centrosymmetric. The
existence of parallel algorithms to solve (1) with preconditioning and with minimal multiplicative redundancy
is also discussed.

Key words, multiplicative complexity, LU factorization, straight-line algorithms, parallel algorithms,
tridiagonal systems, rational preconditioning
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1. Introduction. It is well known that the inverse S of a tridiagonal matrix T has
a special structure which can be des.cribed in terms of a few vectors [2], [3], [7], [9],
[24]. More precisely, if T has dimension n x n and det TS0, then two n-vectors
U-" [Ul, Ign] T and v= [Vl, vn] r, and one (n 1)-vector w= [wl, w,_l]"
are sufficient to define S T-1 (for more details see 2). The amount of information
to define T-1 can also be reduced in case T has a special structure" in particular if T
is symmetric or centrosymmetric (see [7], [9], and 2).

Observe that a general tridiagonal n x n matrix T is a linear combination of 3 n- 2
rank-one (0, 1) matrices. Thus 3n- 2 is the multiplicative complexity of a matrix-vector
product Tf, even if all entries (indeterminates) in T and in f commute with each other
(this is a trivial consequence of the first results on the multiplicative complexity of a
set of bilinear forms stated in [8], [10], [15], [20], [6]). Now, by the special structure
of S T-1, we suspect that the same multiplicative complexity (3n-2 multiplicative
operations) is in a special sense relevant to the "inverse" problem of computing the
vector T-if Sf, or, equivalently, for solving a system of linear equations Tx f. More
specifically, it will be proved in the next sections that 3n- 2 is an optimal lower bound
to solve, with preconditioning, a general n n tridiagonal system Tx f. This bound
holds for all straight-line programs, relative to a ground field G and to the set of
indeterminates present in T and in f; the only restriction is excluding divisions by
polynomials in the f’s. This last restriction does not seem to be serious since in all
best known sequential and parallel algorithms for solving Tx f (LU decomposition,
Cramer’s rule, cyclic odd-even reduction, QR algorithms, methods using explicit
formulas for the entires of T-1) there is no division by such polynomials. Analogous
results can easily be stated for bidiagonal systems and for systems Tx f, where T is
centrosymmetric and f f,-i+l.

2. Preliminaries. Let T (tij) be a general, i.e., with indeterminate entries, n x n
tridiagonal matrix, det T 0,

(2.1)

ai, =j,

hi, j-i=l,
tij=

cj, i-j=l,

0 otherwise

* Received bythe editors December 2,1985" accepted for publication (in revised form) November 3, 1987.
? Dipartimento di Matematica e Informatica, UniversitA di Udine, 6-33100 Udine, Italy.
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and let S (sis) be a general matrix, det S 0, defined by

(2.2)

j-1

Viglj H Wq,
Sij q

uivs, >-- j.

i<j,

The relationship between (2.1) and (2.2) and an explicit formula for det S are stated
in the following proposition.

PROPOSITION 1 [9].
(i) T- has the form (2.2).
(ii) S-1 is tridiagonal.

rl--1(iii) det S VlU, [Iq=l (UqVq+- WqUq+Vq).
Observe that the 3n- 2 entries of T S-1 are given, in explicit form, by [9]"

a v2q/ Vl bi -wq,

Ci--1 --qi--1,

(2.3) ai --Piqi-qi,

bi -wiqi

where

Cn--1 --qn-1,

i=2,3,-..,n-l,

a. u._ q.-1/u.

qj 1/(ttjVj+ Uj+ lgjWj Pj Uj+ l)j Wj W Uj--1 Dj+I

Observe that if wo 1 in (2.2), then both S and S-1 are symmetric. Also, if wo 0,
then S- is bidiagonal and the inverse of a bidiagonal n x n has the form (2.2) with

Wk 0. The results in Proposition 1 are to be modified slightly in case T is centro-
symmetric, i.e., ai an-i+l and c b,_ in (2.1). More precisely, let M (mo) be a
general centrosymmetri matrix (det M 0) defined by

f Uil)n--j+ <-_j,
(2.4) mo

u,_i+vs, i>-j,

with l.lil.)n_i+l Un--i+l Vi"
Then we have the following proposition.
PROPOSITION 2.
(i) If T in (2.1) is centrosymmetric, then T-1 has the form (2.4).
(ii) M-I is tridiagonal and centrosymmetric.
(iii) det M UlVl I]q= Un--q+ Vq+ UqVn--q )"
Proof. We can see Proposition 2 as a consequence of Proposition 1; in fact (2.2)

and (2.4) can be made identical by reindexing the indeterminates u in (2.4) and by
--1 1giving proper values to Wq in (2.2), i.e., Wq U,_q+luq+lV,_qV The explicit formulas

for the entries of M- are given by

al ul)2Zn--1/ I.)1,

bi Zi, 1, 2, ", n 1,

ai tizi- Zi i=1,2,’.’, [n/2J,

a --()m-1 -- Vm+l)/tlml)m(Vm-1- Vm+l)

where m [n/2J + 1 and

z 1/(u._v u.i+,v,_+,)

(for n odd),

tj Un_j)j_ lj+ Vn_i+2
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Observe that the previous results can be extended to block tridiagonal matrices (though
we do not develop this extension here in detail).

3. Tridiagonal and bidiagonal systems. Let

x1

x2(3.1) Tx--f, x-

be a system of linear equations where T is an n x n general tridiagonal matrix of the
form (2.1). In solving (3.1) we consider all (direct) straight-line algorithms in
F[fl,f2," ,fn] (thus excluding divisions by the f’s) where F=
G(a,..., an, bl,"’, bn-1, c,..., cn-1), G is a subfield of F and a, b, c,f are
indeterminates. An operation to q)to2, where q) is a multiplication or a division, is said
to be active, if none of the following conditions is satisfied:

(i) wa G.
(ii) o G and is a multiplication.
(iii) to F and to F.

Thus the inactive operations are either scalar multiplications or involve only elements
of G(a, b, c) [6]. The cost of the operations in G(a, b, c) is the cost of rational
preconditioning of T.

Also in computing the vector

(3.2) Sf S defined by (2.2)

with a straight-line algorithm in F[f,f2, ,f,], F G(u,. , un, Vl," On,

w, , wn_), G
_

F, an active operation (multiplication or division) is defined exactly
as in the case of (3.1), except for replacing ai, bi, cj by ui, vi, Wq.

The following result then holds.
TIJEOREM 1. Every straight-line program solving (3.1) with preconditioning in

F[f,f2,. ,fn] uses at least 3n- 2 active operations. This bound is optimal.
Proof Solving (3.1) with the classical LU decomposition (where L and U are

bidiagonal and the diagonal entries of either L or U are equal to 1) costs, exactly,
3n-2 active operations in F[f] [13]. Now let A’ be an algorithm solving (3.1) with
active operations. Then we are able to define an algorithm A in F[f], F G(u, v, w),
computing Sf in (3.2) with active operations. In fact the two main steps of A are:

(i) Compute T=S- according to (2.3) using only inactive operations in
G(u, v, w).

(ii) Solve the system Tx f in F[f ,f2,. ,fn], with F G(u, v, w), by exploiting
the steps of A’.
Let G[[y,..., Yk]] denote the ring of power series in y,..., Yk with coefficients in
G and let J(yx,..., yt,), or J(y), be the ideal spanned by the third-order terms in

Yl,"’, Yk. Now every computation in F[f], F G(u, v, w) can be simulated by a
computation in G[[gl,...,gn,,...,n, ff,’",ffn-, fl,’",fn]], without
divisions, where

li ui ki,

(3.3) 5 vi- hi, 1 <= <= n,

lq Wq lq, 1 <= q <-- n 1,

with ki, hi, lq G. As usual [5], [6], [21], the change of indeterminates (3.3) is necessary
to guarantee that only divisions by units in G[[, , v, f]] occur. Here we suppose also
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that ki, hi, lq are all different from zero. Call S’ the matrix obtained from S by the
substitution (3.3), so each entry of S’ is a nonhomogeneous polynomial, including
linear terms, in the new indeterminates 6i, i, ffq. Now reduce the computation in
G[[fi, , , f]] modulo J(, , , f) to obtain an algorithm B computing only the quad-
ratic and linear part of S’f. As each term in each entry of S’f is linear in the f’s, the
vector computed by B has no quadratic entry only in the indeterminates ti, i, ffq.
Thus B computes a vector

(3.4) f+g

where the elements of S are linear homogeneous functions in ti, i, ]q and each entry
ofg is linear in thef’s. It is well known [21], [5], [6], that the reduction mod J(fi, , , f)
can be performed so that B uses only active multiplications in G(fi, , , f), whose
factors are linear homogeneous functions in ti, i, ffq, f. The explicit form of S (g)
is given by

(3.5) o h,k .=2 .. + o(ha + k,). <j.

ha, + k,, ej

where ,, L, 0 J l. Now, according to the rank-immunity criterion 16],
[14], [4], observe that the matrix S satisfies the following conditions" (i) replacing any
subset F’ of F {, , , ff, , ff,_} by a G-linear combination of the remaining
indeterminates of S cannot make any of the {,..., v, ff,. ., ff,_}F’ disappear
in ; (ii) the row-rank of the matrix (3.5) is n even if each indeterminate in the set F
is replaced by a G-linear combination of ff, ff,..., ,. In other words, S is "n-
immune" in ,. -, , ff,. ., ff,_. (This is shown even more directl by setting
v 1 in S, without loss of generality, which forces the first column of S to become
ff, ff,. , ft, ) As F has 2(n 1) elements, we obtain n + 2(n 1) 3 n 2.

A last remark is needed for the cardinality of G. We have tacitly assumed that
the number of elements in G is infinite. But there is no loss of generality in this
assumption: in fact, by introducing an extra indeterminate y and using F’= F(y) and
G’= G(y) instead of F and G, respectively, we obtain that the ground field G’ has
infinitely many elements (essentially the same argument is used, for instance, in [23]).
Thus the theorem holds for any field G.

Remark 1. Excluding divisions by polynomials in the ’s has the following
justification: allowing such divisions forces us to extend to the change of indetermin-
ares (3.3). This modifies the task (3.4) by the addition of quadratic terms only in the
ff, v, ffq’S so that the rank-immunity criterion [15] can no longer be applied.

Remark 2. In the previous proof it is correct to assume that the leading principal
minors of a general matrix T (or S-) are nonzero (so the above-mentioned decomposi-
tion LU holds for T. Otherwise the degrees of freedom in T (or in S) would be reduced
and Theorem 1 would not be true (for example, five active operations would suce
to solve (3.1) with n=3 and aa-bc=O).

An analogous result can be stated if T is bidiagonal (say, b=0 in (3.1)). In this
case a lower bound of 2n 1 operations is obtained which is optimal for all straight-line
algorithms solving Tx f in F[f], with F G(a, c).

THEOREM 2. Every straight-line algorithm solving an n x n bidiagonal system Tx f
in F[f], F G(a, c), requires 2n- 1 active operations. is bound is optimal.

Proo The proof is analogous to that of Theorem 1. The matrix S in (3.4), with
v 1 (without loss of generality) and w 0 in (2.2), has elements defined by
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j= 1,
S’ij hj -t- ki

0 elsewhere.
i>=j>l,

Clearly this matrix is n-immune in 2, /3, /n. The trivial algorithm by forward-
substitution employs exactly 2n- 1 (active) operations.

The LU decomposition is not the unique best preconditioning. In fact, for a given
tridiagonal T n xn, we can easily calculate three diagonal matrices D1
diag (al, a2, an) D2 diag (1, 2,’" ", n), and D diag (dl, d2," "’, d,) such
that

(3.6)

where R (ri,j) is defined by

D TD2 RDRT

=j,

(3.7) r0 -1, i-j= 1,
0 elsewhere.

It is.easy to see that a,/3, which are supposed to be different from zero, satisfy the
second-order linear recurrences (for bi, c O)

ai-10gi--1 + bi-2ai-2
Ci

(3.8) i=2, 3,. , n

ai_li_ "q;- Ci_2i_2

hi-1

where al and/31 are arbitrary (al,/31 0) and a=-alal/cl, =-all/bl.
We can see that a l,/31 are proportional to the leading principal minors of T, so

ai, fli 0 in case these minors are nonzero or T is diagonally dominant.
By (3.8) we can solve (3.1) with 3n-2 active operations by the sequence of

matrix-vector products indicated by the formula

(3.9) x= D2(R T)-ID-1R-1Dlf

where R-1 is the lower-triangular matrix whose nonzero entries are all equal to 1.
Observe that (3.8) and (3.9) produce a parallel algorithm P in an SIMD model

to solve (3.1) in O(log n) steps with O(n) processors. (Recall that $IMD is the
abbreviation for "Single Instruction Multiple Data," which means roughly that all
processors interpret the same instructions and execute them on different data.) The
number of active operations in this algorithm is still 3 n 2, so P has minimal multiplica-
tive redundancy if the cost of preconditioning is not counted. P should be compared
with other known parallel algorithms: the modified LU method of Stone [19] employs
O(n log n) active operations to solve two bidiagonal systems. The methods of odd-even
reduction [12], [17] and Swarztrauber’s algorithm [22] have low redundancy but
employ more than 3 n -2 active operations. The cyclic odd-even reduction also extends
to block tridiagonal matrices, but the blocks have to be commuting 11]. The formulas
(3.6)-(3.9) extend to block matrices on condition that the nondiagonal square blocks
of T and the leading block submatrices of both T and its (block) transpose are
nonsingular. In other words the previous algorithm is block-extensible if all the blocks
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of T are nonsingular (not necessarily commuting) and both T and its (block) transpose
are diagonally dominant 11 ]. Thus the algorithm P could be applied, in principle, to
a wide class of linear (tridiagonal, block-tridiagonal or band) systems arising in the
discretization of ordinary differential equations, elliptic partial differential problems,
or spline interpolation.

4. The case of centrosymmetric tridiagonal matrices. By Theorem 1, LU decomposi-
tion defines an optimal preconditioning to solve a general tridiagonal system Tx f.
But the LU method is insensitive to some special properties which may belong, in
many applications, to T or to f. In problems concerning the cubic splines or the
discretization of ordinary differential equations, T is more often symmetric or centro-
symmetric (or differs from a symmetric or centrosymmetric matrix by a low-rank
correction). Moreover, in these problems, we may have a centrosymmetry property for
f, i.e.,f/=fn-i+l Also, if T is centrosymmetric, a centrosymmetry of f could be assumed
for the approximation, through the power method, of the (possible) dominant eigen-
value of T-1 (that gives the minimal eigenvalue of T)" in fact, for any eigenvector
y [y, y2, y.]r of a centrosymmetric matrix the entries Yi of y satisfy the equality
Yi--Yn-i+l [1].

THEOREM 3. Any algorithm solving Tx f, where T is a tridiagonal, centrosymmetric
matrix of dimension n x n andf f,-i+l, requires 3 n/2 2 active operations in F[f],
F G(a, b). This bound is optimal.

Proof To prove that 3 In]- 2 active operations are necessary, follow the same
argument in the proof of Theorem 1. Observe that in (2.4) there are only In/2]+ n
free indeterminates because UiVn_i/ Un_i/lDi, Assume these indeterminates are u,
u2,’",urn/21, v,.",vn. Now put ui=u,_i+vivi/ in (2.4) and let A be an
algorithm solving the system Tx f with active operations in F[f]. Then we have
implicitly defined a bilinear program that computes a vector hT/f+g, where f=
[fl,f2,’",ft,/21], gl is an [n/2]-vector whose entries are linear functions of the f’s
and the elements ofthe n/2 x n/2 matrix hT/are linear functions ofnew indetermin-
ates , 2," ", tr,/21, t;,. , ,.

In particular, for ul 1 (without loss of genera.lity) and for proper choice of
nonzero G-coefficients k and h, the last column of M is an [n/2]-vector whose ith
entry is kif/2+hn/2i for 1 <i <- In/2] and r/2 for i= 1. For n=7, hT/ has the
explicit form

191 1 -- 022 -- k2/6+ h6/2 q- k21 -k- hs2 + k2G -at- h4/,2
03- 04/2 kate2 q- h2/2 k23 q- h3/2

2(hlt4 + k4/,) 2(k4/2 d- h2/,4) 2(k4/3 + h3/,4) k4/4 q- h4/4

where the coefficients ki, hi are assumed to be nonzero and the coefficients 0, e, :
d.epend on ki, hi. In general, for n odd (the case n even is left to the reader), ul 1,
M is [n/2]-immune in 1,2,’’’,t/2-1, /.21+,’’’,3,. Then [n/2]+n-1
(active) multiplications are necessary to compute Mf +g and t>-3[n/2]-2.

Now observe that neither LU decomposition nor trivial halving of the dimension
of the system and using Sherman-Morrison formula for inverting "modified" matrices
[18] define an algorithm with 3[n/2]-2 active operations. To reach this bound,
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consider all nonsingular centrosymmetric n x n matrices of the form

0 Rr diag (Xl, , x/, x/,. , x)
0 R

1 g diag(xl,...,xr,/,...,Xl) r 1 l (n odd)
0 ’y R T 0 B R

where tr [0, 0,--1], ir =[--1,0, ,0] J=0, /=0, and R=-(rj) is defined as
in (3.7) for i,j= 1,..., In/2]. Now compute diagonal, centrosymmetric matrices
Dl=diag(al,’’’,arn/2], , al), D2=diag(fll,flrn/_],’’ ",ill), and D=
diag(dl,...,dr/2],...,dl) such that D1TD2 has the form (4.1) (ai and fli are
computable through second-order linear recurrences, as in (3.8)). As al, 1 are
arbitrary, this preconditioning produces an algorithm of 3In2 active operations
to solve Tx f. Obviously, ai and fl must be different from zero, which is verified if
the leading principal submatrices of T are nonsingular (or if T is diagonally dominant).

The above preconditioning suggests a parallel algorithm that works in O(log n)
steps with O(n) processors and has (apart from the cost of preconditioning) minimal
multiplicative redundancy. This algorithm extends to block-tridiagonal matrices, where
the nondiagonal blocks of T and the leading block submatrices of both T and its
(block) transpose are nonsingular.

Acknowledgment. The author thanks the referee for his useful suggestions.
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AVERAGE-CASE LOWER BOUNDS FOR SEARCHING*
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Abstract. Lower bounds are given for certain average search times in a set with a random linear order
about which there is partial information. These bounds extend various recent worst-case and average-case
results, in particular those of Alt and Mehlhorn, Borodin et al., and Mairson concerning searching "semi-
sorted" tables and trade-offs between presorting time and search time. We make fuller use of the framework
of information theory than have previous investigations.

Key words, searching, sorting, average case, lower bound, trade-off, information, uncertainty
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1. Introduction. Searching. We consider problems related to "searching semi-
sorted tables" [2] and "data location for partially ordered structures" [5], [8].

Suppose that a set X of n(>-2) elements has an unknown linear order r about
which we may have partial information. We let r be given as a bijection from X to
N--{1,..., n}. Also there is an order-preserving injection s from X into the real
numbers R; that is, s(x)< s(x’) if r(x)< r(x’). We think of the number s(x) being
stored at the location x in our partly ordered data structure. For an (unrevealed) query
y R we must determine if y is one of the numbers stored, and if so at which location.
We adopt a "decision-tree" approach. The basic steps allowed are comparisons y: s(x)
for x 6 X and comparisons s(x): s(x’) for x, x’ X. Observe that if we have determined
that y is one of the numbers stored, then we must actually have found the location x
in X such that y- s(x).

We shall investigate average-case lower bounds on the number of comparisons
required. Note that given the linear order rthe actual mapping s is not important;
and we may as well assume that s r. Thus, we may simplify the statement of the
problem as follows: for an unrevealed linear order r on X and query y R we must
determine ify N by making comparisons y: r(x) or r(x): r(x’). Given some decision-
tree algorithm as above the search time S S(r, y) taken on the (unrevealed) input
(r, y) is defined to be the number of comparisons required.

If we know the linear order or, then binary search yields a worst-case time of about
log n, and this is best possible. (Throughout the paper log denotes logarithm to the
base 2.) At the other extreme, if any linear order r is possible, then clearly we need
worst-case time equal to n.
We shall consider both "unsuccessful" search, when the query y N, and the more

interesting case of "successful" search, when y N. Unsuccessful search is the easier
to analyse. When y N we shall actually give lower bounds for S’(r, y), which we
define to be the smallest possible number of questions as above to prove that y N.
Of course we always have S(r, y)_-> S’(r, y). Equivalently, for each pair (r, y) we
could define S’(r, y) to be the minimum over all allowed decision-trees of the search
time S(r, y). Results concerning S’ may also be phrased in terms of"nondeterministic"
search algorithms [2]. For successful search we shall consider also a hybrid quantity
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S*, where for y e N we define S*(y) to be the maximum value of S(rr, y) over all
possible linear orders rr.

We shall assume that a random linear order r on X and an independent random
query y e R are input according to certain distributions of interest, and give lower
bounds concerning the random search times S, S*, and S’. When analysing a successful
search we assume that the random query y is uniformly distributed over the set
N {1, 2, , n}. When analysing an unsuccessful search we assume that the random
query y is uniformly distributed over the set N’= N 1/2 {1/2, 23-, n 1/2}. Our investiga-
tion falls into two parts: "restricted search" and "general search."

In restricted search only comparisons involving the query y are allowed, as in [2],
[5]. Let us consider an arbitrary probability distribution p= (p=: rr e I-I) on a set 11 of
linear orders on X. Recall that the uncertainty H H(p) of the random linear order
rr is defined to be -Y=n P= log p=. Also, if each member of 11 is equally likely then
/-/= log II11. We give lower bounds concerning the random search times S, S*, and S’
in terms of the quantity H. The results for S* and S’ extend the work of Alt and
Mehlhorn [2] on searching semi-sorted tables. As noted in [2] the lower bounds are
sometimes, but not always, sharp. For tight bounds of a different nature see [5].

In general search we also allow comparisons rr(x): r(x’) for x, x’e X. We now
must restrict the probability distributions considered for the random linear order rr.

We shall assume that 11 is the set of linear extensions of a partial order, and that p= > 0
for each rr e 11. In order to investigate successful general search we also analyse the
problem of searching for the minimum element in a random linear extension of a
partial order.

The two combinations for which we here give good lower bounds on search times
are thus (a) restricted search with arbitrary distributions on linear orders, and (b)
general search with certain special distributions. Feldman (see [10]) has very recently
given an elegant construction for a large set of linear orders that can be searched
quickly when we allow comparisons r(x): rr(x’). This example shows that there are
no corresponding lower bounds for general search with arbitrary distributions of linear
orders, and throws our results here into sharp relief.

For both restricted and general search there are interesting "trade-off" lower
bounds concerning sorting or preprocessing times and searching times.

Sorting or preprocessing. Suppose that the set X with its unknown linear order rr
is to be partially sorted or preprocessed so that subsequent searches as above can be
performed quickly. In the preprocessing stage only (binary) questions concerning rr

may be asked. If only comparisons rr(x): rr(x’) for x, x’ X are allowed we call this
restricted sorting. We use the phrase general sorting when arbitrary binary questions
are allowed. Denote by P P(rr) the time taken, that is the number of questions asked,
on input rr. With each leaf of the decision tree corresponding to the preprocessing
stage we associate a search algorithm as above.

Trade-offs. Let us consider restricted sorting and general searching. There are
similar results below concerning general sorting and restricted searching.

If we do no preprocessing we require worst-case search time n. At the other
extreme it takes worst-case time about n log n to sort completely, and then search
requires worst-case time about log n. As an intermediate strategy we can make n/k
lists of length about k in worst-case time about n log k, and then search in worst-case
time about (n/k)log k. There is clearly a trade-off between worst-case preprocessing
or sorting times and searching times.

THEOREM 1.1 [4]. For any restricted sorting and general searching algorithms as
above, the maximum over all linear orders r ofX and all (successful) queries y N of
the quantity P(rr)+ n log S(r, y) is at least n log n+O(n).
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We shall give related trade-offs in the average case which extend this worst-case
result and extend also the results stated in Mairson [6], [7].

Plan of the paper. In the next section, we present our main results. Then in 3
we give a brief discussion on uncertainty and random linear orders. Section 4 contains
the main proofs, apart from that of the theorem on searching for the minimum which
is postponed to the last section, 5.

2. Statement of results.
2.1. Restricted search. In this section we allow the search algorithms only to make

comparisons involving the unknown query y, as in [2], [5], that is, to ask questions
"y: zr(x) ?" for x X. The random linear order r on X may have an arbitrary probability
distribution. Let II be the set of linear orders that occur with positive probability.
Denote the uncertainty associated with r by H H(cr). The main result on restricted
search is the following theorem.

THEOREM 2.1. For any restricted search algorithm
(i) E[n log S*] _-> log Inl,
(ii) E’[ n log S’]->_ H,
(iii) E[ n log S] >_- H n log log n.

Here we use E{E’} to denote expectation over the random linear order r and the
independent random query y uniformly distributed over N{N’}.

COROLLARY 2.2. If each linear order r in II is equally likely, then
(i) E[S*] _>-IIII 1/",
(ii) E’[ S’] ->_ IIII l/n,
(iii) E[S]>- [H[1/n/log n.
Parts (i) and (ii) of Corollary 2.2 contain the theorems of Alt and Mehlhorn [2].

Now let us consider "trade-off" results. Recall that P- P(cr) denotes time spent in
the sorting or preprocessing stage.

COROLLARY 2.3. For any general sorting and restricted searching algorithms
(i) LIP + n log S*] _-> H,
(ii) E’[P + n log S’] _>- H,
(iii) LIP + n log S] _-> H n log log n.

2.2. General search. Suppose now that as well as comparisons involving the query
y we may make comparisons zr(x): r(x’), where x, x’ X. We shall consider only
"well-behaved" distributions for the random linear order r on X. Let II denote the
set of linear orders that occur with positive probability. We shall always assume when
considering general search that II is the set of linear extensions of some partial order,
and sometimes we shall further assume that each linear order r in II is equally likely.
We consider first the quantities S* and S’ and postpone briefly the more difficult full
average-case analysis for successful search.

THEOREM 2.4. If II is the set of linear extensions of a partial order, then for any
general searching algorithm

(i) E[n log S*] => log IHI,
(ii) E’[ n log S’] _-> H.
COROLLARY 2.5. If 1-[ is the set of linear extensions of a partial order, then for any

restricted sorting algorithm and general searching algorithms
(i) E[P + n log S*] _-> H,
(ii) E’[P + n log S’] _-> H.
COROLLARY 2.6. If all n! linear orders on X are equally likely, then both

LIP + n log S*] and E’[P + n log S’] are at least n log n + O(n).
Both of the inequalities in Corollary 2.6 extend the worst-case result Theorem 1.1

of Borodin et al. [4]. This is of course immediate for the mixed worst-case average-case
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result concerning S*, and it will be shown easily for the result concerning unsuccessful
search.

All the results above follow naturally from the general discussion in 3 below on
uncertainty and random linear orders. However, we cannot prove such strong average-
case results for successful search, when we also average over the random linear order
or, and we must work harder. In order to prove Theorem 2.7 below we shall investigate
carefully the problem of searching for the minimum element in a random linear
extension of a partial order (see 2.3).

THEOREM 2.7. Let II be the set of linear extensions of a partial order, and suppose
that each linear order r in II is equally likely. Then for any general search algorithm

E[S] >- (1/2n)lHI/.
This theorem gives weaker bounds than Theorem 2.4, and we can deduce corre-

spondingly weaker trade-off results. We give two forms of trade-off result.
COROLLARY 2.8. Let II be the set oflinear extensions ofa partial order, and suppose

that each linear order r in II is equally likely. Then for any restricted sorting algorithm
and general searching algorithms,

(i) 2E[P]+n log E[S]>=21oglIIl-n log 2n,
(ii) E[4P/’S] >-_ 1III2//2n.
The most interesting case of Corollary 2.8 is when II is the set of all linear orders

on X.
COROLLARY 2.9. Suppose that all n! linear orders on X are equally likely. Then for

any restricted sorting algorithm and general searching algorithms,
(i) 2E[P] + n log E[S] => n log n n log 2e2,
(ii) E[4P/"s] >-_ n/2e2.
Part (i) of this result is perhaps the more attractive. It extends a result proposed

and partially proved by Mairson [6], [7] (who has 3E[P] instead of 2E[P]). Indeed
the present investigation was inspired by hearing Mairson present this result. However,
this part has the unsatisfactory feature that it does not seem to yield any worst-case
result, whereas part (ii) at least yields half the lower bound in Thm. 1.1. Corollary 2.9
represents only partial progress towards investigating the following conjecture.

Conjecture 2.10. With premises as in Corollary 2.9

E[P+n logS]>-(l+o(1))n logn.

2.3. Searching for the minimum. Let Q be a partial order on the set X of n _-> 2
elements and let II be the set L(Q) of linear extensions of Q. Suppose that these linear
orders r occur randomly with each equally likely, and we wish to find the minimum
element 7r-1(1) quickly. The basic steps allowed are questions "Is x the minimum?"
where x X and comparisons or(x): 7r(x’) where x, x’ X. We may stop only when
we receive a positive answer to a question of the former type. Given a decision-tree
search algorithm as described, let T(cr) be the time taken (number of questions) on
input r II. The following result is a main step in proving Theorem 2.7 above.

THEOREM 2.11. If the partial order Q has m minimal elements, then

E[T]>=l+m(m-1)/2n.
It is straightforward to check that this result is the best possible, in the sense that

for any 1-< m-<_ n there is a suitable partial order Q and search algorithm such that
the expected search time E[T] equals 1 + m(m-1)/2n. Indeed we may let Q consist
of a set z of n- m elements with any partial order, an element x less than each z Z,
and m- 1 "independent" elements x2,’", x.,; and then search for the minimum by
testing in the fixed order xl, x2,"’, x.
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To see that E[ T] is as stated, let Hi denote the set of linear extensions r in H
with xi the minimum, for each i-- 1,. ., m. Then by considering last where to put xi
we see that III,[ IIII/n for each i=2,..., m. Hence

E[T]=(1/IIII) E jinx[
j=

=l+m(m-1)/2n.

Theorem 2.11 above is related to the "accounting game" claim proposed by
Mairson [6], [7].

3. Uncertainty and random linear orders. We start with a brief general discussion
on uncertainty (see for example Ash [3]).

We consider only random variables taking finitely many values. Let the random
variable Y take values in the set {Xl, , xn}, with P{ Y x} Pi for 1, , n and
P=(Pl,’" ",Pn). The uncertainty (or entropy) H(Y) or H(p) is defined to be

-i=lPi logpi. (We take log t=0 if t=0.) Thus H(p)_->0, with equality if and only
if we have the trivial case that some Pi 1.

We note first a very useful inequality. Let ql,..., qn > 0 with i= q 1. Then

(3.1) p logp=<- p, log q
i=1 i=-I

with equality if and only if p q for each i.
To prove (3.1) note that for > 0, In <_-t-1 with equality if and only if 1.

Here In denotes natural logarithm. Thus

p In (qi/pi) <- (qi Pi) 0,
i=1 i----1

and (3.1) follows easily. (Lemma 4.1 of [5] is essentially the above inequality again.)
If we set q 1/n in (3.1) we find that

(3.2) H(p) _-< log n, with equality if and only if the p are all equal.

For a pair Y, Z) of random variables let us write H( Y, Z) for H(( Y, Z)). Thus
if P{( Y, Z)= (y, z)} =p(y, z), then the uncertainty is

H( Y, Z) -2 , P(Y, z) log p(y, z).
y

Denote the conditional probabilities for Z=z given Y=y by p(zly). Then the
conditional uncertainty of Z given that Y =y is

H(Z[ r=y) =-.p(zly) logp(zly).

The conditional uncertainty ofZ given Y, H(Z Y), is the appropriate weighted average
of the above quantities, which yields

H(Z[ Y)= - p(y, z) log p(z]y).
y

From this definition we easily find the basic property

(3.3) H( Y, Z)= H( Y)+ H(ZI r).

(3.4) It follows from (3.3) that the average number of binary questions required
to determine the value of a random variable Y is at least the uncertainty
H(Y).
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One way to prove this is by induction on the depth of the corresponding decision tree.
The result is clear if we need no questions, for then H(Y)= 0. Consider a nontrivial
decision tree such that the result holds for any shallower tree. Let the binary random
variable Z specify the answer to the first question. Then H(Z)-< 1 by (3.2) and so by
the induction hypothesis the expected number of steps to determine the value of Y is
at least

1 + H( YI Z) + H( Y, Z) H(Z) >-_ H(Y).

Given a random variable Y we define a distribution for a random
variable T T(Y) as follows. List the quantities P{ Y= x} in nonincreasing order,

’for eachi=l,.., n.as p _-> p ->. _-> p’, say. Then let P{ T i} Pi
Suppose that we wish to determine the value of Y by asking questions of

the form "Is Y= x?", until we receive the answer "yes." Given an appropriate list
of questions let T be the random number of questions required. Clearly for any
t--1,2,...,n

P(T<t) <= Pi.
i=1

Thus

(3.5) T >- T in distribution.

Now let g(n)= 1 + 1/2+...+ 1In. Then

H(Y) p’, log p’
i=1

<- p; log (ig(n))-’
i=1

E[log T] + log g(n)

_<-E[log T]+logg(n) by(3.5).

Hence we have

(3.6) E[log T] >- H(Y)-log g(n).

by the inequality (3.1)

(3.7) H(Y) E H( Ykl Y for each < k).
k=l

Denote by A the set of vectors y (Yl,""", Y) such that P{Y y} > 0. For each
yAand keNlet

h (y, k) H( Ykl Y Y for each < k).

Then averaging over Y we have that for each k N

E[h(Y, k)] H( Ykl Y for each < k)

and so by (3.7)

(3.8) E[h(Y, k)] H(Y).
k---1

and thus we obtain

Now let us consider the uncertainty of a random vector Y Y, , Y,). By (3.3),

H(Y) H(Y) + H( g2, Yn gl),
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Now for each y A and ke N let us also define m(y, k) to be the number of
different possible values for Yk given that Yt- Y for each < k. Then by (3.2)

h(y, k)_-<log m(y, k).
Hence by (3.8)

(3.9) E[log m(Y, k)]_-> H(Y).
k=l

Suppose that we have a random linear order r on a set X of n elements. Recall
that we think of r as a bijection from X to N {1,. , n}. Thus the inverse r-1 may
be thought of as a random vector (7r-1(1), 7r-l(n)). We shall use (3.9) with Y
replaced by 7r-1. Note that H(Tr-) H(cr). Note also that if 7ro is a possible linear
order and k e N, then m(rff 1, k) is the number of different possible kth elements in
linear orders 7r that agree with 7r0 in the first k- 1 elements. Let us state this particular
case of (3.9) as

(3.10) . E[log m(or-1, k)] >- H(Tr).
k=l

We now note one easy corollary of the result (3.10). Suppose that each linear
order 7r in a set II is equally likely, so that by (3.2) H(Tr)= log II-II. Now recall that
since log (x) is concave, for any random variable Z _-> 1 we have Jensen’s inequality that

(3.11)
Hence

Thus

log E[Z] >- E[log Z].

log (l/n) E[m(Tr-l,k)] _->(l/n) log E[m(Tr-l,k)]
k=l k=l

_-->(l/n) E[logm(Tr-l,k)]
k=l

_-->(l/n) loglIII by(3.10).

(3.12) (l/n) F_,[m(r-’,k)]>=lHI ’/’.
k=l

These last results (3.10) and its corollary (3.12) may be visualised in terms of the
"permutation trees" of Alt and Mehlhorn [2]. We have used elementary information
theory to replace the detailed inductive proof in [2] essentially of (3.12) (see also
Theorem 3.7.1 of Mairson [6], [7]).

4. Main lroofs. In this section, we use the general results on uncertainty given
in the last section to deduce the results of restricted and unrestricted search given in

2. For the proof of Theorem 2.7 on unrestricted search we shall also need Theorem
2.11 on searching for the minimum. This last result is proved in the next (and last)
section.

Proof of Theorem (2.1). Let us start with some notation. Given 7to II and ko N
let

Ho Ho(ro, ko) {Tr H" r-(l) 7rff’(l) for each < ko},

Ao Ao(Tro, ko) {x e X" 7to(X) _-> ko},

Mo Mo(Tro, ko) {xeX: 7r(x) ko for some 7r e IIo}.
Thus Moo__ Ao and IMol rn(Tr l, ko) in the notation of (3.10).



AVERAGE-CASE LOWER BOUNDS FOR SEARCHING 1051

Let us prove part (i) first. Let ko N and suppose that y ko. Reveal ko and that
y ko or ko-1/2. Consider any ro II, and restrict r to IIo. Of course

S*(ko)->- max {S(m ko): r Ho}.

Now suppose that we reveal IIo and that 7r IIo. Then we still have

(4.1) max {S(r, ko): r 17o} >- IMol.
For clearly we can restrict attention to questions of the form "Is r(x) y?" for x Mo;
and given any sequence of less than [Mo[ such questions an adversary could answer
"no" each time, and we would not know whether y ko or ko-1/2. Thus we have shown
that for any 7to II

(4.2) S*(ko) >= m(cr’, ko).

Hence

E[n log S*] log S*(ko)
ko

E[logm(r-1, ko)]
ko=

_-> H by (3.10).

But as far as S* is concerned the precise distribution of the random linear order
7r is not relevant, only the set II. Thus by (3.2) we may replace the last H by log

Now consider part (ii) of Theorem 2.1. Let ko N and ro II, and suppose that
y- ko-1/2 and r- ro. Reveal ko and that y- ko or ko-1/2; and reveal also rio and that
r IIo. Then still

(4.3) S’(ro, ko-1/2) .->- m(Trff, ko).

For as above we may restrict attention to questions of the form "Is 7r(x) =y?" for
x Mo. The answer to each such question of course will be "no," but we cannot know
that y N until we have asked such a question for each x Mo.

Hence by (4.3)

E’[n log S’] E[log S’(Tr, ko-1/2)]
ko

>= E[log m(Tr-’, go)]
ko

_-> H by (3.10).

Finally let us prove part (iii) of Theorem 2.1. Let ko N and 7to II, and suppose
that y ko and 7r 7to. Reveal ko and that y ko or ko-1/2; and reveal IIo and that
7rIIo. Again we may restrict attention to questions of the form "Is 7r(x)--y?" for
x Mo, but now we must continue until we receive the answer "yes." Since here
7r(x) y if and only if r-(ko) x we are identifying the value of the random variable
Y r-(ko) as considered in the discussion preceding the inequalities (3.5) and (3.6).
Here Y ranges over the set Mo, and IMol _-< n-ko+ 1. Hence by (3.6)

E[log S(Tr, ko)l r Iio] -> H(r-’(ko)l 7r IIo) -log g(n k + 1)

h(Tr, ko) log g(n k + 1)

in the notation of (3.8).
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Now keep ko fixed but consider different possible ro. Then

E[log S(r, ko)] Y, E[log S(r, ko)[ZrIIo(ro, ko)]P(zr zro)
roH

>= h(zrl, ko)P(cr=ro)-logg(n-ko+ l)
"n’oH

E[h(zr-1, ko)] log g(n ko+ 1).
Hence

E[n log S] 2 E[log S(zr, ko)]
ko=l

----> E[h(r-1,go)]- log g(n k+ l)
ko=l k=l

=H- logg(k) by (3.8).
k=l

We shall see below that

(4.4) log g(k)_-< n log log n for n >_- 3.
k=l

This will then establish part (iii) of the theorem for n _>-3. The case n 2 is easy to
check separately, since then

E[ n log S] _-> 1 _-> H.

It remains then only to prove (4.4). Now for each k-> 1

g(k) <- 1 + (l/x) dx= 1 +lnk.

Hence since In (x) is concave

(l/n) g(k) <- l+(1/n) In k_<- l+ln
1
o

k=l k=l 2

But the function

f(x) =log x-(1 +ln x+2 1.)
is increasing, and f(4)> 0. Hence

for x>0

Thus

(l/n) ’. g(k)<logn forn_->4,
k=l

and it is easy to check separately that this inequality holds also for n 3. Hence, since
log (x) is concave,

(1/n) k=l lgg(k)<--lg { (1/n) k=, g(k)}
<loglogn forn>_-3.

This completes the proof of (4.4), and thus of Theorem 2.1. V1

n+l
l+ln<logn forn>_-4.

2
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Corollary 2.2 follows easily from Theorem 2.1 using (3.2) and Jensen’s inequality
(3.11).

In each of the three parts of Corollary 2.3, the case when there is no preprocessing
is just the corresponding part of Theorem 2.1 (where we have replaced the log IH by
H again): and the result may now be proved exactly as was (3.4) by induction on the
depth of the preprocessing decision tree.

Proofof Theorem 2.4. Let us use notation from the proof of Theorem 2.1. Consider
the following condition on a set H of linear orders on X.

(4.5) Given zro II, ko N, Xo Mo, and a partial order Q on Ao with Xo minimal,
if some 7r Ho has restriction zrl Ao in the set L(Q) of linear extensions of
Q then some rHo has rlAo in L(Q) and has zr(xo)= ko.

Clearly the set of linear extensions of a partial order satisfies this condition. For
given 7r IIo with 7rlAo in L(Q), if the rank zr(xo) ko then Xo has rank> ko, and we
may simply move Xo down to rank ko and "shuffle up" other elements as required.
(This also holds for any set II consisting of those linear extensions of a partial order
which satisfy further conditions of the form zr(x)= k or 7r(x)_-> k.)

We shall see that Theorem 2.4 in fact holds for any set II of linear orders which
satisfies the condition (4.5), by showing that both the inequalities (4.2) and (4.3) from
the proof of Theorem 2.1 still hold.

In order to prove that (4.2) still holds we shall show that (with the information
revealed as before) the inequality (4.1) still holds. Now we may restrict attention to
questions of the form "Is 7r(x) y?" for x Mo and of the form "Tr(x): 7r(x’)?" for
x, x’ Ao.

Consider a sequence of q < [Mol such questions. An adversary could say "no" to
each question of the former kind, and respond to questions of the latter kind by picking
an arbitrary -k IIo and answering according to . Let B be the set of elements x Mo
mentioned in questions of the former kind, and let C be the set of elements x Mo
for which there is a question "r(x): r(x’) ?" which received the answer "r(x) > r(x’)."
Then [B[+]C[ q <lMo[ and there is some Xo Mo\(BU C). Now the answers to the
questions of the latter kind yield a partial order Q on Ao, and the linear order -k in
IIo is such that -klAo is in L(Q). Hence by the condition (4.5) there is some r 1-Io
with zr(Xo)- ko which yields all the answers given. Thus it is still possible that y- ko,
and thus also possible that y- ko-1/2.

This completes the proof that the inequality (4.1) still holds and thus also the
inequality (4.2).

Finally we must show that the inequality (4.3) still holds. But consider any sequence
of q < [Mo[ questions as above, and let B and C be as defined there. Chance now takes
the role of the adversary. Just as above there is some Xo Mo\(B C) and some zr IIo
with zr(xo)- ko which would yield all the answers given. Hence it is still possible that
y N, and the inequality (4.3) follows. [3

Corollary 2.5 follows from Theorem 2.4 just as Corollary 2.3 followed from
Theorem 2.1. Also, Corollary 2.6 follows immediately from Corollary 2.5 and (3.2).

To see that the result in Corollary 2.6 concerning unsuccessful search yields the
worst-case result Theorem 1.1 note that we may assume that for each leaf v of the
sorting decision tree the corresponding search algorithm S is minimal in the following
sense. Let II denote the set of linear orders zr that reach leaf v. If a node in the
decision tree for S cannot be reached by any pair (zr, y), where zr II and y N then
that node must be a leaf, labelled "y N." But now consider any pair (-, y), where
zrl I-Iv and yl N’. Some pair (7/-2, Y2), where r2 IIv and Y2 G N must reach the father
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of the leaf reached by (rl, Yl), and must then reach a different son of that father. Thus
Sv(zr, y) -< Sv(r2, Y2). Now it is clear that the maximum search time over zr II, y N’
is at most the maximum search time over zr H, y N (and it is not hard to see that
in fact equality holds).

In order to prove Theorem 2.7 we shall use Theorem 2.11, which is proved in the
next section.

Proof of Theorem 2.7. Let us again use the notation from the proof of Theorem
2.1. Let ko N and zro H, and suppose that y- ko and r- ro. Reveal ko and that
y ko or ko-1/2; and reveal also Ho and that r Ho. By Theorem 2.11

E[S(m ko)[ r IIo] > m(rK, ko)2/2n.
But by (3.12)

E[m _-> E[m] _-> Inl/".
Hence

E[S] >- E[ m2]/2n >-[II[/"/2n.
Proof of Corollary 2.8. Both of these inequalities may be proved from Theorem

2.7 along the lines of the proof of (3.4), by induction on the depth of the preprocessing
decision tree. We spell out proofs below (though no new ideas are involved).

If there is no preprocessing, each inequality reduces to Theorem 2.7. For each
inequality we then consider a nontrivial decision tree such that the result holds for
any shallower tree. Suppose that the first question asked is the comparison r(x): zr(x’),
where x, x’ X, x # x’. Let H1, I’I2 be the sets of linear orders 7r in II with 7r(x) < 7r(x’),
r(x) > r(x’), respectively. For i= 1, 2 let ti [HiI/IH[, and let Pi, S refer to II.

Now consider the inequality (i). We have

2E[P] + n log E[S]

2(1 + tlE(P)+ t2 E(P2))+ n log (tl ElSe] + t2 E[S2])
2

_->2+ E t,(2E(P)+ n log E[S])
i=1

by the concavity of the log function
2

->_ 2 + Y. t 2 log (t[II[) n log 2n
i=1

by the induction hypothesis

2 log [1-I[- n log 2n + 2(1 + tl log t + t2 log t2)

>-2 log IIII- n log 2n by (3.2).

This completes the proof of inequality (i).
Now consider the inequality (ii). We have

E[4P/ns] 41/n ( i= tE[4P’/"S])
-->41/" ( =1 t(tlHl)2/"/2n)

by the induction hypothesis

(lIIlZ/"/En){4/"(t+2/n + t+z/n)}
>__ llIl:/"/2n.
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To see the last inequality note that if /5 >-0 the function f(x)= x1+ is convex for
x>0. 71

Corollary 2.9 of course follows immediately from Corollaries 2.8 and 3.2.
Since the proofs of our results on successful general search rest on Theorem 2.11

and thus on Lemma 5.6 below it will be seen that these results actually hold for more
general models of computation (see for example Yao [9]).

5. Searching for the minimum. In this section, we prove Theorem 2.11 on searching
for the minimum element in a random linear extension of a partial order. We make a
careful investigation which may also be of help in resolving Conjecture 2.10. We shall
need to consider more general sets of linear orders, and we shall also "assist" the
search algorithms.

Given a set II of linear orders on X, a partial order Q on X and a subset Y of
the minimal elements in Q let us call H good (with respect to Q and Y) if for any
fixed in II

II {Tr L(Q): 7r-(1) Y, 7r(x) "k(x) for each x X\ Y}.

Recall that L(Q) denotes the set of linear extensions of Q. Here we shall always deal
with good sets of linear orders.

We shall assist the search algorithm by giving away certain information for free
(and thus assist our analysis). Consider a comparison "r(x): r(x’)?": if say the result
is "Tr(x)> 7r(x’)" (so that certainly x is not the minimum) then the rank 7r(x) of x is
revealed for free. Similarly, the question "Is x the minimum?" is answered by revealing
r(x). (See also the comment following the proof of the lemma below.) Note that if

II is good with respect to Q and Y then the only questions an assisted algorithm need
ever use are ofthe form "Is x the minimum?" for x Y, and "r(x): zr(x’) ?" for x, x’ Y.

LEMMA 5.1. Suppose that the set II of linear extensions is good with respect to Q
and Y, and that each linear order 7r 1I is equally likely. Then for any assisted search
aJgori.thm as above the random time T taken satisfies T >- T in distribution, where
T= T(Tr-l(1)) is as defined in 3.

This result says that it is optimal to order the elements of X by decreasing size
of Irt(x)l and repeatedly to ask questions "Is x the minimum?" in this fixed order,
ignoring any extra information gained and never making any comparisons (see (3.5)).
Here H(x) is the set of linear orders 7r H with 7r(x)= 1.

Proof Let Z X\ Y. For each y s Y let b(y) be the least k N such that there is
a z Z with y < z in Q and rank r(z)= k for some (or each) rII. If there is no
such z then set b(y)=c. The key observation is that, with the natural conventions
regarding c

if y, y’ Y and b(y) >- b(y’) then Irl(y)l -< ]II(y’)l.

For the map r--> r’= (y, y’)zr gives an injection from II(y) into II(y’). To see this,
note that if r II (y) then r’ L(Q) and so r’ II.

Let us order the elements of Y as Xl, , Xm, say, so that b(Xl) -<" _-< b(x,,).
We shall prove the lemma by induction on the depth d of the decision tree.

The case d 1 (one question) is trivial, so consider an instance with d > 1, and
such that the lemma holds for any shallower decision tree. Clearly we may assume
that m =]Y[> 1.
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Let 6 {1, , m}, and let R, R,(H) denote the set of linear orders 7r H which
reach leaves of the decision tree at depth at most t. Then P{ T =< t} IR, I/IHI, and we
must show that

(5.3)
k=l

This is clearly true if 1, so suppose t_-> 2. There are two cases to consider.
Case (a). The first question is "Is x the minimum?" for some x Y (or

equivalently, "What is r(x)?"). The root of the decision tree has one son which is a
leaf and is reached by the linear orders r in li(x) (if II(x) is not empty). It also has
a nonleaf son s for each possible value of r(x)# 1. For each such s let lis be the set
of linear orders 7r H that reach it. Then H is good with respect to Q and Y\{x}.
Hence we may use the induction hypothesis to bound

Note that by the key observation (5.2) the sets H(xl), H(x2), other than
HS(x) are nonincreasing in size (and perhaps are empty from some point on). There
are two subcases, depending on whether or not x is in the set Y,- {xl,’’ ", x,_l}.

(a l) Suppose that x Y,. Then for each nonleaf son s

Hence

and so

(a2)

[R, CI H’I-<Y {In(x)l k= 1,..., t, xk # x}.

[R,I III(x)l +Z {In(x)l k 1,..., t, xk x}

IrI(x)l.
k=l

Suppose that x e Y\ Y,. Then for each nonleaf son s,

t--1

IN, C nl-< E InS(x)l,
k=l

t-1

IR, <- IrI(x)l + E In(x)l

-<-
k=l

Case (b). The first question is a comparison 7r(x)" 7r(x’), where x, x’ Y. Let

n, { n: () < (x’)}, nr n\n,.

Let the partial orders Qt, Qr be obtained from Q by adding the inequalities x < x’, x > x’,
respectively.

The root of the decision tree has a collection of left sons corresponding to 1-It and
right sons corresponding to IIr. Each left son s corresponds to a possible value for
7r(x’). Consider such a left son s. Let 11 be the set of linear orders 7r lit that reach
it. Then li is good with respect to Qt and Y\{x’}. Also note that by the key observation
(5.2) the sets li(Xl), II(X2), ", other than li(x) and II(x’)( ) are nonincreasing
in size. Similar comments hold for each right son s, with corresponding set H of linear
orders. Thus we may use the induction hypothesis much as in Case (a).

Note that if x or x’ is in Y,, then by (5.2) for each left son s [li(x)[>= IH(x,)[,
and similarly for each right son s IrlT(x’)l >= IIIr(X,)l. There are now three subcases.
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(bl) Suppose that x, x’ Y,. For each left son s

IR, f-I II71 -<
k=l

since the sets H(x), , II(x,) contain (t 1) largest sets of the form II(x)
(together with the set H(x’) which is empty). Hence

k=l

Similarly

k=l

and so (5.3) holds.
(b2) Suppose that x Y, x’ Y\ Yr. For each left son s,

t--1

[R, (’111’[-<_ E InT(x)l
k=l

since H(xl),’’’, H(x,_l) are (t-l) largest sets of the form IIi(xi); and so
t--1

IN, o n,I _-< z In,(x)l.
k=l

Also, for each right son s

[R, nl <-- E
k=l

since In(x’)l ->_ IH:(x,)l and so the sets II;(Xl),..., H(X,_l), II’r(X’) contain (t-l)
largest sets of the form Hr(xi) (together with the set H(x) which is empty). Hence

t--1

IR, 0 HI--< E Inr(x)l + IIIr(X’)l.
k=l

Thus
t-1

k=l

k=l
as required for (5.3).

(b3) Suppose that x, x’ Y\Y,. This is the most interesting subcase. Let b
b(x,_l). Consider a left son s. By the key observation (5.2), if r(x’)>= b (for each
reIIT) then IIT(Xl),..., II(x,_) are (t-l) largest sets of the form II(x); and if
r(x’) < b, then II(x), ., II(x,_),/I(x) are (t- 1) largest sets of this form. Hence

t--1

E IH(Xk)I if r(x’)_>- b,
k=l[R,NIII -<-
t--2

I: Inj(x)l+lnT(x)l ifTr(x’)<b.
k=l

Thus
t-2

IR, flII,I--< E In,(x)l+l{en,(x,_). r(x’)-->b}l
k=l

+ I{r e II(x)" r(x’) < b}l.
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Similarly
t-2

k=l

+ I{rr e II,(x’)" rr(.x) < b}l.
Hence

t-2

IR, -< E max (r(x), 7r(x’)Ie bII
k=l

+l{re II(x): 7r(x’)<bIl+l{rreII(x’): r(x) < bII.
Now b b(x,_l) <- b(x). Let r e II(x), and let 7r’= (x, X,_l) 7r. Then r’ e L(Q) since

x,_l is minimal in Q, and if x < z in Q, then r’(z) r(z) >_- b(x) >= b > 7r(x,_) r’(x).
It follows that r’ e II. Thus the map 7r r’ yields an injection from {zr e II(x)" zr(x’)<
b} into {Tr eII(x,_): 7r(x), 7r(x’)< b}. Also by (5.2)

I{en(x’): (x)<
Hence

t-2

IR, -< 2 [II(x)l+l{reI/(X,_l)" max {r(x), 7r(x’)}_>- b}]
k=l

+ I{" e II(x,_)" max (rr(x),

k=l

This completes the proof of Lemma 5.1.
Suppose that in case (a) of the proof above the set II(x) is empty. Then arguing

as above, we see that
t-1

IR, Z
k=l

Hence the lemma will still hold if we do not charge for questions "Is x the minimum?"
when II(x) is empty. Thus the assistance given to the search algorithm may now take
the simple form: whenever it is not possible for an element x to be the minimum, then
its rank rr(x) is revealed for free (and this process may be repeated).

Let Q be a partial order on X, with set Y of minimal elements. For each y e Y
let the "above-set" A(y) be the set of z e X such that y < z in Q. We shall be interested
in the case that the sets A(y) for y e Y are "nested," that is, we can list Y as x, , Xm,
say, so that A(x) _. _

A(xm). This is certainly the case if the set Z X\ Y is linearly
ordered by Q.

LEMMA 5.4. Let II be the set of linear extensions of a partial order Q on X such
that the above-sets A(y) of the minimal elements y are nested. Suppose that each linear
order r in II is equally likely:. Thenfor any assisted se,arch.algorithm as above the random
search time T satisfies T >- T in distribution, where T= T(r-(1)).

Proof. Suppose that revealing the rank r(z) of the nonminimal elements z parti-
tions II into nonempty sets II of linear orders. Then each set II is good with respect
to Q and Y. Also by the key observation (5.2), III(Xl)]_-->.. "_->lII(xm)l. Hence by
Lemma 5.1, for any 1 _-< t_-< m

k=l
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and so

IR,(n)l E IR,(n)l E IrI(x)l.
k=l

Proof of Theorem 2.11. Note first that it is sufficient to prove the theorem for the
case when the set X\Y is linearly ordered by Q. For we could assist the search
algorithm by first revealing the linear order on this set; then for each subproblem the
expected search time would be at least 1 + m(m- 1)/2n. And so, the overall expected
(assisted) search time would be at least this value.

Let us assume then that the set X\ Y is linearly ordered by Q. The key observation
now is that for each x Y

(5.5) In()l_>-Inl\.

To see this,, define a function b from H into H(x) as follows. For each linear
order zr H let b(Tr) be the linear order in H obtained by moving x to be the minimum.
Then for each 7roII(x) we have ]{eH" b(Tr)=Tro}[_-<n. Hence IHI_-<nlII(x)l, as
required. (See also Theorem 3.3.4 of Mairson [,6], [7].)

Now by Lemma 5.4 E[ T] >_- E[ T]. But E[ T] jjpj, where the summation is over
j 1,. , m and Pl," ", Pr, are the values ]H(x)I/]H arranged in nonincreasing order.
Also the minimum value of the linear program min ,jjpj subject to Y_,j pj 1, p >- 1/n
(j= 1,..., rn) clearly occurs at P2 p,,= 1/n, Pl 1-(m-1)/n, and the value
equals

1- (rn- 1)/n+(1/n) 2 J= 1 + rn(m- 1)/2n.
j=2

Hence we have shown that

E[T]>= E[ ’] >_- 1 + m(m- 1)/2n

as required. [3

Remark. Lemma 5.4 does not hold for an arbitrary partial order Q.
Example 5.6. Let X ={xl,..., x6} and let the partial order Q consist of the

relations x < x3, x2 < x3, x4 < x6, x5 < x6, as shown in Fig. 1.

3 (6
X X X X

FIG.

A decision tree yielding the random search time T is shown in Fig. 2. Here the
notation xi. means Is xi the minimum?’, and y, n stand for yes and no. The
numbers at the leaves are the numbers of linear extensions of Q reaching them. Note
that

P{T<-3}=60/80.

A decision tree with initial query the comparison r(x)" 7r(x4) is shown in
Fig. 3. Note that here

P{T<=3}=62/80.
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x?YYx2?

2 / )x,?
20

FIG. 2

FIG. 3

x2?

Perhaps for any partial order Q we still have E[log T]_-> E[log ’]. If this is so,
then we could deduce as for Theorem 2.1 (iii) that

E[ n log S] _-> log Inl- n log log n,

and Conjecture 2.10 would follow.

Acknowledgments. My thanks to Allan Borodin and to a referee for bringing to
my attention the recent reference [10].
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FIG. 22. A heterogeneous red-black finger search tree. The colors of nodes are not shown. The items
are the letters a through f The numbers in external nodes are secondary values. The numbers in internal
nodes are the minimum and maximum secondary values reachable from the nodes. The numbers outside
the nodes are the number ofexternal nodes reachablefrom them.

FIe;. 23. The pointers in a homogeneous red-blackfinger search tree.
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EFFICIENT SOLUTION OF CONNECTIVITY PROBLEMS ON
HIERARCHICALLY DEFINED GRAPHS*

THOMAS LENGAUER’ AND EGON WANKEf

Abstract. Using hierarchical definitions we can describe very large graphs in small spaces. In this paper
we discuss how such succinct graph descriptions can be used to speed up the solution of graph problems.
We present the bottom-up method that solves graph problems without expanding the hierarchical description.
This allows solutions that are efficient in terms of the hierarchical graph description instead of the size of
the expanded graph. We exemplify the method by giving efficient solutions to connectivity problems on
hierarchical graphs. Our results have applications in computer-aided design for integrated circuit design
and other engineering problems.

Key words, connectivity, biconnectivity, hierarchical graphs, succinct graph descriptions, query

AMS(MOS) subject of classification. 05C40

1. Introduction. Graph algorithms have many applications in engineering, e.g., in
the areas of mechanical and electrical engineering. As the technology in these areas
advances, the sizes of graphs to be processed increases dramatically. Perhaps the best
example for this development is the area of very large-scale integration (VLSI) design.
Today’s integrated circuits have up to several hundred thousand transistors. Processing
such designs requires the internal representation of graphs with up to over a million
vertices.

On the other hand large engineering designs always have some regular structure.
This is because they are developed with relatively small resources, e.g., a few people
in a relatively short time. Therefore most computer-aided design (CAD) systems for
engineering design allow for some mechanism of succinct design description. This
enables the designer to describe a large design in a small space. The complete explicit
design description is generated by the computer in a data-expansion step.

Traditionally this data expansion was the first action taken by the CAD system
for design processing. It involves the generation of large amounts of data that with
today’s applications generally do not fit into the address space of the computer. Thus
processing the expanded data is both complicated (since it involves secondary storage
management) and inefficient (because of large amounts of input/output on secondary
storage). Even if the expanded design fits into the address space of the computer and
secondary storage management can be avoided, page swapping is usually extensive.
The resulting performance problems often are the critical obstacle to the acceptance
of CAD tools.

In this paper we will present a method that circumvents these problems, when
design processing is done on the basis of graph algorithms. The regularity of an
engineering design is reflected by the regularity of the graph representing it. Thus such
a graph can also be described succinctly. We will present a method that allows us to
process succinctly described graphs before they are expanded. Thus the data-expansion
step may only be needed to generate the final output ofthe processing. As a consequence,
working storage requirements for design processing are dramatically reduced, and
secondary storage management as well as expensive page-swapping overhead can be
avoided. However, this is only possible if we choose an appropriate model for succinct
graph description.

* Received by the editors August 27, 1985; accepted for publication (in revised form) November 9, 1987.

" Universitit-Gesamthochschule Paderborn, Fachbereich 17--Mathematik/Informatik, Paderborn,
Federal Republic of Germany.
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The remainder ofthe paper is organized as follows: Section 2 gives a short summary
of models for succinct graph description presented in the literature, and introduces
the graph model we use in this paper. Section 3 introduces the bottom-up method for
hierarchical graph processing and applies it to the connectivity problem of undirected
graphs. Sections 4 and 5 present the hierarchical solution of the biconnectivity, respec-
tively, strong connectivity problem. Section 6 gives conclusions.

2. The graph model. Several approaches towards succinct graph description have
been pursued in the literature. In [GW83] graphs are succinctly described by Boolean
circuits computing their adjacency matrix. Thus a graph G- (V, E) with n vertices
(V={0,..., N-l}) is defined by a Boolean circuit computing a predicate ch(i,j)c
{0, 1}, 0<_- i,j _-< N- 1, where dp(i,j) 1 if and only if {i,j}c E. For example, the square
grid of N x N nodes is defined by the predicate

cfl(i,j)Cz(Ixi-xj[ 1 and yl= yj) or (lyi- yl 1 and x, x), i,j {O, N2-1}
where xi mod N, y div N. (For simplicity assume that n is a power of 2.) Note
that the Boolean circuit size of ch(i,j) is O(log N) in this case. Unfortunately, [GW83]
shows that this data compression cannot be significantly exploited when processing
the graph" Even the simplest graph problems, e.g., connectivity, minimum or maximum
degree, etc. become NP-hard when the graph is defined in this form.

Reference [BOW83] introduces an explicit hierarchical specification for sets of
iso-oriented rectangles in the Euclidean plane. Their notion of hierarchy is taken from
mask data formats for VLSI layouts (see [MC80]). Reference [BOW83] shows that
many simple problems on rectangle sets (e.g., intersection questions) become NP-
complete if the set is defined hierarchically. Reference [Wa84] translates the results
of [BOW83] into graph theory. Bentley et al. hierarchically describe graphs whose
vertices are points in d-dimensional Euclidean space. Here a graph is built up out of
primitive components (edges, denoted by sets of pairs of vertices) and copies of
previously defined subgraphs (cells).

A cell can be copied by translating it along a specified vector. The copy of the
cell is specified by an identifying number of the cell and the point in space defining
the vector of translation. Thus the N x N square grid that is placed into the plane
such that all edges have unit length and the lower left corner is placed at the origin
can be defined by the following sequence of subcells. The cell Gk defines a (2k + 1) x
(2k + 1) grid.

Go: primitive edges"

Gk (k> 0):
no subcells
no primitive edges
subcells

{(0, 0)(0, 1)}, {(0, 0)(1, 0)},
{(1, 0)(1, 1)}, {(0, 1)(1, 1)}

(G_,, (0, 0)), (6_,, (0, 2-’)),
Gk_l, (2-’, 0)),
(G_, (2-’, 2-1))

(The fact that each interior edge of the grid is represented twice here is technical and
insignificant for our discussion.) In this way we can describe an N x N grid with a
specification of length O((log N)2) (logarithmic cost measure).

Reference [Wa84] shows that in this model even the simplest graph problems
become NP-hard. The intuitive reason is that two subcells can be placed such that
they overlap each other. This placement can be described in space O(1), but it can
make a large number of "implicit" connections in the region of overlap. Thus in order
to make the graph model amenable to hierarchical processing we have to explicitly
define a "boundary" of a subcell, i.e., a set of vertices at which the environment can
connect to the cell. We call such vertices pins.
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Reference [S182] shows that if connections to subcells are restricted to pins, and
if there are only a few pins in a subcell, then certain problems become easy. Thus our
graph model will be a certain restricted type of context-free graph grammar.

DEFINITION 1. A hierarchical (un-) directed graph F (G1,..., Gk) is a finite
sequence of (un-) directed simple graphs Gi called cells. Here the graph Gi has n
vertices and m edges, p of the vertices are distinguished and called pins. The other
n-pi vertices are called inner vertices, ri of the inner vertices are distinguished and
called nonterminals. The other n-r vertices are called terminals or proper vertices.

Each pin has a unique label, its name. Without loss of generality we can assume
that the pins are named with numbers between 1 and pi. Each nonterminal has two
labels, a name and a type. The type is a symbol from { G1," , G_I}. If a nonterminal
v has type Gj then v has degree pj and each proper vertex that is a neighbor of v has
a label (v l) such that 1 -< _-< pj. We say that the neighbor of v labeled (v, l) matches
the /th pin of G. (All neighbors of a nonterminal must be terminals.)

We assume that F is not redundant in the sense that each G is the type of some
nonterminal v in some G,j > i. The size of F is n := "lik n, the edge number is
m := Yl=i=k rn. Note that with F (G1,. , Gk) also each prefix F (G1, G)i < k
is a hierarchical graph.

Definition 1 essentially describes a context-free graph grammar with axiom G,
where each nonterminal only has one production. Thus the language of the graph
grammar has one word. This word is called the expansion of F.

DEFINITION 2. The expansion E(F) of the hierarchical graph F is obtained as
follows:

k 1: E(F)= G1. The pins of E(F) are the pins of
k> 1: Repeat the following step for each nonterminal u of Gk, say, of type G:

Delete v and its incident edges. Insert a copy of E (F) by identifying the
/th pin of E (Fj) with the node in Gk that is labeled (v, l).

The size of E(F), i.e., its number of vertices, is denoted by N. The number of
edges of E(F) is denoted by M.

The expansion of F naturally has a tree structure, namely the parse tree for the
word E(F) in the graph grammar F.

DEFINITION 3. With F and E(F) we associate the so-called hierarchy tree T that
is defined as follows. Each node in T has two labels, a name and a type. (The root of
T has no name.) A node x of type Gi in T has ri sons. Each son of x has the name
and type of one of the nonterminals in G. T is defined inductively:

k 1: T has one node with type
k > 1: T has a root of type Gk. The son of the root that has the name and type

of the nonterminal v of type G in Gk is the root of a copy of the hierarchy
tree for F (G1 ," ", G).

T is the parse tree ofthe unique word generated by the context-free graph grammar.
Clearly each node of type G in the hierarchy tree T corresponds to a copy of E(F)
in E(F). (In the context of T we will use exclusively the term node. In the context of
F or E(F) we will use exclusively the term vertex.)

The terminology in the above three definitions is taken partly from the area of
graph grammars (nonterminals) and partly from the area of CAD for VLSI design
(cells, pins).

Let us define the N x N grid hierarchically using the above definition. This time
we choose N 2k, again for technical reasons. F (G1, , Gk), where F defines the
2x 2 grid. We define G pictorially. Hereby we denote pins by squares, nonterminals
by circles labeled with the type of subcells they represent, and terminals that are not
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FIG.

pins by dots. F is defined as in Fig. 1. The labels on the neighbors of nonterminals
are omitted for the sake of readability of Fig. 1. The correspondence is clear from the
position of the vertices in the figure.

Note that F has length O(N), as opposed to O((log N)2) in the model of [Wa84].
This is because the boundary of a grid grows as the square root of the size of the grid.
There are hierarchical graphs such that n O(polylog (N)), but in general this model
is weaker than the model of [Wa84] in that hierarchical descriptions can be longer.
However, the model presented here allows us to solve a large number of interesting
and important graph problems before data expansion. Furthermore the model is quite
natural and corresponds to the actual representation of data in a number of CAD
systems.

The following example will accompany us through the remainder of the paper.
Example 1. Let F (G, G2, G3, G4) be the hierarchical graph shown in Fig. 2.
The expansion E(F) is shown in Fig. 3; the hierarchy tree is shown in Fig. 4.
In Fig. 4, we again omitted labels on the vertices. The correspondence between

pins of Gj and neighbors of a nonterminal of type Gj in cell Gi is clear by the positions
of the vertices in the figure. Each edge in E (F) belongs to a unique node x in T. For
example, the edge el in Fig. 3 belongs to the unique node in T that is of type G3.

Similarly a vertex in E (F) belongs to a unique node x in T, where that vertex appears
as a terminal that is not a pin. For example, the vertex vl belongs to the same node x
in T as the edge el. (This is even though the vertex v is also represented by pins in
three descendants of x in T.) Thus an edge (vertex) in E(F) can be identified by
providing the path from the root of T to the node x in T to which the edge (vertex)
belongs, and then identifying the edge (vertex) inside x. In general, a pathname is a
sequence of nonterminals v,..., v_ followed by a terminal node v or an edge e.
Here, v is a nontermina| in Gk and if vk is a nonterminal of type G, then v/ is a
nonterminal in G. For technical reasons we assume pathnames start with a dummy
nonterminal of type G. Note that E(F) can have multiple edges, in general, even
though Gi has no multiple edges, for all i. However, the results in this paper also
generalize to the case that G may be a multigraph.

Reference [Ga82] presents a hierarchical graph model that is based on the abutment of subcells at
lists of pins. This model allows some degree of hierarchical processing but in general some expansion is
necessary, because pin lists can also be composed hierarchically.
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GI: G2:

G3:

FIG. 2

FIG. 3

3. The bottom-up method. For certain graph problems the solution on a subgraph
can in some sense be done independently of the environment in which the subgraph
is placed. Such problems can be solved hierarchically in a bottom-up fashion.

The bottom-up method is based on the concept of replaceability. Let P be a binary
question that can be asked about graphs, e.g., the question "Is E(T) connected?"

DEFINITION 4. Let G, G’ be two cells with pins P1,"" ", Pn and no nonterminal
vertices. Let H be a cell with no pins and exactly one nonterminal vertex v. Vertex v
has degree n. Let the neighbors of v be marked as defined in Definition 1. G, G’ are
replaceable with respect to P if for each such H the answer to P is the same no matter
whether we substitute G or G’ for v in H.

The aim of the bottom-up method is to find small graphs G that are replaceable
with E(Fi) and to find such graphs fast. In order to do so, the bottom-up method fills
a table of graphs, the so-called BU-table (see Fig. 5 for the BU-table for the connectivity
of Example 1.) Row of the BU-table corresponds to cell Gi. The BU-table has three
columns. (We will discuss a fourth column that may be added to the BU-table later.)
The first column contains the cells G1,. ., Gk. All other columns are empty initially.

The bottom-up method fills the second and third columns of the table row-wise
from top to bottom with g.raphs 0, respectively, G that are replaceable with E(Fi)
but smaller than E(F). Gi (in column 2) is obtained by substituting G instead of
E(Fj) for all nonterminals of type Gj in Gi. Since the G and E(F) are replaceable
by as.sumption, G and E(.F) are also replaceable (with respect to question P). We
call G the fooled graph. G is then further reduced in size by a shrinking procedure,
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FIG. 4

called burning, that depends on the question P. The result Gb is put in column 3 and
called the burnt graph.

The correctness ofthe bottom-up method is ensured ifthe burning process produces
replaceable graphs (with respect to question P). This is so because if we attach
replaceable graphs to the same environment we get replaceable graphs again. The
efficiency of the bottom-up method depends on two things. First, the burning process
must be efficient. Second, the burning process must yield small graphs, such that the
graphs in the BU-table do not become too large. In particular, if every Gb has at most
O(pi) vertices and edges, then every Gi has at most O(mi+ ni) vertices and edges. In
this case, we can fill the BU-table with a linear time burner in linear time in the size
of the hierarchical description.

After the BU-table has been filled the answer to the question can then usually be
obtained by a quick inspection of its contents.

In order to apply the bottom-up method to the question P: "Is E(F) connected ?",
we only have to find an appropriate burning procedure. For connectivity this is
especially simple" To burn t down to Gb we find the connected components of (i.
We reserve a vertex c for each connected component that contains a pin. If there are
connected comp.onents without pins we also reserve an additional vertex representing
all of them. (If Gi does not have pins and is not connected we need two such vertices.)
These vertices and the pins of t are the vertices of Gb. The edges in Gb connect
each pin with the vertex representing the connected component containing this pin.
The proof of the following lemma is straightforward.
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LEMMA 1. (i is replaceable with Gb with respect to connectivity.
An inductive application of Lemma 1 yields Theorem 1.
THEOREM 1. E(F) is connected if and only ifk is connected.
Since the size of Gb is O(pi) and Gb can be constructed in linear time in the size

of Gi, connectivity of E(F) can be decided in time O(m+ n). Figure 5 gives the
bottom-up table for the connectivity of Example 1.

The burning process above answer the decision problem: "Is E(F) connected ?"
By augmenting the BU-table appropriately we can also solve other problems pertaining
to connectivity. The augmentation adds a fourth column that contains a hierarchical
graph F’ such that E (F’)= E (F), but F’ explicitly describes the connected components
of E (F). Figure 5 shows F’ for Example 1. Figure 6 gives the hierarchy tree T’ or F’.
In order to find F’ we scan through column 2 of the BU-table. When processing row
we make a new component cell out of each connected component of (. Nonterminals

whose types are these component cells replace the vertices of Gb representing the
connected com.ponents later on in the hierarchy. The component cell Gil for the /th
component of Gi consists ofthe graph ofthis component, where all vertices representing
connected components in some copy of G inside ( are replaced with nonterminals
of the appropria.te component cell types. A vertex that represents several isolated
components of Gs without pins inside a copy of G is replaced with a nonterminal,
whose type is a cell that consists just of isolated nonterminals representing each of
the components. Such a cell is called disconnected. All other cells are called connected.
The names of disconnected cells are underscored in Figs. 5 and 6. Finally, if G has
several components we create a disconnected root cell joining all of them. Components
containing only a nonterminal and its pins with no additional vertex or edges cause
no creation of component cells. Rather, the component cell type of the nonterminal
is reused higher up in the hierarchy. (In Fig. 5 Gll is reused for a component of G
inside G41 in this way.)

THEOREM 2. (a) E (F’) E (F)
n(b) m’, O(m + n). The depth of the hierarchy tree T’ of F’ is at most k + 1.

(c) A cell in F’ is connected exactly if its expansion is connected.

FIG. 6
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(d) The hierarchy tree T’ of F’ has a top part consisting exclusively of nodes whose
type is a disconnected cell. The bottom part of T’ consists exclusively of nodes whose type
is a connected cell. The connected components of F are represented by the maximal subtrees
of T’ that are rooted at nodes whose type is a connected ceil

Proof The proof of part (a) is obvious.
(b) m’, n’= O(m+ n) since i has size O(mi+ n). To see that T’ has depth at

most k+l, note that as we scan a path from a node x to the root in T’ we move
downward in column 4 of the BU-table. Here we scan at most one cell per row of the
BU-table, except when we encounter the first disconnected cell. There we scan two
cells out of the same row. (In the example this row is row 4.)

(c) The proof is by induction on the number of the row containing the cell in
column 4 that contains the cell.

(d) The proof follows from (c). [3

Because of Theorem 2(d) the pathnames in T’ start with a segment of nonterminals
whose type is disconnected, then continue with a segment of nonterminals whose type
is connected, and finish with a terminal vertex or edge. Pathnames in F’, respectively,
F can be translated into each other by scanning the pathname backwards and substitut-
ing between corresponding cells in column 1, respectively 4, of the BU-table.

We can solve a large variety of problems pertaining to connectivity on F’. For
example, consider the problem of producing the adjacency structure for the connected
component of E(F) containing vertex v given by its pathname in F. The solution to
this problem may be a large data structure; thus the running time will be large. We
call such problems construction problems. But we can produce the output using only
as much working storage as needed by the BU-table. We just translate the pathname
of v in F into its pathname in F’ and expand the leftmost cell Gj in the pathname that
is connected. If a hierarchical description of the connected component suffices we only
select the cells of F’ that occur inside the hierarchy tree rooted at Gj. These cells can
be identified in time O(n) by scanning through the BU-table from bottom to top.

In many applications we need more information than that given by the decision
problem but less information than is provided by the construction problem. Especially
in interactive CAD tools we want to selectively query critical parts of the design. This
corresponds, for instance, to the following query problem: Q1 (v, w): Given two vertices
v, w in E (F), are .they connected ? Such a query can also be answered easily on F’. We
just translate the pathnames of v, w in F into pathnames in F’ and ask whether in both
pathnames the beginning segment up to the first nonterminal whose type is connected
is identical. This takes time O(m + n) for preprocessing and time O(k) for answering
each query, by Theorem 2(a).

4. Biconnectivity. In this section we will show how to decide biconnectivity of a
hierarchical graph in time O(m + n). We will also solve construction and query problems
pertaining to biconnectivity. We will not make the assumption that/ (F) is connected,
and answer the question P" "Is/(F) connected and biconnected ?"

The biconnectivity burner starts on F with some graph G, and manipulates the
following kind of tree structures (see [Ha69] for the basic definitions of biconnectivity).

DEFINITION 5. The biconnectivity forest for a graph G is a bipartite forest Tb,
with two kinds of labeled nodes, a-nodes and b-nodes. Each a-node a is labeled with
an articulation point vb of G. Each b-node b is labeled with a block C of G. There
is an edge between a and b if va 6 C. The biconnectivity forest T is said to represent G.

In order to keep the biconnectivity burner simple we will sometimes mark a graph
G after burning. Marking G will mean that G/ is not biconnected and can never



1072 T. LENGAUER AND E. WANKE

be biconnected in any environment. When a marked graph G is substituted into some
Gi to yield (i, (i is marked too. When t is marked, Gb is marked automatically.
Replaceability will be shown with respect to the question P’: "Is G connected and
biconnected, or is G marked ?" The biconnectivity burner is defined as follows.

(1) Construct biconnectivity forest. Construct the biconnectivity forest Tb for the
resulting graph G.

(2) Delete leafblocks not containingpins. Delete a leaf b in a tree of Tb respresenting
a connected component of G such that b is a b-node, and the only pin of Cb,
if any, is the unique relevant articulation point in Cb (if any). If now an
a-node becomes a leaf, delete the a-node as well. Repeat this step until no
more deletions are possible. (Do not delete the last b-node of Tb.)

(3) Collapse longpaths. Let a, ba, ., a,_, bn-1, ak(k> 3) be a path of maximal
length in Tb with the following properties:
(a) The a are a-nodes, the b are b-nodes;
(b) All nodes on the path have degree two;
(c) No labels of nodes on the path are pins or contain pins.
Replace the path b, a,..., bk- with a new b-node b’ in Tb. Connect b’ to
a and ak. Label b’ with the graph consisting just of v,, and v: and the edge
between them. (We call this edge a collapsed edge.) Repeat this step until no
more changes are possible.

(4) Reduce blocks. Consider all b-nodes b in T that are still labeled with blocks
of Gi. Replace Cb with the following graph C,, which is chosen via a case
distinction with respect to the size of the set Sb of pins and relevant articulation
points inside Cb after Step (2).
Case 1. ISbl >- 3. C’b is a simple cycle containing all vertices in Sbo
Case 2. ISbl 2. C’b is the graph containing the two vertices in Sb and an edge

between them.
Case 3. [Sbl 1. In this case Sb contains one pin. (All other parts were deleted

in Step (2).)
Case 3.1. If Cb contains at least one edge then C g is the graph consisting of

the vertex in Sb, an additional new vertex, and an edge between
them.

Case 3.2. Otherwise Cb C’b, i.e., Cb consists of only the pin in Sb.
Case 4. ISbl--0. Ctb consists of a single vertex with no edges.
All edges created in this step are called cycle edges.

(5) Mark Gb. If any deletions have been made in Step (2) or if t was marked,
mark Gb.

The tree Tb resulting after completion of the reduction represents Gb. Figure 7 shows
an example of an application of the biconnectivity burner. Note that all reduction
steps yield valid biconnectivity forests for graphs of decreasing size.

Figure 8 shows the BU-table for biconnectivity for Example 1.
Let us first bound the size of Gb.
LEMMA 2. Gbi has size O(pi).
Proof In Step (2) the graph ti is reduced such that each leaf of Tb is a bold

node. After Step (3) we meet a bold node at least every fourth node along a path of
degree-2 nodes in Tb. Since each pin labels only one bold node, the size of rb is O(pi)
after Step (3). Thus Gb has size O(p), as well. [3

Since the biconnectivity forest of t can be generated in linear time, generating
the BU-table takes time O(m + n). In order to show the correctness of the biconnectivity
burner we prove the following theorem.
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FIG. 7(a). A graph i with eight pins.

FIG. 7(b). The biconnectivity forest T for G constructed in Step (1). In Figs. 7(b), (c), (d): ,ma-node

that does not represent a pin; ,ma-node that represents a pin; (C)--b-node representing a block that has no pins
that are not articulation points in Tb’, Omb-node representing a block that has pins that are not articulation
points in Tb.

FIG. 7(C). The forest T after Step (2).

Pa,P 

FIG. 7(d). The forest T after Step (3).
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collapsed edge
p.P2, 4 r’! P7

FIG. 7(e). The graph Gbi.

1

2

Gi

column 1 column 2 column, 3

FIG. 8. Marks in the lower right corner of an entry show that a graph is marked.

THEOREM 3. (a) i and Gb are replaceable with respect to P’.
(b) E(F) is connected and biconnected if and only ifG is not marked.
Proof (a) We show that each step of the reduction transforms a graph G into a

new graph G’ that is replaceable with G with respect to P’. Step (1) does not change
G. Step (2) deletes parts of G without pins that are attached at some articulation point
and thus can never be biconnected in any environment. The rest of G is not changed.
Marking G’ if any deletions occur ensures replaceability. Steps (3) and (4) yield
replaceable graphs since paths through G can be simulated by paths through G’ and
vice versa, even if a given vertex has to be circumvented. Case 3.1 in Step (4) ensures
that the single pin p in Sb remains an articulation point in G’ for any environment H
that has an edge incident to p.

(b) By Step (5) of the burning process Gb is marked only if some deletion of
material from (i occurred that could never be biconnected in any environment. Since

G always is a single vertex (Gk has no pins), (b) follows from part (a). [3

As in 3 we augment the BU-table with a fourth column containing a hierarchical
graph F’ such that E(F’)= E(F) but the blocks of E(F) are represented explicitly in
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F’. We construct the portion of F’ belonging to row when burning (i down to G/b.
Parts cut off during Step (2) of the burning process are represented by so-called branch
cells. Paths collapsed in Step (3) are represented by path cells. Blocks shrunk in Step
(4) are represented by block cells. The details of this process are as follows.

In Step (2) we create a block cell for each deleted b-node. This is done as described
for Step (4) below. The pins of a block cell are the relevant articulation points of the
block. Finally, for each connected part cut off from the tree we create a branch cell
recreating it. This cell has nonterminals whose types are the block cells representing
cut off blocks in the component. These nonterminals are connected as the cutoff part
of the tree prescribes. Each branch cell has one pin, namely the articulation point at
which the part was cut off. There is an additional branch cell representing all connected
components of the biconnectivity tree that have no pins. An identical branch cell
already existing can be reused, but a block cell must not be reused as a branch cell.

During Step (3) we create a new block cell for each block on the collapsed path
as described below (Step (4)). Then a new path cell is created that recreates the
collapsed path and the parts of Gi attached to it that were deleted in Step (2). To this
end, nonterminals whose types are the block, path, and branch cells representing the
parts of the collapsed path are created and connected appropriately. The resulting
path cell represents the collapsed edge in Gb.

During Step (4) we create for each reduced block a block cell. This block cell has
the same general structure as the block in (i but parts from some copy of Gare
represented by their corresponding block cells. If a block consists of a single edge that
is a path edge, no block cell is created for this block, but the corresponding path cell
is reused higher up in the hierarchy. The pins of a block cell are all pins and all relevant
articulation points of the corresponding block.

The result of this process is shown in Fig. 9 for Example 1. Figure 10 shows the
hierarchy tree T’ of F’. Composed cells are underlined in Fig. 10.

THEOREM 4. (a) E (r) E (F’).
(b) m’, n’= O(m + n). The depth of the hierarchy tree T’ of F’ is O(k).
(c) Each block in E (F) is represented by a subtree ofT’ with thefollowingproperties"

(c.1) The type of the root x of the subtree is a block cell, and when going from
x towards the root of T’ we meet first (perhaps) a few path cells and then
a branch cell.

(c.2) From the subtree rooted at x in T’ all subtrees are deleted that are rooted
at branch cells.

In Fig. 10 the subtrees of T’ that represent blocks of E(F) are circled with dotted
lines.

Proof. (a) The proof is by induction on the cell number in F’.
(b) Since ( has size O(rn + n), m’, n’= O(tn + n). T’ has depth O(k) since on

each path from a node x in T’ to the root at most four cells in each row entry of
column 4 of the BU-table can occur, namely two block cells, one branch cell, and one
path cell.

(c) The proof holds because of the following facts. First, when cutting off parts
of E(F) in Step (2) we cut off blocks that can never be enlarged in any environment.
A branch cell represents the part of E (F) being cut off. Second, branch cells and path
cells represent compositions of blocks, in which each block is also represented by a
separate block cell. Third, because path cells are reused, cells representing chains of
blocks collapsed in Step (3) remain path cells, until the chain of blocks is absorbed
into a single block by biconnecting it higher up in the hierarchy.

Theorem 4 enables us to use F’ for solving a variety of problems pertaining to
biconnectivity.
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2
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G22:

G31.

G41.

G42"
column 4

cell created in step no.

FIG. 9. Branch cells are underscored" there are no path cells.

Consider the following construction problem: Given an edge e in E(F), produce
its biconnected component. We can solve this problem by first translating the pathname
of e into F’. Then we look for the root of the block containing e. To this end we scan
the pathname of e right-to-left until we find a branch cell. Then we go left-to-right in
the pathname until we find a cell that is a block cell. The resulting node x is the root
of the block containing e. To produce the adjacency structure we just expand the
subtree Tx, but whenever we find a nonterminal whose type is a branch cell we do not
expand it. This procedure may take a lot of time if much output has to be produced,
but it only needs working space O(m + n), because of Theorem 4(b). A hierarchical
representation of the block containing e can be obtained by first finding the root of
the block as above and then scanning bottom-up through the BU-table selecting the
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FIG. 10

rows of the table describing cells in the subtree of T’ rooted at x. Here we cut off
nodes representing branch cells. The whole process takes time O(m + n). Other con-
struction problems can be solved similarly.

The query Q2 (el, e2): Given two edges el e2 in E (F) are they on a common simple
cycle ? can be answered simply by comparing the pathnames for the roots of the blocks
containing el and e2. If they are identical the answer to the query is yes.

In order to answer the query Q3 (v): Given a vertex v in E (F), is v an articulation
point ? we augment F’ some more. We mark a vertex in Gi, respectively, (i, G if some
deletions occur at this vertex during some execution of Step (2). Vertices retain their
marks when some copy of G is substituted into some (i. Now, obviously a vertex is
an articulation point if the vertex denoted by the last symbol in the pathname of v is
marked.

The only other vertices in E(F) that can be articulation points are vertices that
are relevant articulation points on some path just before collapsing it in some Gi, such
that the path does not get biconnected higher up in the hierarchy tree.

The pathnames of such vertices have the property that as we scan the pathname
backwards we find a sequence of path cells followed by a branch cell. Thus query Q3
(v) can also be answered in time O(k).

Other query problems can be solved in a similar manner. It should be noted that
an appropriate modification of the above construction yields a modified hierarchy on
which connectivity and biconnectivity problems can be answered efficiently.

5. Strong connectivity. In this section we remark on how to hierarchically answer
the question: "Is E(F) strongly connected ?" given a hierarchical directed graph F.

The burning proc.ess is quite straightforw.ard. G is just the reduction of the
transitive closure of Gi to the pins of Gi. If Gi will never yield a strong connected
result in any environment, we add an isolated vertex to G. (If (i does not have pins
we need two such vertices.) There are two problems with this burning process. First,
it does not take linear time, but in general it takes time O(r/2"39" ") (as of today



1078 T. LENGAUER AND E. WANKE

[CW86]). Second it may produce dense graphs with O(p2) edges. Thus the substitution
of the G into Gi to yield (i may take l)(n i) time. The resulting graph (after deleting
multiple edges) may have size l’(n,?). Thus filling the BU-table in general takes time
O(k n,3.). If the hierarchy is efficient in the sense that there are many small cells,i=1

this can still be close to linear. In general, we do not know how to achieve a linear
time hierarchical strong connectivity test. Indeed the following argument shows that
we will probably not achieve such a test with the bottom-up method.

THEOREM 5. There are at least 2p2/4 different equivalence classes of replaceable
graph with p pins with respect to strong connectivity.

Proof The 2p2/4 different burnt graphs that can be produced by the above strong
connectivity burner are not replaceable pairwise.

Thus any strong connectivity burner has to produce at least 2p2/4 different burnt
graphs with p pins. Since each graph is unambiguously described by its adjacency
structure, and this structure has size O((m + n)log n) for a graph with m edges and
n vertices in the logarithmic cost measure, we must have m+ n =(pZ/log p). This
can only yield strong connectivity tests with time 0(k (n,3./log ni)) We couldi-l

circumvent this argument by labeling graphs appropriately and thus increasing their
variety in an efficient way. However, we know of no helpful scheme for doing so.

There is another problem with strong connectivity. We do not know how to
construct a hierarchical graph F’ explicitly,representing the strong components of F.
We can identify the strong components in G during the burning process and provide
special cells for them. But Gb does not specify how to use these cells later on. On the
other hand, any burnt graph that might provide explicit locations for nonterminals
whose types are these cells seems to become very large. Having no F’ makes it more
difficult to solve query problems pertaining to strong connectivity. We can still efficiently
solve construction problems such as the following" For each vertex in E(F) give the
number of its strong component. This is done by first generating the BU-table and then
performing a preorder traversal on the hierarchy tree. When visiting the root all
component numbers for vertices belonging to the root are output. Then the sons of
the root are processed recursively. When a node x, say, of type G, in T is processed
the component numbers for its pins are known. We connect all pins in the same
component up into a circuit in G. Then we find the strong components resulting graph.
The vertices belonging to x that are in a component with pins receive the number of
that component. The other components are numbered with new numbers. The traversal
takes a long time but only uses space O(m + n).

The query Q4 v, w)" Given two vertices v, w in T, are v, w strongly connected ? can
be answered by doing the above preorder traversal just on the subtree of T consisting
of the paths from the two nodes to which v, w belong to the root. This takes time
o(E =a n2) since a strong connectivity check on a potentially dense graph must be
performed on each node in the subtree.

How to improve on these algorithms is an open question.

6. Conclusions, further results, and open problems. We introduced a model for the
succinct hierarchical representation of graphs that is widely applicable in areas of
engineering, e.g., in CAD for integrated circuits. The model is a strongly restricted
version of a context-free grammar that generates exactly one word. We efficiently
solved connectivity problems on this model. For decision problems we achieved
solutions with linear (connectivity, biconnectivity), respectively, cubic (strong con-
nectivity) running time in the size of the hierarchical description. For construction and
query problems we achieved large savings of working space and preprocessing time.
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We also generated short hierarchical descriptions for the output of construction
problems.

The graph problems we discussed are all relevant to integrated circuit design.
Connectivity tests are used in electrical checking; biconnectivity tests occur in testability
analysis. The results on strong connectivity generalize to the single source shortest
path problem which is at the basis of many one-dimensional compaction algorithms
[Le82], [U184] and also occurs in wire-routing applications. The hierarchical compac-
tion algorithm has been implemented [Ki84]. Reference [Le82] contains some results
showing that it is difficult in general to construct short hierarchical descriptions of the
shortest path tree.

Reference [HS84] presents a hierarchical compaction algorithm with low page
fault complexity. This algorithm processes the hierarchical description of the graph
top-down, and uses O(N) space. The definition of hierarchy is a little different in
[HS84]. There a graph is only partitioned into a collection of cells without the notion
of a hierarchy tree. Here we exploit the presence of a hierarchy tree with many identical
subtrees to reduce the space requirement of the hierarchical compaction.

Another application ofthe hierarchical strong connectivity algorithm is the solution
of hierarchical linear systems, as occur in finite element modeling of mechanical
structures [LW87].

A hierarchical solution to the minimum spanning forest problem in almost-linear
time is given in [Le87]. The minimum spanning forest problem is relevant in wire
routing for integrated circuit layouts. Reference [Le87] solves construction and query
problems without resorting to a short hierarchical description ofthe minimum spanning
tree. But such a description along the lines presented here is also possible in that case.
The complexities of the solutions to the construction and query problems are the same
as those given in 3 and 4 of this paper. Reference [Le86b] discusses a linear time
hierarchical planarity test. Reference [Le86a] gives an overview of the application of
hierarchical processing in CAD for VLSI design.

There are also problems that cannot be solved hierarchically using this model. A
thorough discussion is given in [LW87]. There it is also shown that the complexity of
the hierarchical version of a graph problem cannot in general be deduced from the
complexity of its nonhierarchical version. Two examples of hard problems are the
circuit value problem and the network flow problem. Both become PSPACE complete
in their hierarchical version. This is unfortunate as the circuit value problem is at the
basis of most simulation algorithms for integrated circuits.

All hierarchical solutions to graph problems mentioned in this paper have the
property that they use a nonhierarchical algorithm for the same graph problem as a
subroutine. Thus they do not depend on a specific nonhierarchical solution method;
any nonhierarchical algorithm will do. This is important for practicality, since often
asymptotically worse algorithms are superior in practice for small graphs, and the
subcells can be expected to be small. For this reason the BU-method is not only a tool
for proving asymptotic results on hierarchical graphs, but it should serve as a powerful
basis for bringing hierarchical graph algorithms on the computer.

We believe that the bottom-up method introduced in this paper is a powerful
method for speeding up the processing of hierarchically defined graphs such as arise
in many areas of application, notably in VLSI design. The hierarchical graph model
is still rather restricted, and extensions should be possible that are useful in several
areas of application while preserving the efficient solvability of a large number of
important graph problems. The hierarchical graph model discussed in this paper is
used in the HILL (Hierarchical Layout Language) system [LM84].
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A FAST PARALLEL ALGORITHM FOR DETERMINING ALL ROOTS
OF A POLYNOMIAL WITH REAL ROOTS*

MICHAEL BEN-OR?, EPHRAIM FEIGn, DEXTER KOZEN, AND PRASOON TIWARI

Abstract. Given a polynomial p(z) of degree n with m bit integer coefficients and an integer , the
problem of determining all its roots with error less than 2 is considered. It is hown that this problem is

in the class NC ifp(z) has all real roots. Some very interesting properties of a Sturm sequence of a polynomial
with distinct real roots are proved and used in the design of a fast parallel algorithm for this problem. Using
Newton identities and a novel numerical integration scheme for evaluating a contour integral to high
precision, this algorithm determines good approximations to the linear factors of p(z).

Key words, parallel algorithms, polynomial, roots, Sturm sequences, numerical integration, root separ-
ation, zeros

AMS(MOS) subject classifications. 12D10, 68Q99

1. Introduction. Determining the set of all roots of a polynomial is a classical
problem with applications in many branches of engineering. Although many sequential
algorithms have been designed for this problem (see, for example, [H74] and [$82]),
to date no fast parallel algorithm is known. In this paper we show that this problem
is in NC if all roots of the given polynomial are real. Moreover, the problem of
determining if all the roots of a given polynomial are real is also in NC. The best
previous result for this root-finding problem appears in [P85] and has worst-case
running time O(n log n) using n processors. Here n is the degree ofthe given polynomial
and each processor is capable of performing arithmetic operations on operands having
polynomially many bits in one step. Our results achieve considerable improvement in
the parallel running time at the expense of polynomially many processors.

We use an exclusive read exclusive write PRAM (parallel random access machine)
as the model of parallel computation [FW78]. In addition, we assume that a processor
can perform arithmetic operations +, -, , and / in time polylog in the length (of the
binary representation) of the operands.

The Sturm sequences of a polynomial were defined by C. Sturm in 1829 and have
been studied for over 150 years [BP60]. We prove some very interesting properties of
a Sturm sequence of a polynomial with distinct real roots and use these properties in
the design of our algorithm. In particular, these properties imply that we can quickly
compute a point on the real line such that at least a fraction of the roots of the
polynomial lie on either side of the point.

We factor the given polynomial into its approximate linear factors, and hence
approximately determine all its roots. This approximate factorization is achieved by
recursively factoring the given polynomial into two approximate factors of almost
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equal degree. These two factors are in turn obtained by numerically evaluating a
contour integral and then using the Newton identities.

Finally, in the last section, we also prove that the problem of determining all real
roots in the presence of complex roots is in NC if and only ifthe problem of determining
all roots is in NC.

The numerical integration scheme is based on a suggestion by Franco Preparata.
This work has been inspired by the work of Sch6nhage [$82], and complements recent
work of the first and the third authors on algebraic cell decomposition of Rd [BKR84],
[KY85]. The algorithm presented here also appears in [T86].

2. The basic strategy. In this section we give an overview of our algorithm for
simultaneously determining all roots of a polynomial h(z), which has distinct real
roots. The major steps of the algorithm are given below.

ALGORITHM ROOTS.

Input. A polynomial h(z) of degree n having m bit integer coefficients, distinct real
roots, and an error tolerance

Output. Approximations Yl, Y2,"" ", Yn to the roots zl, z2,’", zn of h(z) such that

Method.
Step 1. Divide h(z) by its leading coefficient. Let p(z) be the resulting polynomial.

The leading coefficient of p(z) is 1.
Step 2. Factor p(z) recursively in the following manner until all monic linear factors

are found.
Step 2(a). Find a point w that separates the roots of p(z) into two sets L and R, those

to the left and to the right of w, respectively, each containing between z
and of all roots of p(z). In addition, w is not too close to any root of p(z).

Step 2(b). Using a numerically evaluated contour integral and the Newton identities,
determine approximations to the two monic factors p(z) and p2(z) of p(z)
with roots L and R, respectively.

In case the given polynomial has repeated roots, well-known methods (see, for
example, [vG83a]) can be used to reduce the problem to that of determining the roots
of a polynomial with distinct roots. An alternate method of performing this reduction
appears in [T86]. This method has the advantage that it only uses integer addition and
multiplication.

I order to show that ROOTS can be implemented in logl) (rn + n +/x) steps
using (m+ n+/x)) processors, we must show that: (i) ROOTS can be implemented
in log (m + n +/x) steps using (m + n +/x) o) processors on a PRAM, where each
processor is also capable of performing a real arithmetic operation in one step;
and (ii) the operands of each (real) arithmetic operation can be expressed using
(m + n +/x) o1) bits.

It is not difficult to check that all real numbers computed by our algorithm are
bounded in absolute value by 2(m+n+t). Therefore, in order to prove assertion (ii)
of the last paragraph, we show that all these real numbers need not be computed
exactly, but that we can appirnate them to within 2-’+"+’ of their correct value
and still ensure a correct output.

First, following Sch6nhage [$82], we show that it is sufficient to compute the
coefficients of all polynomials constructed durig an execution of P.OOTS to within
2-"+n+")’ of their correct value. The following theorem will be useful in proving

this fact.
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THEOREM 2.1 [C29], [H70]. Let h(z) be a polynomial ofdegree n with m bit integer
coefficients. Then all roots of h(z) are less than 2 in absolute value.

Since the roots of p(z) are the same as the roots of h(z), all roots of p(z) are also
bounded in absolute value by 2m. If h(z)= i=o hizi has distinct roots Zl, z_,..., zn,
then define the height of h(z), denoted Ih[, to be the sum Y,,"=o Ih,[. Also define the
minimum root separation A(h)= mini [z- zl. Unless stated otherwise, logarithms in
this paper are to base 2.

THEOREM 2.2 [M64]. If h(z) is a univariate polynomial with integer coefficients, of
degree n >-2, and distinct roots, then the minimum root separation A(h) is at least

COROLLARY 2.3. Let h(z) be a polynomial with m bit integer coefficients, degree
n >- 2, and distinct roots zl z2, z,, then A=minelz-z]>2-", where
2n log n + mn.

We also need a bound on peurbation induced on the zeros of a polynnfial as
a result of peurbation of its coefficients. We will frequently use a peurbation bound
which is a corollary to the following well-known theorem of Ostrowski.

THEOREM 2.4 [H70]. Let f(z) Z + al zn-1 + + a. and g(z)
z" + bz"-l + + b". Let y=2max(a[/J,b[/), and define e > O by e= [b- a[y- en the zeros z and Wk offand g, respectively, can be ordered so that

COROLLARY 2.5. Consider the polynomial p(z) of degree n with real coefficients,
leading coefficient 1, and roots Zl z2, ", z, such that [zil < 2. Let(z) be an approxima-
tion to p(z) such that the corresponding coefficients of fi(z) and p(z) differ by at most
2-. en there is an ordering of the roots offi(z) such that z- il < n22+4-=/", for
all i.

COROLLARY 2.6. If > n(m + + 2 log n +4), then the roots offio(Z) approximate
the roots ofp(z) with error less than 2-.

As a consequence of this corollary, all roots of fi(z) are bounded in absolute value
by 2+1 whenever is chosen appropriately. The following corollary is important for
establishing the correctness of our algorithm.

COROLLARY 2.7. If p(z) has distinct real roots, A(p)>2-,+2,>
n(m + + 2 log n + 4), and all coefficients of(z) are real, then (z) has distinct real roots.

Proof Since all coefficients of (z) are real, its roots are either real or appear in
complex conjugate pairs. Suppose Y and is a pair of complex conjugate roots of
fi(z). By Corollary 2.6, we have [z,- 1 < 2-", Iz 1 < 2-", and therefore the imaginary
pa of each of and is less than 2 -". This implies that [-1<2-"+. But,
[z,- z > 2 implies I 1 > Iz- zl- I zl- Izj 1 > 2- 2-"+. For + 2, we
have [Y 1 > 2-"+a contradiction. Hence, all roots (z) are real. The fact that they
are distinct can also be proved using a similar argument.

In the following discussion we will assume that + 2. Also in view of Corollary
2.6, let n(m + + 2 log n + 4) + 1. We wish to determine approximate linear factors
L, L2," ", L, ofp(z) such that

 2.1)

Then Corollary 2.6 would imply that the easily available zeros of L are sufficiently
good approximation to the zeros of p(z). However, in order to achieve 2 precision
in (2.1), we may need precision of more than 7r bits beyond the binary point in all
intermediate computations.

Next we determine the precision required during the factorization in Step 2 in
order to satisfy the above requirements. Suppose that the precision of A bits beyond
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the binary point is sufficient for all intermediate computations in order to finally
compute the approximate linear factors which satisfy (2.1). We approximate the
coefficients of p(z) to within 2- in order to obtain an approximation po(z) to p(z).
Then we factor po(Z) recursively to obtain all linear factors Li, always computing the
factors to A bit precision beyond the binary point. Choice of the precision A ensures
that at any stage of the recursive factorization of p(z), we have a set of polynomials
pl(Z), pz(Z),""", pt(z) whose product is a good approximation to p(z).

LEMMA 2.8. Given a monic polynomial p(z) of degree n, all of whose roots are
bounded in absolute value by 2m, suppose pl(z), p2(z)," ", pl(z) are monic polynomials
such that g(z)=p(z)-pl(z)pz(z)" pl(z) is of degree at most n- 1 and Ig(z)] <2-=.
Then each coefficient ofpi( z), 1 <- <= l, is less than 22n+mn in absolute value and therefore
Ipil < n + 1)22"+"m.

Proof Let/(z) pl(z)p2(z) p1(z). By the comment after Corollary 2.6 and the
choice of r, each root of/(z), and hence each root of pi(z) for 1 =<i=< l, is less than
2 m+l. Therefore, each coefficient of pi(z) is less than 2"(2"+1) ".

Suppose pi(z) is monic, deg (pi)> 1, and let pj(z) and pk(z) be the two monic
factors of pi(z) computed during its factorization. Recall that the coefficients of these
factors are truncated beyond the Ath bit after the binary point. Then, we have the
following.

LEMMA 2.9. Ipi(z)--pj(z)pt(Z)l< (n+ 1)22 l+2n+nm-a.
Proof Observe that pi(z)=(pj(z)+y(z))(p(z)+(z)) where each coefficient of

y(z) and (z) is less than 2-. Then, [y(z)[,l(z)]<n2-, and hence
[Pf+PY+ YI, and the assertion in the statement of the lemma follows from Lemma
2.8.

A corollary to the following theorem specifies the precision A sufficient for the
recursive factorization routine.

THEOREM 2.10. Let pl(z),pz(Z),’’" ,p(z) be the known factors of p(z) at an
intermediate stage such that IP -PlP2 "Pi" "Pll < O, 0 <= 2-, and deg (Pl) > 1. Sup-
pose Pl (z) is approximatelyfactored intop z andp z whose coefficients are determined
only to A bits beyond the binarypoint. Then, IP -PPP2P3 PtI < 0 + (n + 1)32

Proof IP--PPkPP3 PI=[P--PlPz Pi" P+PlP Pi" Pl--PjPkPzP3
P,I <O+Ip2p3"’’plIIpl-ppkI. Application of Lemmas 2.8 and 2.9 proves the

theorem.
COROItAR’ 2.11. Let Ll(z), Lz(z),. ., L,(z) be the approximate factors ofp(z)

obtained by the recursive factorization using precision of >-7r + log n bits beyond the
binary point. Then, [p(z)-L1L2’’’ LI< n2- +(n+ 1)42 l+4n+2rnn-x.

Proof For the purpose of establishing this lemma, we can-assume that our
algorithm works as follows. To begin, we have a set of polynomials F {po(z)} such
that [p(z)-po(z)[ < n2 -a. Our algorithm can be viewed as selecting a polynomial of
degree at least two, and replacing it with its approximate factors. By Theorem 2.10,
each such operation increases the error between p(z) and the product of polynomials
by at most (n + 1)32 l+4n+2mn-x. ["1

Equation (2.1) and Corollary 2.11 imply that A 7r+2+4 log (n+ 1)+4n+2mn
is sufficient precision in order to obtain the desired approximations to the roots of
p(z). Substituting for 7r, we get )t O(n (log n + m +

3. Computing the factors using the Newton identity. Consider a polynomial p(z)
of degree n having distinct real roots, leading coefficient 1, and all other coefficients
having at most A bits beyond the binary point. Let zl < z2 <... < z, be the distinct
real zeros of p(z) [Zil < 2 re+l" and let pI(Z) 2 k

i=o ciz’ be the factor of p(z) with roots
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z1, z2,... Zk. In this section, we present a fast parallel algorithm for determining
good approximations to coefficients ci’s using good approximations to sj ki___l Z, for
j 1,..., k. More precisely, we show that ci’s can be computed correct to h bits
beyond the binary point, if approximations to sj are given such that [- s[ < 2
where " is polynomially bounded. In the next section, we will present a fast parallel
algorithm for computing to the required precision.

We will use the well-known relation between the si’s and the ci’s given by the

Ok-1 S1
2 Ck_2 S2

Sl 3 Ok-3 S3

s sl 4

".

Sk_2 Sk_ Sk_4 k Co. Sk

Let M denote this k k lower triangular matrix and let us denote this equation by
Mc=-s. We compute M-1 using Csanky’s adaptation of Leverrier’s method [C76]"

Mk-1 + dlMk-2+ + dk_lI
(3.2) M-1

dk
where d is the coefficient of xk-i in Il k (x-i) Since we use approximationsi=0

in these computations, the result may not be the exact value of c but an approximation
ti. In the rest of this section, our aim is to determine a reasonable upper bound on
the deviation Ic-1. The following sequence of claims leads to the error estimate of
Theorem 3.3 in the entries of the computed inverse in terms of the approximation error
in the entries of the original matrix.

LEMMA 3.1. Let A (ao) be a k k matrix, and suppose that A is given such that
.=A+E, where E (eu) and le, l < Let Am--(a !.m)),J and a =max{l, maxij{aij}}.
Suppose .’ I) is the mth power off obtained when all intermediate computations
are carried out with error less than 2-K. If 2 -K+I +4k2e2< ea then A~’,for l<m<k,=

(m) z(m) q+l 16 where q [log m ].can be computed such that lau -"u I--<(2 -1)(ak) 2q-

Proof Let us arrange the computation of A as a binary tree T of height [log m ].
Each vertex of T is associated with a result matrix. The result associated with each
leaf of T is A. The result associated with any other vertex is the product, computed
using real arithmetic, of matrices associated with all its children. Observe that any
vertex of height is labeled with At, where 1-<2. In this manner, the root of T is
labeled with A".

We will bound the change in each of the entries of the result matrices if we replace
A by A at the leaves, and use arithmetic operations with error at most 2 instead of
real arithmetic. Observe that in order to derive a worst-case estimate, we can assume
that all errors are additive, all entries of A are nonnegative, and that A A + eJ, where
J is a k k matrix of all l’s. Since our error estimate is a monotonically increasing
function of m, we can bound the error in the entries of all result matrices at height q
by the error bound for the corresponding entries of A2q and/2q. We will also use the

(1)l< lkl-1fact that lair a
(2) 2 ,]It is not difficult to check that a(2)u 0 < k[2ea + e + 2- + k2-. But 2-+1 <

e[ce _4kZe] implies that k[2ece + ez + 2_+l] < k[3ea], inductively, if la2,-
k2-1-1[(2q 1)ea 2"--1], then la 2q)u uoz2"1< k2q-[2(2q 1)ec 2.,-1

+ (2q 1 )2/ 2Ce 2q-2 .+. 2-,] _+_ k2-. But 2-K+ + 4k2/2
2q-I,2-+1] < ea and the lemma follows.

Newton identity:

1

S1

$2
(3.1)

$3

Sk-1
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Returning to the problem of solving (3.1), we can state the following.
COROLLARY 3.2. Given approximations ,(i to si such that Is-l <2-, ’>_-1, an

approximation , ) to R rij) M-1 can be computed such that [rj o[ <=
(2k)k+2{4k(ak)Zk2-}, where k2k+"k.

Proof In (3.2), 1 <-Idil<-_(2k) k and can be computed exactly. Let B= (bj) be the
numerator ofthe right side of (3.2). Since Isil < k2k+"k a, Ibol <- k(2k)k(ak) k. Compute
the approximations to the powers of M using the algorithm suggested in Lemma 3.1,
with a k2 k+"k and K -. These are then used in computing an approximation 1 (/ij)
to B. Then Ib0-/;,l<_-(2k)+{4k(ck)22-}, provided the scalar multiplication and
addition in (3.2) are carried out to reasonable precision. Next, compute 1/dk to " bits
beyond the binary point and then compute the product =(1/dk)l. Then
(2k)k+Z{4k(ak)2k2-’}. []

THEOREM 3.3. Given approximations to s such that Is 1 < 2-, approximations
i’s to the coefficients c can be correctly computed to "- 17mk bits.

_Proof. Approximate the vector c by the product R, using the matrix R computed
in Corollary 3.2.

COROLtAR" 3.4. In order to compute the coefficients c correct to the , bits beyond
the binary point, it is sufficient to compute s correct to " ) + 17 mk2 bits.

Substituting for from 2, we get " O(mn2 + nix). In the next section we describe
a way to compute the s’s to sufficient accuracy by numerically evaluating a contour
integral.

4. Evaluating a contour integral to high precision. Let p(z)= =oPz, P-= 1 be a
polynomial of degree n with simple real roots Zl < z2 < 23 < < z, such that Iz, <
2"+ 1. Then [pi] < 2n+"n. Suppose that at most A bits are given for any pi after the
binary point. In addition, a point W with coordinates (w, 0) is given such that

Iw z > 2- d for all 1 -<j-< n and zk < w < zk/l. In order to compute s with error
less than 2 (see 3), we wish to evaluate the following integral to " significant bits
beyond the binary point:

1 IF zIP’(Z)dz
zi--- Sl--

i= 27ri p(z)

Here F can be chosen as the boundary of the rectangle with vertices A, B, C, and D,
traversed in the counterclockwise direction, where A, B, C, and D are points in the
complex plane with coordinates (w,--2"+1), (W, 2"+1), (--2 "+1, 2 "+1), and
(--2 "+1, --2"+1), respectively (see Fig. 1).

For convenience, the contour F is partitioned into four segments AB, BC, CD,
and DA. This gives the following expression for the contour integral"

f fA’f =ffo(4.1) + + +
c

We will only discuss a scheme for computing the first term on the right-hand side of
(4.1). A similar scheme can be used to compute the third integral on the right-hand
side of (4.1). The second and the fourth integrals are mdch simpler to compute. These
are discussed towards the end of this section.

The integral A can be further partitioned into two symmetric parts about the
B W Bpoint W with coordinates (w, 0)in the complex plane, i.e., Ja A +W" Let Iw denote

the integral v (z;P’(z) dz/p(z)) and let wo denote the computed approximation to

Iwn. We require that the error Ilwn- wnl be bounded by 2 -(’+3)
SO that the total error

in the right-hand side of (4.1) does not exceed 2-. In [$82], Sch6nhage uses a numerical
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B

’w (,o)

FIG. 1. The contour of integration.

integration scheme which is based on properties of the sums of the roots of unity and
requires that all poles of the integrand be relatively far from the contour of integration
(which is a circle). However, we cannot use Sch6nhage’s scheme because some poles
of the integrand under consideration may be too close to the contour of integration
F. The following scheme for evaluating IwB is based on a suggestion by Franco
Preparata to "increase the spacing of samples on C geometrically as one goes away
from the real axis."

Define two sequences y and a for j=-l,O, 1,...,q, where q=
[log3/2 2m+l--log3/2 (d/2)], as follows: y_, =0, yo=(d/2), Yl =(3/2)(d/2),..., yg=
(3/2)(d/2), Yq-1 (3/2)q-(d/2); and aj w+ iyj for all -1 _-<j-<_ q- 1 (here i=
x/-z-1). In addition, let yq--2m+ and aq w + iyq. Observe that, in the complex plane,
the points a are all on the segment from W to B.

Let f(z)= zlp’(z)/p(z). The Taylor series off(z) about ag is given by

t)

f(z)=f(ag)+f’(ag)(z-aj)+ +f (ag)
t!

(z-ag)+R’(z)’

where

yj- r

[C48], and M is the maximum value of f(z) in the closed disc of radius yg centered
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at aj. Observe that the radius of convergence of the above series is greater than
yj=(3/2)(d/2), for j>=0 and is >d for j=-l. Let T(z) be the series consisting of
the first + 1 terms of the Taylor series of f(z) about aJ. We would approximate the
integral IwB as follows"

Iwu f(z) dz f(z) dz T(z) dz -WB.
a-1 j=-I aj

Then,

(4.2) IWB O[" uj u+l u+l

lu=ou+ltaa+l-a ),

where a. is the coefficient of z" in T(z). In order to estimate the error II-il,
we need to find an upper estimate on M in the vicinity of the segment WB"

M-max max
p(z)

=< n max
ZZi

z

z zi

n22(m+l)t
22ml+21++log

d

Consequently, for z belonging on the segment from aj to aa+l

22ml+21++log n-t.

Suppose the powers of a are computed exactly (note that this requires only polynomial
precision) while evaluating the right-hand side of (4.2), and approximations cu to au,
such that [a,-c,jl < 2-, are used in computing wB. Then,

B t+l

II,, i,,I <= R,(z) dz + 2 2 2’{m+) < 22ml+21++lg n+m+l-t + 2(m+l)(t+2)-v

In order to ensure ]Iwn-w31<=2-(+3), it is sufficient to require that
22mt+2t+c3+n+m+l-t <2-(+4) and 2m+)t+2)-" <2-(+4). Hence r+ O(mn+) and
v=O(m(r+mn+)). Substituting for r, we get t=O(mn210gn+nlz+) and v=

O(m2n2 log n+ ran&+ rn ).
The integral can also be evaluated in a similar manner This completes the

/3 Do
evaluation of the ntegral a- The integral c n (4.1) can also be evaluated in a similar
manner. The remaining two integrals c Aand of (4.1) can also be computed using
the above method. However, in case of these integrals, we can get away with using
only five sample points. For example, in order to compute c, we need to consider
only the five sampling points (w, 2m+), (2m, 2m+), (0, 2"+), (--2,2+), and
(--2 re+l, 2re+l), if w > 2m.

The Taylor coefficients required by this integration scheme can be determined
quickly using an algorithm due to von zur Gathen [vG83b]. An alternate method of
computing these coefficients based on Kung’s [K74] power series inversion method,
with complete error analysis, appears in [T86].
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5. Separating the roots. The integration scheme described in the last section
requires a point w such that Iw zil > 2-, where zi, 1, 2, , n are the distinct real
roots of p(z), and zt < w < z+,. Moreover, for algorithm ROOTS to have only O(log n)
depth of recursion, we require that n/4 <= l<-_ 3n/4. In the following paragraphs, we
describe a fast algorithm to determine one such point w.

Given the polynomial p(z), let us define the sequence of polynomials
fo(z),f,(z),’’" ,fn(z) such that fo(z)=p(z),f,(z)=p’(z), and f/+2(z) is defined as the
negative of the remainder obtained on dividing f(z) by f+,(z):

f qi(z)f+,(z)-f+z(Z).

It is well known (see, for example, [H71]) that f’s form a Sturm sequence for the
polynomial p(z) over the interval (-oo, oo). Fast parallel algorithms for computing f
are implicit in [C66] and [C67]. We will show that if p(z) has distinct real roots, then
f(z)’s have degree n-i, and therefore qi(z)’s are linear in z. Let r be the real root of
qi. In this section we prove that w can be chosen close to one of the r’s. A fast parallel
algorithm for determining r’s appears in [vG83a].

Let zij, j 1, 2, , be the roots off such that zj <= zo+,. Let R be the set of roots
of the polynomial f and let S, i> 1, be the (multi) set R U {r-2}. If A and B are two
subsets of the set of real numbers, then we say that A (strictly) interleaves B if the
(open) closed interval defined by any two points of B contains a point A. The following
properties of the sets Ri and S play an important role in locating w.

LEMMA 5.1. Iffo has distinct real roots, then Ri+, strictly interleaves R, for i=

0, 1,..., n-2.

Proof We prove the assertion in the lemma by induction on i.
Induction Hypothesis. R+, strictly interleaves R, and Ri has n distinct elements.
Basis. For i--0, the hypothesis reduces to Rolle’s theorem [M66]. In case the

polynomial has distinct real roots, Rolle’s theorem implies that roots of the derivative
strictly interleave the roots of the polynomial.

Induction Step. Suppose the hypothesis holds for 0_-< i_-< k- 1. Then Zk_lj and
are all real and distinct. Let Zk-,1 < Zk, < Zk-,2 < Zk2 < < Zk-ln-k < Zkn-k < Zk-,n-k+,.

From the defining equation:

we conclude that fk+,(Zk) --fk-,(Zk), for 1 <--j <= n- k. But since Rk strictly
interleave Rk-1, sign {fk_l(Zk.i)} -sign {fk-,(Zk/,)}. Therefore, sign {fk/,(Zk)}
--sign {fk+l(Zkj/,)} and fk+, must have a zero between Zk and Zk+,. This argument,
along with the degree constraint on fk+l(Z), proves the assertion for i= k.

This lemma implies that deg (f(z))= n-i. Therefore, it also implies that each
q(z) is linear in z.

LEMMA 5.2. Iffo has distinct real roots and z, z’ are two adjacent roots off_,, 1 <- <
n, then either ri_, [z, z’] or there is a root off+, in the open interval (z, z’).

Proof Consider the equation

f/+l
1.(5.1)

f-i

By Lemma 5.1, f has exactly one root in the interval [z, z’] which is also in the interval
(z, z’). The shape of the plot of the rational function f/f_, is one of those shown in
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Fig. 2. If ri_lC-[z, z’], then qi-1 does not change sign on the interval [z, z’]. By (5.1),
we conclude that the plot off/i/f_ also has one of the shapes shown in Fig. 2. Hence
f+(z) must have a zero in the interval (z, z’). l-]

COROLLARY 5.3. If fo has distinct real roots, then Si+ interleaves R_, for i=

1,2,...,n-1.
Proof As in the proof of Lemma 5.1, let Zk--l < Zk < Zk-2 < Zk2 < < Zk-ln-k <

Zkn-k < Zk-ln-k+- Recall that rk_l is the only zero of qk-. If rk_ is not in the interval
[zk_, Zk-1,-k+], then by Lemma 5.2, fk+l(z) must have at least n- k zeros, one in
each of the n-k intervals (zk_, zk_+), 1 <-j<-n-k. But this contradicts the fact
that deg (fk+)= n-k-1. Therefore rk_l must lie in the interval [zk_,

If rk_ equals either zk_l or Zk-,-k+ then rk_ is also a root offk+. This contradicts
the fact that Rk+l strictly interleaves Rk. Therefore, rk_ lies in the open interval

Next, suppose that rk_ coincides with one ofthe other roots offk_, say rk-
l<ce<n-k+l. Then zk_, is also a root of fk+(z). By Lemma 5.2, each of
the intervals (zk_, zk_+), 1 -<j < a 1 and a <j < n k + 1, contains one root of
fk+(z). This accounts for all the n-k-1 roots of fk+(z). Therefore zk_ < zk+l <
Zk-12 Zk+12 Zk-la-1 Zk+la--1 Zk-la /’k-1 Zk-lc+l Zk+la Zk-ln-k
Zk+,-k-1 < Zk-,-k+l. Hence the assertion in the corollary holds in this case.

In case rk-1 does not coincide with any root offk_(Z), the corollary immediately
follows from Lemma 5.2. Hence Sk+ interleaves Rk_ [-’]

The main result of this section follows as a corollary to the following theorem.
THEOREM 5.4. There exists a k, 0 <- k <-n- 2, such that rk splits the real line into

two semi-infinite intervals, I (-, rk) and I2 [rk, ), with the property that IRof-)
is in the range n/4, 3 n/4], for 1, 2.

In order to prove this theorem, we need the following lemma"
LEMMA 5.5. Any subinterval I of the real line which contains l> [(n+ 1)/2J roots

offo contains at least one rk for some k: 0 <-_ k <- n -2.

Proof The proof of the lemma is by contradiction. Suppose an interval I contains
l> [(n+ 1)/2J roots offo and none of the rk’S. In order to prove the lemma, we first
prove by induction that I contains at least l- [(m/ 1)/2J roots of fro.

Basis. Trivially true for fo and fl.
Induction Step. Suppose I contains l- [(m- 1)/21 roots off,,-2. Since r,,_ is not

in I, by Corollary 5.3, the roots of fm in I interleave the roots of fro-2 in L Hence
has at least l- [(m- 1)/2J -1= l- [(m+ 1)/2J roots in the interval I.

But fn is of degree 0 and therefore has no root in Ima contradiction.

FIG. 2. Possible shapes of the plots offill-1 and f+l/f-.
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Proof of Theorem 5.4. Consider the interval I containing the middle [(n + 3)/2]
roots of fo. By Lemma 5.5, I contains some rk. [-]

The above theorem proves that there exists a k such that at least n/4 roots of
p(z) are on either side of rk on the real line. For convenience, let us denote this
distinguished rk by v. There may be a root of fo which is very close to v. Therefore,
the choice of v as the point w in the description of the numerical integration scheme
is not suitable. We get around this problem by choosing w very close to v as follows:

v if s_ s+ So,

V 2-(+2) if s+ # So 0,
W -(o’+2)v + 2 if s_ # So # 0,

v + 2 -(o’+1) if So 0,

where tr is as defined in Corollary 2.3 and s_, So, and s+ c {-, 0, +} are the signs of
p(v 2-(0"+2)), p(v), and p(v + 2-(0"+2)), respectively.

6. Determining real roots in the presence of complex roots is as hard as determining
all roots. In this section, we reduce the problem of determining all roots of a polynomial
to the problem of determining all real roots of two related polynomials. The reduction
uses some well-known techniques from the Theory of Equations (see, for example,
[U48]). The size of the two related polynomials is polynomially bounded by the size
of the initial polynomial and the reduction is in NC. This establishes that the problem
of determining all real roots of a polynomial is in NC if and only if the problem of
determining all roots (real and complex) of a polynomial is in NC.

Suppose we wish to determine all roots of a polynomial h(z) of degree n with m
bit integer coefficients. Replace z by x + iy, x, y real, and v/Z- 1. Also write h (x + iy)
f(x, y)+ ig(x, y), where f(x, y) and g(x, y) are the real and imaginary parts of h(x + iy),
respectively. Let f(x, y) =o d/(x)Y =o t(Y)x and g(x, y) =0 ch(x)Y
j"=oX(y)x. Define X to be the 2n x2n matrix as follows:

X(i,j)=q,,+i_(x), l <=i<=n,

X(i,j) cki_(x), n <-_ <=2n.

Similarly, define a 2n x 2n matrix Y using oo(y) and Xi(Y) instead of Oi(x) and 4(x),
respectively. Then det (X) and det (Y) are polynomials of degree at most n2. The real
and imaginary parts of any root of h(z) are real roots of det (X) and det (Y),
respectively. Thus, by finding all real roots of det (X) and det (Y), we can determine
all the roots of h(z).
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A LOWER BOUND ON THE COMPLEXITY
OF THE UNION-SPLIT-FIND PROBLEM*

KURT MEHLHORN’, STEFAN NHER’, AND HELMUT ALTO:

Abstract. We prove a O(log log n) (i.e., matching upper and lower) bound on the complexity of the
Union-Split-Find problem, a variant of the Union-Find problem. Our lower bound holds for all pointer
machine algorithms and does not require the separation assumption used in the lower-bound arguments of
Tarjan [J. Comput. Systems Sci., 18 (1979), pp. 110-127] and Blum [SIAM J. Comput., 15 (1986), pp.
1021-1024]. We complement this with a O(log n) bound for the Split-Find problem under the separation
assumption. This shows that the separation assumption can imply an exponential loss in efficiency.

Key words, complexity, interval splitting, lower bound, pointer machine, priority queue, union

AMS(MOS) subject classification. 68

1. Introduction. We consider the following three operations on a linear list
Xl, X2,’’" X of items, some of which are marked:

UNION (xi): given a pointer to the marked item xi unmark this item;

SPLIT (xi): given a pointer to the unmarked item xi mark this item;

FIND (xi): given a pointer to the item xi return a pointer to xj,
where j min {1[1 >- and X is marked}.

Note that the marked items partition the linear list x, , xn into intervals ofunmarked
items. Then FIND (xi) returns (a pointer to) the right endpoint ofthe interval containing
xi, SPLIT (xi) splits the interval containing xi, and UNION (xi) joins the two intervals
having xi as a common endpoint. We call the problem above the Union-Split-Find
problem; P. v. Emde Boas et al. [EKZ77] called it a priority queue problem. They
referred to the three operations as Insert, Delete, and Successor, and exhibited an
O(loglog n) solution for it. We will also consider the Split-Find problem and the
Union-Find problem (only operations split, find and union, find, respectively). Note
that our Union-Find problem is a restriction of the usual Union-Find problem (here
called the general Union-Find problem) because we allow only adjacent intervals to
be joined. The Union-Split-Find problem is important for a number of applications,
e.g., dynamic fractional cascading [MN86] and computing shortest paths [M84b, p. 47].

We study the complexity of the Union-Split-Find problem in the pointer machine
model of computation (Kolmogorov [Ko53], Knuth [Kn68], Sch6nhage [$73], Tarjan
[T79]). A pointer machine captures the list-processing capabilities of computers;
its storage consists of records connected by pointers. Previously, lower bounds
in a restricted pointer machine model (the term "restricted" is explained below)
were obtained by Tarjan [T79] and Blum [B86]. Tarjan proved a O(ce(n)) bound
on the amortized cost of the general Union-Find problem and Blum proved a
(R)(log n/log log n) bound on the worst-case cost. Tarjan’s and Blum’s lower bounds
rely heavily on the following separation assumption (quoted from Tarjan [T79]):

At any time during the computation, the contents of the memory can be partitioned
into collections of records such that each collection corresponds to a currently existing

* Received by the editors December 31, 1986; accepted for publication (in revised form) December 9,
1987. This research was supported by the Deutsche Forschungsgemeinschaft, grant SPP ME 620/6-1.

? FB10, lnformatik Universit/it des Saarlandes, D-6600 Saarbrficken, Federal Republic of Germany.
FB Mathematik, WE3, Freie Universitit Berlin, D-1000 Berlin 33, Federal Republic of Germany.
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set,.., and no record in one collection contains a pointer to a record in another
collection.

Because of this assumption we call their model restricted. If we view pointers as
undirected edges in a graph, then the separation assumption states that every currently
existing set corresponds to a component of the graph.

The main results of this paper are as follows.
(1) The complexity ofthe Union-Split-Find problem in the pointer machine model

is O(log log n). Here, the upper bound is on the worst-case cost of the three operations
and the lower bound is on the amortized cost of the three operations, i.e., there are
arbitrarily large m and sequences of m SPLIT, FIND, and UNION operations having
a total cost of (m log log n).

The upper bound can be found in [EKZ77], [Ka84], and [MN86]. The solution
of [MN86] supports two additional operations ADD and ERASE which allow us to
modify the underlying linear list; the solution does not satisfy the separation assump-
tion. The lower bound will be proved in 2 of this paper.

(2) In the restricted pointer machine model the worst-case complexity of the
Split-Find problem is (R)(log n) and the amortized complexity of the Union-Split-Find
problem is (R)(log n).

This will be shown in 3.

2. The lower bound. In this section we will show that each solution for the
Union-Split-Find problem on a pointer machine requires fl(log log n) computational
steps, even in the amortized sense. More precisely, we show that there are arbitrarily
large m and sequences of m UNION, FIND, SPLIT operations having a total cost of
(m log log n).

Our machine model is a pointer machine as described in [T79]. Its memory M
consists of an unbounded collection of records, each containing two pointers to other
records and an arbitrary amount of additional information. Thus M can be regarded
as a directed graph with outdegree 2. We assume that the set of items S is realized by
two sets of records in M, a set of input records I {x*, x2*,’" ", x,*}, and a set of
output records O={y*, Y*z,’",Y*,}. (The distinction between input and output
records is merely a notational convenience.)

FIND (x) is executed as follows. The machine starts with a pointer to input
Record x* (corresponding to item x S) in some register r. It stops with a pointer to
the output record y* in r which corresponds to item y FIND (x). Since it can access
records in M only by pointers contained in one of its registers, there must be a path
p formed by records and pointers in M starting in x* and ending in y* such that
pointers to all records on p have been loaded into a register during the execution of
the FIND. In addition to traversing a path from x* to y* the FIND operation may
change some number of pointers. The cost of the FIND operation is certainly bounded
from below by the length of a shortest path from x* to y* in M plus the number of
pointers changed.

When executing the operation SPLIT (y) the machine starts with a pointer to
record y* in some register. After the operation record y* is reachable via pointers in
M for all records x* corresponding to items x with FIND (x)= y. To achieve this the
machine changes certain pointers in M. The number of pointers changed is the cost
of SPLIT (y). The cost of UNION (y) is defined similarly.

In order to model the actions of the pointer machine on its memory M in a more
abstract way we consider FIND and SPLIT as operations on a directed graph G as
follows:

Let G (V, E) be a directed graph with the following:
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(1) For all v V: outdegree (v) 2.
(2) There is a set of n input nodes I {xl, X2,""", Xn} V.
(3) There is a set of n output nodes O= {Yl, Y2,"" ", Yn} V-I which may be

marked (we call yi the output node corresponding to input node xi, 1 =<i -< n).
FIND (x), x /, returns output node y. such that j => i, and j is minimal with yj

marked. In addition, it may replace some edges of G by new edges. The complexity
of FIND (x) is the length of the shortest path from x to y. in G plus the number of
edges replaced.

SPLIT (y), y O, marks output node y and replaces some edges of G by new
edges such that every marked output node y is reachable from all input nodes x with
FIND (x) y. The complexity of SPLIT (y) is the number of edges replaced.

UNION (y), y O, unmarks output node y and replaces some edges of G with
new edges. The complexity of UNION (y) is the number of edges replaced.

LEMMA 1. Let k be any integer, let L 22k+1 -k- 1, let n >-- 2 (5k)2k, and let Go V, E)
be a directed graph with all output nodes unmarked. Then there is a sequence ofL SPLIT
operations followed by L FIND operations, followed by L UNION operations such that
we have the following:

(1) The total cost of the sequence is at least

min k. L,
2+4

n

(2) All output nodes are unmarked after executing the sequence.
Proof We call a graph G a k-structure if and only if for every input node x there

is a path of length at most k from x to the output node y FIND (x).
The idea of the proof is as follows. We first execute a sequence of L SPLIT

instructions (this sequence is constructed below) which leaves us with a data structure
G1. We next execute a hardest FIND on G1, i.e., an operation FIND (x) where the
shortest path from x to FIND (x) has maximal length. Execution of this FIND
instruction yields the data structure G2. Again we perform a hardest FIND,.... In
this way we perform a total of L FINDs, each FIND being a hardest FIND in the
present data structure. Finally, we perform a sequence of UNIONs which undo all
the SPLITs. This yields a data structure G (generally different from Go) in which all
output nodes are unmarked.

In order to estimate the cost of this sequence of instructions we distinguish two
cases. Assume first that no Gi, 1 <-i_-__ L, is a k-structure. Then each FIND costs at
least k time units for a total cost of k. L time units. Assume next that some Gi is a
k-structure. We will show that it takes at least (1/22k+4) n I/2k edge changes to construct
G from Go; more precisely, we show the following claim.

CLAIM. Let Go be an arbitrary data structure with all output nodes unmarked. Then
there is a set {Zl," ", zL}

_
O of output nodes such that no k-structure G’ with exactly

ZI,’’" ZL marked can be constructed from Go with fewer than (1/22k+4) n 1/ edge
replacements.

Proof For all v V and l_-> 1 let Rl(V) denote the set of all input nodes w such
that v is reachable from w on a path of length at most/.

Let Co, c,. ., c2 be a sequence of positive constants with

n Co >---- c >-- >-- C2k_ C2k 1.

Then the following lemma holds for Go.
LEMMA 2. There is an l, 0 <--1 <-2k- 1, and distinct nodes v,

have the following"
(1) Either O, or f)<=l gk-(vi)l >= Cl.

vt such that we



1096 K. MEHLHORN, S. NHER, AND H. ALT

(2) For each w V-{v,. ., v,}" II* CO Rk-I(W)] < Cl+l, where I*
I"1,<=,<=, Rk_,(vi) (I*= I if l=O).

Proof. Let lo be maximal such that there are distinct nodes vl,’", Vto with
Ifqi<=lo Rk-l(vi)l> c. We only have to show that /o<2. Assume /o->2. Then there
are 2 distinct nodes v,. , v2k with fq<__i<_2 R_(vi) # . But for every x I there
are at most 2k- 1 nodes v V with x Rk_l(V), a contradiction. [3

Now let 1-> 0 and let Vl, v2," ", Vl be nodes satisfying the conditions of Lemma
2.. We give a sequence of 22k+1+ 1 SPLIT operations which require at least (ct/2L-
2k+)/CI+I edge replacements. First we divide I*--l<=i<_1Rk-I(Vi) into 2L intervals
A1, A,..., A/ of about equal size. A1 consists of the [I*/2LJ smallest indexed
items in I*, A2 consists of the next [I*/2LJ smallest indexed items in I*, and so forth.
Clearly,

Cl[A,I >-- Z- 1 for all i.

Let A’ A A be the corresponding intervals of output nodes1, L

LEMMA 3. In every Aj, j {2, 4, 6,... ,2L}, there is an output node yj that is
reachable in Go from at most 2 k+l input nodes in Aj_I on a path of length-<-k.

Proof. For all xAj_l we have [{v V[xg(v)}[<-2+’-l. Thus we conclude

22 I{, VIR,()}IIA-,I. (2k+’--1)
xAj_

IAj[ (2+’- 1). E!

Let yj e Aj, j {2, 4,..., 2L} be defined as in Lemma 3. Then there exists for each j
a set B__ Ai_ such that IB _ll -> IA I-2 and such that for each x e B_l there is
no path of length at most k from x to y in Go. Next consider any k-structure G’ in
which exactly the y’s defined above are marked. In G’ there must be a path of length
at most k from any x B-l to yj. Let p(x) be any such path from x to yj and let e(x)
denote the first new edge on p(x). Let the edge e(x) start in vertex v(x). We have the
following lemma.

LEMMA 4. (1) I{xn_llv(x)=w}l<-_c,+, for every node w{vl, v2,’’’, Vl} and
every j.

(2) There is a j {2, 4, 6,. ., 2L} such that v(x) : {Vl, v2, , vt} for all x Bj_.
Proof (1) If v(x)= w then w was reachable from x in the data structure Go in

at most k 1 steps. Thus the claim follows immediately from the definition of v, , Vl.
(2) For every v{vl, v2,... Vl} we have [{yOIvRk(y)}l<--2k+ and thus

[{y O lv R,(y)}I -<-/2 k+l

v{v,

_< 22k+1 since I-_< 2 k.

That is, all paths of length at most k using nodes from {v,..., Vl} cannot lead to
more than 2k+l= L-1 output nodes. Since we marked L nodes in O there must be
one y such that v(x)_ {v,..., v} for all x B_. [3

Now consider any j {2, 4,..., 2L} satisfying condition (2) of Lemma 4; i.e.,
v(x){v,..., Vl} for all x B_. Next observe that by (1) of Lemma 4 for any node
w

_
{v, , Vl} there are at most Cl+ nodes x e B_ with v(x) w. Thus

Is -,I IA. I-2 el2L-1-2k+’ Cl/(2:k+:+2) -1-2k+1
CI+Cl+l Cl+l Cl+l
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edges must be changed to obtain G’ from Go. With

C gl
l-i/2l 0 < < 2k

we conclude further that

CJ(22k+2 + 2) (2k+’ + 1)
>

n’/
22k+2+2Cl+l
-(2k++ 1)

1/2
r/

2" (22k+2 q’- 2)
since n >_- 2 (5k)2k

1/2n

22k+4

This completes the proof of the claim and of Lemma 1. [3

TrtEOREM 1. (a) The single operation worst-case complexity ofthe Split-Findproblem
is 2(log log n).

(b) The amortized complexity of the Union-Split-Find problem is l)(log log n); i.e.,
there are arbitrarily large m and sequences ofm UNION, SPLIT, and FIND operations
having a total cost of fl(m log log n).

Proof (a) Let k be maximal such that n >_-2 sk)2k. Then k l)(log log n) and

1 1 1/2k> 2 sk

22k+l q" 1 22k+4
r/

22k+4(22k+1+ 1)

=a(2)

l)(log n)

12(log log n).

Consider the sequence of 2L SPLITs and FINDs constructed in the proof of Lemma
1. The cost of this sequence is

( ( 1
12 min k. L, 22k+4 .n

1/2 ) f(L. log log n),

and hence at least one operation of the sequence has cost f(log log n).
(b) Let k be maximal such that n _-> 2 k)2k and let m 3 L. s for some s. Let Go

be any data structure with all output nodes unmarked. By part (a) and Lemma 1 there
is a sequence of 3. L instructions such that

(1) the total cost of the sequence is f(L log log n);
(2) all output nodes are unmarked after executing the sequence.

Thus again by part (a) and Lemma 1 there is another sequence of 3. L instructions... Using this argument s times yields a sequence of m instructions with total
cost l-l(m log log n). D

3. A lower bound in the restricted model. In this section we prove a l)(log n) lower
bound for the worst-case complexity of the Split-Find problem and a 12(log n) lower
bound for the amortized complexity of the Union-Split-Find problem in the restricted
pointer machine model. We consider pointer machine algorithms satisfying the follow-
ing separation condition:
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The memory can be partitioned into subgraphs such that each subgraph corre-
sponds exactly to a current interval. There exists no edge from a node in such a
subgraph to a node outside the subgraph [B86], [T79].

As in the previous section we define a k-structure.
DEFINITION. Let G V, E) be a directed graph with input nodes I {Xl, In}

and output nodes O-{yl,...,yn} some of which may be marked. G is called a
k-structure if and only if for every x I there is a path of length at most k to FIND (x)
and G fulfills the separation condition; i.e., for every xi, x I with FIND (xi)
FIND (x) there is no v V that is reachable from both X and x. [3

LEMMA 5. Let n>-_(4k)k/k!. In any k-structure with output nodes Yl,’",Yn-
unmarked and y, marked satisfying the separation condition there is a SPLIT operation
requiring at least k/12. n 1/k edge replacements.

Proof Since y, is the only marked output node there is, for each input node x, a
path of length at most k to y,. Let T be the subgraph of G formed by all shortest
paths from input nodes to y,. Then T is a tree with root yn, leaves {xl,’’ ", x,}, and
height at most k. For any node v in T let I(v) denote the set of input nodes which
are the leaves of the subtree rooted at v. At each internal node v of T the incoming
edges can be ordered (Wl, v), (w2, v),. , (w,, v) such that the minimal index of any
input node in I(wi) is smaller than the minimal index of any input node in I(w) for
all 1 <- <j <- m. (We call wi the ith child of v.)

Now assume that SPLIT (x) is executed for some x e L Let

p: x Vo--> v --> --> t) Yn
ibe the path from x to the root y, in T. For any vi, 1 <= <- 1, on this path let Wl, , w-

v-l, , w., be the children of vi in the order defined above. Before the split operation
v is reachable from all input nodes of both of the following sets"

L {u u is the node with minimal index in I(w,), 1 <= k -<j 1},

R {u u is the node with minimal index in I(w,), j + 1 <= k -< m}.

After the split FIND (a) rs FIND (b) for all a L, b R and by the separation
condition v is not reachable from any node of at least one of the sets L or Ri. Thus
the execution of SPLIT (x) requires at least

min (ILI, IR, I) min {j- 1, indegree (v)-jlv_l is the jth child of )i}

edge replacements for each node v, <=iN l, on path p.
The total cost for SPLIT (x) is at least

c(p) Y. min {j-1, indegree (v)-jl vi_l is thejth child of vi}.
i=1

We prove a lower bound for c(p).
LEMMA 6. Let T be any tree of height k with n leaves and root r. Then there is a

leaf x in T such that the path p from x to r has cost

k 1/kc(p) >=-- n
12

Proof Define l(k,j) as the maximal number of leaves in any tree T of height k,
such that (p)<=j for every path p from a leaf to the root of T.
Then we have

l(0,j)=l forj>-0
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and (cf. Fig. 1)

l(k,j) =2. , l(k- 1,j- i)
i=0

=2. l(k-l,i)
i=0

for k=> 1.

Table 1 gives some values of l(k,j). Figure 2 shows a tree of height k 2 with the
maximal number of leaves such that all paths have at most cost j 2.

A different interpretation of l(k, j) is as follows. Associate with every edge e (v, w)
of T the label c(e) min { 1, indegree (w) v is the ith child of w}. Then we have
0-<_ c(e)_-<j for every edge e and for every path p Vo- Vl-’’’ -’) )k

k-1

c(p)-- E C(/.)i, /)i+1)"
i=0

Thus

l(k, j) _-< 2k. (number of possible ways to write j as
the sum of k terms from {0, 1,... ,j}).

(k- 1,j) g(k- 1,0) g(k- 1,0) g(k- 1,3")

FIG.

TABLE

l(k,j) 0 2 3 4 5 6 7

2 4 8
4 12 32
6 24 80
8 40 160

10 60 280
12 84
14

16 32 64
80 192 448

240 672
560

128
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(2, 2) 24

FIG. 2

The term 2k accounts for the fact that in every vertex each label can be used twice:

l(k’J)<--2k’( k+j-1)k-1
<=2k.(k+j--1)k-1

(k-l)!

<=2k.(k+j--1) k

k

<-_ 2k k +j)k
o

k!

We conclude that in any tree of height k with n leaves there exists a path p from some
leaf to the root such that

n<=2k.(c(p)+k) k

k!

_<_2k. (2" c(p)) k

k!

and finally

since n >_- (4k)
k

and hence c(p) >_- k,
k!

l(n’k!)
1/k

k 1/k 1/k k
_->--. n since (k !) _->- if k _-> 6.

12 3

This completes the proof of Lemma 5.
THEOREM 2. In the restricted pointer machine model we have the following:
(a) The single-operation worst-case complexity ofthe Split-Find problem is l)(log n).
(b) The amortized complexity for the Union-Split-Find problem is O(log n); i.e.,

there are arbitrarily large m and sequences of m UNION, SPLIT, FIND operations
having a total cost of (m log n).



UNION-SPLIT-FIND PROBLEM 1101

Proofi (a) Let k be maximal such that n >= (4k)k/k!. Then k f(log n). Let G be
any data structure with all output nodes except Yn unmarked. By Lemma 5 there is
either a FIND operation which costs more than k time units or there is a SPLIT
operation having a cost of

k 1/k log n 1/logn log n
f(log n).--’t/ >-- ’r/

12 12 6

(b) Let G be any structure with all output nodes except y, unmarked. Define k
as in part (a). If G is not a k-structure then we perform a hardest FIND in G; this
FIND has cost k f(log n) and leaves us with a structure G’ where all output nodes
except y, are unmarked. If G is a k-structure then there is a SPLIT operation of cost
k/12. n l/k= f(log n). We perform it and immediately undo it by the corresponding
UNION operation. This leaves us with a structure G’, where all output nodes except
y, are unmarked. At this point we are in the initial situation and we have forced the
algorithm to spend f(log n) time units on at most two operations. Part (b) follows.

We want to point out that O(log n) is clearly also an upper bound for the
complexity of the Union-Split-Find problem in the restricted model. We only have to
represent each interval by a balanced tree (cf., e.g., [M84a, 111.5.3.1]).

We close this section with the following corollary.
COROLLARY 1. Pointer machines obeying the separation assumption are exponentially

weaker than pointer machines without the separation assumption. This is true for the
worst-case complexity and for the amortized complexity.

Proof. This follows immediately from Theorems 1 and 2.

4. Conclusions and open problems. In this paper we proved several new lower
bounds for the Union-Split-Find problem. In particular, we presented an O(log log n)
lower bound on the amortized complexity of the Union-Split-Find problem valid for
all pointer machine algorithms and an f(10g n) lower bound for restricted (in the
sense of Tarjan [T79] and Blum [B86]) pointer machine algorithms. Our lower bounds
match known upper bounds. Thus our results reveal that the separation assumption
of Tarjan and Blum can imply an exponential loss in efficiency.

Table 2 summarizes all known bounds for the complexity of pointer machine
algorithms for the Union-Split-Find problem on intervals including the results of this
paper.

There are still several open problems in both models. We have no lower bounds
on the amortized complexity of Union-Find and Split-Find and for the worst-case

TABLE 2

Problem

Union-Find
worst case
amortized

Split-Find
worst case
amortized

Union-Split-Find
worst case
amortized

General model

O(log log n)

(R)(log log n)

(R)(log log n)
(R)(log log n)

[EKZ77]

new

new
new

Restricted model

O(log n/log log n) [B86]
(R)(a(n)) [T79]

(0(log n) new

O(log* n) [HU73]

(R)(log n) new

O(log n) new
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complexity of Union-Find in the general model. In the restricted model it remains an
open problem to determine whether the Split-Find algorithm of Hopcroft and Ullman
[HU73], whose amortized running time is O(log* n), is optimal. We suppose that
Blum’s lower bound proof for the general Union-Find problem cannot be modified to
work also for the interval problem.

We want to point out that the Union-Find problem and the Split-Find problem
considered in this paper have amortized complexity (R)(1) on random access machines.
This was shown by Gabow and Tarjan [GT83] for the Union-Find problem and by
Imai and Asano [IA84] for the Split-Find problem.

[B86]

[EKZ77]

[GT83]

[IA84]

[HU73]

[Ka84]

[Kn68]

[Ko53]
[M84a]

[M84b]

[M84c]

[MN86]

[$73]
[T791
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A SHORT-TERM NEURAL NETWORK MEMORY*

ROBERT J. T. MORRIS," AND WING S-’:NG WONG"

Abstract. Neural network memories with storage prescriptions based on Hebb’s rule are known to
collapse as more words are stored. By requiring that the most recently stored word be remembered precisely,
a new simple short-term neural network memory is obtained and its steady state capacity analyzed and
simulated. Comparisons are drawn with Hopfield’s method, the delta method of Widrow and Hoff, and the
revised marginalist model of Mezard, Nadal, and Toulouse.

Key words, neural networks, associative memory, short-term memory, machine learning, adaptive
systems
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1. Introduction. In a paper [1] which attracted considerable attention, Hopfield
proposed a neural network model consisting of N neurons taking values e 1, eN
{-1, 1}, and interconnected by a synaptic matrix T, where To represents the synaptic
efficacy by which neuron j influences neuron i. The collective behavior of the neurons
is described by the equation

(1.1) eisgn( ToeJ-u i), i=I,...,N,
j=l

where sgn (x)= x/Ixl, x#0, and from now on we will assume ui=0. Equation (1.1)
is a simplified, discrete version of the McCullough-Pitts physiological model. Hopfield
required that the neurons’ values be updated randomly and asynchronously. He showed
that this model had the autoassociative property, as defined by Kohonen [2], i.e., it
was able to retrieve a previously stored word from part of its specification. The
prescription for storage of words es (els, , e), s 1, 2, , m was obtained from
the equation

(1.2) Tij
ese

O, i=j.

This equation has frequently been called Hebb’s rule and is simple and attractive,
partly because of its property of locality; i.e., the synapse T0 is updated with the storage
of new word eL according to a simple function of e and e only, and so all elements
of the matrix To can be updated asynchronously and in parallel. Hopfield gave a
simple explanation as to why Hebb’s rule (1.2) tends to result in the stored words
being fixed points for the dynamics of (1.1):

E Toe E ei e,e ei,(N 1),
j=l s=l

where the last approximation appeals to the argument that the stored vectors are
expected to be "pseudo-orthogonal," i.e., the square-bracketed term is approximately
(N-1)6.,. Furthermore, since T0 is symmetric it is readily verified that the "energy
function" -Y eY Toe is decreased by the substitution (1.1) whenever e changes

Received by the editors June 22, 1987; accepted for publication (in revised form) January 20, 1988.
? AT&T Bell Laboratories, Holmdel, New Jersey 07733.
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(provided individual neurons are updated one at a time and are left unchanged when
the argument of sgn () is zero). Thus (1.1) must converge to a fixed point. This
constitutes an error-correcting property in the sense that patterns close to a fixed point
are attracted to that point through the iteration of (1.1).

These ideas are closely related to schemes developed and/or analyzed by Widrow
and Hoff [3], Kohonen [2], [4], and Stone [5] (see [6] for extensive references). Most
of these rules were stated for the more general heteroassociatie storage problem in
which "keys and contents" or "inputs and targets" are associated; however, we will
rephrase these results here in the autoassociative theme. An appealing learning rule
in place of (1.2) has been called the Widrow-Hoff, or delta, rule and is described by

1.3) Tn T, --1 -JI- 7ne
where Tn is the synaptic matrix after word e has been stored and r/ is a scalar. The
term , is given by

(1.4) B. e. T._I e.
and so represents the deviation between a new word and its image under the synaptic
matrix just before it is stored. The most important result about these methods [2], [5]
is that as the number of stored words increases, the T matrix converges to the matrix
that (when applied to the input vector) results in minimal least square error for the
estimation of the target vector from the input vector. In the autoassociative case this
matrix is just the identity matrix. Kohonen [4] describes algorithms that do even
more--they recursively produce the T. matrix which for every n is the optimal estimator,
although they are considerably more complex than the simple Hebb or delta rules. In
exchange for the simplicity of the Hebb rule, these rules (including the delta rule) do
not impose any requirement of orthogonality or even linear independence in achieving
their properties. To place Hopfield’s work in perspective with prior and contemporary
work, it should be noted that it is more the retrieval process of (1.1) that is unusual
in that it specifies iterated (or feedback) threshold dynamics, as opposed to a retrieval
process which is typically a single application of the synaptic matrix to the input vector,
often without any thresholding. For more complete surveys of neural and associative
learning models, see [1], [4], [6], [7].

There have been numerous variations on the memories described by (1.1) and
(1.2). Soulie [8] and Soulie and Weisbuch [9] consider variations of (1.1) according
to how points lying on the discontinuity of the sgn are treated and the order in the
updating of the neurons. Definitions are given for parallel iteration, where all the
neurons are updated simultaneously, sequential iteration, where all the neurons are
repeatedly updated in the order of a permutation of {1, , N}, and random iteration,
as in Hopfield [1].

Personnaz, Guyon, and Dreyfus 10] consider variations.on (1.2) which also mitigate
the pseudo-orthogonality requirement of the Hebb rule. They note that for a state es
to be stable with respect to (1.1) it is necessary and sufficient that

(1.5) Tes Aes,
for some A a diagonal matrix with nonnegative elements. For the simplest case of
A I and es, s 1,..., m linearly independent, (1.3) can be solved by taking

T E(E’;)-IE

We use the notation that Tq represents the (i,j)th element of matrix T, whereas T,, represents the nth
matrix in a sequence. As above, en refers to the nth column vector in a sequence and e the ith component
of vector e.
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where E is the matrix with columns el,. e,,. They referred to this prescription for
storage as the Generalized Hebb rule. T is one form of a pseudo-inverse, and so this
method is closely related to the other methods described above. One further distinction
between [1] and the other work cited above is the use of zero diagonal elements of
T; we will return to the role of diagonal elements in 2.

The memories described above have limited capacities, and as new words continue
to be stored, reach a point where no words can be reliably retrieved or corrected. This
collapse in capacity can occur in two distinct ways. One way, exhibited by Hopfield’s
method ((1.1), (1.2)), is that "pseudo-orthogonality" between all pairs of stored words
becomes less likely. In addition, the unbounded growth of the T matrix typically
implies decreasing relatively smaller contributions of any stored word. This results in
the inability to retrieve any, including recently stored, words at steady state. A second
method of degeneracy which is exhibited, for example, by the delta method of storage
((1.3), (1.4)), is the convergence of T to the identity matrix after the input of a long
sequence of random vectors. As pointed out above, this is by design in the sense that
with T-- I the memory optimally recalls any vector offered to it. But the identity matrix
fails to exhibit any capability to correct errors or produce a word from its partial
presentation, and arguably has degenerated to a state of zero storage capacity. These
two modes of collapse are discussed more precisely in 2 and demonstrated experi-
mentally in 3.

If a neural network memory is to be used on an ongoing basis, it either needs to
be reset to the tabula rasa (T 0) state periodically, or old words need to be removed
or "forgotten" in some way. Besides physiological evidence that short-term memories,
called palimpsests, exist in nature, perhaps the most common application of associative
memories in computers is in hierarchical memory systems. These cache memories are
often found between CPU and pinout on a chip, between CPU and backplane bus on
single board computers, in memory management units and in disk buffer caches. In
these caches it is desirable that words that have not been used for some time be replaced
by current words according to the long recognized principle of locality of reference
11 ]. Additionally, the capability of neural memories to provide rapid, highly parallel

but sometimes imperfect retrieval, and the presence of backup copies of data in lower
levels of memory hierarchies suggest a possible role for neural architectures in hierar-
chical memory systems.

In the original paper by Hopfield [1] it was proposed that a short-term memory
could be obtained by limiting the range of values To could assume. This idea was
pursued further by Nadal et al. [12] who called it "learning within bounds." Both [1]
and [12] required that changes in To satisfy a constraint such as IT01 <= A. The experi-
ments in [12] suggested that for optimal choice of parameters, about .016N words
could be stored in this memory before the bit error rate (probability that an arbitrary
bit of a retrieved word is in error) exceeded 1.5 percent. The paper [12] also proposed
another scheme called "marginalist learning," but that scheme resulted in exponential
growth of synaptic values causing the authors to regard it as somewhat unrealistic for
use on an ongoing basis. Subsequently Mezard, Nadal, and Toulouse [13] revised the
marginalist scheme by requiring that the average squared synaptic efficacy remain
constant and obtained an update rule

(1.6) T,,+=(l+e/N)-/2[(e/N)e,,+e’,,+l + T,,]

where Tn is the synaptic matrix after learning el," ", en, and e is a tuning parameter.
Using this scheme and e 4, they observed a capacity of approximately .06N at a bit
error rate of 1.5 percent.
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In this paper we describe and analyze a short-term neural network memory that
is based on a simple modification to Hopfield’s model. The storage rule is simply
described and implemented: the new word is impressed on the memory with sufficient
intensity that it is memorized. This provides an automatic forgetting of older words
in the memory. We present a detailed analysis and comparison of this scheme with
Hopfield’s memory, the delta method, and the revised marginalist method. Several
important insights emerge regarding the role of the diagonal elements and a number
of techniques are developed that allow approximation of various error rates.

2. A new short-term memory. In this section we present a mathematical analysis
of the new update model. We break the analysis into two parts depending on whether
the diagonal elements in the T matrix are present.

2.1. New model without diagonal terms. To make the analysis precise, we assume
we have a sequence of independent words, el, e2, e3," ", each of which is an N-
dimensional vector of uniform signary random variables. By a uniform signary random
variable we mean a random variable that attains values and -1 with equal probability
of one half. We represent the synaptic matrix after storing n words by T,. Define the
ith bit impression of the word ek on T,, Ii(n, k), by the relation

k) 0 1"’. =(Tneke),
0 IN(n,k)

where e’ denotes the transpose of e and is a linear operator on the space of N x N
matrices defined by

0, i#j,
(X)ii

Xi otherwise.

Thus, the word e is correctly stored in T if and only if the impression I(n, k)> 0,
for l <=i<- N.

The new method of update requires that (T,)= 0, and I(n, n)=r, where r > 0 is
a storage threshold, for all and n. That is, the latest word is always stored to precisely
impression r on each coordinate. We will see that r > 0 is purely a scale factor and

and M=N-1, anddoes not affect the results in any qualitative way. Let S ene,,
assume M > 0. The update rules are

(2.1a)

r
T,

T, T,_, + D,(S, IN),

where D, is the diagonal matrix defined by

(2.1b) D
r 1

and IN is the N-by-N identity matrix.
Note that the complexity of updating the synaptic matrix, Tn, is of order N2,

which is the same order as that of the Hebb or delta rule. Moreover, the update rule
given by (2.1) has a very simple interpretation and implementation. An individual
neuron e can be considered merely to update its incoming weights To, j # i, at a rate



A SHORT-TERM NEURAL NETWORK MEMORY 1107

proportional to e ie until the threshold condition is met. Thus, like Hebb’s rule, the
update can be accomplished simply and in parallel, with all neurons revising their
corresponding row of the T matrix simultaneously and independently.

PROPOSiTiON 1. For n >-- 1, Then ren.
Proof By direct subsitution and the observation that Sen Nen and (T,_IS,)e,

T,_l e,. 1-1
From (2.1) it is easy to see that the threshold, r, is simply a scaling factor and

can be taken equal to M. Unlike the Hopfield case, T,, for n>=2, is in general
nonsymmetric. Let a 1- 1/M, 3’ 1- 2/M +2/M2. In the Appendix, we prove the
following theorem.

THEOREM 1.
(i) ETk=0, k>-l,
(ii) ETT’= M(1-a)I, k>- l,
(iii) ETn+kSn+I Mak-IN, n>--0, k >- 1,
(iv) Ee’,+l T’,+k T,+ken+l E tr T,+kS,+I T’+k M2N(1 a"+(a k-

0, k_->l.

Theorem implies that for all i, Ii(n + k, n + 1) has a mean of m(n + k, n + 1)=
Ma k-l, and a standard deviation of

yk-)), n >--

(2.2) o’(n + k, n + 1) M/1 a2k-2- a"+’(a-’- yg-’).

Define the last element stored as having lag 0, and so the kth last element stored has
lag k 1. The residual impression li(n + k, n + 1) is of interest because it is nonnegative
if and only if the ith bit of a word at lag k- 1 is stable under (1.1) after the storage
of n + k words. In the transient case starting from the initial condition T 0 at n 0,
(called the tabula rasa case), the standard deviation for the residual impression of the
(k-1)th lag work after k words are stored is r(k, 1) Mx/1- a k. At steady state, the
standard deviation for the residual impression of the (k 1)th lag is lim,_ r(n + k, n +
1) Mx/1- a 2k-2. SO even if the lag is fixed, the new model shows some degradation
as it approaches steady state. However, unlike the Hopfield case, the capacity does
not degenerate to zero at any time.

To better understand the capacity of the new model in storing words, notice that
if N is large, I(n + k, n + 1) can be approximated by a Gaussian random variable. If
the word e,+l is presented for retrieval after storing the (n + k)th word, one of three
things may happen: (1) the system may stabilize at e,+; (2) the system may stabilize
at a state different from e+; (3) the system may cycle through a chain of states. Only
the first case corresponds to error-free recall. The condition that e,+ is a stable point
is equivalent to I(n + k, n + 1) positive for all i. Let thb be the (100b)th percentile point
of the standard normal distribution. Let ber (n + k, n + 1) denote the probability that
Ii(n+ k, n+ 1) is negative. (By symmetry, it is easy to see that the probability is
independent of i.) The term ber (n + k, n + 1) can be thought of as the bit error rate
of the word en+ if all neurons update exactly once synchronously. Under the Gaussian
assumption, 1 berl (n + k, n + 1) b when

rn(n+ k, n+ l)
(2.3)

o(n + k, n + 1) bb.

For the tabula rasa case with b =0.95, this implies

2k-2

l_a 1.64,
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or k-1 0.78. At steady state, the formula becomes
2k-2

1.64,
1 a 2k-2

or a k-1 0,85.

These expressions can be solved to yield the maximum number of words that can
be stored with berl (n + k, n + 1)- 0.05. For the tabula rasa case the result is roughly
0.25N, and roughly 0.15N at steady state.

Assuming the Ii’s are independent, the probability that the (k-1)th lag word
stabilizes with an error, BER (n + k, n + 1), is simply

BER (n+k, n+ 1) 1-(1-berl (n+ k, n+ 1)) N.
It is clear that BER (n + k, n + 1)- 1 as N-o. Another quantity of interest is the
probability that an arbitrary bit is in error when the retrieval process has settled to a
fixed point, or that the retrieval process is oscillating, denoted ber (n + k, n + 1). The
quantity ber (n + k, n + 1) is hard to compute theoretically, but will be simulated and
approximated in 3.

2.2. New model with diagonal contribution. The new model discussed previously
does not allow self-excitation (T,) terms. Here, we want to examine their effects.
Consider a second model with synaptic matrix updated by the following rules"

r
(2.4) Ta - S,, Td d 1 drn-1 +-- (rlN

Then it is easy to show that Td, en ren. Again, it is clear that r is simply a scaling
factor, and so we choose r N. Let Q. IN-(S./N). Then the update rule can be
rewritten as

(2.5) T aT,_- NIN)Q, +
Let ad 1--1/N, and Yd- 1-2/N+2/N2. Then the following results can be

proved using techniques similar to the proof of Theorem 1.
THEOREM 2.
(i) ET=N(1-a)IN, k>=l,
(ii) ETT’= N2(1-a,)IN, k=> 1,
(iii) E ’Tn+kSn+l NIN, n >--_ O, k >= 1,
(iv) EtrTa,+kS.+,Ta.’+k U3(l+ad (a )), n>=O, k>=l.
Theorem 2 implies that at steady state, (as n tends to infinity), E(Td, NIN)

Tdn’- NIN) N2a dIN --> O. Since for a matrix A,
N

trAA’= A?.
i,j=

this implies that Ta converges to NIN with probability 1. Hence, the new model with
diagonal entries collapses in the long run under the assumption of a long stream of
uniform signary inputs. On the other hand, for transient use, a scheme of this type
may be practical (see [2] for illustrations). It is interesting to observe that choosing
r-1 and /= 1/N causes the new method with diagonal to coincide with the delta
method of (1.3) and (1.4). Thus the result shown here regarding the convergence of
T to a multiple of the identity matrix is the same as the phenomenon discussed in 1.

2.3. Hopfield’s model. In order to facilitate the discussion in comparing the
models, we recapitulate here some results concerning Hopfield’s model. The synaptic
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matrix of Hopfield’s model can be represented as

THEOREM 3.

(ii) ETT’= kMIN, k >= 1,
(iii) E T,,+kS,+I MIN, n >= 0, k >= 1,

H H’(iv) Etr T,,+kS,+IT,,+=M(M+n+k-1)N, n0,
Theorem 3 implies that the variance of li(n + k, n+ 1) is M(n+ k- 1), which goes

to infinity as n-oo. Hence, the capacity of Hopfield’s model degenerates to zero for
large n.

3. Experimental results anl liseussion. We now describe the experimental results,
which were obtained by simulation. Three memory-storage rules were simulated:
Hopfield’s model (1.2), the new methods of 2.1 and 2.2 (2.1) and (2.4), and the
revised marginalist model ((1.6) with zero diagonal terms). In each case the model
was required to store a sequence of words that were independently generated, uniform
signary random strings. The state evolution rule in each case was (1.1), and the
individual neurons were updated randomly and asynchronously until a fixed point or
cycle was observed.

The following performance measures were instrumented as a means of relating
the experimental results to the analytical results of 2:

ber (n + k, n + 1): The probability that the impression of an arbitrary bit is nega-
tive before any bits of the word are updated, when retrieval of the (n + 1)th word
stored is attempted after storage of the (n + k)th word, (i.e., lag k- 1).

ber (n + k, n + 1): The probability that an arbitrary bit is recalled with error after
the memory has settled to a fixed point, or that the retrieval process is oscillating (i.e.,
(1.1) cycles), when retrieval of the (n + 1)th word stored is attempted after storage of
the (n + k)th word.

BER (n + k, n + 1): The block error rate, or probability that any bit of word is in
error, when retrieval of the (n + 1)th word stored is attempted after storage of the
(n + k)th word.

Note that when the memory is presented with an exact version of a stored vector
for retrieval and any bit of the word is returned in error after an application of (1.1),
then the memory will either retrieve the word incorrectly or it will cycle. We count
both of these events as a block error.

Figure 1 shows a transient study of the case of N- 100 neurons, with 7, 10, and
15 words stored, starting from tabula rasa. We show the block error rates at lags ranging
from the last word stored back to the first. The results are shown for Hopfield’s and
the new method (without diagonal). As expected it is seen that Hopfield’s method
maintains an error rate independent of the lag, but increasing sharply as more words
are stored. The new method shows errors that, as expected for a short-term memory,
increase as a function of lag. The new method significantly outperforms Hopfield’s for
recent lags and is superior except for the most distant three or four words. The results
were obtained using 1000-5000 ensemble averages.

Figure 2 is another transient study where the lag is fixed at 2 (i.e., the third last
word stored is attempted for retrieval), N--30 neurons, and 80 words are stored. In
this case both BER and ber results are shown. These results verify the statement in
2 that as more words are stored, Hopfield’s method quickly collapses (BER



1110 R.J.T. MORRIS AND W. S. WONG

1.000
.800

.600

.400

.200

.100

.o8o
LU .060
n"

.040

LU .020

m .010
.008

.006

.004

.002

.001

HOPFIELD’S METHOD, +J

S:EW METHOD-_ i;/ o wo os

//NEW METHOD,
[[/7 WORDS STORED

HOPFIELD’S METHOD,
7 WORDS STORED

0 2 3 4 5 6 7 8 9 10 11 12 13 14

LAG

FIG. 1. Transient block error rates as a function of lag, starting from tabula rasa, for Hopfield and new

methods. N 100 neurons.)

approaches 1 when 25 words have been stored), whereas the new method settles to a
bit error rate of about 5 percent and a block error rate of about 30 percent. For these
results 1000 ensemble averages were used for each point.

As discussed in 1, a second type of collapse of a short-term autoassociative
memory is exhibited by the new method with diagonal, or the delta method. Figure 3
demonstrates this behavior. In this case, since the synaptic matrix is converging towards
a multiple of the identity matrix (Theorem 2) it is necessary to test the ability of the
memory to correct errors, or to perform autoassociative recall from the presentation
of part of a word. In Fig. 3 we show results from the attempted retrieval of a word
with b 1, 2, or 3 bit errors introduced (at random). Shown is the probability that the
iteration (1.1) (random and asynchronous updates) fails to converge to the exact
initially stored word. This is denoted in Fig. 3 as BERoo, to emphasize the fact that
(1.1) is iterated. Again, cycles are recorded as block errors and 1000 ensemble averages
are used. It is seen that the new method with diagonal, which is equivalent to the delta
method, is initially quite effective but quickly reaches a point where it is unable to
correct any bit errors and consequently has BERoo 1. In contrast, the new method
without diagonal is able to correct errors at steady state.

Figures 4(a) and 4(b) concentrate on short-term memories at steady state (n
and compare the performance of the new method with the revised marginalist method
([13] with e =4.108). These results do not utilize ensemble averages but instead use
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FIG. 2. Transient error rates at lag two (i.e., third last element stored), as a function of number of words
stored, for the Hopfield and new methods. (N 30 neurons.)

running averages collected over long runs (allowing 200,000 to 1,000,000 observations)
but after first discounting a warming-up period. Figure 4a considers the case of N 30
neurons and shows BER and ber for the new and revised marginalist method. Both
show good performance as short-term memories. The new method exhibits smaller
settled bit errors except at lags 1 and 2 and smaller block errors except at lag 1. Figure
4b repeats the experiment for N 100 and shows results for BER and ber, although
in this case the new method was observed to have smaller settled bit error rates except
at lags 2 through 6, and uniformly smaller block error rates. (See also Note Added in
Proof.)

In the remainder of this section we discuss experimental results that relate back
to the analysis carried out in 2. We compare the ber results observed in the simulations
with the results predicted using the assumption of a Gaussian distribution as proposed
in 2. The Tables 1, 2, and 3 for cases N 10, 30, and 100, respectively, report the
results in their columns 1 and 2. It is seen that the approximation works well when
(ber) bit error rates are at least 10 percent for the case of N 10, down to at least 2
percent for the case of N 100. Thus this approximation might be stated to be quite
accurate for the case of a large number of neurons, and particularly when the threshold
bit error rate which is associated with "nominal capacity" is not too small. However,
for small numbers of neurons and/or very low error rate regimes the error might be
significant. It could be argued that the case of a small number of neurons is not as
challenging to the investigator since these systems are easily simulated to high accuracy.
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The second analytical approximation we investigate in the tables refers to the
computation of block error rates, or BER. As described in 2, if we are willing to
make an assumption of independence between bit errors in a word, the result BER--
1-(1-ber)N is obtained. The quality of this approximation is shown in columns 3
and 4 of the tables, with and without the effect of the Gaussian approximation. That
is, column 4 uses the independence assumption on the observed ber values, whereas
column 3 uses it on the theoretically predicted berl values. Column 5 shows the observed
values. It is seen that the independence assumption does introduce some errors at the
lower error rates. The agreement between the theoretical (column 3) and observed
(column 5) is seen to be fairly good, partly due to a fortuitous cancellation of errors.
It should also be noted that the methodology of 2 allows the theoretical BER results
to be calculated without recourse to the independence assumption. However, this
procedure involves the numerical evaluation of a multidimensional integral (first
orthant probability of a Gaussian distribution), which we decided to avoid.

Our final topic in this section discusses the prospects for the computation of the
ber, or settled bit error rate, statistics. Let ber (j) denote lim,_. ber (n +j + 1, n + 1),
and BER (j) denote lim,_. BER (n +j + 1, n + 1). Then,

ber (j)= E[settled bit errors at lagjlblock error at lag j] BER (j)/N.
We observed that the above conditional error rate was quite large, implying that when
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FIG. 4(a). Steady state error rates as a function of lag, for revised marginalist and new methods.
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a block error occurred the model settled to a point far from the stored value we were
trying to retrieve, i.e., the stored word was completely or almost completely lost from
the memory, and convergence to another quite different stored word or spurious state
occurred. The ranges of observed values are recorded in Table 4; the ranges noted are
those observed as the lag varies. A simple explanation for and estimate ofthese observed
values can be obtained as follows. If we were to ignore the erroneous and spurious
words stored, then the expected number of words Stored would be p pairs, where
p Yi=o (1 BER (i))mthe pairs arise from the observation that a word and its comple-
ment are always both fixed points of (1.1). Then when a block error occurs, we assume
that the word stored is completely lost and that the memory settles to the nearest in
Hamming distance of p randomly chosen words. Thus the expected number of bit
errors Q given that a block error occurs is given by

k=0 j=0 j

Computational experience suggests that this expression is relatively insensitive to p in
the neighborhood of its estimate given above. The values of Q/N are given in Table
4 and show a rough approximation to the observed rates. Thus combining this with
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TABLE
New method with N 10.

2 3 4 5

One step ber BER predicted BER predicted
predicted using using

using Gaussian One step bet independence and independence and BER
lag distribution observed column column 2 observed

0 0 0 0 0 0
.026 .0487 .232 .393 .3162

2 .098 .1075 .643 .679 .6407
3 .161 .1615 .827 .828 .8427
4 .212 .2082 .908 .903 .9325
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TABLE 2
New method with N 30.

2 3 4 5

lag

One step ber
predicted

using Gaussian
distribution

One step ber
observed

BER predicted BER predicted
using using

independence and independence and
column column 2

BER
observed

0 0 0 0 0 0
.00011 .0053 .0033 .147 .0862

2 .00495 .0161 .138 .385 .251
3 .0194 .0313 .444 .615 .442
4 .0392 .0491 .699 .779 .624
5 .0615 .0670 .853 .875 .759
6 .0838 .0866 .928 .934 .861
7 .105 .1056 .964 .965 .927

TABLE 3
New method with N 100.

2 3 4 5

lag

One step ber
predicted

using Gaussian
distribution

One step ber
observed

BER predicted BER predicted
using using

independence and independence and
column column 2

BER
observed

0 0 0 0 0 0
5 .0012 .0043 .113 .350 .215
7 .0052 .0093 .406 .607 .418
10 .017 .022 .820 .892 .701
15 .047 .050 .992 .994 .935
20 .079 .080 .9997 .998 .976

TABLE 4

N ber(k)lblock error QN

10 .27---.34 .31
30 .23 .38 .37
100 .2 .48 .40

the previous methodology for finding the block error rate BER we obtain a rough
method of calculation of the settled bit error rate ber.

4. Conclusion. The proposed neural network memory exhibits the behavior
required of a short-term memory and its capacity compares favorably with previously
proposed approaches. Its derivation is based on the simple and intuitive principle that
the last word stored should be remembered correctly. The model’s qualitative behavior
is well explained by an analysis based on the mean and variance of the bit impression.
Further work is needed to investigate the potential role of memories such as these in
hierarchical memory systems and connectionist architectures.
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Appendix. To prove Theorem 1, we need some simple algebraic formulas summar-
ized in the following lemma.

LEMMA A: Let z’- (za, , ZN), where zris are independent uniform signary random
variables, S zz’ and R Iv- (1/M)S. Let X, Y be N-by-N matrices with coefficients
independent of the zls. Let Ez denote the expectation taken with respect to variables
za, , zn only. Then

(i) EzRXR (1-1/M)2X +(1/M2)(X’ +(tr X)IN--2(X)).
(ii) E(XR)YR=E(RX’)YR=(1-2/M+ 1/M2)(X)Y+(1/M2)((Y)X

+ (XY’) 2(X)(Y)).
(iii) E(XR)2 (1 2/M)(X) + (1/M2)(XX’).
Praof. To prove (i), note that

ERXR 1 X+-- EzSXS,

( N )ESXS= Ezizj XklZkZ.
k,l=l

Part (i) follows from

N IXjd-Xji, ij,

Ezgz Xzz= v

k,I--1 E Xkk, i=j.
k=l

The other results can be proved similarly. [3

From now on we assume the symbols and notation defined in 2. For k >= 1, define

Tk Tk-MIN and Rk In-(1/M)Sk. Then, (2.1) can be rewritten as

Tk Tk-aRk --( Tk-aRk).

Let Eg represent expectation taken with respect to variables e,. ., e only.
Proof of Theorem l(i). Clearly ETa--0. The result follows by induction, since if

E Tk-1 0, then

E Tk E ’k Rk E k Rk (1---) E t, E k (1---) E Tk O [-]

ProofofTheorem l(ii). It is easy to see that ETaT MIn M2(1 a)IN. For k > 1,

E ’k" ETkT’+M:IN
(A1)

Ek-IR2k ~’ E( ]k Rk)Rkk-1Tk-1 -2 --Ek- Rk(gk’k-)d-E(k_aRk)2d-M2IN

Since ERk=(1-1/M+ lIMa)IN, the first term of the right-hand side of (A1)
simplifies to (1- 1/M+ 1/M2)k"k. Now let Y in Lemma A(ii) be the identity matrix.
It follows that

E( k-lRk)Rk"-a E(E(k-,R,)Rk) Tk-a’’

1- E(Tk-a)T’k-a+---ETk-aT’k-a
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Since ’k-lRk(Rk"k-1) is the transpose of (’k-IRk)Rk"k-, the second and third term
of the right-hand side of (A1) are equal. Applying Lemma A(iii) to the fourth term,
we have the following equation:

ETkT’ 1
M 2 Eft’k-1 :-1 "+" E(k_l -1)+2MI.

Using this relation, it is easy to show by induction thatE E() for all
k. Hence, letting a 1- l/M, we have

Ek (1-) Ek-I-+2MIN

-1E ", -2)- f1+2M(1+’..+
M2(2- a)Iu.

Proof of eorem 1 (iii). For k > 1,

E T.+S.+I ET.+_R.+S.+-E(T.+_IR.+)S.+- MI

(1-) E.+k_,’.+ + (M(1-)-M)I
-E.+S.+ (1 + + -)Iu

=M(a-- 1)Iu,

since E T.+IS.+ MIu. It follows for k 1 that

ET.+S.+ Ma-I.
Proof of eorem l(iv). The result clearly holds for k 1. For k > 1,

E tr T.+kS.+IT.+k E tr T.+k
E tr R.+k+k-

(A2)
-E tr

-E tr R.+kf;+k-(.+k-R.+k)S.+ + E tr

Applying Lemma A(i) to the first term, we have

First term E tr T.+k_(EkR.+gS.+IR.+k)T+_

2+ E tr T+_S+T+_"’ + E tr T+_T+_.1
M M

Applying Lemma A(ii) and Theorem l(iii), we have

-,
2E tr (+_)S+)

1(M-2)MN-(M-2M+2)N-+E tr +-i+-.
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Since the third term on the right-hand side of (A2) is equal to
E tr Sn/lRn+k’+k-l(n+k-lRn+k), it is equal to the second term. Finally, by applying
Lemma A(iii), we have

1
Fourth term (M 2)MN+-- E tr Tn+k_ T’+k_.

So, letting y 1 2/M +2/M2, and using Theorem l(ii),

(1 2)M2 n+k-1E tr T’+k Tn+kSn+I yE tr T’+k_ ,+k-xS,+ +
M I2 (2- a )S

+ (2yM2a k-2 (M 2)M)S

Tn+k-1 k- +1yEtr T,,+ ,S +(2+(M-2)(2-a+k-’))N
),k-’E tr r’+l Tn+IS+I +2(M- 1)N(1 +...+ yk-2)
_(M_2)N(a"+k-’ + oln+k-2T+. .+ an/l,/k-2)
M2S(1--a"+’(ak-’--yk-1)). lq
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Note Added in Proof. A generalization of the above new method which exhibits
further improved performance is described in "A Decentralized Tunable Short Term
Neural Network Memory and Application to Tracking", R. J. T. Morris, L. D. Rubin,
and W. S. Wong, Second International Conference on Neural Networks, San Diego,
CA, July 24-27, 1988.
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TRANSITIVE ORIENTATIONS OF GRAPHS*

BILA BOLLOB/St:I: AND GRAHAM BRIGHTWELL"

Abstract Suppose that we have a set X of n objects in some unknown total order <. For G a graph
on X, we ask, for each edge xy, "Is x < y?" On processing the information thus gained we may be able to
deduce more comparisons. The information we have is then in the form of a partial order P(G; <). Let
t(G) denote the maximum, over all linear orders < on X, of the number of pairs not related in P(G; <);
and let t(n, p) denote the minimum of t(G) over all graphs G with n vertices and [pn2/2J edges. We find
upper and lower bounds for t(n, p) throughout the range of p =p(n).

Key words graph, sorting algorithm, comparison sorting, orientations

AMS(MOS) subject classifications. 68R10, 68Q20, 05C80

1. Introduction. We are concerned with 2-round sorting problems of the following
type. Suppose that we have a set V of size n in an unknown order <. We wish to ask
a set of [pn2/2J questions all at once, such that no matter what answers we get we
can deduce all but at most t(n, p) of the () relations. We can then, in the second
round, complete our sort by asking at most t(n, p) questions. How large need t(n, p)
be? Here a question or probe is a pair (a, b) of objects, and the answer reveals whether
a<b or b<a.

As the probes have to be made simultaneously, the set of probes can be thought
of as a graph on V. We can thus reformulate our problem in terms of graphs. Given
a graph G V, E) of order n GI and size e(G), say, consider an acyclic orientation
of the edges. Let ( V,/) be the directed graph obtained in this way and let C
be the acyclic closure of G’xy is an arc of C(G) if G contains a directed path from
x to y. As every acyclic orientation of G is induced by a total order on V, we may
assume that E is induced by a total order < on V. The arcs of C(G) define a partial
order P(G; <); we call P(G; <) the transitive orientation of G associated with <. So
x < y in P(G; <) if there are elements Xl, X2, Xr of V(G) such that x xl < x2

’’<Xr=y andxiXi+lisanedgeofGfor l<_-i<r.

Thus we are interested in graphs G such that every transitive orientation of G
contains many relations. Let r(G; <) denote the number of relations in P(G; <), and
let t(G)=max< {()-r(G; <)}; i.e., t(G) is the maximum over all orders < of the
number of pairs not related in P(G; <). The question we are interested in is the
following. For a graph G with n vertices and [pn2/2j edges, how small can t(G) be?
Accordingly, let t(n,p)=min{t(G):lGl=n,e(G)=[pn2/2j}. Our aim is to give
bounds on t(n, p) throughout the range ofp. (The notation t(n, p) is intended to suggest
that the problem is closely related to random graphs, and a random graph of order n,
with probability p of an edge, has about pn2/2 edges.)

One particular version of this problem is the following. How many questions do
we have to ask in order to ensure that, when we know the answers to these questions,
we will know all but o(n 2) of the relations? In other words, how large must p(n) be
before t(n, p) becomes o(n2)? This question was proposed by Rabin (see [7]), and
considered by the present authors [6] as well as by Ajtai et al. [1], and by Alon, Azar,
and Vishkin [4].
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$ The work of this author was partially supported by MCS grant 8104854.
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Related problems have been studied by Bollobfis and Rosenfeld [8], Hfiggkvist
and Hell [12]-[14], Ajtai, Koml6s, and Szemer6di [2], [3], Bollobfis and Thomason
[9], and others (see Bollobfis and Hell [7] and Bollobfis [5]).

A slightly extended version of this paper, together with [6], occurs as 8 of the
second author’s thesis [10].

Before embarking on the results, we recall the concept of a random graph. Let
Gn, e Ge denote a random graph on n vertices, with each pair of vertices joined by
an edge with probability p p(n), each pair considered independently. We say that
almost every Gp has property Q, or that Q holds almost surely, if the probability that
Gn, v has Q tends to 1 as n- c. For the general theory of random graphs, the reader
is referred to Bollobfis [5].

We note here one more piece of terminology: if xlx2 Xr is a chain in P(G; <),
we say that the chain spans s vertices if there are precisely s vertices between x and

xr in <.

2. Summary of results. The function t(n, p) exhibits very different behaviour in
three different ranges of p =p(n). Of course, the boundaries of these ranges are
chosen somewhat arbitrarily. We deal first with the middle range, with =p=
c log n log log n/n log log log n, it seems that almost every G,,p has t(G,,p) close to

t(n, p). In this range, we shall prove the following general bound.

(1) clnp- log n <= t(n, p) <-_ c2np
-1 log (np) log (p-l).

(Here and throughout c, cl, c2, etc., are unspecified absolute constants.) It seems likely
that, at any rate for most of this range, the correct order of magnitude of t(n, p) is
np-1 log (np) log (p-)/log log (np). We offer several pieces of evidence in support of
this conjecture: see also the remark after Theorem 8. First, we prove that, if p>
(log n)3/n and p(n) 0 then, for almost every Gp,

(2) t(G, >-
cnp-1 log (np) log (p-l)

’P log log (np)

In [6, Thms. 1 and 5] we proved that, for the special case p=
ce log n log log n n log log log n, with ce > 100 a constant, that, for almost every Gp,

/12 4n 2

< t(G p)<(3) 4Ce2 Ce
1/2

which fits in with our conjecture, and for the other end of the range we prove in this
1> > c log log n/log n, thenpaper that our estimate is correct" if g p

(4) cnp- log n <- t(n, p) <= c2np -1 log n.

Alon, Azar, and Vishkin [4, Thm. 3.3] assert,
1/1-1/2 log n/(log log/1) 1/2, we have

c2/’/3/2 log n
(5) t(n,p) <-

(log log.n) 1/’

essentially, that for p=

which serves to provide evidence in favour of our conjecture.
Let us give two special cases of (1). Ifp n -r, where r is a constant strictly between

0 and 1, we have"

(6) Cl/1
l+r log n <-- t(n, p) <-- cznl+r(log /,)2,

and if p r log n/n, where log log n <-r-<_ (log n) s, then our "gap" is just O(log log n)"
2 2

(7) cn n
<= t(n,p)<--(s+ 1)c2--- log log n.
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In [10], we proved that if p >-a(n) log n log log n n log log log n, where 100 <-

ce(n) -<- (log log n) 1/4, then

an2

(8) t(n, p) <--
1/2,

whereas ([6, Thm. 6], also Alon, Azar, and Vishkin [4, Prop. 3.5(i)], and Ajtai et al.
1, Thm. 2]), if p =< c log n/n, then

(9) t(n,p) > max
3c+5’

1- 1- (l-e)

Thus for smaller p the nature of the question changes, and we ask instead for the order
of magnitude of r(n, p) (.) t(n, p), the maximum number of relations a graph with
n vertices and [pn2/2] edges can guarantee us. Here the graphs giving our lower
bound are of the following form. We use about half of the edges to form a random
graph on a set R of the vertices, with IRl--r, with r chosen just small enough to
guarantee that, in every transitive orientation of G[R], at least (8/9)(;) of the pairs
of vertices of R are related. Other vertices of G have degree 1, sending one edge to
R. Thus, in every transitive orientation, most of these vertices are related to a positive
proportion of the vertices of R. By considering graphs of the above form, we prove
the following results. For 1/4 log n/n -> p _-> 4/n, we have

cln3p
>_ (n2) t(n, P) >

c2n3p lg lg lg n
(10)

logn-- lognloglogn

and for m =- [pn2/2J <-_2n, we have

clm2 ( n2) c2m21g lg lg m
>_ -t(n,p)>_(11)

log m- log m log log m

The final case we have to consider is the range p >-. This is covered by the
following result. We prove that there are absolute constants d and d2 such that,
whenever rn-<_(), we have

Also in this case random graphs G almost surely do not have t(G,p) attaining the
bound t(n, p), up to a constant. Rather, we prove the upper bound in (12) by considering
graphs where the m non-edges form a random graph on a set of cm /2 vertices, and
every other vertex has degree n- 1.

There are thus a variety of results in this paper, and it might be hoped that some
of the gaps" between our lower and upper bounds could be closed.

3. The middle range. Our first step in proving the results is to investigate a technique
which gives a good lower bound for t(G) for many graphs G. If we have a set X of
n objects, s of which are red, and we totally order X by <, then a run of red objects
is simply an interval in (X, <) all elements of which are red. If a vertex x of our graph
has many non-neighbours (the red vertices) in a set X, then, on taking a random
ordering < of X, we shall find, with high probability, a longish run of non-neighbours;
we can then find an extension of < to V(G) in which x is not related to any of these
non-neighbours. What is more, we can do this simultaneously for many vertices x of
our graph, thus yielding many pairs unrelated in P(G; <). We first need an elementary
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lemma concerning the existence of a long run. This is, of course, a well-known
combinatorial problem, and variations of Lemma 1 can be found in several textbooks
(for instance, David and Barton [11]). Some details are omitted in the proof.

LEMMA 1. Suppose 0 <- <--_ s < n and 21 + 1 < n. Let X be a set of n objects, s of
which are red. Ifwe take a random total ordering -< ofX, all orderings being equiprobable,
then the probability that there is a run of red objects in (X, < is at least

[ 2/+1

1-_l) (n-s)-- n-21-1"
Furthermore, there is an no such that if n >= no and l<= [log ((n-s))/log (n/s)], then
this probability is at least 1/2.

Proof Without loss of generality X is the set In] {1, 2,. , n}, the ordering <
is the usual total ordering of [n l, and we are selecting the s red elements at random
from In]. Let M be the number of elements m In] such that m is not red but rn + 1,
m + 2, , m + are. The random variable M thus depends on the set of red elements
of[n].

We see that

and

s-21

where : denotes expectation. Hence by Chebyshev’s inequality

EM2- ([EM)2

P(M=0)_-<
(:M)2

--<+ 1
-.M s-21 s-1

Expanding the binomial coefficients and rearranging, we find that

1 [(n-1)(s-l) (n-2)(s-l-1)
P(M=0)-<---+ (n-l-1)s (n-l-Z)(s-1)

(n-l)(s-21+l) n

(n-2t)(s-l+l)" n-21-1-1

But

So

1 21+1
[M n-21-1

_M>=(n-s)

P(M O) =< S- (n-s)-’+
21+1

n-21-1’
as desired.

It is straightforward but tedious to check the second assertion, namely that for n
sufficiently large and l= [log (1/2(n-s))/log (n/s)], the expression above is at most 1/2.
For details see [10].
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Now we show how Lemma 1 can be used to find transitive orientations < of our
graph G in which many pairs are unrelated.

THEOREM 2. Let G be any graph. Suppose there are subsets U and W of V( G) of
sizes uI- u and wl- w, respectively, such that every vertex of U sends at least
non-edges to W (i.e., sends at most w 3" edges to W) and w >- no. Then t(G) >-_ 1/2ul( w, 3"),
where

l= l(w, 3")= [lg (1/2(w-3"))]log(w/y)

Proof Consider a random total ordering of W (all orderings equiprobable), and
let x be a vertex in U. By Lemma 1, with the "red" vertices as the elements of W
which are non-neighbours of x, the probability that there is a run of non-neighbours
is at least 1/2. Hence the expected number of vertices of U with a run of at least
non-neighbours is at least u/2. We now fix an ordering < of W such that the set X
of vertices in U which do have a run of non-neighbours in (W, <) has order at least
u/2. Without loss of generality W, <) [w]. For each x X, fix some k(x) such that
x is adjacent to k(x) but to none of k(x)+l,..., k(x)+l.

We now extend < to a total order of V(G) as follows:
(i) The order < remains unaltered on W.
(ii) We choose any total order on V(G)\(Wt_J X), and set (V(G)\(WU X))<

Wt_J X.
(iii) For each x X, we set k(x) < x < k(x) + 1.
(iv) We order each of the sets {x X: k(x) k} in any way.
This is clearly an extension of < to a total order of V(G). Also, each x X is

incomparable with all of k(x) + 1, , k(x) + in P(G; -<). Indeed, if y X is above
x in -<, then k(y)>-_ k(x), and so y is not less than any vertex of W below k(y)+ l,
which is at least k(x)+ I.

Therefore the IX]l relations x < k(x)+j, for x X and 1 _-<j-_< l, are in < but not
in P(G; <), and therefore t( G) >- [Xll>- 1/2ul, as desired.

We shall make use of Theorem 2 both for large and medium values of p. We shall
first consider the middle range, with p _-< 1/2 and pn/log n >= . In this range, as mentioned
earlier, it turns out that the upper bounds given by considering random Gp’s are at
least close to best possible. Let us first prove the lower bound for t(n, p) given by (1).
This in fact requires two quite different techniques, useful for different ranges of p.
The first bound we prove, using Theorem 2, is good for fairly large p. Here and
throughout, we omit integrality signs, which do not affect the argument. All our
inequalities are claimed to hold only for n sufficiently large, even when this is not
explicitly stated.

THEOREM 3 If np -, and p <=3, then t(n,p)>-(1/30)np- log (np), for n
sufficiently large, say n >-

Proof Let G be any graph with n vertices and pn2/2 edges.
We consider first random partitions of V(G) into two components V1 and V2 of

size m n/2. The expected number of V1- V2 edges is pn2/4. We fix one such partition
with at most pn2/4 edges from V1 to V2. At most n/4 vertices of V send more than
pn edges to V2, and so there is a subset U of V with IUI-> n/4 such that no vertex
of U sends more than pn edges to V. Hence the conditions of Theorem 2 are satisfied
with W V2 and 3’ (1/2- p) n. Therefore

1 n log (1/2pn) 1t(G)>-- Llog ii--2p)-1)
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Since p _-< 1/2, we have log (1 2p) >- -2p 4p2 => -(10/3)p, and hence

n[3 log (pn/5)]t(G)e- 10p

1
>--_’- np -1 log (pn),

for sufficiently large n.
Let us note that a special case of Theorem 3 gives a result of Alon, Azar, and

Vishkin [4], which is an improvement of a result of Bollobfis and Thomason [9] and
Higgkvist and Hell [13]. It proves that, to sort n objects in two rounds, at least
(1/12)n3/2(log n)/2 parallel processors are required. Bollobfis and Thomason proved
that n3/2 log n processors suffice; this will also follow, up to a constant factor, from
the upper bound on t(n, p) given by (1). In [4], Alon, Azar, and Vishkin announced
that, in fact, n 3/:z log n/(log log n)/2 processors suffice.

COROLLARY 4. Let G be any graph with n vertices and (1/12)na/2(log n)/2 edges.
If n is sufficiently large, then there is a transitive orientation of G with at most

(n2)-(1/12)n3/Z(log n) ’/2

relations.

Proof Set p n-/Z(log n)/2 in Theorem 3.
The drawback of the method used in the proof of Theorem 3 is that it considers

only "short-range" implications, in the sense that if x < y in P(G; <) and y < z, we
do not look to see whether the relation x < z is missing from P(G; <). If p is small,
this is obviously a serious restriction, and in fact we can improve on Theorem 3 by
just taking a random ordering of V(G) and counting chains spanning fairly few vertices.
This proof is essentially the same as one sketched in [6].

THEOREM 5. Suppose that p(n)O and (pn/logn)>-1/2. Then t(n,p)>-_
(1/64)np- log (p-l).

Proof Let G be any graph with n vertices and pn2/2 edges. There are at most
n/2 vertices of degree greater than 2pn. We place these vertices at the top of the
ordering, and ignore them. The graph G’ spanned by the remaining vertices has order
m >-_ n/2 and maximal degree at most 2pn.

We next take a random ordering < of V(G), and calculate the expected number
of chains spanning at most p-1 log (p-i) n/4 vertices.

The number of chains of length k in G’ is at most n(2pn) k, and the probability
that such a chain spans at most vertices is at most

Hence the expected number of chains spanning at most vertices is at most

n2(2pn)k()(m-k-1)’ )k() 2nk+
k=0 ml

"_--<n (2p mk+k=0

4n( 1 + 4p) t.
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Thus there is an ordering of G’ such that at least (m-l)l-4n(1 +4p) relations
are omitted. But (1 +4p) <-eapt=p-1/2<- 1/32 and (m-l)l > nl/4, so

nl 1
t( G) > t( G’) > (m-l)l-4n(1 +4p) _>_=m np-1 log (p-l),

8 64

as required.
Combining Theorems 3 and 5, we obtain the desired lower bound for t(n, p).
THEOREM 6. Suppose pn/log n>-1/2 and p<-_1/2. Then t(n,p)>-(1/lOO)np-1 log n.

Proof The maximum of (1/64)log (p-) and (1/30)log (pn) is always at least
(1/100) log n.

The lower bounds for t(n, p) in (1), (4), (6), and (7) follow from Theorem 6. We
now turn our attention to an upper bound. As mentioned earlier, we shall prove this
using the techniques of random graphs. We first give properties of a graph (3 which
imply that t(G) is small, and then prove that almost every Gv has these properties,
for appropriate values of the parameters.

THEOREM 7. Suppose
_

n, and let G be a graph on n vertices. Let (Q1) and (Q2)
be the following properties of graphs, depending on I.

(Q1) For every pair U, V) ofsubsets of V( G) with uI vI- t, there is a U V edge.

(Q_) Every triple (a, B, C) of disjoint subsets of V(G) with [AI-IBI-ICI-6I has the
following property. For at most 12 pairs (x, y) with x A, y C there is no z B
with xzy a path in G.

(i) If G has (Q), then t(G) =< 8nl log I.
(ii) If, in addition, G has (Q2), then t(G)_<-_ llnl.

Proof Let G be any graph on n vertices satisfying (Q), and let < be any ordering
of V(G). Without loss of generality (V(G), <)=In] with its natural order. We split
V(G) into s n/61 sets, V1, , Vs, where V] 61 for each i, and V - V2 -’’’- V

Suppose first that (3 has property (Q1), and it may or may not have (Q2). We
shall find many implications in P(G; <) using just (Q). Our method is to construct
subsets W/of the V, each of order at least 5 l, such that every subset Y of W of order
at most has at least 2[ Y[ neighbours in V_1, for each i. Thus a vertex x in W will
be above many vertices in W-k, for large k. Our final step will be to show that the
vertices we discard in the construction of the W do not contribute excessive numbers
of relations not in P(G; <).

We define the W inductively, beginning with W1 V1. Given W_I as required, set

’ {A
_

V" IF(A) f’l W_I] < 2[al}.
Clearly M is closed under disjoint unions. We claim that M contains no set of size
between and 2/. Indeed, suppose that A M and <= ]A[ <= 21. Then [W_I\F(A)]>
5/-4/= l, and so, since (3 has (Q), there is an A-(W_\F(A)) edge, which is not
possible.

Let Xi be an element of M which is maximal subject to Ix, < l, and set W V\Xi.
If Y c W has order at most 1, and Y M, then Xi Y M, but ]Xi U YI < 21 and so
IX, t_J YI < l, contradicting the maximality of X. Therefore IF(Y) tq W,-l-> 21YI for
every small subset Y of W, and so W/is as desired.

Set W= i-- W and X t_J =1X, so that V(G) is the disjoint union of W and
X. We claim that, for every vertex x in W, there are at most 71 log vertices y V((3)
with y < x but y x in P((3; <). Indeed, suppose that x Wk, where we may assume
that k >= log/. By induction on j, we see that for 1 =<j =< [log l], there are 2 vertices v
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in Wk- with v < x in P(G; <), and therefore in particular there are at least vertices
v in Wk-og211 with v<x in P(G; <). All but at most vertices of G send an edge to
one ofthese vertices, since G has (Q), and therefore there are at most 6/(1 + [log2/]) +
l-_< 71 log vertices y V(G) with y < x but y : x in P(G; <), as claimed.

Now we suppose that G also has property (Q2). In this case, we shall show that
rather more is true: we can select a large subset W of V(G) such that, for every vertex
x of W, there are at most 81 vertices y of V(G) with y < x but y z x in P(G; < ),

We construct subsets W of V of size at least 51 with the property that, for all
x W, there are at least 51 vertices y in V-2 with y < x in P(G; <). We set W1
and W2= V2. For k_-> 2, let A= Vk+l, B Vk, and C Vk-, and use (Q2). If xzy is a
path in G, for x A, z B, and y C, then y < x in P(G; <), and so there are at most
12 pairs (x, y) with x A, y C, and y : x in P(G; <). Hence the set

Xk+={X Vk+: yx in P(G; <) for at least vertices y Vk-1}

has order at most I. The set Wk+l Vk+\Xk+ then has the desired properties.
Every vertex x of W U i= W, say x Wk with k => 3, has at least 51 vertices y

in Vk- which are less than x in P(G; <), and as before at most vertices of G do
not send an edge to one of these 51 vertices. Thus at most 81 vertices y < x are such
that y x in P(G; <), as claimed.

In both cases, we have found sets W_ V such that IW[-> 51, and every vertex x
of W=i=1W has at most m vertices y below x with yZx in P(G; <),
where rn _-< 71 log l, and if (Q2) holds, then m _-< 8/.

Now let us turn our attention to the vertices x in X V(G)\ W. For such x, define

rx =max {r: {x-l, x-2,...,x-r}f’)F(x)(’l W=},

so that x is joined to x-rx- 1 by an edge of G, and x-rx- 1 W, but this is not true
for any smaller r. There are at most rn vertices below x- rx- 1 which are not less than
x-rx-1 in P(G; <), and hence there are at most rx + rn vertices y such that y < x
but y.x in P(G; <).

Thus t(G), the total number of pairs not related in P(G; <), is at most mn +
Yxx rx. It remains to be shown that Yx,x rx cannot be too large.

For xX, let Ix= W f’l{x-1,...,x-rx}. We note that, for rx>41, we have
[Ix[ > G/2, and so

E rx <=nl+ E II1.
xX xX

Each lx is an interval in (W, < Iw), and we know that, for any subset Y of X of
size l, the intersection of the Ix for x Y is not too large: If’)x r Ix] < l, since otherwise
(Y, v Ix) is a pair of subsets of V(G) which violates (Q).

We relabel W so that (W, <]w)= [1W]], and consider the vertices l, 21,..., sl W,
where s ]WI/1. Now consider the set

J= {(x,j): x X, {jl, (j+ 1)1}_ Ix}.

Essentially, we count [J] in two ways. First, ]JI -< (s- 1)(t-1)<]W since, for each
there are at most l-1 vertices x with (x,j) J.

But also ]I[ _<-/(2 + I{J: (x, j) z J}l), and so

Y Ilx[ <=/(2IX[ + IJ]) -<_ 21n.
xGX

So t(G) <= mn + 31n, for n sufficiently large. Therefore if (Q) holds, then t(G) -<_

8nllogl, and if (Q2) also holds, then t( G) <= l lnl, which is as required.
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To use Theorem 7 to find bounds on t(n, p), we need to show that there are graphs
G with n vertices and pn2/2 edges with properties (Q1) and (Q2), for appropriate/.
As usual, we in fact show that almost every Gn, p will do.

THEOREM 8. (i) If a _--> 2, p > a -1 log log n/log n, and n is sufficiently large, then
t(n, p) <- anp- log n.

(ii) If pnoe, and n is sufficiently large, then t(n,p)<-_5Onp- log (np)log (p-).
Proof We first show that, for ap- log (np) and a any constant at least 2,

almost every Gn, p has (Q1), provided np-o.
Indeed, the expected number of pairs (U, V) of subsets with UI VI and no

U- V edge is at most

e -pl2

-<exp {/[2log (enp)a log (np)
-a log (np)

-0 as n.

Next we show that, ifp > a -1 log log n/log n, and ap- log n, then almost every
Gn, p has property (Q2).

Indeed, the probability that (A, B, C) violates (Q2) is at most

36/2 (361 36/2-j= \ j /q l-q),
where q 1- (1 _p2)6/ is the probability that there is a vertex z of B with xzy a path
in G, for fixed vertices x and y. Hence the expected number of triples violating (Q2)
is rather crudely, at most

n1813612(3612)lZ(--p2)6t3<=exp {18ap-l(log n)2+ 5ceZp-2(log n)2 log log n

-6a3p-(log n)3}

-<exp {1/2 a3p-l(log n)3+ 5a3p-(log n)3-6a3p-’(log n)3}

-0 as n-*.

Thus almost every Gn, p does have (Q2).
Applying Theorem 7(ii) with l=ap-log n, we obtain that, if p>

a -1 log log n/log n, then t(G.,p) <-_ anp- log n almost surely, and so certainly t(n, p) <=
anp- log n, thus proving part (i) of the theorem.

We now apply Theorem 7(i) with 3p- log (np), and we find that

t(G.,p)<-25np -’ log (np) log (p-’ log (np)).

But by part (i) we may assume that log (np)<p- and so, for n sufficiently large,

t(n, p) <= 50/’/p -1 log (rip) log (p-’),

as desired.
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Thus we have shown that inequalities (1), (4), (6), and (7) hold.
Theorem 8(ii) is probably not the best possible result. In the proof, all we use is

that most small sets "spread" by a factor of 2 from one V to the next. In fact, it is
almost certain that most sets spread by a factor of, say, (log (np))1/2. This would suggest
that t(n, p) <- cnp-1 log (np) log (p-1)/log log (np), for some constant c and sufficiently
large n. Our next result, establishing inequality (2), shows that, for random graphs,
this would be best possible: almost every Gn, p has t(Gn, p) at least as large as this bound.

THEOREM 9. Suppose that p> 3 log n log log n/n log log log n, and that p(n)-O.
Then almost every Gn, p has t(Gn, p) >= np- log (np) log (p-I)/1000 log log (np).

Proof. We shall use the following elementary facts concerning random graphs, all
of which can be found in Bollobis [5]. Almost every Gn, p has maximal degree at most
2pn and chromatic number x(G,,p) <-2pn/log (np), and almost no G,p has an indepen-
dent set of size larger than 2p- log (np).

Combining the last two facts, we see that almost every Gn, p has l>-pn/4 log (np)
colour classes of size at least 1/4p-1 log (np). The union H of these classes has order m
at least n/16.

We consider orderings < of H in which colour classes appear one after the other,
so that the only chains we need to consider are ones with vertices in separate colour
classes. Such chains give rise to relations in P(G; -<) if and only if the colour classes
are in the "right" order in <.

We take a random permutation of the colour classes of H and consider the
expected number of chains of length k which span at most r= log (p-)/3 log log (np)
classes, for k -< r.

This is at most

r) (l-k-m(2pn)kl
k 1!

_-<2m
k

Thus the expected number of chains spanning at most r classes is at most

2m 1+ -<2m(91og (rip))

<_ 2mp-/.

Therefore there are at least --1-mrp log(np)-2mp-/ relations omitted in some
ordering of this form. Thus

1 np -1 log (rip) log (p-l)
t(Gn, p)>-

1000 log log (np)

as desired.

4. Sparse graphs. In this section we consider graphs with fewer than 1/4n log n
edges. As mentioned in the introduction, we are interested now in the approximate
size of r(n, p)= (’)-t(n, p), which is the maximum number of relations a graph of
order n and size m= [pn2/2J can guarantee us. We prove the following result,
establishing inequalities (10) and (11).

THEOREM 10. Let m [pn2/2J.
(i) If 1/4n log n >- m >-_ 2n, then

5r/m

log n

nm log log log n
>--r(n,p) >

5 x 10 log n log log n
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(ii) If m <= 2n, then

lOm2 m2 log log log m
>--r(n,p) >
log m- --106 log m log log m

Proof First we suppose that -n log n >= m ->_ 2n, and define r
m log log log n/6000 log n log log n. Let X be a set of n vertices, and R

_
X be a subset

of order r, which without loss of generality we take to be [r]. We construct a graph G
on X as follows. We know from Theorem 1 of [6] (inequality (8) of this paper) with
a 722 that there is a graph H on R with at most 2600r log r log log r/log log log r_-<

8m/2 edges such that, for every transitive orientation < of H, there are at least (2)
relations in P(H; <). We define GIRl to be equal to such an H. Next we partition
the n-r vertices of X\R into r sets S,..., Sr of equal size, and join x to every
vertex of Sx, for x R. This uses at most n <= m/2 edges, and so our resulting graph
G has at most m edges.

Now let < be any transitive orientation of G. We claim that there is a set W
consisting of at least r/9 vertices of R such that, for every vertex x of W, there are at
least r/9 vertices of R above x in P(G; <) and at least r/9 vertices of R below x
in P(G; <). This will imply that, for every x W and every y Sx, whatever the orien-
tation of the edge xy in <, the vertex y will be related to at least r/9 elements
of R in P(G;<), and hence P(G;<) contains at least (n-r)/9.r/9 >
nrn log log log n/5 x 105 log n log log n relations, which gives the lower bound in (i).

Suppose then that our claim is false. For every vertex x W with r/9 < x < 8r/9,
there are at least min {x-r/9, 8r/9-x} vertices y R with x not related to y in
P(H; <). An elementary calculation now shows that there are at least r2/9 ordered
pairs (x, y) of vertices of R not related in P(H; <), which is a contradiction. Thus
the lower bound in (i) is proven. (If we use some facts established in the proof of [6,
Thm. 1], we can obtain rather better constants here.)

The lower bound in (ii) is obtained by putting a graph of the form described
above on a subset of the vertices of order m!2, giving every other vertex degree 0, and
applying part (i).

The upper bounds are fairly straightforward. We suppose first that -n4 log n --m=
n/2. At most 4m/log n vertices have degree at least 1/2log n. Consider the graph H
spanned by the vertices of smaller degree, and consider a random ordering < of V(H).
The expected number of chains in (H; <) is at most

( )/1 (1/2) log 2log n <-- ne n 3/

(1+1)!--

Thus there is an ordering of H with fewer than n 3/2 chains. We take such an ordering
of H and place all vertices of higher degree at the top, so that our graph has at most
4m/log n. n + n3/2 <( 5mn/log n relations in this ordering, which gives the upper bound
in (i). For (ii), we simply note that at most 2m vertices have non-zero degree, and so
we can delete all vertices of degree 0 and apply the above result to the remaining
graph. [3

5. Dense graphs. Finally, we turn our attention to very dense graphs, i.e., graphs
with more than 3(2) edges.

For very large values of p, a random Gp is not likely to be a good choice, i.e.,
t(Gp) is almost surely much larger than the minimum of t(G) over all graphs of order
n and size pn:/2. To see this, let us consider the extreme case when p is so large that
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the non-edges of GR are almost surely independent (i.e., there is no triple x, y, z of
vertices with neither xy nor yz an edge). In this case, by taking an ordering < of V(G)
such that, whenever xy is a non-edge of G, x and y are consecutive in <, we can
arrange that t(Gp)= ()- e(G,), the lowest possible value, almost surely.

We can do considerably better as follows. Let rn be the (given) number of
non-edges. Let V be a set of size n and X be a subset of V of size (3m)1/2 n. We
form a graph with vertex set V and m non-edges as follows. If x and y are in V, not
both in X, we join x and y by an edge. We know by Theorem 3 that there is a graph
H with vertex set X, rn non-edges, and t(H)<-6(3m) 1/2 log (3m/2)<-_6rnl/2 log m,
provided m is sufficiently large. We set G[X] H. Our graph G thus has rn non-edges,
and clearly t(G)= t(H)<-_-6m 1/2 log rn.

In fact, graphs of this type, with all vertices except those in a set W of order rn /2

having codegree 0, and those vertices in W having codegree aboutm1/2, are apparently
not extremal. For instance, if we take a graph of this type and, for every vertex in W,
delete log m edges from that vertex to V(G)\ W, selecting different vertices each time,
then the "best" ordering of V(G) still has the vertices of W appearing consecutively,
so t(G) is not significantly increased. However, as shown by the next result, the bound
6m’/ log m is, up to a constant factor, best possible.

THEOREM 11. There are absolute constants A, q > 0 such that, whenever ()>-m,
we have

1/2 log m.

Proof We have already seen that the upper bound holds for A > 6. We now
consider the lower bound.

Let mo be sufficiently large that every m >_-mo satisfies the following inequalities.
(i) m-> 2n2;
(ii) log (m/3)/log m > x//2;
(iii) m 1/2 log m <_- m/12;

2.(iv) rn => no,
(v) m’/4/(log m)3/2 > ;
(vi) log (ml/2/15)>-log m.
Here no and nl are the constants in Lemma 1 and Theorem 3, respectively. We

shall make use of inequalities (i) to (vi) in the course of the proof, without always
making explicit reference to the fact.

Our aim is to prove the result by induction on n and m. To get this induction
started, we first need a few very simple facts.

We may assume that G has no vertex x of codegree at least rn /2 log m, since
otherwise we can place x at the top of our ordering <, and its non-neighbours
immediately below it, thus forming a transitive orientation of G with at least rn 1/2 log rn
pairs unrelated. Similarly, if there are rn 1/2 log m independent non-edges xiyi in G, we
make each pair (x, y) adjacent in <, and again we are done. Hence we may assume
that there are at most 2m(log m): vertices of non-zero codegree in G. Furthermore, if
G’ is the graph obtained from G by deleting all vertices of codegree 0, then clearly
t(G) t(G’). Therefore we may assume that G has no vertices of codegree 0, and
hence that n -< 2m(log m)2.

We take / sufficiently small that t(n, 1- m/())> .qm 1/2 log rn for every m _-mo
and n <_-2too (log mo)2. We also insist that B < 1/160.

Next we note that if m > mo >___ 2n 21 and n < (3m) /2, then we are done by Theorem
3, since 7 < 1/30.
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We have thus chosen a value of such that our result is true for every pair (n, m)
with m =< mo or n _-< (3rn) 1/2. We now suppose that G has n > (3m) 1/2 vertices, m > mo
non-edges, and that the result is true for all strictly smaller values of (n, m).

We now eliminate the case when the non-edges of G tend to fall into two separate
"components." Suppose there is a partition V1U V: of V(G) such that ’(V1), (V2)->-
m/3. By induction there are orderings of G[V1] and G[V2] each omitting at least
(ml/2/x/) log (m/3) relations. So, by concatenating these orders, we see that there
is an orientation of G omitting

___2 log (m/3) qml/2 log m >- qm 1/: log mx/ log m

relations, since m mo. Therefore we may assume that there is no such partition.
We now begin the main part of the proof. We wish to .apply Theorem 2, and so

we need a fairly small set of vertices with many incident non-edges. Let W be a subset
of V(G) of minimum order satisfying .(W)>-m/3, and also take W such that ,(W)
is maximum subject to W being of this order w. Note that .(W) <- m/3 + m 1/: log m _-<

m/2, as we are assuming that there is no vertex of codegree greater than m 1/2 log m.
Let dw(x) denote the W-codegree of x, the number of non-neighbours of x which are
in W. We see that dw(x)>= dw(y) for every x W and y V(G)\ W, since otherwise
( WU {y}\{x})> ,(W). Let 3’0 be the minimum of dw(x) over x W.

Also, by our assumption on partitions of the vertex set, (V(G)\ W)< m/3, and
hence there are at least m/3- m 1/2 log m >- m/4 edges between W and V(G)\ W.

Let us give some fairly simple bounds for w and yo. First we check that yo cannot
be too close to w. Indeed, if 3,0 >2=w, then m/2>-(W)>-_1/2W3"o>-W2/3, so w<-m 1/2 and,
as before, we are done by Theorem 3 applied to G[ W]. Hence we may assume that
3"o<W. If, on the other hand, w is large, say w >- m1 m, then consider U=
{y V(G)\ W: ::ix W with xy E(G)}, the set of "coneighbours" of W. We have

m m-->=--w w
dw(x) >-_ 3"0 >- Y dw(y) >--4’

and so [UI> w/4>l 1/2rn log m. For every y U, take a vertex x W with xy E (G),
and say that y belongs to x. Form an ordering of V(G) in which each x W is
immediately preceded by those y belonging to x. In such an ordering <, none of the
relations xy with y U belonging to x W, are in P(G; <), and so t(G) > 1/2m log m,
and we are done. Thus we may and shall assume that

ml/:<-w_-<ml/-logm and 3’o--<min w,
Now we shall apply Theorem 2 to (U, W) for all values of 3’ up to 3’0. If r(3")

vertices of U send at least 3’ non-edges to W, where 15-<_ 3’ <_-3’0, then Theorem 2 tells
us that

1 [log ((w- 3’)) 1t(G) >= r(3’)
log (w/3’)

1 [log(w/15)J->- r(3’)
-2 log(w/3’)

since 3’<_- 3’o<- w. Hence if r( 3") >= 2rlm 1/ log m [log (w/15)/log (w/3’)J -1 for any value
of 3’ (15-<_ 3’ _-< 3’o), we are done.
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If 3,>=4w /2, then [log(w/15)/log(w/3,)J>-2, so [log(w/15)/log(w/3,)J -1<-
2 log (w/3,)/log (w/15).

But for 3, < 4w 1/2, we certainly have the bound t(G) >= r(3,), and indeed we are
done unless r(3,) <= r/m 1/2 log m for all 3, > 0.

Thus we may and shall assume that the total number of U- W edges is at most

Vo log(w/y)4w/2qm/Elog m+ 4"om/21og m
v=l log (w/15)

=4wl/2rlm/2 log m +4rlm 1/2 log m
log (w/15)

[3,o log w-log (3,o!)]

<--4w/2,qm /2 log m + 43,orlm 1/2 log m
log (w/15)

log (ew/3’0).

It now remains only to bo shown that this quantity is always less than m/4, as
that will imply that there are fewer than m/4 edges from U to V, a contradiction. Thus
we shall have proved the result for every pair (n, m), and we shall be done.

The first term in the above expression is at most 417ma/4(log m)3/2 m/8, and so
it remains to be shown that m/8 >-_ 43,or/ml/2(log m/log (w/15)) log (ew/3,0), or in other
words that

m 1/2
3,o log (ew/3,o)

32rt(13)
log m-- log (w/15)

for all feasible values of w and 3,0.

For each fixed w, the right-hand side of (13) is increasing for 3,0 < w. We have
that 3,0_-< m/w<= w, and so, setting 3,0 m/w in (13), it is sufficient to show that

w log (w/15)_> 32r/m/2 log m.
log (ew2/m)

Certainly log (w/15)log (rnl/2/15)>- log in, and w/log (ewZ/m) is minimised
at w (ern)1/2. Therefore

w log w/15) >__ e/2 1/2 1
logm

1

log (ew2/m)
m

4 2

32 r/rn
/2 log m,

as desired, since r/<= 1/160. Therefore there are fewer than rn/4 U- W edges, which
is a contradiction. Thus the result is true for every pair (n, rn) and we are done. [3
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READIES AND FAILURES IN THE ALGEBRA OF COMMUNICATING
PROCESSES*

J. A. BERGSTRA’, J. W. KLOP:, AND E.-R. OLDEROG

Abstract. Readiness and failure semantics are studied in the setting of Algebra of Communicating
Processes (ACP). A model of process graphs modulo readiness equivalence, respectively, failure equivalence,
is constructed, and an equational axiom system is presented which is complete for this graph model. An
explicit representation of the graph model is given, the failure model, whose elements are failure sets.
Furthermore, a characterisation of failure equivalence is obtained as the maximal congruence which is
consistent with trace semantics. By suitably restricting the communication format in ACP, this result is
shown to carry over to subsets of Hoare’s Communicating Sequential Processes (CSP) and Milner’s Calculus
of Communicating Systems (CCS). Also, the characterisation implies a full abstraction result for the failure
model. In the above we restrict ourselves to finite processes without ’-steps. At the end of the paper a

comment is made on the situation for infinite processes with --steps: notably we obtain that failure semantics
is incompatible with Koomen’s fair abstraction rule, a proof principle based on the notion of bisimulation.
This is remarkable because a weaker version of Koomen’s fair abstraction rule is consistent with (finite)
failure semantics.

Key words, process algebra, concurrency, readiness semantics, failure semantics, bisimulation semantics
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Introduction. This paper is concerned with thefailure semantics for communicating
processes as introduced by Brookes, Hoare, and Roscoe [BHR84] (see also Rounds
and Brookes [RB81].) This notion of failure semantics is based on the assumption
that all possible knowledge about a process takes the form of a set of pairs [r, X],
where o- is a linear history of events (actions) in which the process has engaged in
cooperation with its environment, and where X is a set of events which are impossible
after o-. Thus failure semantics can be seen as a linear history semantics enriched by
"local branching information."

Two further semantic models of processes will play an auxiliary role in our paper:
Milner’s model based on the notion of observational equivalence [Mi80] or bisimulation
(see Park [Pa83]) and the readiness semantics described in [OH83]. Processes which
are equivalent in the sense of bisimulation semantics are also failure equivalent, but
failure semantics identifies more processes. Intermediate between bisimulation and
failure semantics is the readiness semantics; here positive information (or, Y) is given
about a process: Y is a set of possible actions after the history

Related to the study of failure semantics which was done by Brookes, Hoare, and
Roscoe [BHR84] and Brookes [Br83] in the context of Communicating Sequential
Processes (CSP) (see [Ho78], [HoS0]) is the work of De Nicola and Hennessy [DH84],
where some equivalences, based on the notion of test, are introduced, one of which
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coincides on a class of simple expressions with failure equivalence. The work of De
Nicola and Hennessy [DH84] takes place in the context of Milner’s Calculus of
Communicating Systems (CCS). Connections between CCS and CSP, in regard to
failure semantics, were given by Brookes [Br83].

Most of the work just mentioned was carried out in a context where both recursion
and hiding (abstraction from silent --steps) were present. This combination has compli-
cated matters significantly. The aim of our paper is therefore to investigate the "pure"
failure semantics without recursion and hiding (except for an interesting digression in
its final section where the intricate interplay of these phenomena is highlighted). Our
context will be ACP, the axiomatic system for the Algebra of Communicating Processes
as introduced and studied in the series of papers [BK83], [BK84a], [BK84b], [BK84c],
[BK85], [BBK85], [BK86a], [BK86b]. (For an introductory survey see [BK86b].) As
we shall see, one advantage of this choice is that the different communication concepts
of CSP and CCS can be treated in a uniform way (cf. also Milner [Mi83] and Winskel
[Wi83]). In fact, to achieve this uniformity we will work here with a mild extension
of ACP, where renaming operators are present. This system is called ACPr and is
displayed in Table 1. Note that ACPr is purely equational and, for a finite alphabet
of actions, it is a finite axiom system.

It turns out that in our restricted setting readiness and failure semantics have a
neat axiomatisation, by means of two equations R1,2, which on top of ACPr yield
readiness semantics, and a "saturation" axiom S which, when added to ACPr+ R1,2,
yields failure semantics. ACP alone corresponds to bisimulation semantics. These
results are established in the first part of the paper. In 1-3 we construct models for
these axiom systems, starting from a domain of finite process graphs on which equivalen-
ces -, =, --- (bisimulation equivalence, readiness equivalence, failure equivalence,
respectively) are divided out. Next, in 4, the axiom systems for these quotient
structures are presented and shown to be complete. The extra axioms R1,2 and S are
not new; in a form disguised by many "s they appear already in [Br83], and they are
derivable from the axioms given in [DH84] (see our comparison in Remark 7.3.3).
The definitions of *-% --, -= are also standard. What seems new in our treatment is
the strategy of the completeness proofs by means of a decomposition of --, =,--
on process graphs in a small number of very simple process graph transformations ( 3).

So we obtain a "graph model" for ACPr satisfying failure semantics. In 5, an
explicit representation of this graph model, called the failure model is constructed
directly from the failure sets. This links our work with that of [BHR84]. The graph
model and the failure model are shown to be isomorphic. In 6 we restrict the general
communication format of ACPr to one-to-one communication. We show that subsets
of CSP and CCS can be interpreted within this framework. This serves as a preparation
for 7, where we prove that for ACPr with one-to-one communication failure
equivalence is the maximal trace respecting congruence. Here traces are understood as
complete histories recording all communications up to a final process state. This simple
characterisation of failure equivalence seems new. In the proof we use the readiness
semantics as a "stepping stone" towards failure equivalence. The characterisation is
shown to carry over to the subsets of CSP and CCS introduced in 6. For CCS we
relate our result to the notion of testing introduced in [DH84]. Further on, the
characterisation implies that for ACPr with one-to-one communication the failure
model is fully abstract with respect to trace equivalence.

The paper concludes in 8 with a digression in which processes under failure
semantics are considered in the context of recursion and hiding. The main point made
here is that the proof principle Koomen’s Fair Abstraction Rule (KFAR), which is
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TABLE
ACPr

Algebra of Communicating Processes with

renaming. Here a, b range over the set

A A 1.3 6 }) of atomic proces or actions;
: A is a constant denoting deadlock; x, y, z

range over the set ofallprocesses which includes

A and is closed under the binary operations
/, ", II, _, and the unary operations On, an,
where H

_
A. See 1.2 forfurther explanation.

x+y =y+x A1
x+(y+z) (x+y)+z A2
x+x x A3
(x + y)z xz + yz A4
(xy)z=x(yz) A5
x+6 =x A6
x 6 A7

alb=bla C1
(alb)lc--al(blc) C2

61a=6 C3

xlly=x_y+y[[ x+xiy CM1
a

_
x=ax CM2

ax y= a(xlly) CM3
(x+y)_z=xll_z+yl] z CM4
axlb=(alb)x CM5
albx=(alb)x CM6

axl by (a b)(xlly) CM7
(x+y)lz =x]z+ylz CM8
xl(y+ z)= xly+ xlz CM9

On(a)=a ifaH D1
On(a)=6 ifaH D2

On(x+ y)=On(x)+On(y) D3
O,(xy)-- OH(X OH(Y D4

an(b)=b ifbH RN1
an(b)=a ifbH RN2

an(x + y)= an(x)+ aa(y) RN3
an(xy) an(x)" an(y) RN4

important in system verification and which can be justified in bisimulation semantics,
is not valid in any extension of (finite) failure semantics. As far as we know this
observation, which is supported by deriving a formal inconsistency, is new. Remarkably,
a weaker version of KFAR turns out to be both useful for verification and consistent
with finite failure semantics (see [BKO86]).

1. The domain ln of finite acyclic process graphs. In order to build a "graph
model" for the axiomatisation ACPr (see Introduction, Table 1) which also satisfies
failure semantics, we start by introducing a domain of process graphs (H) enriched
with a number of operations +,., II, [I, I, OH, an(a A) corresponding to the operators
in ACPr. It should be emphasized that this structure (+, .11, , I, OH, an, a, 6)(a A)
is not yet a model of ACPr; it becomes so after dividing out by a suitable equivalence
on (which, of course, should be a congruence with respect to the operations). For
example, dividing out by bisimulation equivalence (as defined in 2.3 below) yields
a model of ACPr, and in fact one that is isomorphic to the initial model of ACPr. This
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matter does not, however, concern us in this paper. What we are interested in is the
quotient structure obtained by dividing out by readiness equivalence or failure
equivalence, respectively (defined below in 2.2), that is, what we will call (in analogy
with "term model") the graph model for ACPr, satisfying readiness semantics or failure
semantics, respectively.

1.1. Finite acyclic process graphs in/i-normal form. A process graph over a set is
a rooted, directed multigraph whose edges are labeled by elements of this set. Let H
be the collection of finite acyclic process graphs over the alphabet A--A kJ {t} (here

A) consisting of actions a, b, A and the constant denoting deadlock. In the
sequel we will work with H

_
H, the subset of t-normal process graphs. A process

graph g ] is -normal if whenever an edge s-t occurs in g, then the node s has
outdegree 1 and the node has outdegree 0. In anthropomorphic terminology, let us
say that an edge s - is an ancestor of s’--> t’ if it is possible to move along edges from

Poto s, likewise the latter edge will be called a descendant of the former. Edges having
the same initial node are brothers. So, a process graph g is -normal if all its -edges
have no brothers and no descendants.

Note that for g H the ancestor relation is a partial order on the set of edges of g.
We will now associate to a process graph g H a unique g’ in -normal form, by

the following procedure:
(1) nondeterministic -removal is the elimination of a -edge having at least one

brother.
(2) -shift of a -edge s-t in g consists of deleting this edge, creating a fresh

note t’, and adding the edge s-*t’.

Now it is not hard to see that the procedure of repeatedly applying (in arbitrary order)
(1), (2) in g will lead to a unique graph g’ which is 8-normal; this g’ is the 8-normal
form of g. It is understood that pieces of the graph which have become inaccessible
from the root, are discarded.

Example 1.1.1. See Fig. 1, where g’ is the 8-normal form of g.

1.2. Operations on process graphs. On H we define the operations +,.,
as in [BK85], [BK86a], and moreover rename operators all. The constants a, (a A)
are represented by graphs consisting of a single arrow labeled by a, 8, respectively.
For the sake of completeness we repeat the definitions briefly:

FIG.
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(i) The sum g+ h is the graph obtained by identifying the roots of g, h and
taking the 3-normal form (this is necessary if g or h is the graph consisting of a single
step labeled with 3).

(ii) The product g. h is obtained by appending h at all terminal nodes which
are not terminal nodes of a 3-step.

(iii) The merge glib consists of the &normal form of the process graph obtained
as the Cartesian product of g, h augmented with diagonal edges for successful communi-
cations.

(iv) The left-merge g[[_ h is the subgraph of g[[h, where an initial step must be
one from g.

(v) The communication merge glh is the subgraph of glib, where an initial step
must be a communication result of an initial step in g and an initial step in h.

(vi) The encapsulation OH(g) is the result of renaming all (labels of) steps in
H_ A by 3, and taking the &normal form.

(vii) The renaming all(g) is the result of renaming all (labels of) steps in H A
by a. We have renamings aH for each a A.

Example 1.2.1. Let g be the process graph in Fig. 2(a) and h the process graph
in Fig. 2(b). Let the communication function [: As As - As be such that ale e and

bid =f, all other communications equal 3. Then g + h is the graph in Fig. 2(c); g. h
is the graph in Fig. 2(d); g, llh is the 3-normal form of the graph in Fig. 2(e), which is
the graph in Fig. 2(f); g_ h is the graph in Fig. 2(g); g]h is the graph in Fig. 2(h);
(g) is the graph in Fig. 2(i); Oa,d (h) is the graph in Fig. 2(j); and ab (g) is the graph
in Fig. 2(k).

2. Equivalences on process graphs. Though in this paper our main interest is in
the ready equivalence and the failure equivalence, we also will consider trace equivalence
and bisimulation equivalence. In this section these notions are introduced and com-
pared. At the end of the section the concept of a convexly saturated process graph is
introduced, which illuminates the relationship between ready and failure equivalence
and which will play an important role in establishing the completeness of the axiom
systems for ready and failure equivalence, respectively, presented in 4.

2.1. Trace equivalence. Consider a process graph g H. Every path in g from the
root of g to some node in g determines a word s A* formed by concatenating the
labels in the consecutive steps in the path. Any such word r will be called a history
of (the path in) g. We are particularly interested in complete histories, i.e., words
determined by paths ending in a terminal node. Throughout this paper complete
histories will be called traces. By trace (g) we denote the set of all traces of g. Trace
equivalence "tr of process graphs g, h [ is defined as follows:

g trh itt trace (g) trace (h).

Note that there are two types of traces" successful traces tr A* ending in a successful
termination node (see 2.2) and deadlocking traces tr. 3 A*. {3} ending in 3.

2.2. Ready equivalence and failure equivalence. We will distinguish four types of
nodes of g Ha.

(i) End nodes of 3-steps in g are improper.
(ii) Begin nodes of 3-steps are called deadlock nodes.
(iii) Termination nodes of g other than those in (i) are successful termination nodes.
(iv) Nonterminal nodes which are not deadlock nodes.
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h:

g h the8 n.f. of:

(c)

g+h:

(g)

o- c o d
0

o

d

0)

0 {a,d} (g)::

b o od

o o

(h)

glh:, d o

FIG. 2

The successor set of node s as in (ii) is, by definition, . The successor set of a node
s as in (iv) is the set of labels e A of edges with begin node s. A node as in (i) or (iii)
has no successor set.

Now (tr, X) where tr e A*, X A is a ready pair of g if there is a path from root
So to some proper node s which is not a successful termination node, with history r
and X as the successor set of s. The ready set of g is the set of all ready pairs of g
together with all successful traces. Notation: g]].

The failure set of g, notation: o%g]], is defined as follows. If (tr, X) g]], then
Is, Y] is a failure pair of g if Y c_ Xe, and Y is called a refusal set. Here and in the
sequel we use the following notation: Xc= A-X. Now og]] is the set of all failure
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pairs of g, together (again) with the successful traces of g. Thus we have

g]] {o’lr is a successful trace of g}LJ {(r, X)l(o- X) is a ready pair of g},

ffg]] {o’lr is a successful trace of g} {[o-, Y]I Y c_c_ X for some (or, X) [[g]]}.

Note that 6 does not appear anywhere in g]] and
Example 2.2.1. Consider g as in Fig. 3; at each node its type (i)-(iv) is indicated.

Moreover Table 2 contains the contribution of each node to the failure and ready set
of g.

Example 2.2.2. (i) Let 6 be the graph consisting ofone 6-step. Then [[6]] {(e, ;)}
and ff6] ={[e, Y]IY_A}.

(ii) Let aa. Then a={(e,{a}),a} and a]={a}t_J{[e, Y]IY_A-{a}}.
(iii) Let at be the graph consisting of a consecutive a- and 6-step. Then a6]

{(e, {a}), (a, ;)} and at]] {[e, Y]] Y_ a-{a}}t.J{[a,Z]lZ a}.
DEFINITION 2.2.3. Let g, h [Hla. Then g-- h if g]] h]] and g=-h if [[g]]

ff[[h]]. In other words, g, h are ready equivalent, and failure equivalent, respectively.

2.3. Bisimulation equivalence. For the sake of completeness we include the
definition of the well-known notion of a bisimulation.

;) (iii)

(iii)

FIG. 3

TABLE 2

(e, {a, b}) [e, Y], Y_ A-{a, b}
s (a,O) [a, Y], Y___ A
S (a, {c}) [a, Y], Y

_
A-{c}

s3 b b

$4

s ac ac
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DEFINITION 2.3.1. Let g, h Ha. Let ROOT (g), ROOT (h) denote the root of g, h,
respectively, and let NODES (g), NODES (h) denote the set of nodes of g, h, respec-
tively.

Then R
_
NODES (g) x NODES (h) is a bisimulation from g to h if:

(i) (ROOT (g), ROOT (h)) R;
(ii) If (s, t) R and s-%s’ (where u Aa) is an edge in g, then (s’, t’) R for some

P.t’ such that t-%t,
(iii) If (s, t) R and t-u-t (where u Aa) is an edge in h, then (s’, t’) R for some

s’ such that s-s’.
Notation: g->h(g, h are bisimulation equivalent, or bisimilar) if there is a bisimula-

tion from g to h (or vice versa).
As we will want to model the axiom 6.x 6 later, we profit here from the fact

that only 6-normal process graphs are considered. Otherwise the definition ofbisimula-
tion would be more involved.

2.4. Comparing the equivalences. It is not hard to compare the four equivalences
-=, -= , and -" for g, h Ha we have

g---g = g=-h = g=-;h := g’trh

and in general none of these implications can be reversed as some of the following
examples (e.g., Example 2.4.2) show. Lemma 2.5.5 states a sufficient condition for
reversing the second implication.

In the sequel we will prove (Proposition 4.2.3) that g h and g h are congruen-
ces with respect to the operations defined above in 12. Also is a congruence; see
Theorem 2.5 of [BK85] for the more complicated situation where z-steps are present.
Trace equivalence however is not a congruence with respect to these operations, as
the following example shows.

Example 2.4.1. Let c[:] be the context Ob.c( C), and let a, b, b, c, c be atoms
with communications bib b, c[c c and all other communications resulting in 6.
Consider the trace equivalent processes a(b+c) and ab/ac. Then C[a(b+c)]=
ac .tr a6 + ac c[ab + ac].

Example 2.4.2. See Fig. 4.

2.5. Convexly saturated process graphs. Following [Br83] and [DH84] we intro-
duce the following notion of convexity.

DEFINITION 2.5.1.

_
(A) is convex if

(i) X,YXU Y;
(ii) X, Y,XZ_ Y Z.

(Here (A) is the power set of A. In particular,

_
(A) is convex.)

DEFINITION 2.5.2. (i) Let g Ha and o- A*. Then g[tr {X[(tr, X) [g]]}.
(ii) g is convexly saturated (or just "convex" or "saturated") if g l is convex,

for .all r A*.
Example 2.5.3. In Fig. 5, gl, g2 are not convexly saturated, but their "convex

saturations" g, g are.
PROPOSITION 2.5.4. Let (A) be convex, and let Y A be a finite set such that

Y: , Y
_

(_J . Then for no X
Proof. Consider a finite Y such that Y , Y_ (3 . Suppose that there is an

X such that Y
_
X, or equivalently X

_
Y. Clearly, Y is covered by finitely many

members from , hence (since is convex) by some Z . From X
_
Y Z it follows

that Y , a contradiction.
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(b)

a :R a a

a a a a

a a a a

a a a a

b b ..
0

FIG. 4

LEMMA 2.5.5. Let g, h [}q] be convexly saturated. Then

g=-h :> g=-h.

Proof. Only to prove (). So, we suppose gh and we want to prove g h.
Furthermore, we may suppose that g, h have the same trace set; otherwise g oh is
immediate. Now there is a ready pair (or, X) in (say) tgl] but not in h]]. By
(tr, X) g]] we have the failure pair Itr, Xc] o%g]]. Now consider h lr, which is by
assumption convex. Since g’--trh, we have X c__ t3 (hlr). Furthermore, (r, X)C:Yt[[h
entails X

_
h l-- {x, li I}. So, by Proposition 2.5.4: for no ! we have X XT.

But then [o-, XC] [[hl] and we have g h.

3. Transformations on process graphs. We now introduce four elementary transfor-
mations on process graphsH with the following property: the first two of them
generate, when applied on g Ha, all process graphs g’ bisimilar to g; further, the first
three generate the ready equivalence class of g; and finally, the four together generate
the failure equivalence class of g.
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a a

FIG. 5

3.1. The transformations double edge, sharing, cross, and fork.
[i] Double edge. This process graph transformation step removes in a double edge

as in Fig. 6 (where a A), one of the edges. Notation: gtilh.
[ii| Sharing. Suppose g H contains two nodes s, determining isomorphic sub-

graphs (g)s, (g)t. Then the nodes s, may be identified. Notation: g:=:>liil h-
[iii] Cross. If s is a node of g H, o- is a history of s if there is a path from the

root of g to s yielding the word tr. Furthermore, history(s) is the set of all histories
of s. Now let g H contain a part as in Fig. 7(a), where history(s1) history(s2). Then
edges, as in Fig. 7(b), may be inserted. Notation: g:=>tiih.

Note that the condition on histories is fulfilled when g is a process tree. Further-
more, note that the condition on histories is necessary: it is easy to give an example
where this requirement is violated and such that after insertion of the two new steps
we have new ready pairs or new completed traces.

[iv] Fork. Let gH contain a part as in Fig. 8(a), where all successor steps
bl,. ., bn of the left a-step are displayed. Then a part as indicated in Fig. 8(b) may be
inserted. Notation: g :=>ti, h.

Here it is not required that all steps b,-.., bn, c,..., c,, have different end
nodes. If n 1, b may be 3; likewise c may be & In such a case, after inserting the
fork we have to 6-normalise the resulting graph again. We emphasize that a fork
connects all ofthe successor steps ofthe left a-step with some ofthose ofthe right a-step.

O, BO
FIG. 6
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(b)

FIG. 7

Notation 3.1.1. (i) =:> is
(ii) =:>* is the transitive reflexive closure of =:>;
(iii) <::>* is the equivalence relation generated by :=>.
Example 3.1.2. (i) See Fig. 9. Note how :=>,m enables us to switch subgraphs x, y

at the end of paths with the same history (abc in Fig. 9(b)).
(ii) (See Fig. 10.) Figure 10(a) contains an example of a fork transformation.

Figure 10(b) contains an example of a fork transformation involving a 6-step. Figure
10(c) shows that complete branches can be pruned by successive transformations.

(b)

FIG. 8



READIES AND FAILURES 1145

[iii] [ii] [i] a

b

bltIdbt.X 
b b

0 0 c d 0 0

(b)

[iii]

FIG. 9

DEFINITION 3.1.3. (i) A transformation step g =:>tiiil h is called restricted if g is a

process tree (i.e., a process graph without sharing of subgraphs).
(ii) Let :> be the symmetric closure of. Atransformation g <=>. <::> h is restricted

if every [iii]-step in the transformation is restricted.

3.2. Connecting process graph equivalences with process graph transformations.
PROPOSITION 3.2.1. Let g, h Ha. Then we have the following:
(i) g =’ti-im h implies g =- h;
(ii) g =:>ti-i,l h implies g - h.
Proof Item (i) follows at once from the definitions.
(ii) We must only prove that the new node s introduced in a fork does not generate

new failure pairs (see Fig. 8(b)).
Case 1. Let (era, {b,..., bn}) be the ready pair contributed by node t, where

n->_l and the bi are not 6. The ready pair of the new node s is
(era, {bl,’", bn, cl,..., c,,}). Hence the failure pairs contributed by s are among
those of t.

Case 2. n 1 and b 6. Then (era, ) is the ready pair of t so the failure pairs
of tl are [era, X], X

_
A and again these cover the failure pairs of s.

Case 3. The cases where m 1, c 3 are trivial.
So in all cases the new failure pairs (of s) were already present as failure pairs

of The part of g]] that consists of successful traces is invariant.
We will now prove the reverse implications in Proposition 3.2.1. To this end the

ready normal form (g) and the failure normal form (g) will be defined. First we
define a map y from the collection of ready sets {glg} to .

DEFINITION 3.2.2. (i) Let g Ha have ready set g]]. Then y(g]]) is the process
graph with gU{o} as set of nodes, with (e,X)g] as root, and with edges
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[iv]
a a

b
b

e

fi hi iI
the 8-n.f. of/ =

a a

bb b b

cl-dl

[i],[ii]
a

given by

FIG. 10

(o-, {a} t.J x)(,a, r),

(o’, {a}U X)-tra,

(r, (R))& o

(whenever the left-hand side, right-hand sidee [[g]] U {o}).
(ii) (g)= ,([[g]]) is the ready normal form of g.
(iii) The convex closure cl (lg]]) of [[g]] is obtained as the smallest set containing

g]] and satisfying

(o’, X), (or, YU Z) e el ([[g]]) =:> (or, X U Y) e el (g]]).

(iv) off(g)= y(cl (g]])) is the failure normal form of g.
Example 3.2.3. Let g be as in Fig. ll(a). Then (g), off(g) are as in

Fig. 11 (b), 11 (c), respectively.
PRoPOSrrON 3.2.4.

*(i) g C:>ti-uu (g) via a restricted transformation
(ii) gO:>* (g) via a restricted transformation;
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(b)

g’a a

n (g):

(e,,,{a})

I’ (a,1 [b})b[i’a,
I,(a, /c,l"

,,e}

d aef

F (g):

FG. 11

(iii) g -=(g);
(iv) g -(g);
(v) (ff(g))= (g);
(vi) g --h =:> (g)= (h);
(vii) g-=h :=> (g)- (h).
Proof. (i) (The following proof was kindly provided to us by R. J. van Glabbeek

(personal communication).) Let g Ha be given. We will transform g via a restricted
transformation to a process graph g* such that g*--- (g). Since --- coincides with

* (see Corollary 3.2.5(i)) this suffices.(: [i,ii]
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If each node in g has a unique history, g is called history unambiguous. So in
particular, process trees are history unambiguous. For a history-unambiguous process
graph g, the level of node s in g is the length in symbols of the history of s. The root
of g, therefore, has level 0. We will use the following notation: if s is a node of g,
ready(s) is the ready contribution of s to the ready set of g; so ready(s)= (er, X) or
er for some er, X. If s, are nodes of g, we write s to indicate that the subgraphs
with s, as roots, respectively, are bisimilar.

The transformation of g to g* such that g* - (g) will be done in stages, level
by level, starting from the top level (level 0). The induction hypothesis for the
transformation is that after the nth stage g (=go) is transformed to gn satisfying the
following property Hn Suppose p, q are nodes of gn. such that p has level n, ready(p)
er, X U {a } and ready(q) (era, Y) or era. Then g contains a node r such that q r
and p - r.

For go we have indeed Ho; p is then the root and for r we just take q. Now suppose
g, is constructed such that H, holds. We will construct g,+l such that 1,+1 holds. So
consider a node p of level n + 1 in g, admitting an a-step (see Fig. 12) with ready(p)
(o-b, X U{a}), and a node q with ready(q)=(erba, Y). Hence there is a node p’ on
level n such that p’ bP; say ready(p’)= (o-, X’). Also there must be a node q’ such
that q’ q and, say, ready(q’) (erb, Z). By H,, therefore, there is a node r’ such that
q’ r’ and p’ b r’. By the definition of --, there is a node r such that r’ r and
q --- r. Now we insert a cross (i.e., two a-steps) as in the figure. The result is unshared
by backward application of =:>iij to a process tree. This unsharing does not increase
the number of nodes of level n + 1, and also does not increase the number of nodes
of level n + 2 modulo ---. The procedure is repeated for all p of level n + 1 and
equivalence classes q/---. As there are only finitely many such pairs p, q/--- the
procedure stops eventually; the resulting tree is gn+l. Clearly g,+ satisfies ,+1. The
construction of the sequence go, g,"" ", g, stops when n is equal to the depth of g.
The result is called g*, and we claim that g* (g) via the bisimulation that relates
nodes s, in g*, 3(g), respectively, such that ready(s)=ready(t).

Proof of the Claim. Suppose s, are nodes in g*, (g), respectively, such that
ready(s)=ready(t)=(s, XU{a}). Let s s’. Then take the unique node t’ in (g)
with ready(t’)= ready(s’). This must be (era, Y) or era. By definition of the edges in
(g) we have a t’; and indeed s’ t’ because ready(s’) ready(t’). The other side
of the bisimulation requirements: Let s, be as before, and let a t’ with ready(t’)=
(era, Y) or era. Let s* be a node in g* such that ready(s*)= ready(t’). By construction

FIG. 12
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of g* there is a node s’ in g* with s* -> s’ and s ->a s’. Clearly, ready(s’)- ready(s*)=
ready(t’), hence s’-> t’.

(ii) Let g be given. According to (i) there is a restricted transformation of g to
(g). We will transform (via a restricted transformation) (g) further into o%(g), as
follows. Take nodes (o-, X), (tr, YU Z) from (g) such that (tr, X U Y) is not yet a

node of (g). (If such nodes do not exist then (g) is already equal to o%(g).) Now
it is easy to see that there are paths in (g) from the root to the nodes (or, X), (tr, YU Z)
such that these paths coincide in all but their last step, i.e., the paths split up as late
as possible. At the split-up node we now insert a fork into (g), with central node
(tr, X U Y), which is a new node. Call the result: (g)/. Next, (g)/ is transformed
(according to (i)) to ((g)/). Iteration of this procedure, via ((g)/)/,
(((g)/)/), etc., obviously will stop in (g).

Parts (iii) and (iv) are left to the reader.
(v) By Definition 3.2.2, (o%(g))- (g) means

y( [[y(cl g]l))]])- y(cl ([[g]])),

which is equivalent to

y(cl (g]]))]] cl (g]]).

So we must check that the set of ready pairs of the graph determined by the set of
ready pairs cl (g]]) is just cl (Y[[g]]); this seems obvious.

(vi) g=h by definition means g]]=[[h]]. Hence Y(g)=y(g]])=
y( Yh]])= (h).

(vii) Suppose g=-;h. Then by (iv) g -- (g), h --;(h), so (g)=-;(h). Since

both (g), (h) are convexly closed, we have (g,)=-(h) (by Lemma 2.5.5). So
(vi) ((g)) ((h)). Hence by (v): (g)= (h). [3

COROLLARY 3.2.5. Let g, h Ha. Then we have the following:
(i) g -* h if and only if g e* h"[i],[ii]

(ii) g=- h if and only if g <:i_iii] h;
(iii) g =- h ifand only ifg <::>* h.

Proof. Item (i) is (essentially) proved in the Appendix of [BK83] and also in
Corollary 2.13 of [BK85]: the proofs there also take ’-steps into account; after leaving
out all mention of --steps, the result follows.

(ii) The implication from right to left follows from Proposition 3.2.1(i). The other
direction follows from Proposition 3.2.4(i), (vi).

(iii) The proof is similar to (ii). [3

4. Axiomatising the equivalences on process graphs. We will now use our analysis
of =,-= on the graph domain Ha to formulate complete axiom systems for these
notions. First this will be done for the signature of /,. alone, later on (in 4.2) also

II. II. I. will be taken into account.

4.1. The case without communication. We start with the observation (whose proof
is simple and omitted) that --,-- are congruences on Ha(+,’), and hence can be
factored out to yield ](+,.)/--. and H(+,.)/-=, respectively. These are the
structures which we will now axiomatise.

We will prove that the axiom system BPA + R1, 2+ S in Table 3 is a complete
axiomatisation for Ha(+, ")/--; after leaving out axiom S we have a complete
axiomatisation for (+, )/-=. Here a, b vary over A t_J {6}; x, y, z, u, v are variables
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for processes. Note that R2 is not derivable from R1 because in BPAs + R1, 2 + S there
is no process x satisfying bx b when b 6. On the other hand, x should be present
in axiom S as the equation

a + a(y+ z) a + a(y+ z)+ ay

would yield the failure-inconsistent equation

a + ab a + ab + a6.

Remark 4.1.1. (i) The axioms R1, 2 and S (R for readiness, S for saturation),
which are specific for failure equivalence, appear already in [Br83 in a slightly different
form. [Br83] considers also r-steps and presents as laws valid for failure equivalence
in Proposition 1.3.6:
(1) r(txx + u) + r(txy + v) r(txx + lxy + u) + r(txx + txy + v),

(2) ix + t) l(zx + zy

(here As U {r}; x, y, u, v are arbitrary processes), and in Proposition A.3 in [Br83]:

(3) rx + ry rx + ry + r(x + y),

(4) zx + z(x + y + z) rx + z(x + y) + r(x + y + z).

Clearly (1), (2) imply R1 in Table 3; and using the r-law xr=x, also valid in failure
semantics, we also derive R2. Further, (3), (4) together with (2) yield the pair

ax + ay ax + ay + a(x + y),

ax + a(x + y + z) ax + a(x + y) + a(x + y + z)

(where a As), which is equivalent to axiom S in Table 3.

TABLE 3

BPA +R1, 2+S

x+y=y+x A1
(x+y)+ z= x+(y+ z) A2
x+x=x A3
(x + y)z xz + yz A4
(xy)z=x(yz) A5
x+8 =x A6
8x 8 A7

a(bx + u)+ a(by+ v)= a(bx + by+ u)+ a(bx + by+ v) R1
a(b+ u)+ a(by+ v) a(b+ by+ u)+ a(b+ by+ v) R2

ax + a(y+ z) ax + a(y+ z)+ a(x + y) S

(ii) The axioms R1, 2 and S are also immediate consequences of the proof system
of De Nicola and Hennessy [DH84] for strong testing equivalence =2, to be discussed
and related with failure equivalence later in Remark 7.3.3. This can be seen as follows:

(1) Axiom S in Table 3: ax+a(y+z)=ax+a(y+z)+a(x+y) implies

ax + ay ax + ay + a(x + y)

by taking z y; this is (D5) in [DH84]. Further, (S) implies

ax + a(x + y + z) ax + a(x + y + z) + a(x + y)
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by replacing y in (S) by x+y. This is (D6) in [DH84]. Vice versa, (S) follows from
(DS), (D6)"

ax+a(y+z) (DS)

ax + a( y + z) + a(x + y + z) (D6)

=ax+a(y+z)+a(x+y+z)+a(x+y) (D5)

ax + a(y+ z)+ a(x +y).

(2) Axiom RI" a(bx+u)+a(by+v)=a(bx+by+v)+a(bx+by+u)is derived
from the axiom system in [DH84] as follows:

bx + "r(by+ v) "r(bx + by+ v) (N3),

by+ r(bx + u) r(bx + by+ u) (N3),

bx + by+ ’( by + v + 7"( bx + u) ’( bx + by+ v + ’(bx + by+ u)

bx + ’(bx + u) ’( bx + u) (D9),

by + ’( by + v) ’( by + v) (D9),

r(by+ v)+ r(bx + u) ’(bx + by+ v)+ ’(bx + by+ u),

air(by+ v)+ r(bx + u)] a[’(bx + by+ v)+ r(bx + by+ u)],

a(by+ v)+ a(bx + u)= a(bx + by+ v)+ a(bx + by+ u) (N1).

Here (N1), (N3), and (D9) are axioms in [DH84].
(3) Axiom R2" a(b+u)+a(by+v)=a(b+by+u)+a(b+by+v) is not needed

in [DH84] because a process b, which first performs action b and then successfully
terminates, is not considered there. Note that the process bNIL of [DH84] corresponds
to b. 6 and is thus different from b.

4.1.2. Connecting terms with process graphs. Let Ter (BPA) be the set of closed
terms in the signature of BPA(=the signature of BPA + R1, 2+ S). We define the
following translations:

graph" Ter (BPA)-H,

ter: H Ter (BPA).

Here graph (T) is the process graph obtained by first normalizing T with respect to

A4, A6, A7 in Table 3 and second by interpreting a, +, as the corresponding "one-edge
graphs" and operators +,. on H.

Further, to define ter (g) we first define tree (g) as the tree obtained from g by
"unsharing." Now we define ter (g) as the term corresponding in the obvious way to
tree (g).

Example 4.1.2.1. (i) graph a b + c + d)d + de + ed graph a bd + cd + ed is
the graph in Fig. 13(a).

(ii) If g is as in Fig. 13(b), then tree (g) is as in Fig. 13(c).
(iii) If g is as in (ii), then ter (g)= ace+ b(de+ ab).
Remark 4.1.3. Note that ter, graph are "almost" inverse to each other:

BPA(ter graph)(T) T,

(graph ter)(g)--g

where (bisimilarity) coincides with *<[i],[ii]"
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TRANSFER LEMMA 4.1.4 (see diagram). Let g, h Ha be such that g =, h. In case
is ::=>uu we require moreover that g be a process tree. Then

BPAa + R1, 2+ S-ter (g) =ter (h).

g ": ;. h

tr ter

71 2
BPA8 + R1,2 + S

Proof. A transformation g ==>ti h (removing a double edge) "translates" into some
applications of A3" x + x x.

A transformation g =>uu h is invisible on the level of terms, i.e., ter (g) and ter (h)
are identical terms. Next consider a transformation g ==>tiu h, which consists of adding
two edges in g as in Fig. 14. (Note that in this case g is assumed to be a tree.) This
translates to an application of R1 if the subtrees x, y are nonempty, and to R2 if one
of these subtrees is empty. In case both subtrees x, y are empty we have an application
of axiom A3.

Finally, a transformation g :=>uv h (see also Fig. 8) translates into some applications
of axiom S in Table 3.

THEOREM 4.1.5. (i) BPAa + R1, 2 T1 T2 :> graph (T1) graph (T2).
(ii) BPAa + R1, 2 +STa T2 :> graph (T) graph (T2).
Proof We prove (ii); the proof of (i) is similar.
Checking the soundness (=>) is routine and will not be done here. As to the

completeness (): suppose graph (T1)=-graph (T). Then by Proposition 3.2.4(ii),
(vii): graph (T)C:>*graph (T) via a restricted transformation. Now by the Transfer
Lemma 4.1.4 we have

BPAa + R1, 2 + S -(ter graph)(T) (ter graph)(T2)
and by Remark 4.1.3:

BPAa+R1, 2+ST T2. [-1

d d

(c)

FIG. 13
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Notation 4.1.6. (i) If (, E) is a specification (sometimes only written as E if the
signature E is clear), then I(E, E) is its initial algebra.

(ii) denotes isomorphism between algebras.
COROLLARY 4.1.7. (i) la(+, ", a, 6)/=-- I(BPAa +R1, 2).
(ii) H(+, ", a, 6)/=-=I(BPA+RI,2+S).

4.2. The case with communication: the graph model of ACP,. Finally we will prove
the results above in the presence of communication. The operators II, ]1,

[,0n, an(a E A) on [H] were already introduced in 1.2. They are the semantical
counterparts of the same operators in the axiom system ACPr, as in the upper part of
Table 4, which presents the axiom system ACPr/ R1, 2+ S, and which extends our
earlier axiom system BPA 4- R1, 2 / S in Table 3.

As before, in Table 4 a, b, c vary over A {6, and x, y, z, u, v vary over processes.
We want to prove that the initial algebra of ACPr / R1, 2 / S is isomorphic to the

model of finite acyclic graphs modulo failure equivalence =-, called the graph model
for ACP / R1, 2 / S. To this end we have first to prove that -= is a congruence with
respect to also the new operators. Once we have this, and knowing from [BK85],
[BK86a] (after leaving out all reference to ’-steps) that there is the isomorphism

I(ACP,) (+,., ]l, [[_, ", l, OH, all, a, )/

where - is bisimulation (which coincides with *:>ium, Corollary 3.2.5(i)), the derived
isomorphism is a consequence from some general facts which we will state now.

4.2.1. General intermezzo. Let A be an algebra that on the one hand can be
expanded to A* (i.e., enriched with new functions; the domain is invariant) and on
the other hand can be factored out via =, a congruence on A, to A/=. Suppose
moreover that is also a congruence on A*. (See the following diagram.)

A e’xpan’in 1

is congrttence for
the operations in "*

A/_= - A* / =_ (A/=_)*

Then this expansion and factorisation are compatible (or commuting)" A*/=
equals (A/= )*. Now let A, A*, A/= be isomorphic respectively to the initial algebras
of the equational specifications (E, E), ( U A, E U D), (E, E U F). Then it follows that
(EUA, E U D) is

(1) a conservative extension of the "base" specification (E,E) (i.e., no new
identities between closed terms in the base signature E are provable from (2 U A, E U
D)), and

(2) moreover, the extra operators in A can be eliminated"

(Z,E)

(E, E U F).

conservative extension with elimination property
(ZUA, EUD)
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A A A A
FIG. 14

TABLE 4
ACPr+R1, 2+S

x+ y =y+x A1
x +(y+ z) (x + y)+ z A2
x+x=x A3
(x + y)z xz + yz A4
(xy)z=x(yz) A5
x+/5 =x A6
x 6 A7

alb=bla C
(alb)lc-a(blc) C2
]a=6 C3

xlly:x[l_y+yll x+xly CM1
a

_
x ax CM2

ax y-- a(xll y) CM3
(x + y) L z x [L z + y [L z CM4

albx=(alb)x CM6

xl by (a b(xll y) C7
(x +ylz= xlz+ ylz C8

IY+)= ly+lz C9

On(a) a if a H D1
On(a) 6 if a H D2
On(x + y) On(x)+ On(Y) D3
O.(xy)=Otu(x) Ot4(y) D4

aH(b)=b ifbe!H RN1
aH(b)=a ifbH RN2
aH(x + y) a,(x)+ a,(y) RN3
ar(xy) a,(x) at4(y) RN4

a(bx + u)+ a(by+ v) a(bx + by+ u)+ a(bx + by+ v) R1
a(b+ u)+ a(by+ v) a(b+ by+ u)+ a(b+ by+ v) R2

ax + a(y+ z) ax + a(y+ z)+ a(x + y)

Furthermore (and this is what we are interested in) we may conclude from the
given isomorphisms that

A*/ =- (A/ =- )* I(, U A, E U D U F)
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where the last algebra is the initial algebra of the union of (E, E U F) and (E U A,
EUD).

(In the statement of the next theorem, as well as in its proof and Table 5, we have
suppressed mention of the constants a, 6 in, e.g., H(+,. ), which actually should read
H(+,.,a, 6)(aA).)

THEOREM 4.2.2. Let the initial algebras I(BPA)o) etc. as in Table 5(ii) of the axiom
systems BPAo etc. as in Table 5(i) be given. Furthermore, consider the graph models
H(+," )/- etc. as in Table 5(iii).

Then corresponding initial models and graph models are isomorphic. In particular:

I(ACPr + R1,2+ S)z=-H0(+,., I1, U_, 1, OH, aH)/

Proof Consider, for example,

BPAo ACPr

BPAo + R1, 2 + S

and the corresponding initial algebras

I(BPAo) I(ACPr)

I(BPAo + R1, 2+ S)

and furthermore (by position in the diagram in Table 5) the corresponding graph models

hom

exp

[I, II, I, aH)/ 

By Corollary 4.1.7(ii) we have I(BPA + R1, 2+ S) Nl(+, .)/=, and by results
in [BK85], [BK86a], [BK86b] we have I(BPAo)-’N0(+,’)/ and I(ACPr)

", II, II, I,
Therefore, by 4.2.1, it suffices to prove that is a congruence with respect to

the "new" operators on No in order to conclude that

I(ACPr + R1, 2+ S)--" Nlo(+, ", II, II, l, OH,
This is proved in the next proposition.

PROPOSITION 4.2.3. (i) Failure equivalence is a congruence with respect to the
operators II, _, I, 0,, aH on

(ii) The same holds for ready equivalence.
Proof (i) We consider some typical cases.
The case of OH. To prove g=h =:>OH(g)=OH(h). By Corollary 3.2.5 it suffices

to check that g=> h implies OH(g)=OH(h). The cases that :=> is =:>m or =>Ira present
no problem. As to :=>tm" it is easy to verify that

g::=>liiil h implieS OH(g)=OH(h) or OH(g)=::[iiilOH(h).

As to :=>tin, as in the previous case, the effect of OH (renaming some atoms in g, h into
8 and &normalising the resulting graphs again) is such that either the "same" fork
can be inserted or OH(g)=OH(h).
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TABLE 5

(i)
BPA ACPr

BPA + R1, 2 ACPr + R1, 2

BPA +R1, 2+S ACP,.+R1, 2+S

(ii)
I(BPA)-

exp
I(ACPr)

$,om om
I(BPA + R1, 2)

exp
I(ACPr+ R1, 2)

,o ,om
I(BPA + R1, 2 + S)

exp
I(ACPr+ R1, 2+ S)

(iii)
[F/5(+, )/_

exp
t(+,.,lI, L,l,,9,-,,a,-,)/

$om $,om
exp

H(+, .)/-- H(+, ", II, ,I,o,-,, aH)/=
,om om

expH(+, .)/-- H(+,.,ll, ,l, oH, a.)/=-

(Note here that it is crucial that process graphs g, h as in Fig. 15 are not failure
equivalent, since O{b} would yield a trace a6 in h but not in g.)

The case of II. It suffices to prove

g =:> g’ implies g h g’ll h.

As above, only the cases [iii], [iv] (cross and fork, respectively) are of interest. In fact
we will prove the following:

(1) g :=>tlii] g’ implies g h :=>tni] g’[[ h.
(2) gz=>t,,,g’ implies gllh =- g’llh.
Proof of (1). Due to the construction of a merge as a Cartesian product with

diagonal edges for communications (Fig. 16), it is "geometrically" clear (see Fig. 17)
that inserting a cross in g amounts to inserting several crosses (also possibly diagonal
ones, depending on the communication function) in the merge gllh. So g[[h [iii] g’[lh.
(It is not hard to see that the condition on histories, which is stated in the definition

g: h:

FIG. 15
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c

g II h:

FIG. 16

of tiiu, stays satisfied in such a way that insertion of these crosses in gll h is indeed
legitimate.)

Proof of (2). Under the assumption g=>ti,lg’ we now prove gllh =-g’[[h directly
from the definition . So consider the addition in g of a fork that connects all
successors of sl (see Fig. 18) to some of those of s3. That is, the failure pairs contributed
by the new node s2 are contained in those of Sl. Then we must check that the new

a a a a

blc

FIG. 17
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g

d.
V g II h:

11
a

(Sl, t)lf,
d

(s 2, t)

FIG. 18

nodes (s2, t) in g’llh caused by this addition, contribute no new failure pairs. It is not
hard to check that indeed the failure pairs of (s2, t) are contained in those of (s2, t)
by some consideration of the outgoing edges of (sl, t) and (s2, t). The precise
verification is omitted here.

The proof of part (ii) of the proposition is as for (i)mbut simpler. It is omitted
here.

5. The failure model of ACPr. In the previous sections the notion of failure
equivalence was introduced for the process graph domain H, and it was shown to be
a congruence with respect to the operators of ACPr in N. The quotient t1/=-- was
shown to be a model of ACPr, called the graph model of ACPr. Furthermore, a

complete axiomatisation ACPr+ R1, 2 + S was given for = in the sense of

I(ACPr + R1, 2 + S)

Here /=- is short for (+,., II, l[,I, On, an, a, )/=--. In this section we will
provide an explicit representation of the quotient structure (+,’, [I, II,
I, OH, an, a, )/---- , called the failure model of ACP. The model will shed more light
into the structure of failures, andin connection with 6.2it will link our definitions
with the original work on failures in [BHR84].

5.1. The domain IF of failure sets. First we introduce the domain of failure sets,
denoted by z. It consists of all finite subsets

F_A+U(A*x,(A))

(where A* is the set of finite words over A, A/ is the set of nonempty finite words
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over A, and (A) is the power set of A) which satisfy the following closure properties:
(i) [e, ] F;
(ii) [trier2, ] e F :: [o"1, ] e F;
(iii) X Y and [, Y] e F [, X] e F;
(iv) [,X]eFand[,XU{a}]FaeFor[a,]eF;
(v) a F ,] F;
(vi) [e,X]F&aX[a,]F.

The conditions (i)-(iv) on failure sets are exactly as in [BHR84]. Condition (v) deals
with traces A+ which allow a direct definition of sequential composition without

using (and later hiding again) an extra action coding the event of successful
termination as in [BHR84]. In 6.2 on CSP we will restrict ourselves to CSP without

successful termination. Then this difference is irrelevant. Condition (vi) is needed
because we do not consider r-steps and hence no initial nondeterminism.

5.2. Operations on failure sets. Now we define the constants , a(a A) and the
operations +,., ], , 0n, aH of ACP directly on . For F, G we put the following:

(i) 8 {[e, X]IX A}.
(ii) a={[a,X]XA-{a}}{a}.

Initially "a" can refuse anything except "a." After "a" has occurred, the
process successfully terminates.

(iii) F+G={[e,X]][e,X]FG}
U{GIGeFUG}
u{[, x]l# [, x] FU G}.
U{GIGeFUG}
u{[, x]l A[, x]e fU G}.

In its first step F+ G can refuse only those actions which can be refused
by both F and G. In all subsequent steps F+ G behaves as F U G.

(iv) F.G={[,X][,X]F}
U {G1G2 ]G F A G2 G}

F. G first behaves like F and after successful termination of F in a trace

G continues to behave as G.

U {[G, X] la[G1, X1] F, [G, X] G:

(2) AX(X, nX2)-{(aIb)]aX, AbX}}
(3) U {[G, X]laG, F, [G, X] G:

(4) U{[G, x] I[G,, X] F,

where GIIIG2 is the set of traces in A* defined inductively by

a,llbG2 a. (,11 b=) U b. (a,ll=) U [a b].

with [alb]={(alb)} if alb and
Thus ] is the set of successful traces obtained by merging and

communicating between and . For all traces 1 F and G this set
is included in FG (clause (1)). Besides traces FG contains certain failure
pairs [, X]. If either F or G have already terminated, X is just the refusal
set of the other, not-yet-terminated component G or F (clauses (3) and
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(4)). If neither F nor G have terminated, X contains only actions that both
F and G can refuse. This suggests X_ X1 f3 X2, where X1 and X2 are the
refusal sets of F and G. However, F[[ G cannot refuse the possible communi-
cations between F and G. These communications can only be of the form
(alb) with a X and b X2. This explains the condition

X X X2-{(alb)laX A b X2}

for the refusal set X of FI[G (clause (2)). Note that in case of (a[b)=
nothing is deduced from X X.

Clearly, F G and F[ G are just variations of F[IG differing only in their first actions.
(vi) FLG={I]F 2G:

x (Xl x)-{(a ) x, x}}

where 1 g2 is the set of traces in A* defined inductively by

Until the completion of its first communication F G behaves as E This
explains why F G inherits all initial failure pairs e, X] of E Afterwards
F G behaves as

(vii) [a={a,:

U{[g, X]lg#

A X (X, X)-{(a b) a XI b X}}

u{[, x]l , , [, x] a: ,I x x}

where g [g: is the set of traces in A* defined inductively by

,I [I] (, ).

In its first step F G requires a communication between F and G. Here
initially F[ G can refuse every set X of actions not containing possible
communications between F and G. This explains the condition

x -((a )1 x, x)
for the failure pairs [e, X]. After its first step F G behaves like F[ G.
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(viii) OH(F) {G[o- F does not contain any a H}

{[o-, X Y][[o-, X] F, s does not contain any a H, and

Y_H}.

In OH(F) only those traces that do not contain any a e H are successful,
and the actions in H can be refused at any moment.

(ix) aH(F)={aH(G)IGF
U {[aH ((r), X][a X ^ o’, X U H] F}

U {[ aH (G), X]la : X A o’, X H] F}

where the renaming operator aH is applied pointwise to the elements in
A set X can be refused by all(F) if a’(X)={bl=lcX al4(b)=c} can be
refused by F.

Except for the different representation of successful termination, the definitions of
6, a, +,., an are as for STOP, a- SKIP,I, and direct image in [BHR84]. The
definition of differs from the parallel composition operators in [BHR84]. In 6.2
we will show how to interpret in ACP synchronous parallel composition of [BHR84].
The operators [[, I, OH are not present in [BHR84].

5.3. The failure model. The failure model of ACPr is now given by the structure
r(+,., II, l, I, a,,, a., a, A).

THEOREM 5.3.1. The failure model of ACPr is isomorphic to the graph model of
ACP:

", II, I!, l, o,,, an, a, 8)/ IF(+, II, E, I, o,,, a,,, a, 8).

Proof. Consider the mapping W:H: introduced in 2.2. It is clear that .% is
well defined, i.e., that ffg]] : holds for every g H. Also, by Definition 2.2.3, g h
if and only if ff[[g]] h]] for all g, h H. Thus W is also well defined and injective
as a mapping:

W:H/=-

(which, by abuse of language, we denote also with ). Now is surjective and behaves
homomorphically over the operations /,., II, , I, OH, and an. The proofs of these
facts are tedious but follow in a straightforward way from the definitions of these
operators on graphs (in 1.2) and the definitions of the corresponding operators on
: (in 5.1). We will not spell out these proofs. Thus - is the required isomorphism
from H(...) to :(...).

6. ACP, with one-to-one communication. As a preparation for the subsequent
section we now introduce some additional structure on the alphabet A and the
communication function [" A x A -A of ACP.

6.1. One-to-one communication. First we assume that A (with typical elements
a, b A) is partitioned into A C U I, where C (with typical elements , d C) is the
set of communicating actions and I (disjoint from C and with typical elements i, j I)
is the set of internal actions. The set I will serve as an auxiliary tool for the communica-
tion function [.

Second, we denote by a(x), the alphabet of x, the set of non- actions occurring
in the closed ACP-term x. For example, a(a6+ cd)- {a, c, d}. In subsequent results
we will usually be interested in terms x with a(x)_ C, i.e., not involving internal,
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auxiliary actions. Formally, the alphabet of a closed ACPr-term x is defined by first
eliminating the operators II, [L, I, OH, and aH from x, using the axioms of ACPr. (This
is possible by virtue of an elimination theorem to this effect proved in [BK84a] for
ACP; the extra operators aH in ACPr present no problem.) The resulting closed term
x’ contains only the "basic constructors" / and., and we may further suppose that
x’ contains no subterm of the form (p + q)r (by some applications of axiom A4 of
ACPr, see Table 1); that is, x’ uses only prefix multiplication. Now we define a(x) to
be a(x’), where c(x’) is defined by the following clauses, using induction on the
structure of x’:

(s):,

a(a)={a} (aA),

a(,x) (R),

a(ax) (a} U a(x) (a A),

(x+y) (x) U (y).

(That a(x) is indeed well defined in this way, follows from the confluence property
of the rewriting procedure used in obtaining x’ from x. This fact is for ACP also proved
in [BK84a] and is easily carried over to ACPr.)

LEMMA 6.1.1. For closed terms x, y over ACPr with a(x), a(y)_ C we have

Oc(xllY) =Oc(xlY).

Proof It suffices to show that Oc(X

_
y)= 8. Recall that x can be normalized in

ACP to

X iCiXi / jdj

with Ci, dj C, and with the empty sum E denoting 8. Thus

x

_
y E,c,(x,i[y)= 2vcl#

which implies Oc(x Y) 8. [q

DEFINITION 6.1.2. Assuming the above partition of the alphabet A we say ACPr
has one-to-one communication if for the communication merge there exists a bijection
q C --> C such that c[o(c) e I for every c e C, and a b 6 otherwise.

Note that clo(c)I implies clq(c)6. Next, we show that the definitions of
parallel composition used in CSP and CCS are typical examples of one-to-one com-
munication.

6.2. Hoare’s parallel composition IIe in CSP. In [BHR84] Hoare et al. propose
an operation x lily modelling the full synchronization of processes x and y. We shall
consider [[e here within a small subset of the language CSP [BHR84] which we call
"CSP." The signature of "CSP" is given by

the constant STOP,
unary prefix operators c-*, for c C,
the binary infix operators [3 and

Here C is a given set of communication actions, contained in the overall alphabet A.
The semantics of "CSP" is determined by the failures model of [BHR84]. It is

based on the failures domain FBHR consisting of all subsets

F_A*x(A)
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satisfying the closure properties (i)-(iv) discussed in 5.1. The additional closure
property (v) on traces is not needed here since the failure sets F 2BHR contain only
failure pairs Itr, X].

The failure model assigns to each closed "CSP" term x a failure set OBHRX]] in
the domain 2BHR. According to [BHR84] the definition is as follows:

(i) BHRSTOP] {[e, X]IX c_c_ A};

(ii) O%BHRC--> X]] {[e, X]IX c__ A-{c}} LJ {[c" tr, X] I[tr X] ,BHRX]]};

(iii) ffBHRXIqy]] {[e, X]l[e, X] -BHRX]] rl ffBHRY]]}

U {[o’, X] o--7- 8 A [o", X] ,.BHRX] U ’BHRY};

(iv) .xlly] {[,, XU Y]I[, X] .x] ^[, Y] BHRY]]}"

The failure model induces the following failure equivalence ,nR on closed "CSP"
terms x and y"

x =,HRY iff HRXll aHRY]].
We now link these definitions of [BHR84] to our present setting by interpreting "CSP"
in ACPr with one-to-one communication. Let C {cl, , c,}. Then we take A C U I
with

I-- C1," ",

where the i (i 1,. , n) are new copies ofthe actions ci in C. Furthermore, one-to-one
communication is introduced by putting q(c)= c and c lc= for every c C. The
interpretation of "CSP" in ACPr is given by a mapping ,, from closed "CSP" terms
into closed ACP terms defined as follows"

(i) (S:OP)= ;
(ii) 5(c-* x) c. 5(x);
(iii) ,,(x [-l y) (x) +(y);
(iv) (xlly)= c,(oc(y(x)ll(y)))

where C abbreviates the composite operator (c){,}o...o(c,){,,}, built from the
renaming operators (c){,}(i 1,..., n) that rename c into 8.

This interpretation is justified by the following result.
PROPOSIWIOy 6.2.1. For closed "CSP" terms x

...x] (x)] c* x (A)

holds where is the ACPrfailures model of 5. In particular (x)] does not contain
any traces signaling successful termination, only failure pairs [, X].

Proof By induction on the structure of x. The cases (i)-(iii) are immediate. Case
(iv), parallel composition, is more tedious. It is easy to see that both

.Kx I1 y], c,(oc((x)ll(y))] c* x (A).

Hence the closure properties of the failure domains nR and , respectively, imply

[, x] .Kx I1 Y] iff[, X U Y] ffa.RX I1 y,
[, x] c,(a((x)ll(y)))] iff[, xu Y] c,(oc((x)ll(y)))]

for arbitrary Y A-C. Thus it suffices to show

[, X] ff.R]X [Ix Y] iff [, X] C,(0c((x)ll(y)))]

for tr e C* and X c_ C.
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Let and " result from cr and X by replacing pointwise each action c by . In
particular, we have A- C. Then for r C* and X C

[or, X] ffBHRffX IIX Y]
if and only if (induction hypothesis, definition of

]X C, Xa C"

[, x,] e (x) A [, X] e (y) A X X, UX
if and only if (definition X)

X C, X2 C"

[, X] (x)] [g, X2] Y(y)] A {[ c 6 X X2}

if and only if (closure properties of the failure domain

]X1, X2: XI aA X2 a
A [, x,] (x) A [, x] (y)

x x-{1 c x x}

if and only if (one-to-one communication, definition

[& ] (x)ll(y)

if and only if (definition C, Oc)

[, x] c,(oc((x)ll(y)))

This finishes our proof.
Consequently, for "CSP" the original failure equivalence ,HR of [BHR84]

coincides with our definition of failure equivalence in 2. More precisely we have
the following corollary"

COROLLARY 6.2.2. For closed "CSP" terms x and y

X ,,HRY iffY(X) Y(y).

For closed "CSP" terms x and y the notions of trace and trace equivalence are
defined via the interpretation in ACPr:

trace (x)= trace (Y(x)),

X tr Y iff (x)tr (Y)"

(Actually, trace is in 2.1 only defined on graphs; using the operation graph from
4.1.2 we now define for a term x, trace (x) as trace (graph (x)).) Using Proposition

6.2.1 the trace set of a term x can also be computed directly from its failure set ffHRX"
trace (x)= {. 3 [, A] HRX}.

Recall that in our paper we only consider complete traces, either leading to a deadlock
6 or to successful termination (not possible for "CSP"). In [BHR84] the word "trace"
is used as well, but it refers to any sequence with

Such sequences were called histories in 2.
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6.3. Milner’s parallel composition [1 in CCS. Since the parallel composition in
ACPr can be seen as a generalization of Milner’s operation I1 in CCS [MiS0], it is
easy to regain the original definition. As for CSP, we do this within a small subset of
CCS which we call "CCS." Milner stipulates that the set C of communicating actions
is equipped with a bijection -:C-> C satisfying g" c. Here is called the matching
action of c. In addition to communicating actions Milner uses a symbol - denoting
the so-called silent action. We will write - because we work here without Milner’s
’-laws that make " silent or invisible (see the discussion below and 8). Hence the
alphabet for "CCS" will be A C U {}.

The signature of "CCS" consists of the following:
the constant NIL;
unary prefix operators a., for a A;
unary postfix operators \H, for H

_
C;

--the binary infix operators + and [l.
Informally, x [] y denotes the nondeterministic interleaving of x and y, plus the
communication of x and y via matching actions which then yield - as a result. Following
[MiS0], this can be expressed by the infinite axiom scheme:

(*) (iaixi) [1 (jbjYj):iai(xi y)+Ejbj(x [l yj)+Xa,=aj’" (Xi

where x ,itlixi and y ,jbjyj.
We shall define the semantics of [] via an interpretation 5 of "CCS" in ACPr

with one-to-one communication. To this end, take I {,} and define

(c)=g and cle:
Then is rather trivial"

(i) 5(NIL)= a;
(ii) 5(a. x)= a. 3(x);
(iii) (x\H)=OH((x));
(iv) (x + y) (x) + 5(y);
(v) (x II Y) (x)ll(y).

Note that the auxiliary operations

_
and in ACPr serve to replace the infinite axiom

scheme (,) by finitely many ACPr axioms.
In [MiS0] Milner studies CCS terms under the (weak) bisimulation equivalence

[Pa83]; however, here we shall study "CCS" under the failure equivalence. For closed
"CCS" terms x and y we define the notions of failure equivalence, trace equivalence
and alphabet via the interpretation 5 in ACPr:

x-=y iff 5(x)--5(y),

X"trY iff (X)’tr,(y),

(x) ((x)).

In general, these definitions are not quite appropriate for CCS because - should be
silent or invisible; more formally r should be subject to Milner’s ’-laws. In the above
interpretation of "CCS" -7 remains visible, i.e., recorded in the traces and failure pairs.
The reason for this clash is that CCS indivisibly couples parallel composition I1 and
% whereas we decided to separate failure equivalence -= from -.

However, we can regain the spirit of CCS if we restrict the failure equivalence to

.7-free "CCS" terms x and y, i.e., with

" t(x), a(y).
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Unfortunately, --free "CCS" terms are not closed under parallel composition 1[.
Therefore we shall consider also a modified trace set

trace (x)
for "CCS" terms x which results from trace (x) by deleting in every trace or. 6 trace (x)
all occurrences of - in r. Then trace (x) represents the set of complete traces in the
sense of CCS. For example,

trace (cNIL gNIL)= {cg6, gc, "6},

trace (cNIL 11 gNIL) {cg, gc6, 6}.

7. The maximal trace respecting congruence. In 4 (Proposition 4.2.3) it was shown
that failure equivalence = is a congruence with respect to the operators of ACPr. In
this section we will prove that for ACPr with one-to-one communication failure
equivalence is in fact the maximal trace respecting congruence. This implies a full
abstraction result for the failure model of 5. But first let us introduce the relevant
concepts.

7.1. Preliminaries. Let E be a signature with Ter (E) denoting the set of closed
terms over E. By Ter (Z)[:] we denote the set of terms over E with : as free variable.
These terms are called contexts and are typically written as TOIl:].

Let -_ Ter (E). A congruence for - is an equivalence relation on -, such that

x =- y implies TO[x]-= To[y]

for all terms x,y - and contexts TO[C]Ter(E)[:] with TO[x], C[y] -. A con-
gruence for - is trace respecting if

x y implies trace (x) trace (y)

for all x, y -. A trace respecting congruence for - is called maximal if for all
x,y-,xy implies that there exists some context TO[:]Ter(E)[] with
TO[x], TO[y] - and trace (TO[x]) trace (TO[y]).

PROPOSITION 7.1.1. For each -’ Ter (E) the maximal trace respecting congruence
for - exists and is unique.

Proof Uniqueness. Suppose = and 2 are different maximal trace respecting
congruences on -. Then for some x, y . - we have

x=-y, but x zy.

Since -= is a trace respecting congruence on -, trace (TO[x])=trace (TO[y]) holds for
every context TOIl] Ter ()[:] with TO[x], TO[y] if-. But this contradicts the maximal-
ity of .

Existence. Define --, a binary relation on -, as follows: x-=y if and only if for
every context TO[] Ter (Z)[s] with TO[x], TO[y] 0-, trace (TO[x]) trace (TO[y]) holds.

It is easy to see that -= is a trace respecting congruence for -; maximality follows
from its definition. [3

7.2. A characterisation of failure equivalence. Let us now turn to ACPr. We write
Ter (ACP) instead of Ter (). From 4 we know that failure equivalence -= is a
trace respecting congruence for Ter (ACP). (For the sake of convenience, we have
identified here the semantical notion =e. with the equivalence induced by = on
Ter (ACP) via the correspondence between process graphs and terms, explained in

4.1.) Thus for ACP, in general, we have
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with max denoting the maximal trace respecting congruence for Ter (ACPr). If we
specialize ACPr to the case of one-to-one communication, we can actually prove that

:

and thus arrive at a very pleasing characterization of failure equivalence.
THEOREM 7.2.1. Consider ACPr with one-to-one communication. Then failure

equivalence =-e is the maximal trace respecting congruence for the set -c of all closed
terms x over ACPr with alphabet a(x)c_ C.

Proof Suppose x y; i.e., x]]# y]l holds for x,y -c. If trace (x)#
trace (y), the trivial context c[sc] : will do. Now suppose that trace (x)=trace (y)
holds. Because of xy we can assume without loss of generality that there exists a
failure pair [r, X] with

[tr, X] ox]], [o-, X] ff[[y]].

By the definition of if, [tr, X] ffl[x]] implies that there exists some ready pair (r, Z)
[[x]] with X c__Z. Note that Z. Suppose we had (tr,)x]]. Then
trace (x) trace (y) and (tr, ) y]]. Thus [o-, C] oy]] and therefore also [tr, X]
ox]], a contradiction.

Trace equivalence of x and y implies that there exists a ready pair (o-, Y) yll
with Y . Again by the definition of , [or, X] oy]] implies that for every such
ready pair (tr, Y) y]] there exists some d X f’) Y. Now consider a context of the
form

[]= (c,{,,o c.{,,,}o a)(xll(o- :(d) ,)

where the sum E is taken over all d e X f3 Y such that (tr, Y)e ty]]. Furthermore
I {il, , in}, cl, , cn C, p is the bijection describing the one-to-one communica-
tion in ACPr and p(o’) is the result of applying p pointwise to r. Note that [sc] is
uniquely determined by x and y except for the choice of the cl,. , cn in the renaming
operators. Note that indeed [x], [y] 3-c due to the presence of operators Oc and

cj{i in [sc]. We now claim that

(Cl{il Cn{i,,})(O’[((O’))o e trace (CO[x]), trace ([y])

where trlq(tr) is understood by applying pointwise to o- and q(tr).
To prove this claim we first state a general observation about ready sets z]] of

closed terms z over ACP,. Let cr al a,, and Z {bl," , b}. Then (o-, Z) e [[z]]
if and only if there exist x, , x,,, y, , yn e Ter (ACP,) with

ACPF-x a(a: (a,,(byl +" + bnyn)+ x,,,) + X2) -" X
This observation is obvious,from 3 and 4.

Next we recall from Lemma 6.1.1 that due to the encapsulation Oc we can replace
the general parallel composition in [:] by the communication operator[ which
enforces synchronization.

Combining these two facts, it is easy to calculate that (o-, Z)e x]] with X c__ Z
yields

(Cl{il} Cn{i,,})(O’[((O’))" e trace ([x]).

Now suppose that this trace is also present in trace ([y]). Since ACP, allows only
one-to-one communication, there exists a history r e C* such that every ready pair
(r, Y)e y]] satisfies X f-I Y . This is a contradiction. This finishes our proof.
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7.3. Application to CSP and CCS. The characterization of failure equivalence for
ACPr yields corresponding results for the subsets "CSP" and "CCS" or [BHR84] and
[Mi80].

COROLLARY 7.3.1. For closed "CSP" terms the failure equivalence ----4,BHR of
[BHR84] is the maximal trace respecting congruence.

Proof. Via the interpretation # the failure equivalence -= 4,HR is a trace respecting
congruence for "CSP." To show maximality, suppose x 4,BHR Y for closed terms x
and y. Then #(x) 4 #(Y) by Corollary 6.2.2. Since a(#(x)), a(#(y)) C, Theorem
7.2.1 applies and yields a context c8[:] in ACPr with

(’[,.(X)] 76tr 8[(y)].

Looking at the proof of Theorem 7.2.1 we see that [s] can be expressed in "CSP";
i.e., there exists a context c8’[s] in "CSP" with

I(’)[’] [’]
Where we stipulate #(:)= 6 Thus

,( (’)[,., (X)] 76tr ,( g’)[#(y)].

Since is defined by structural induction, we have ((’)[(x)]=(cC’[x]) and
likewise for y. Thus

(t[X] 76tr g’[y]

by the definition of trace equivalence for "CSP."
Due to the differences of r and - in CCS and ACP (see 6.3), we can characterize

failure equivalence only for --free "CCS" terms.
COROLLARY 7.3.2. On the subset of closed, .-free "CCS" terms failure equivalence

=-4 coincides with the maximal trace respecting congruence defined for full "CCS." -"his
result holds for both notions of trace introduced for "CCS" terms, viz., trace(. and
trace(. ).

Proof Via the interpretation # failure equivalence -=4 is a trace respecting
congruence for "CCS." This holds for the original definition of trace (.), however, since

trace (x)=trace (y) implies trace (x)=trace (y),

it holds for trace (.) as well.
Now consider two closed, --free "CCS" terms x,y such that x 4y, i.e.,

#(x)4(y). Since -freeness means a(#(x)), a((y))c_ C, the proof technique for
Theorem 7.2.1 applies and yields an ACP context of the form

[]

where z is a closed, ,-free "CCS" term such that for some n-> 0

-". 6 e trace ([#(x)]), trace ([(y)]).

Note that in the definition of [(:] we deviate slightly from Theorem 7.2.1 and omit
the renaming operator, which would yield here c{ for some c e C. The reason is that

(respectively, -) cannot be renamed in Milner’s [Mi80] (and hence "CCS").
The above [] can be translated back into the "CCS" context

e’[g] (g I1 z)\ C,

which yields

trace (c’[x]), trace (c’[y]),
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and thus

6 trace (c’[x]), trace (c’[ y]).

This proves the maximality of failure equivalence for ,-free "CCS" terms with respect
to both notions of trace.

Thus the (proof of) Theorem 7.2.1 gives a uniform argument for the communication
mechanisms of both "CSP" and CCS."

Remark 7.3.3. (Comparison with the work of De Nicola and Hennessy [DH84].)
We have proved that (under a restricted communication format) processes are failure
equivalent if and only if they cannot be separated by any context where "separated"
refers to the criterion of having different traces. This characterisation is easy to
understand, as it involves only the notions of trace and context. It is interesting to

compare our result with a result in [DH84]. Since the settings are quite different (here
finite processes in ACPr, there CCS with recursion, z-steps and an additional constant
l) denoting the undefined state), we state the comparison for the greatest common
denominator of ACPr and CCS, viz., the language "CCS" of 6.3.

De Nicola and Hennessy [DH84] set up a notion of testing and consider two
processes p and q as equivalent if and only if they pass exactly the same tests. This
idea oftesting is very appealing, but the formal definitions are somewhat more technical.
Both processes and tests are just terms over the signature of "CCS." However, in the
alphabet A we assume a distinguished action to, which may appear in tests only. The
action to is interpreted as reporting success; it is needed in the definition of a process
passing a test. Due to the restriction to "CCS," we can phrase De Nicola and Hennessy’s
definition as follows.

For "CCS" terms p, q, r and actions a A we write

p - q if :ir: "CCS"p a. q + r,

p- iflq’p-% q.

Intuitively, p q states that p can perform an action a and then behave like q. A
computation is a sequence of "CCS" terms of the form

pl --> p2 --> --> p;
it is called maximal if there is no "CCS" term q with p, q. Since "CCS" does not
include recursion, any computation is finite here.

There are two forms of a process p passing a test t"

(i) p may pass if there exists a computation

with t. -, or equivalently if there exists some n->_ 0 with

" to trace (p !] t),

(ii) p must pass if whenever

is a maximal computation then there exists some m with 1 <= m-< n and t,-.
Thus a term t, that can perform an to-action serves as a criterion for success. For
examples of (i) and (ii) we refer to [DH84].

Then De Nicola and Hennessy [DH84] introduce three so-called testing equivalen-
ces on processes p, q"

(i) p lq if for every test t" p may pass if and only if q may pass t.



1170 J. A. BERGSTRA, J. W. KLOP, AND E.-R. OLDEROG

(ii) p -2q if for every test t: p must pass if and only if q must pass t.

(iii) p 3q if p lq and p 2q.

It is now very interesting that for "-free "CCS" the strong testing equivalence
coincides with the failure equivalence =. This is an immediate consequence of
Corollary 6.2.6 of [DH84] stated for the class of so-called strongly convergent CCS
terms, which in particular includes all "-free "CCS" terms. Thus at least for ,-free
"CCS" terms we have a pleasing convergence of ideas:

strong testing equivalence =failure equivalence maximal trace respecting congruence.

Conceptually, we find the notion of a maximal trace respecting congruence simpler
than the definition of passing a test.

7.4. Full abstraction. The notion of full abstraction is due to Milner [Mi77] (see
also [HP79], [P177]). It is a relationship between models (of an axiomatic system)
and equivalence relations (on the terms of that system) whose definition is motivated
by the following question"

Under what circumstances can we replace a term x by a term y without noticing this
change by a given equivalence ?

Using the notion of a context introduced above, this question amounts to:

Under what conditions on x and y do we have Cf[x]-= rf[y] for every context

Full abstraction can be seen as looking for a sufficient and necessary condition that
answers this question. Formally, we state the following definition.

DEFINrnON 7.4.1. A model for -_
Ter (E) is called fully abstract with respect

to an equivalence relation =- on - if for all terms x, y -:
,/gx=yiffqg[x]=-Cg[y] holds for every context [sC]Ter(;)[] with

[x], C[y] ft.

Thus a fully abstract model /optimally fits the equivalence in the sense that it just
makes the identifications on terms that are forced by =. Usually, it is quite difficult
to discover fully abstract models (see [HP79], [Mi77], [P177]), but for the failure
model =:(+,., I[, [I, I, OH, all, a, 6)(a A) of 5 and the trace equivalence "’tr of
2 we can now state such a result.

THEOREM 7.4.2. Consider ACP with one-to-one communication. Then for the set

5Fc of all closed terms x over ACP with alphabet a(x)_ C the failure model is fully
abstract with respect to the trace equivalence "tr.

Proof By Definition 7.4.1, it suffices to show that for all x, y -c:
[[x]] y]] iff x maxY

where --=max is the maximal trace respecting congruence. But this is immediate from
Theorem 7.2.1.

COrOLt,ARV 7.4.3. For the set of closed "CSP" terms the failure model BHR of
[BHR84] is fully abstract with respect to the trace equivalence "tr"

For "CCS" we cannot state the analogous result due to the mismatch discussed
above.

8. Processes with recursion and abstraction: bisimulation versus failure equivalence.
8.1. Preliminaries. In the preceding sections we have been excl.uively concern:d

with the failure semantics for finite processes without abstraction, i.e., not involving
--steps. In this section we will set aside that restriction and comment also on infinite
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(recursive) processes with abstraction, in regard to bisimulation and failure equivalence
The crucial point is the way in which infinite sequences of --steps in a process are
treated.

In the failure semantics proposed in [BHR84], all processes having an infinite
r-sequence from the root are set equal (to the process CHAOS). The notion of
bisimulation is more discriminating. The advantage is that models obtained by bisimula-
tion equivalence satisfy a useful abstraction principle: Koomen’s Fair Abstraction Rule
(KFAR), as introduced in [BK84b]. Roughly, this rule gives a way of sirnplifying
processes by elimination of (some) infinite r-sequences. This elimination can be
understood as fairness of (visible) actions over silent r-steps. A more precise description
is given below. (Of course, setting all processes having an infinite r-sequence from the
root equal to CHAOS also eliminates infinite --sequences, but then all information is
lost.)

Since KFAR is a very useful tool for system verification (e.g., in [BK84b] it was
used to verify an alternating bit protocol), it is natural to ask whether KFAr is also
compatible with the somewhat simpler failure semantics. More precisely, we can ask
whether there exists a process model which for finite processes agrees with the failure
semantics and for infinite processes satisfies KFAR. Interestingly it turns out that such
a model does not exist. To prove this result, we will formulate a set of assumptions
embodying failure semantics and KFAR, and derive an inconsistency. Formally, the
inconsistency arises from the following extension ofthe axiom system considered above:

ACPr+R1, 2+S
+ Milner’s r-laws + axioms for abstraction operators
+ KFAR
+ RSP (reeursive specification principle).

Here RSP is the assumption that guarded systems of recursion equations have a
solution, which is moreover unique.

Now by virtue of our axiomatic approach we can pinpoint the origin of the
inconsistency derived below with some accuracy. It turns out that the failure of KFAR
in failure semantics holds already in ready semantics, and moreover that communication
does not play a role in the inconsistency. That is, the inconsistency already appears
in the subsystem

BPA+ T1 +TI1-5+ R1 + KFAR+ RSP

which we will explain now. BPA, for basic process algebra, consists of the axioms A1-5
of ACPr, which specify the properties of + and .. T1 is the simplest of Milner’s r-laws

[Mi80] (see Table 6). In addition, Table 6 contains axioms TI1-TI5; these specify the
abstraction operators ’i, where I A is a set of internal actions as simple renaming
operators (cf. [BK84c] and [BK86a], [BK86b]).

R1 is the axiom for the readiness semantics (see Tables 3 and 4):

a(bx + u)+ a(by+ v) a(bx + by+ u)+ a(bx + by+ v).

The recursive specification principle RSP states that guarded systems E of recursive
equations have unique solutions (see [BK84b] or [BBK85]):

E(X1, ", Xn), E(yl, ", y,), E guarded

Xl Yl

Informally, "guarded" means that every recursive occurrence of xi in E is preceded
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TABLE 6
BPA+ T1 + TI1-5

x+y =y+x A1
(x+y)+z x+(y+z) A2
x+x x A3
(x + y)z xz + yz A4
(xy)z=x(yz) A5

x" x T1

’i (r)= " TI1
’1(a)=a ifaI TI2
rt(a)=r ifaI TI3
rt(x + y)= rt (x) + rl(y) TI4
’t(xy) ’,(x) ’t (y) TI5

by an action different from -. For example, the system

X ax2 + bx,

x2=c(xl+x2)+d

is guarded and thus has a unique solution.
We will now explain KFAR. For each n => 1, we have a version KFARn. KFAR1

is as follows:

x=ix+y (iI)
’,(x) " ’,(y)

The premise of KFAR1 says that x has an infinite /-trace (see Fig. 19). Now KFAR1
expresses the fact that x makes fair choices along its infinite /-trace, i.e., performing
x entails at most finitely many choices against y. We may note here the necessity of
the abstraction operator ri in KFAR: From x rx+y it does not follow that x

’" ’i(y), since the equation x ’x +y has infinitely many solutions (see [BK84c] or
[BK86a]).

X:

FIG. 19
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The version of KFAR for n 2 is

xl=ix2+yl, xz=jxl+Y2 (i, j6I)
TI(X1) T" "ri(y + Y2)

In the general formulation of KFAR, the premise displays an "/-cycle" of length n.
For a precise formulation we refer to [BK84b] or [BBK85].

Note that except for KFAR all assumptions in BPA,+TI1-TI5+ R1 + RSP are
valid for failure semantics. To see that the ’-laws TI1-TI3 (of which only the first one
is needed for the derivation of the contradiction below) are valid for failure semantics,
we refer to [Br83], which gives axioms describing failure semantics for finite processes
involving ’-steps; these axioms imply the --laws.

8.2. The inconsistency of failure semantics with KFAR. We will now derive the
announced contradiction. It is important to notice that this contradiction is entirely
insensitive to how failure semantics works with processes that contain r-steps.

Consider the following systems of guarded recursion equations:

X aX "- ax2

E1 Xl cnt- bx2,
x2 d + bXl,

and

Y ayl + ay2,

E_ly c + by2,

(y2= d + by.

The systems El, E2 have solutions x, y which can be depicted as in Fig. 20.
CLAIM: X and y are failure equivalent.
Intuitively this may be clear since (as demonstrated in 3.1) axiom R1 amounts

to placing "crosses"; from the graphs for x, y we can thus obtain equivalent graphs
as in Fig. 21. These two graphs are in fact identical.

Proof of the Claim (Formally). Consider the system E3 of guarded recursion
equations:

Z ag -[- az2
E z c + bz -t- bz2,

z2 d + bzl + bz2.

(This system corresponds with the graph in Fig. 21.) Now

where

Further,

x ax + ax2 a(c + bx2)+ a(d + bx) (by R1)

a(c+ bx+ bx)+ a(d + bx + bx2) az + az.

Z C d- bx2"+" bXl and z d + bXl + bx2.

z c + bx:z + bx, c + b(d + bx,) + b(c + bx:z) (by R1)

c + b(c + bx+ bXl)+ b(d + bXl + bx2)

c + bz’ + bz’2
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X:

a a

b b

b c b b

b d c b b

b c

and likewise

FIG. 20

z’2 d + bz + bz..

So (x, z, z) satisfies E3. A similar computation shows that (y, z’, z), where

" "=d+byl+by:zz c + by + by, z
satisfies E3. Hence by RSP,

(x, z, zl) (y, z,, z2) (z, Zl, z2),

in particular x y. This proves the claim.

a a a a

FIG. 21
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In order to derive the inconsistency we will abstract from b, by means of ’(b, in
x and y. This yields corresponding process graphs as in Fig. 22. Next we apply KFAR
on ’(b(X) and ’(b(Y) and obtain a(c/ d) and ac+ ad, respectively. This can be seen
graphically: KFAR shrinks the infinite --traces to a point, obtaining the graphs as in
Fig. 23.

Formally:

Further,

yields by KFAR2:

Hence from (,)

"qb(X) ’qb(aXl + ax2) a rb(Xl) + a" ’b(X2).

X bx+ c, x2 bx + d

"qbI(X) r" ’tb}(C + d)= ’(c+ d),

-ti(x) -. -ti(c + d)= -(c+ d).

"qb}(x)=a’r(c+d)+a’r(c+d) (byT1 inTable6),

a(c+d)+a(c+d)= a(c+d).

Next consider y"

(**) ’qb}(Y) a ’b}(Yl)+ a "r{b}(y:,).

Now Yl by1 + c yields by KFARI: ’b}(Yl) ’C; similarly 7"b(Y2) ’d. Hence from (**)

"qb}(Y) a’rc+ a’rd ac+ ad.

So, since x y, we have proved a(c + d)= ac + ad. But a(c + d) and ac + ad are not
failure equivalent.

$.3. Further results. The above inconsistency proves that the advantages of Koo-
men’s fair abstraction rule, KFAR, cannot be combined with the simplicity of failure
semantics. We investigated this dichotomy further and were pleased to find a weaker

a a "{b}(Y): a a

FIG. 22
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’l;{b}(X)

cc

0

"{b}(Y)
a a

a(c + d) ac + ad

FIG. 23

fair abstraction rule, called KFAR-, which is consistent with (finite) failure semantics,
and which is still useful for many process verifications. More precisely, the new rule
is consistent with a version of Brookes, Hoare, and Roscoe’s failure semantics [BHR84]
without catastrophic divergence, i.e., that does not identify processes having an infinite
r-sequence from the root with the process CHAOS. The details and applications of
the new rule KFAR- can be found in [BKO86].

Acknowledgment. We thank R. van Glabbeek and one of the referees for pointing
out some inconsistencies in a previous version of this paper and for many detailed
suggestions and corrections.
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THE AVERAGE COMPLEXITY OF DETERMINISTIC AND RANDOMIZED
PARALLEL COMPARISON-SORTING ALGORITHMS*

N. ALON-t AND Y. AZAR’

Abstract. In practice, the average time of (deterministic or randomized) sorting algorithms seems to
be more relevant than the worst-case time of deterministic algorithms. Still, the many known complexity
bounds for parallel comparison sorting include no nontrivial lower bounds for the average time required
to sort by comparisons n elements with p processors (via deterministic or randomized algorithms). We show
that for p=> n this time is O(log n/log (1 +p/n)) (it is easy to show that for p=< n the time is O(n log n/p)
O(log n/(p/n)). Therefore even the average-case behaviour of randomized algorithms is not more efficient
than the worst-case behaviour of deterministic ones.

Key words, parallel sorting, comparison algorithms, randomized sorting

AMS(MOS) subject classification. 68E05

1. Introduction. Sorting is one of the central problems in computer science. For
extensive lists of publications dealing with serial and parallel sorting algorithms see,
e.g., [Ak85], [BHe85], [Kn73], and [Th83].

Most of the fastest serial and parallel sorting algorithms are based on binary
comparisons. In these algorithms the number of comparisons is typically the primary
measure of time complexity. Any lower bound on the number of comparisons required
for a problem clearly implies a time lower bound for such algorithms.

It is well known that O(n log n) binary comparisons are both necessary and
sufficient for sorting n elements in the serial comparison tree model. The situation is
somewhat more complicated for parallel algorithms. The common parallel comparison
model here is the one introduced by Valiant [Va75] (see also [BHo85]), where only
comparisons are counted.

In measuring time complexity within this model, we do not count steps in which
communication among the processors, movement of data, and memory addressing are
performed. We also avoid counting steps in which consequences are deduced from
comparisons that were performed.

Note that any lower bound in this model implies the same bound for all algorithms,
based on comparisons, in any parallel random access machine (PRAM), including
PRAMs that allow simultaneous access to the same common memory location for read
and write purposes.

In a serial decision-tree model, we wish to minimize the number of comparisons.
The goal of an algorithm in a parallel comparison model is to minimize the number
of comparison rounds as well as the total number of comparisons performed.

Let k stand for the number of comparison rounds (time) of an algorithm in the
parallel comparison model. Let c(k, n) denote the minimum total number of com-
parisons required to sort any n elements in k rounds (over all possible algorithms).

Upper and lower bounds for c(k, n) appear in [AA87], [AAV86], [AKS83a],
[AKS83b], [AV87], [BT83], [BHe85], [Bo86], [BHo85], [HH80], [HH81], [Pi87]. The
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best-known bounds for fixed k are (see [AA87], [AAV86], [BHe85])

f(nl+/k(log n) Ilk) <= c(k, n)<-O(n +l/k log n)

and for general k=<log n (see [AV87], [AAV86])

(1.1) O(kn ’+ilk) <-_ c(k, n) <= kn ’+bIg

where b > 0 is a constant. These bounds imply that the time required for sorting n
elements, if p comparisons are performed in each time unit, is 19(log n/(p/n)) for
p<-n and (R)(logn/log(l+p/n)) for p>-_n.

These results determine up to a constant factor the (worst-case) time complexity
of sorting in the parallel comparison tree model. However, the problem of estimating
the average (over all orders) running time of the best sorting algorithm, as well as that
of determining the time complexity of the best randomized sorting algorithm, is far
from being settled. In fact, besides the relatively easy f(n log n) lower bound for
randomized (or average) serial sorting (see, e.g., [AHU74]), there are no known lower
bounds for the worst-case or average-time complexity of randomized sorting algorithms
at all. Such bounds appear to be important, since in practical situations we are naturally
interested in the average running time, and not necessarily in the worst-case behaviour.
Similarly, fast randomized parallel sorting algorithms could be extremely helpful in
practice.

Proving lower bounds for the average time of (deterministic or randomized)
comparison algorithms appears to be much more complicated than obtaining lower
bounds for the worst-case time of deterministic ones. In fact, there are several known
results that show that for various comparison algorithms the average time, as well as
the worst-case time of randomized algorithms, differs asymptotically from the worst-
case time of their deterministic counterparts. One such result is due to Reischuk [ReS1 ],
who gave a randomized comparison parallel algorithm for selection, whose expected
running .time is bounded by a constant, using n processors. Together with the
f(log log n) lower bound of [Va75] for finding the maximum among n elements using
n processors, we conclude that there exists a randomized algorithm for selection that
performs better than any of its deterministic counterparts. The results of [BHe85] on
approximate sorting in one round, those of [Rei85] on integer sorting and those of
[AAV86] on sorting in a fixed number of rounds supply several other examples of
parallel randomized comparison algorithms that perform better than the corresponding
best-known deterministic ones. In view ofthese examples we might expect that random-
ized parallel sorting algorithms could work asymptotically faster than deterministic
ones. Our main result in this paper is that this is not the case. In fact we prove the
following theorem.

THEOREM 1.1. The average time requiredfor sorting n elements in the best random-
ized algorithm with p processors, (i.e., the best algorithm that performs p comparisons in
each time unit), is (R)(log n/log (1 +p/n)) forp>= n (and is, easily, 19(log n/(p/n)) for
p<=n).

This matches, up to a constant factor, the worst-case running time for the deter-
ministic case for all values of p.

To prove the lower bound we prove the following proposition.
PROPOSITION 1.2. The average number of comparisons in the best deterministic

algorithm that sorts n elements in k rounds is

O(kn l+l/k) for all k<-log n.



1180 N. ALON AND Y. AZAR

Note that for k- (R)(log n) this coincides with the known bound for the serial case.
A parallel algorithm is said to achieve average optimal speedup if its average

running time is proportional to Seq (n)/p, where Seq (n) is the lower bound on the
average serial running time, n is the size of the problem being considered, and p is
the number of processors used.

An immediate consequence of Theorem 1.1 is that if the number p of processors
is larger than n by an order of magnitude then it is impossible to design an average
optimal speedup randomized comparison sorting algorithm. Note that, for p O(n),
there is an optimal speedup (deterministic and therefore randomized or average
deterministic) algorithm, given by the [AKS83a], [AKS83b] sorting network. These
results enable us to identify asymptotically the parallelism average break point of
sorting, which is the minimum average time that can be achieved by an average optimal
speedup algorithm. Specifically, (R)(log n) is the average break point for sorting n
elements, which is the same break point as that of deterministic algorithms (see
[AAV86], [AV87]).

Note that for findi’ng the maximum the average break point is better than the
worst-case break point. Reference [Va75] proved that (R)(log log n) is the break point
for finding the maximum among n elements but [Re81] proved that )(1) is the average
break point of that problem.

The proof of Theorem 1.1 differs considerably and is far more complicated than
that of the corresponding result for the worst-case time of deterministic algorithms
(which, obviously, follows from it). The main difficulty lies in the proof of Proposition
1.2. As we are dealing with the average-case behaviour, we cannot use the traditional
adversary way for choosing the unknown order; we need a new method. Since a direct
proof seems elusive, we must prove a stronger result, which implies, e.g., that our
bound holds for algorithms that allow, in addition to usual comparisons, questions of
the form "is rank (x) ?" For the exact statement of the stronger result see 2. We
are unable to prove Proposition 1.2 without proving this stronger assertion.

The derivation of Theorem 1.1 from Proposition 1.2 is much easier than the proof
of Proposition 1.2; however, it is not straightforward. It combines certain probabilistic
arguments with a well-known observation of Yao [Ya77] and the upper bound in
inequality (1.1). This is described in 3. The final section, 4, contains concluding
remarks, together with an application of our method to selection problems.

2. The average number of comparisons in deterministic algorithms.
2.1. The parallel computation model. Let N be a set of n elements taken from a

totally ordered domain. The parallel comparison model of computation equivalent to
the parallel computation tree model of [BHo85] allows algorithms that work as follows.
The algorithm consists of timesteps called rounds. In each round binary comparisons
are performed simultaneously. The input for each comparison is two elements of N.
The output of each comparison is one of the following two: or . Each item may
take part in several comparisons during the same round.

Our discussion uses the following correspondence between each round and a
graph. The elements are the vertices. Each comparison to be performed is an undirected
edge that connects its input elements. Each computation results in orienting this edge
from the largest element to the smallest. Thus in each round we get an acyclic orientation
of the corresponding graph, and the transitive closure of the union of the r oriented
graphs obtained until round r represents the set of all pairs of elements whose relative
order is known at the end of round r.
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Suppose we performed r rounds where r> 0 is some integer. The comparisons
performed in round r + 1 are chosen, of course, according to the results in all previous
rounds.

Recall that c(k, n) denotes the minimum total worst-case number of comparisons
required to sort n elements in k rounds (over all possible algorithms).

Let r(k, n) denote the average total number of comparisons, over all orders,
required to sort n elements in k rounds, in the best algorithm (that necessarily stops
after k rounds). Clearly r(k, n)<-_ c(k, n). Our objective is to prove Proposition 1.2,
which supplies a lower bound for r(k, n), where k is possibly a function of n.

2.2. Legal situations. We prove a stronger result that implies Proposition 1.2. We
consider the following situation, called a legal situation: We have s / 1 disjoint sets of
elements, denoted Z and Y1,’" ", Ys, with a set E of edges (comparisons) between
them.

The set Z, IZI m, 0_-< tn-< n, is a set of m elements such that the rank of each
z Z in the total n-order is known. Y1, , Ys, Y/I yi > 0, 1 =< i_-< s are s -> 0 sets of
elements such that, for each i, the set of yi ranks of the ith set in the total n-order is
known, but all the yi! orders of the elements of the sets are equally likely. The existing
edges (comparisons) we have are only for this round and are only between pairs of
elements of the same Y, for some i, or between an element of Y and an element of
Z. The answers to these comparisons are known, but depend, of course, on the actual
orders inside the sets Y. Let ei be the number of edges in Yi. Let , be the number
of edges between an element of Y and an element outside Y, whose relative order
does not follow from the known information about the sets of ranks. Denote f
and call it the "f-number" of the set Y in this situation.

The following facts are worth noting:
(1) The number of edges IE[ satisfies

]El > ei +- i fi.
i=1 i=1

(2) The number of elements n satisfies

n=m+ y.
i=1

(3) The (known) set of ranks of each Y is not necessarily a block of yi consecutive
ranks, and there are no edges between an element of Y and an element of Y for # j.
Before the next round of comparisons, all the information about the relative order of
an element of Y and an element of Y is a consequence of either the known sets of
ranks of Y and Y or the results of comparisons to elements of Z and transitivity.

(4) If for some set Y/, f/= 0 then all the y! orders in this set are equally likely
for each possibility of the results of the comparisons of the present round (and
independently of these results).

2.3. The lower bound. Let A denote the above legal situation. Denote by F(k, A)
the average, over all the 1-i i= (y !) possible orders, of the ’f-number" of comparisons
that are needed to sort the n elements in k more rounds, starting from situation A.
Here the "f-number" means that a comparison between an element of Y and an
element of Y (i can be equal to j) is counted as one comparison and a comparison
between an element of Y and an element of Z is counted as 1/2 a comparison.
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Define

1, f=0,

(l/k S 1

gk(y,f) \47
0<--<------

y 4’

() l/k, 1f_>__
y 4’

where c is some positive constant to be chosen later. Define also

[ yl+llk ]
Note that qk is a monotone nonincreasing function of f. The key inequality is the
following.

THEOREM 2.1. In the above notation

(2.1) F(k, A) >- qk(Yi,f)
i=1

for every k >- 1, and every legal situation A.
The (rather lengthy) proof of Theorem 2.1 is given below. It is based on moving

from one legal situation to another by finding properties that hold for all orders (and
not just for a special one chosen by an adversary). Some inequalities for convex
functions and some statistical behaviour of random orders are used as well, together
with a reduction of nonlegal situations that are created during the algorithm to legal
ones.

Proposition 1.2 for k_-< log n/(log 2c) is the special case of Theorem 2.1 in which
A is the legal situation with Z b, s 1, Y1 is the set of all elements, and f- 0. For
k =O(log n), Proposition 1.2 follows immediately from the serial bound. Another
special case of Theorem 2.1 corresponds to algorithms that allow queries of the form
"is rank (x) _-< i" besides usual comparisons. Indeed, suppose we have 2n 1 elements.
Let A be the legal situation in which IZI n 1, the set of ranks of Z is {2, 4, , 2n
2}, s 1, the set of ranks of Y is {1, 3,..., 2n- 1} and fl 0. Applying Theorem 2.1
to this situation we conclude that (knl+/k) comparisons are needed to sort Y in
k(_<- log n) rounds, where here, clearly, a comparison to an element of Z corresponds
to a query of the form "is rank(x)<= i?"

Proof of Theorem 2.1. We prove the theorem for every fixed n _-> 2 by induction
on k and on the parameters of A with c 256e. (We make no effort here to obtain the
best possible c.) The base case is left to the end. Our induction hypothesis is that the
assertion of Theorem 2.1 holds for any k’ and any legal situation A’ with sets Z’,
IZ’l m’ and r,.., r’, r:l Y’i>0, where

m’+E
i=1

provided at least one of the following three cases holds"
(a) k’<k.
(b) k’= k and i= Yl < 2i=1Yi.
(c) k’= k, E’ <E,_-,i=1Yi-- yi and s < s’. (Note that always s, s’ < n.)
We have to prove the theorem for k and A. We consider two possible cases.
Case 1. There is a set Y, with f > 0.
Case 2. For all i, 1 -<_ _<-s, f 0, and k > 1. (The case k 1 and f 0 for all will

be the base case.)
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In Case 1 we can assume, without loss of generality, that f > 0. Denote Y Y,
[Vl=y=y.,f=f.

Subcase la. f>-_ (1/ck+l)y2. In this case qk(Y,f) <- k(y+l/k/c(cf/Y) /k -Y) <=0. For
each order of Y, let the algorithm know this order for free; i.e., let A’ be the legal
situation obtained from A by replacing Z by Z U Y. Since Y y’i < Y yi and k’= k it
follows from the induction hypothesis (case (b)) that

F(k’, A’) >- qk’(Yl, f) E k(Yi,f) >- qk(Yi,f)"
i--1 i=1 i=1

Averaging over all orders of Y we conclude that F(k, A)>= Yi-- qk(Yi,f), as needed.
(Note that each comparison that is counted as one comparison in F(k’, A’) is also
counted as 1 in F(k, A) and each comparison that is counted as 1/2 in F(k’,A’) is
counted either as or as 1 in F(k, A).)

Subcase lb. O<f<=y/4. Since 2f=2e+, there are at most 2f elements in Y,
which are compared to some other elements (in Y or in Z). Let Y’_ Y be a set of
2f<- y/2 elements containing all those that are compared to members of Yt_J Z. Also
define Y/ Y\ Y. We let the algorithm know for free the set of ranks of Y and
Y’+. This corresponds to the legal situation A’ obtained from A by splitting Y into
the two sets Y] and Y’+. ForA’, s’ s+l,f’=<f, s’fs+=O. As >s we can apply
the induction hypothesis (case (c)) to A’ and conclude that

s+l

F(k,A’) >- qk(yl,fl) >- qk(yi,f)--qk(y,f)+qk(2f, f)+pk(y--2f, O).
i=1 i=1

In Appendix 1 below we show that for O<f<=y/4, qk(2f, f)+ qk(y-2f, O) >- qk (y, f).
Thus, for each A’ that arises as above F(k, A’)->Yi=l qk(yi,fi). Averaging over all
possible assignments of the two sets of ranks to the elements in Y’ and in Y2+, we
conclude that F(k, A), which is at least this average, is at least i= pk(yi, f), as needed.

Subcase lc. (The main case.) y/4 <f< y2/ck+. Define t= [4f/y](> 1), fl [y/t].
Note that 2N t<=8f/y, and y >= y2/8f> ck+l/8, and hence fl >-1 and

Randomly partition Y into t+ 1 blocks B, ,..., B,, C where ]Bil =/3, and IC[ y t/3
(possibly IC[=0). For each such partition choose a random permutation 7r of
[1, 2,..., t]. Assume that each element of C is greater than each element of Y\C,
and that each element of Bi is greater than each element of Bj if and only if 7r(i) > 7r(j).
These choices, together with the assumption that all the orders inside each block are
equally likely, give each of the possible y! orders of y with equal probability. For each
choice of Bi, C, and zr, there are pairwise disjoint sets Z,..., Z, whose ranges of
ranks lie inside those of B1,..., B,. Let g be the number of comparisons between
two elements of Bi, and let g’ be the number of comparisons between an element of
Bi and an element of Z Also define gi g’+1/2g" Note that g’ and gi are randomi, i
variables (whose values depend on the choice of the partition and of or), that 2gi is
an integer, and that gi is the f-number of Bi (since the result of each comparison
between members of Bi and members of N\(Bi Zi) follows from the assumptions
on the sets of ranks of each Bi). If 2g < fl, let G be a subset of Bi, [Gil--2gi that
contains every member of Bi, which is compared to a member of Bi [_J Zi. (Clearly
there are at most 2gi such elements.) If 2gi >-/3, define Gi Bi. Also define N/= Bi\ Gi.
We let our algorithm know for free the sets of ranks of each Gi and each Ni. By the
definition of Gi there are no comparisons between Gi and Ni. Hence we now have,
for each choice of Bi, C, and 7r, a new legal situation A’, which is obtained from A
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by replacing Z by Z U C and by replacing Y Ys by all the nonempty Gi and Ni (of
which there are at least >= 2). Note that for A’, k’ k, y’i -< yi, and s’> s. Note also
that the f-number of Ni, fN, 0 for each nonempty Ni, 1 <=i -< t. Let hi =fG, be the
f-number of Gi. Note that hi-<-gi. By applying case (c) of the induction hypothesis to
A’ (and by the fact that Ck(0, 0)= 0) it suffices to prove that

ff bl b2 => 0 where

(2.3)

and where the expected value is over all choices of the partition Bi, C, and the
permutation -. By the symmetry of the sets Bi

>-- tE(,(Igll, 0)+ ,(Ial, gl)).

Denote g gl. Let A be the event 2g </3 and let p =p(A) be its probability. Put
/5 1-p. In this notation the right-hand side of the last inequality is simply

tpEA(qk(fl --2g, 0)+ CPk(2g, g)) + tpE/X,(qk(, g)),

where EA,, E, are the expectations given A1, A1, respectively. Hence

d/1 tpEA,(k[ (fl -2g)’+l/k ] [ (2g) l+’/k

--->
c

(fl 2g) + k ’1/2-i7- 2g

l+l/k

pea, (fl-2g) + +pEa,(cg/fl)z/ -kt(p+p).

Put EA,(2g)=a, Ez,(2g)=az, E(2g)=a. Note that a, pa+Pa2=a, p+p=l,
and fit y. By the convexity of the functions x+/k and 1Ix/k we can apply Jensen’s
inequality (see, e.g., [HLP59]) to get

kt a fl ky.,- p (-a,)’+’/+ +Pc (c/2 (ca2/fl)
Put a a/fl, a2 a2/fl, a a/. Clearly

(2.4) a2 1, pa +ffa= a,

and

ec p (1 1)+/g+]( +ff(c/2) ky.

Hence

6=6- - p 1-)+/+iz +

ky- k[ y’+I/k Jc(cf/y)/-Y
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Since < 8fly we conclude, by (2.2), that

kyl+l/k(1--8/ck+l)l+l/k[( oll+l/k )c--tiT?, P (1--a,)l+’/k+(
+ ((c/2)a)1/-(c/8)1/(1_8/c+)//

As c=256e we can check that (1--16/ ck+l)k >= 1--16k/ck+l>--1/2, and hence

( C8+l)l+l/k ( C8+)2 16
>1- >_- 1- >_- 1 +l

C

Therefore

>=kyl+l/k(1--8/ck+l)l+l/k[ (ctiT, P (1 Cel)l+l/k 4

To establish (2.3) it suffices to show that

h_->0 where
(2.5)

h p (1 al)l*l/k + .--7:Zi;k +

al+lik 1 ](;Tk] 4 ((C12)a2)llk--(C116),l k

((cl2),) ’/" (c116) 1/"

In Appendix 2 we prove that (2.5) holds, subject to the constraints (2.4) and

(2.6) a=<1/2.
In Appendix 3 we establish (2.6). Therefore q >=0 and (2.3) holds, completing the
proof of Subcase lc and that of Case 1.

Case 2. For all i, 1 <-_ <-s,f 0 and k > 1. Here the next round of comparisons
(kth from the end) is performed. Let F be the set of these comparisons. Note that (if
s > 1) F may contain comparisons between members of distinct sets Y, and hence the
present situation is not necessarily a legal one. Let fl,""",f be the new "f-numbers"
of Y, , Y (i.e., f e +1/2g,, where e, g, are as in the definition of a legal situation
given in 2.2). Clearly IF >_- X=lf.

Subcase 2a. s 1. In this case the present situation A’ is a legal one. For A’, the
number of remaining rounds is k’= k-1, and there is a set Y Y1 with f-number
f=fl, and ]Y]=y elements and a set Z. By case (a) of the induction hypothesis
F(k’, A’)>= q-l(Y,f). Therefore, to complete the proof for this subcase it suffices to
check that

f+ (Pk-l(Y,f) e (Ok(Y, 0).
If 0 _-<f< y/4 then

yl+l/(k-1)
f+ qOk_l(y,f) >- qgk_l(y,f)>= (k- 1) C(C/4)II(k_I)--y

=ky 1- C(C/4),/(k_I) t--" 1 -ky.

By the Arithmetic-Geometric Inequality aa + fib >- ab for all a,/3, a, b _-> 0, a +/3 1.
Applying it with a 1- 1/k,/3 1/k we get

[ y(ll(k-1))((k-1)lk)
f+qk-l(y,f)>=ky c(k_l)/kcl/k(1/4)l/k

11/k -ky

kyl+ll k 411 k kyl+ll k

ky>--ky qk (Y, 0),
C C
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as needed. Otherwise f> y/4 and then, by a similar application of the Arithmetic-
Geometric Inequality,

(y+l/(-) )f+ tPk-l(Y,f) =f+ (k 1) 1/(k-l)- Yc(cf/y)

ky + 1- cl+l/(k_l)(f/y),/(k_l) -(k- 1)y

ky() 1/k (1/(k-1))((k-1)/k)
>__ Yc(k/(k_l))((k_)/k)(f/y)l/k--(k-- 1)y

(k 1)y > k
yl+l/k
-Y Pk(y, O).

C C

This completes the proof of Subcase 2a.
Subcase 2b. s > 1. Here the situation is not necessarily legal, as there may be

comparisons between distinct sets Y. We will show that the average value of the

f-number of comparisons of each set Y is at least (Pk(Yi,fi). As the total f-number is
simply the sum of the f-numbers of the sets Y, this will give the desired result. Fix i,
1<_-iN s. Let A’ bethe legal situation obtained from (the possibly nonlegal one) A’
by defining’ Z"- N\ Y, i.e., by giving the exact rank of each element outside Y. (Note
that there are many distinct such A’, depending on the actual ranks of the elements
in U j,i Yj.) As yi <Yj=l Yj, we can apply case (b) of the induction hypothesis and
conclude that F(k- 1, A’.’,) >- (Pk-(Yi,fi). It follows that any algorithm that sorts in k- 1
rounds, starting from the situation A’ performs on the average at least qk-l(Yl,f/)
(f-number of) comparisons for Y, averaging only on those orders in which the ranks
outside Y are as in the specific choice of A’. Averaging over all possible A7 and
summing over i, _-< _-< s, we conclude that

F(k, A)>- i f + i qOk-(Yi,fi)
i=1 i=1

(fi + qOk-l(Yi,fi))= (,o(yi, 0),
i=l i=l

where the last inequality follows from the computation of the previous subcase. This
completes the proof of Case 2, and the proof of the induction step.

To complete the proof of Theorem 2.1, it remains to establish the base case of
the induction. Clearly this case corresponds to a legal situation A with k l, with a
set Z and sets Y,. ., Y, where f 0 for all (otherwise we are in either Case 1 or
Case 2, and can apply the induction hypothesis). By the arguments given in the proof
of Subcase 2b, we can reduce the case s > 1 to the case s 1 (otherwise we bound the
f-number for each Y separately, as in Subcase 2b). Hence we may assume that for A,
k 1, s 1, Y Y, ]YI Y, fl 0, and Z is a set of elements with known ranks. We
must sort Y in one round. Note that since we must complete the sorting in one round
we actually have to prove here a worst-case lower bound. If there are two successive
ranks in the (known) set of ranks of Y, we must compare each pair of elements of Y.
Indeed, suppose that a dispensed comparison is between such two successive elements
of Y in the sorted order. The algorithm will clearly fail to determine their relative
order. Hence, in this case, F(1, A) >_- () >_- Pl(Y, 0), as needed. Therefore, we may assume
that there is at least one element of Z between any two successive elements of Y.
Clearly we can assume that there is precisely one element of Z between any two
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successive elements of Y and that there are no elements of Z that are greater than all
members of Y (or smaller than all members of Y), as no additional information can
be derived from comparisons to such elements. We can thus assume that IZI Yt- 1
y- 1, the (known) set of ranks of Z is 2, 4,..., 2y- 2}, and the (known) set of ranks
of Yis{1,3,...,2y-1}.

Let F be the set of comparisons performed by the algorithm. Suppose F F’U F",
where F’ are the comparisons between elements of Y and F" are those between
elements of Y and elements of Z. We claim that if a, b are two distinct members of
Y and the comparison (=edge) {a, b} satisfies {a, b}:F’ then there are at least
y- 1 IZI comparisons in F" that involve a or b. Indeed, if this is false, then there is
an element zZ such that {a, z}, {b, z} F". If rank(z)= l, then the algorithm clearly
will fail to distinguish between any order in which rank(a) l- 1 and rank(b) + 1
and the order obtained from it by replacing the ranks of a and b. Thus the claim holds.
Summing these comparisons of F" over all a, b with {a, b} F’, we obtain at least
(y- 1). (()- IF’I). In this sum each comparison in F" is counted at most y- 1 times,
as for every a Y there are at most y- 1 b Y, b a such that {a, b} F’. Hence

(y-1)1F"]->_ (y-1)((2Y) F’]), i.e., ]F’I + IF’’]_-> ().
We conclude that the f-number of Y satisfies f-IF’l/lf"l>-_()>=(y, 0). This
completes the proof of the base case of the induction and establishes Theorem 2.1. [3

3. Time lower bounds for randomized parallel sorting algorithms. In this section
we derive Theorem 1.1 from Proposition 1.2. The easy fact that for p_-< n the average
time is (R)(log n/(p/n)) follows from the existence of the sorting network [AKS83a],
[AKS83b], together with the l(n log n) known bound for serial average randomized
algorithms. The upper bound in inequality (1.1) implies that for every p>= n time
O(log n/log (1 +p/n)) is sufficient, even for the worst case of deterministic algorithms.
It remains to prove the lower bound f(log n/log (1 +p/n)) for p->_ n. As observed by
Yao [Ya77], since any randomized algorithm is simply a probability distribution on
deterministic ones, it suffices to establish the same lower bound for the average time
of deterministic sorting algorithms with p processors. This does not follow immediately
from Proposition 1.2, since in this proposition we considered only algorithms that
necessarily stop after k rounds. Hence we need to do some more work. We first need
the following simple probabilistic lemma. Let Sn denote the group of all permutations
on n elements. For A_ Sn and goS, define goA={goglgA}. Also define q(A)=
Ial/Isl-lal/n!

LEMMA 3.1. IfA S and q(A) <=1/2 then for every s >- 1 there are g, g2, ",gs
such that q (f’) = giA) <- 1 /2.

Proof. Choose, independently, s (not necessarily distinct) random elements
g, g2, ", gs of S,. If h e Sn, the probability that h e f3= giA, is precisely q(A).
Thus, the expected number of elements in f3__ giA is n!q(A) <- n!/2, and there are
g,. , g S satisfying the conclusion of Lemma 3.1.

PROPOSITION 3.2. Suppose there is a deterministic algorithm M that sorts n elements
with p processors in expected time T. Then, for every s >- 1, there is a deterministic algorithm
that sorts n elements in 2T+ IT]-<4T rounds (and necessarily stops after these 4T
rounds) with at most 2 Tps + 1/2 T n +b/ T average number ofcomparisons, where b > 0
is the constant from (1.1).

Proof. Let N be the set of elements we have to sort. Let A be the set of all
permutations of N that M fails to sort in -<_2T rounds. Clearly, q(A)<-1/2. By Lemma
3.1 there exist gl,’’’,g S, such that q(fq__l gA)<= 1/2. Let M" be the algorithm
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in which s copies of M run simultaneously for [2 TJ rounds, where the ith copy runs
on the elements of N permuted according to g-. Clearly M" finds the order of N,
unless this order corresponds to a permutation in B f3 = giA. But this happens only
on a 1/2-fraction of the orders. Let M’ be the algorithm that consists of M", and if
M" fails it uses the best deterministic algorithm for sorting N in T] rounds. By (1.1)
this part takes, in the worst case, at most [Tin+b/r additional comparisons. This
completes the proof. ]

Proofof Theorem 1.1. As observed in the beginning of this section, we only have to
establish an l(log n/log (1 +p/n)) lower bound for the average time of deterministic
algorithms for sorting n elements with p -> n processors. By Proposition 1.2 there exists
a (small) constant 1/2> c>0 such that the average number of comparisons in any
deterministic algorithm that sorts n _-> 2 elements in k-< log n rounds is at least

(3.1) ckn //k.

Let b => 1 be the (large) constant from inequality (1.1). Let d be the (small) positive
constant defined by

1
(3.2)

16d
1 +log (16b) /log (1/2c).

(Notice that the right-hand side is positive, as c < 1/2, b _>- 1.)
Let M be a deterministic algorithm that sorts n elements with p >_-n processors

in expected time T. To complete the proof we show that

(3.3) T_-> d log n/log (1 +p/n).

If T>-d log n then (3.3) holds (for every p->_ n). Hence, we may assume that T<
d log n(<b. log n). Define s= [b log n/T]. Clearly b log n/T<--s<-_2b log n/T. By
Proposition 3.2, there is a deterministic algorithm that sorts n elements in at most 4T
rounds with at most

1 +b/r Tpb log n
2Tps+2 FT]n <-4

T
+2Tn

average number of comparisons. Hence, by (3.1)

b log n
4Tp

T
’’+ 2Tn >-_ c" 4Trt l+l/(4T),

4p b log n 1/(4T) 1/(4T)>--_ 4cn 2 >-- 2cn
n T

where the last inequality holds since log n/4T> 1/4d > -log (c). By taking logarithms
we obtain

log >--
4T

As log n/4T > 1/4d > 4 we have

log n

4T

log n’-log
\ 4T /

+log (2c)-log (16b).

log n’) > log n
-log

\ 4T ] ST
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Also, by (3.2),

log n

16T

These three inequalities imply

and hence, for p _-> n the inequality

16d
log (16b)-log (2c).

log(p/n)>

log n

16 log (p/n)

log n

16T

> d log n/log (1 +(p/n))

holds (provided our assumption T< d log n holds). This establishes (3.3) and com-
pletes the proof. [3

4. Concluding remarks. We have shown that the average running time of any
comparison (deterministic or randomized) algorithm for sorting n elements with p
processors is (R)(log n/log (1 +p/n)), for all p=> n, (and is (R)(log n/(p/n)) for p<-n.)

This is the first known nontrivial bound for randomized parallel comparison
sorting algorithms. It shows that the average time of the best randomized algorithm is
not smaller than the worst-case time of the best deterministic algorithm for all p and
n, up to a constant factor.

We note that although Proposition 1.2 is mainly used as a tool for deriving this
result, it actually gives additional information. This proposition shows that the average
number of comparisons in any deterministic algorithm that sorts n elements in k -< log n
rounds is (knl+/k). As shown in [AAV86] this result is sharp for any fixed k. Note
also that as shown in [AA87], the worst-case number of comparisons for such an
algorithm is (nl/l/k(log n)/’), i.e., it is bigger for every fixed k. Thus we conclude
that the average behaviour is somewhat different from the worst-case one for parallel
comparison sorting algorithms. Our main result (Theorem 1.1) shows that this difference
is, however, very small and shrinks to a constant factor if we fix the number of processors
and estimate the running time. It is more than a constant factor if we fix the time and
estimate the number of processors.

Our methods supply some results for randomized selection algorithms as well. In
particular, we can show that the average number of comparisons needed in any
randomized algorithm for finding the maximum of n elements in two rounds is 19(n4/3),
and for doing so in three rounds is (R)(n). We omit the details.

Appendix 1. We have to show that for O<f<=y/4, q,(2ff)+q,(y-2f, O) >
qk(Y, f). That is,

k((2f)l+/k )((y--2f) ’+l/k

ci--iiT,-2f +k
c

or

(y 2/) 1+1/ + (2/) l+l/k y+/,
0

(c/2) /’ (c/4) ’/’=

Put c=2f/y and h(ce)=(1--ce)l+l/k+cel+l/k/(c/2)’/k--1/(C/4)l/k. We have to show
that h(a) _-> 0 for all 0 < c _-< 1/2. This is done by checking that h is convex, h’(1/2) _-< O, and
h(1/2)>_-O. Hence for all O<a<_-1/2 h’(a)<-O and therefore h(a) >- h(1/2) >-_ O.
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h is convex, as it is a sum of convex functions, h’(1/2) -(k + 1)/k[(1/2) /k --(1/2)’/k/
(C/2)/k]<=O, as c-->_2.

h 1+

+ -1 =>0,

as c>32

Appendix 2. We have to show that

h => 0 where

h=p[(1--a)+/k+ O+/k ](-iTk + ((C/2)a2),/k--(C/16),/k
subject to

and

(2.6) a_-<.

(Recall that p,/, a, a, az=>0, p+/= 1, c=256e.) Consider h as a function of a,
where a,p,/ are constants and a2=(a-pa)/O. Since az>-_ 1, a =<1/2 we have 0<=a<=
(a-)/p= 1-(1-a)/p. Clearly h(al) is a convex function of al, i.e., h"(a)>=O for
all admissible a. Here we prove that h’(1-(1-a)/p)<=O and hence, as h’(al) is
nonincreasing, we have h(a) >= h(1 -(1 a)/p). We next show that h(1 -(1 a)/p) >= 0
and complete the proof. To check that h’(1-(1-a)/p)<=O, observe that

k+l k+l al/k ] c/2(-p/fi)
h’(Cl)=P

k (1-c)/+---- (c)/ -k((c/2)o)1+/
F=--P/-(k + 1)(1- al) ’/k +(k+1)

k L

l,k ]19l.

(c/2) 1/k +2((c/2)a2) l+/k
For al-’- 1-(1-a)/p we have a2--- 1; hence (since 0<=p<= l, a<=1/2)

P = -(k+l) +(k+l) 1- (c/2) 1/k +
p p /

P 1/k<=-7 -(k+ l)(1-a)’/k+(k+ l)a

__--<---P [ (k+k-- (k+l) 1-
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The last quantity is clearly negative for k 1 (as c= 256e). For k ->2, (2/c) 1/k <=(1/4)ilk <_

1- 1! k, and hence we have

h’ 1 ------a <- P <0,
P

(k+l) 1- 1- -1 =--5
as needed. It remains to check that h(1-(1-a)/p)>=O. Indeed

=p + 1- (c/2) 1/ +-
p p p (c/)’/

Since (1 x) r yx for 0 x 1, y 1 this implies

(l-a) (l--a) l+l/k 1-((l+l/k)(1-a)/p) 1-p () 1/k

h 1 -> p-iTi + P 1/k -lt---
p (c/ (c//

As p =< 1 we conclude

(l--a) 1+1/k 1-(1+ 1/k)(1-a)(1_6C)1/kpl/k + (C/2)I/k

h(1 1-

P
(1 C) 1+1/k + 1- + (1- c) 81/k

()1/k{(1_ Ce)[(C(1- Ce)1/k

Since a-<1/2 and c=256e
(1 + / k) we have

implies [(c/2)(1-a)] 1/k ->(c/4) /’ =(64e) 1/k->641/k.

This completes the proof of (2.5).

Appendix 3. Here we show a-<1/2. Recall that a=a/, where a=E(2g)=
E(2g’+g"), g’ is the number of comparisons inside B1 and g" is the number of
comparisons between B1 and Z. Let F’ be the set of all comparisons (= edges) between
elements of Y and let F" be the set of all comparisons between Y and Z whose results
do not follow from the known information about the ranks. Put IF’I- e, IF"I- and
let f= e +1/2, be the "f-number" of Y. As the members of B1 are /3 random elements
of Y we have

E(g’) If’l---fee.
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Consider a fixed edge (=comparison) in F". Such a comparison compares some
member rny Y to some member rnz Z. The probability that the rny will be in ti= Bi
is, clearly, t/y. As the permutation r is chosen randomly, the probability that rn B,
given that mz Zi (and that my U I= Bi), is 1/t. Therefore, the expected number of
edges from F’ that join members of B to members of Z for some 1 is at most
IF"[. t/y. 1/t ./y. By the symmetry of the sets B this gives E(g") <- ./yt. There-
fore, since fit =< y,

a=E(2g) E(2g’+g")<-2--fye+’<2 e+ =2
yt yt - yt

Recall that t>=4f/y, i.e., f<= ty/4. This implies c c/fl <=2f/yt<-_1/2, as needed.
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ERIC W. ALLENDER" AND ROY S. RUBINSTEIN:

Abstract. P-printable sets arise naturally in the studies of generalized Kolmogorov complexity and data
compression, as well as in other areas. We present new characterizations of the P-printable sets and present
necessary and sufficient conditions for the existence of sparse sets in P that are not P-printable. As a corollary
to one of our results, we show that the class of sets of small generalized Kolmogorov complexity is exactly
the class of sets which are P-isomorphic to a tally language.
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1. Introduction. Sparse sets have the useful property that for every n there is a
table of size polynomial in n that lists the elements of the set of size less than or equal
to n. Letting S be an arbitrary sparse set, it is conceivable that by storing a polynomial
size table for sufficiently large n, we might have immediate access to all the information
about S that we might ever need, despite the fact that the uniform complexity of S
may be very high. Unfortunately, the complexity of producing such a table may be
much greater than the complexity ofrecognizing the set S. Ifthe complexity ofproducing
a table for S is not much greater than the complexity of recognizing S, i.e., the
complexity of producing a table for S is polynomial-time Turing reducible to S, then
S is said to be self P-printable. If the complexity of producing a table for S is easy,
i.e., a table for S can be produced in polynomial time without using S as an oracle,
then S is P-printable. (Formal definitions for this and other concepts are given in 2.)
Obviously, P-printable sets belong to P. The notion of P-printability was introduced
in [HY84] and was further explored in [HIS85].

The idea of generalized Kolmogorov complexity was introduced in [Har83] and
[Sip83], and the connection between it and P-printability has been studied indepen-
dently in [BB86], [HH86], and [Rub86b]. Generalized Kolmogorov complexity is a
measure of how far a string can be compressed and how fast it can be restored. The
relativized version of generalized Kolmogorov complexity allows the use of an oracle
in the restoration. Sets containing only strings that can be greatly compressed and
quickly restored (to be defined more precisely in the next section) are said to have
small generalized Kolmogorov complexity. The papers [BB86] and [HH86] show that a
set is self-P-printable if and only if it has small generalized Kolmogorov complexity
relative to itself. This has the corollary (independently proved in [Rub86b]) that a set
is P-printable if and only if it is in P and has small generalized Kolmogorov complexity.

P-printable sets are also shown here to have close connections with tally sets.
Section 3 presents the result that a set is P-printable if and only if it is P-isomorphic
to a tally language in P, if and only if it is in P and has small generalized KolmogoroV
complexity. This has the important corollary that sets of small generalized Kolmogorov
complexity are precisely those that are P-isomorphic to a tally language. This improves
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upon a result in [BB86] that the sets of small generalized Kolmogorov complexity are
those that are "semi-isomorphic" to a tally language. Since most of the properties of
sets studied in complexity theory are invariant under P-isomorphisms, the significance
of this corollary is that the sets of small generalized Kolmogorov complexity are
essentially identical to the tally languages from the point of view of complexity theory.

It is also shown that a set is P-printable if and only if it is sparse and has a ranking
function computable in polynomial time. A ranking function is a function that maps
an element of a set to its index in the lexicographic ordering of the set. They are
presented in the context of data compression in [GS85] and are of independent interest
[Al185] and [Hem87].

Section 4 presents machine-based characterizations of the P-printable sets. It is
shown there that a set is P-printable if and only if it is sparse and accepted by a
deterministic one-way logspace-bounded AuxPDA, if and only if it is sparse and
accepted by a nondeterministic one-way logspace-bounded AuxPDA. This presents a
parallel to the result of Cook [Coo71] that a set is in P if and only if it is accepted by
a (two-way) logspace-bounded AuxPDA. It is surprising that restricting AuxPDAs to
have a one-way input head leads to a characterization of P-printable sets.

One-way AuxPDAs are not very powerful machines, as it was shown in [Bra77b]
that some relatively "natural" languages in P are not accepted by one-way AuxPDAs
of sublinear space complexity. With this result, any argument showing the existence
of a sparse set in P (or even PSPACE) that is not accepted by any one-way logspace-
bounded AuxPDA is strong enough to settle several outstanding problems in complexity
theory, since, for example, P-PSPACE implies all sparse sets in PSPACE are P-
printable [HY84].

Section 5 addresses some structural questions concerning P-printable sets. While
it is clear that every P-printable set is sparse and in P, it is not known whether or not
there is a sparse set in P that is not P-printable. Here we present the result that there
is a sparse set in. P that is not P-printable if and only if there is a sparse set in DLOG
that is not P-printable, if and only if there is a sparse set in FewP-P. FewP was
introduced in [All86b] as a class of sets between UP and NP (see 2 for more details).
This section concludes with the results that there are infinite sparse sets of time
complexity arbitrarily close to polynomial that have finite intersection with every
P-printable set, and that every infinite set in P has aninfinite P-printable subset if and
only if every infinite set in NP has an infinite P-printable subset.

2. Preliminaries. While it is assumed that the reader is familiar with the basic
concepts and structures from complexity theory (such as P, NP, and DLOG), some
of the more important and not universally known ones .are presented here, along with
notation.

We use the standard lexicographic ordering <-_ on strings, and Iwl denotes the
length of the string w. All strings here are elements of (0, 1)*, and all sets are subsets
of {0, 1)*. Although a language may be referred to as a subset of (0, 1, )*, this is
merely a notational convenience; such a language should be thought of as a subset of
(00, 11, 01)*. A tally language is a subset of {0)*.

Strings are sometimes used to denote numbers (and vice versa) by letting the
string w denote the number whose binary representation is lw. This preserves the
ordering and allows us to write, for example, [wI- [log wJ. All logarithms are base
two. We use EXPTIME to denote DTIME(2n>) and NEXPTIME to denote
NTIME(2n>).

DEFINITION 1. A set A is sparse if there exists a polynomial p such that the
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number of strings in A of length less than or equal to n is less than or equal to p(n).
The Kolmogorov complexity of finite strings was introduced independently by

Kolmogorov [Ko165] and Chaitin [Cha66], [Cha75] as a way to measure the random-
ness of a finite string (or equivalently, the amount of infOrmation contained in a string).
The Kolmogorov complexity of a finite binary string is the length of the shortest
program that generates it. Intuitively it can be seen that if a string can be generated
by a program shorter than itself (i.e., it can be compressed), it must contain some
redundant information. A string is random if it cannot be compressed.

One limitation in using this as the definition of randomness is that it provides no
limits or restrictions on the computation time to generate the original string from its
smallest program. Time-bounded versions of Kolmogorov complexity have been con-
sidered by Ko [Ko86], Sipser [Sip83], and more recently by Hartmanis [Har83].

Hartmanis introduced a two-parameter version of Kolmogorov complexity (now
called generalized Kolmogorov complexity) that includes information about not only
how far a string can be compressed, but how fast it can be restored. This generalized
Kolmogorov complexity is further explored in [All87], [BB86], [Huy86], [KOSW86],
[Lon86], [Rub86b], and [Rub86a]. It is Hartmanis’s definition of generalized
Kolmogorov complexity that is presented here.

DEFINITION 2. For a Turing machine Mu and functions g and G mapping natural
numbers to natural numbers, let

K,[g(n), G(n)] {xl(y){ly[ <- g(lx[) and M,,(y)= x in G(lx]) or fewer steps]}.

We will refer to y as the compressed string, x as the restored string, g(n) as the
compression, and G(n) as the restoration time. It was shown in [Har83] that there exists
a Turing machine Mu (called a universal Turing machine) such that for any other
Turing machine My there exists a constant c such that Kv[g(n), G(n)]_
K[g(n)+ c, cG(n) log. G(n)/ c]. Dropping the subscript, K[g(n), G(n)] will actually
denote Ku[g(n), G(n)].

DEFINITION 3. A set is said to. have small generalized Kolmogorov complexity if
it is a subset of K[k log n, n k] for some k.

Clearly every set with small generalized Kolmogorov complexity is sparse. Note
that the definition of small generalized Kolmogorov complexity is robust enough to
handle the small difference between the universal machine mentioned above and any
other machine.

We now give the definition of P-printability.
DEFINITION 4. A set S is polynomial-time printable (P-printable) if there exists a

k such that all the elements of S up to size n can be printed by a deterministic machine
in time n k / k.

Clearly every P-printable set is necessarily sparse and in P.
Goldberg and Sipser [GS85] discuss compression of languages and ranking and

present the following definitions.
DEFINITION 5. A function f:,V_,*,E* is a compression of language L if f is

one-to-one on L and for all except finitely many x L, If(x)[ < Ix I.
DEFINITION 6. A language L is compressible in time T if there is a compression

function f for L that can be computed in time T, and the "inverse" off, f-1 :f(L) L,
such that for any x L,f-l(f(x))=x, can be computed in time T.

This clearly relates to generalized Kolmogorov complexity in that compressible
languages do not contain more than finitely many random strings, and the compression
time (in this sense) relates to the second parameter of the generalized Kolmogorov
complexity. Note that in this version, the compression time is a bound on both the
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compression and restoration, whereas the time parameter of generalized Kolmogorov
complexity refers only to the restoration time.

Reference [GS85] additionally presents the following definitions.
DEFINITION 7. A function foptimally compresses a language L if for any x L of

length n, If(x) <- [log (i=0 [Li])], where L is the set of strings in L of length i.
DEFNVrION 8. For any set L c_ Z*, the rankingfunction for L, rL" Z* N, is given

by rL(x) I{w6 Llw-<x}I.
The ranking is a special kind of optimal compression.
Allender [Al186b] defined the complexity class FewP to be between UP and NP

as follows.
DEFINITION 9. FewP is the class of languages that are accepted by nondeterminis-

tic polynomial-time Turing machines M for which there is a polynomial p such that
for all inputs w, if M accepts w, there are fewer than p(lw[) accepting computations
of M on w.

FewP is related to the class UP [Ber77], [Va176], [GS84] of languages in NP that
are accepted by nondeterministic polynomial-time bounded Turing machines with
unique accepting computations. Both UP and FewP are subclasses of NP defined by
restricting the number of accepting computations. Densities of accepting computations
were previously considered in [Mor82], but no class equivalent to FewP was introduced.

DEFINITION 10. A function f is a P-isomorphism if it is a bijection such that both

f and f-1 are computable in polynomial time. Two sets A and B are P-isomorphic if
there is some P-isomorphism f such that A f(B).

Auxiliary pushdown automata (AuxPDAs) are due to Cook [Coo71 ]. An AuxPDA
is a Turing machine with a pushdown store in addition to a worktape. When we bound
the space used by an AuxPDA, we bound only the space used on the worktape; the
space used on the pushdown store is "free." Useful results about AuxPDAs are
summarized in [HU79]. The fact that the languages accepted in time T(n) 1) are
precisely the sets accepted by log T(n) space-bounded deterministic and nondeter-
ministic AuxPDAs [Coo71] will be used.

A one-way AuxPDA is an AuxPDA with a one-way input head. One-way AuxPDAs
have been studied before in [Bra77b], [Bra77a], [Chy77], [WB79], and [WecS0]. In
[BDG85] and [Huy85] one-way AuxPDAs were investigated in connection with restric-
ted forms ofnonuniform complexity. In most studies ofone-way AuxPDAs, the machine
starts its computation with log n space marked off on its worktape; that is the model
used here.

3. Structural characterizations. In this section the non-machine-based characteri-
zations of the class of P-printable sets presented in the Introduction are proved.

THEOREM 1. The following are equivalent:
(1) S is P-printable.
(2) S is sparse and has a ranking function computable in polynomial time.

(3) S is P-isomorphic to some tally set in P.
(4) S K[k log n, n k] and S 6 P.
Note. The equivalence of (1) and (4) also appears in [BB86], [HH86], and

[Rub86b].
Proof (1) (2)]. The proof is immediate.
[(2) (3)]. Let S have a ranking function rl computable in polynomial time,

and let there be fewer than p(n) strings of length n in S. Thus the function r given
by r2(w)= w-r(w) is a ranking function for the complement of S. (Recall that
strings can represent numbers, as explained in 2.) Also, the set T {0nPn)+i r(1 n-) <
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-< r(l")} is a tally set in P; let r be a ranking function for the complement of T. As
was noted in [GS85], all these ranking functions have inverses that are computable in
time polynomial in the length of their output. It is now easy to show that the function
that takes x of length n to 0 "p(")+r‘(x) ifx S and to r;(r2(x)) if x ; S is a P-isomorphism
mapping S onto T.

[(3) =:> (4)]. Let S be P-isomorphic to T 0* via some isomorphism f such that
both f and f- are computable in time nO. The compressed form of a string x S of
length n is z, the binary representation of ]f(x)[. Since f is computable in time at most
n c, it follows that If(x)l<=n , and thus Iz[<=c log n. To get x back from z, simply
compute f-l(OZ). Since [OZ[=]f(x)[<=n , computing 0 from z takes time at most
polynomial in n, call it n t. Computingffl(0z) takes time at most ]0Z] < (n) n The

2 r/! kcomputation time of x from z is thus <_-n + _-<n for some k_->c, Thus S_

K[k log n, nk]. If T is in P, then S will also be in P since they are P-isomorphic.
[(4) = (1)]. Assume that $6 P and that for some k, S K[k log n, nk]. On input

n, for each of the rt
k+l 1 strings of length -< k log n, run M, for at most rt

k steps and,
if the computation has completed and the result is in S, print it. This process can
clearly be done in time polynomial in n.

It should be pointed out that results similar to those of Theorem 1 were presented
in [BB86] as part of an investigation of sets of small generalized Kolmogorov com-
plexity. In [BB86], BalcS.zar and Book define "semi-isomorphisms" and show that a
set has small generalized Kolmogorov complexity if and only if it is semi-isomorphic
to a tally set. Using Theorem 1 we can improve upon their result. First, however, we
need the following easy result.

PROPOSITION 2. For all M and k, K[k log n, n k] P.
This proposition is readily seen to be true by the following procedure" to determine

if a string x of length n is in K[k log n, n], run machine M on all strings of length
less than or equal to k log n, and accept if and only if M outputs x on one of these
strings.

COROLLARY 3. There exists a k such that A_ K[k log n, n k] if and only if A is

P-isomorphic to a tally set.

Proof The proof from right to left follows from the argument given in the proof
of [(3)= (4)] of Theorem 1. For the forward direction, let A K[k log n, nk]. By
Theorem 1 and Proposition 2, K[k log n, nk] is P-isomorphic to some tally set T in P
via some P-isomorphismf It is now clear that A is P-isomorphic to f(A)

While no good upper bound is known for the generalized Kolmogorov complexity
of sparse sets in P without assuming P-printability, it is not hard to show that every
sparse set in P is a subset of K[ O(log n), 2(")]. However, that is not very informative
since every sparse set in EXPTIME is contained in K[O(log n), 2")].

We remark that, while it is not known whether or not there are sparse sets in P
that are not subsets of K[k log n, rl k] for any k,. it is not hard to show that, for any
time-constructible function T(n) that is greater than every polynomial, there is a sparse
set in DTIME (T(n)) that is not a subset of K[k log n, n k] for any k. Also, there is a
nonrecursive sparse set that is not a subset of K[S(n), T(n)] for any S(n)= o(n) and
any recursive T(n). As an example of such a set, consider a set consisting of exactly
one Kolmogorov-random string of each length n. Sparse sets such as these are not
P-isomorphic to any tally set.

4. Machine-based characterizations. We now present machine-based characteriz-
ations of the P-printable sets. Cook [Coo71] showed that a set is in P if and only if it
is accepted by a (two-way) logspace-bounded AuxPDA. By restricting this machine
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to be one way, we obtain a characterization of the P-printable sets.
THEOREM 4. The following are equivalent:
(1) S is P-printable.
(2) S is sparse and is accepted by a deterministic one-way logspace-bounded

AuxPDA.
(3) S is sparse and is accepted by a nondeterministic one-way logspace-bounded

AuxPDA.
Proof. [(1) :=> (2)]. If S is P-printable, then there is a function f computable in

polynomial time such that f(n) encodes the elements of S of length less than or equal
to n. Thus the set A {n,#ilthe ith bit of f(n)= 1} is in EXPTIME and can thus be
recognized by a deterministic AuxPDA that uses linear space. Equivalently, an AuxPDA
with n# written on its worktape can determine if n# A without referencing its
input tape (i.e., without moving its input head).

Using this trick, a one-way AuxPDA can easily check if the word on its input
tape agrees with the ith word in the enumeration of S. If the ith word disagrees with
the input in the jth position, it is not necessary to move the input head back to the
start of the tape in order to compare the input with the (i + 1)st word. Instead, find
the next word in the enumeration which agrees with the ith word up to (and not
including) the jth position. The following algorithm makes this precise. Let p be a
polynomial such that for all n there are fewer than p(n) elements of S of length less
than or equal to n. The following algorithm can be carried out by a deterministic
logspace-bounded AuxPDA.

begin
At the start of the computation, w Wl’’’ w, is on the input tape and [log n

space is marked off on the worktape.
r := 1 Llog //’Note that the AuxPDA cannot know what n is until it has read

the entire input. Clearly, however, n-< r<= 2n.
i:=

j:=0

step one

//The pair (i,j) will be maintained so that the word on the input
tape will match the ith word in the enumeration of S up through
position j.

increment j until a j is found (by repeated calls of the form r# 1 A?, r4 2
A?,...) such that the jth input symbol differs from the jth symbol of the
ith word of the enumeration of S, or until j n.

Ifj n and the first n symbols of the input match the first n symbols of the
ith word of the enumeration and the ith word has length n, then halt and
accept..

Otherwise go on to step two.
step two

By making repeated calls of the form r 1 A 7, r 4 2 A 7, , find the least
i’ such that < i’ < p(r), and such that the first j- 1 symbols of the ith and
the i’th words of the enumeration of S agree.

If no such i’ exists, halt and reject.
Otherwise set := i’ and go to step one.

end

The AuxPDA described above simply searches through the enumeration of S until
some word is found that matches the input, and accepts if such a word is found. It is



P-PRINTABLE SETS 1199

easy to see that the algorithm is correct. Note that the only time the input head is
moved is in step one, and that the input need only be read in one scan from left to right.

(2) =:> (3) ]. The proof is immediate.
(3) ==> 1 ]. Let S be sparse and accepted by a nondeterministic one-way logspace-

bounded AuxPDA M. It is easy to construct another nondeterministic one-way AuxPDA
accepting the set S’= {0n: w lthere is a string x such that ]wx] n and wx S}. (This
machine will store n in binary on its worktape and then simulate M on w. Then it will
continue the simulation by guessing the n- Iwl characters of x. Since M is one-way,
only one bit of x needs to be stored at any time.) Thus S’ P. By using S’ it .is now
easy to construct the elements of S, bit by bit, and thus it follows that $ is P-printable.

(This proof was pointed out to the first author by Osamu Watanabe, and simplifies
the proof of the same result, which was presented in [Al186b]). 71

An interesting result somewhat related to Theorem 4 has recently been proved by
Ibarra and Ravikumar; in [IR86] they show that all sparse CFLs are bounded.

The study of P-uniform circuit complexity is also related to the study of P-printable
sets, and was part of the motivation for the presentinvestigation of P-printable sets.
A P-uniformfamily ofcircuits is a set of circuits { cnl n >= 1} such that the function n --> Cn
is computable in time polynomial in n. P-uniform circuits are studied in [Al185],
[Al186a], [BCH84], and [vzG84].

When studying circuit complexity classes, the class of functions that can be
computed by very fast circuits (i.e., circuits of small depth) is of special interest. Thus,
we are led to consider the class P-uniform NC (PUNC), the class of languages accepted
by P-uniform circuits of depth log(1) n [Al186a].

Note that if {C, ln >-_ 1} is a P-uniform family of circuits, then it is a P-printable
set. Thus in some sense, the sets in PUNC are those sets that can be computed very
easily, relative to some P-printable set. For example, it is fairly easy to see that all
P-printable sets are in PUNC.

Given this connection between P-printable sets and P-uniform circuit complexity,
it is natural to consider the question of whether or not all sparse sets in PUNC are
P-printable. It was shown in [Al185], [All86a] that a set is in PUNC if and only if it
is accepted by a logspace-bounded AuxPDA that moves its input head 2ig(t) times.
Thus both PUNC and the class of P-printable sets have characterizations in terms of
AuxPDAs with restricted access to the input. On the other hand, we show in the next
section that every sparse set in PUNC is P-printable if and only if every sparse set in
P is P-printable.

5. Some structural questions. Questions relating to the existence and structure of
non-P-printable sets are now presented.

While it is clear that all P-printable sets are sparse and in P, it is not known
whether there are sparse sets in P that are not .P-printable. The following theorem
shows some equivalent conditions.

THEOREM 5. The following are equivalent:
(1) There is a sparse set in P that is not P-printable.
(2) There is a sparse set in DLOG that is not P-printable.
(3) There is a sparse set in FewP-P.
Proof If S is a sparse set in P that is not P-printable, then the set {x#O"lx is a

prefix of a string of length n in S} is a sparse set in FewP-P, thus proving (1) =:> (3)].
[(3) :=> (2)] is proved by the observation that if S is sparse and in FewP-P, then the
set of accepting computations of a machine accepting S is a sparse set in DLOG that
is not P-printable. Because DLOG_ P, the implication of (1) by (2) is clear.
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As a consequence of the fact that DLOG c__ PUNC c_c_ P, the above is also equivalent
to the existence of a sparse set in PUNC that is not P-printable. This result provides
a nice parallel to the result in [HY84] that there is a sparse set in NP that is not
P-printable if and only if there is a sparse set in NP-P. While NP is the complexity
class most closely related tothe existence of non-P-printable sparse sets in NP, FewP
is the complexity class most closely related to the existence of non-P-printable sets in
P and DLOG. As a side note, it is not known whether all sparse sets in P are in PUNC.

Turning now to the structure of non-P-printable sets, we are interested in determin-
ing what they "look like." Can they be immune to the P-printable sets or must they
have a P-printable subset ? The following two theorems partially answer these questions.

THEOREM 6. Let S be a set in P that is not P-printable, and let T(n) be a
time-constructiblefunction that growsfaster than any polynomial Then there is an infinite
set A DTIME (T(n)) such that A S andA hasfinite intersection with every P-printable
set.

Proof. This is proved using techniques similar to those used in, e.g., [Orp86],
where a result with a similar flavor concerning complexity cores was proved. Let
M1, M2," be an indexing of polynomial-time machines taking input from 0"; each
such machine can be viewed as taking 0 as input and producing a list of strings of
length n. Thus {M,(0*)[i->I} is a representation of all P-printable sets. Since the
intersection of a set in P with a P-printable set is P-printable, S is not contained in
Mi(0*) for any i.

The idea of the proof is to find, for all i, a string xi in S that is not in M(0*) for
any j -< i. Such a string x must exist, or else S c__ MI(0*) U M2(0*) U U M(0*), and
thus S is P-printable.

Thus the function r(i) min {nl:lx S, Ixl- n and x M(0n) for all j=< i} is total,
monotone, and recursive. Let s be a total, monotone, recursive function that is greater
than r and has the property that the function i s(i) can be computed in time linear
in s(i); taking s to be the time complexity function for some machine computing r in
unary will suffice.

We also require that our indexing satisfy the condition that machine M has
running time bounded by T(n)/n on inputs of length n -> i. Since T grows faster than
any polynomial, this condition is easy to satisfy (see [Orp86]).

The following routine will run in time O(T(n)) and will accept a subset A of S
that has finite intersection with every P-printable set.

begin on input x of length n
Compute s(1), s(2), until some is found such that s(i) -<_ n < s(i + 1).

//This step takes O(n 2) time.
Accept x if[ x S- M(0n) for all j _-< i.

//This step takes <-_T(n) time, since (assuming without loss of generality
that i< n) each of the simulations performed in this step requires at
most T(n)/n steps.

end

It is clear that A___ S, and that this routine runs in time O(T(n)). If x A then
for some such that s(i)<-n < s(i+ 1), x is in S-M(0n) for all j =< i. Thus M(0*)
contains no elements in A of length >=s(i). It only remains to show that A is infinite.

Let and i’ be numbers such that s(i’)<-r(i)< s(i’+ 1). By the definition of r,
there is a string X S of length r(i) such that X J-Mj(0 Ix’l) for all j <= i. In particular,
xi M(0 Ix’l) for all j <_-i’, since ’<- i. Thus xi e A for all i, so A is infinite.

It is natural to wonder whether the set A constructed in Theorem 6 can be made
to be in P. A weaker form of this question asks whether every infinite set in P has an
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infinite P-printable subset. While this is still undetermined, the following theorem,
pointed out to the first author by David Russo, shows that the sets in NP have similar
structure to the sets in P in this regard.

THEOREM 7. Every infinite set in P has an infinite P-printable subset if and only if
every infinite set in NP has an infinite P-printable subset.

Proof. Assume that every infinite set in P has an infinite P-printable subset, and
let L be an infinite set in NP. Thus there is an infinite set A in P such that L-
{xlly x#y A}. Without loss of generality, assume that there is some k such that
x # y A = [x # y[ Ixl By assumption, A has an infinite P-printable subset S, so the
set {x[::ly, x#y S} is an infinite P-printable subset of L.
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SEARCH IN AN ORDERED ARRAY HAVING VARIABLE PROBE COST*

WILLIAM J. KNIGHT"

Abstract. Steiglitz and Parks ["What Is the Filter-Design Problem?," Proc. 1986 Princeton Conference
on Information Science and Systems, B. W. Dickenson, ed., Princeton University, Dept. of Electrical Engineer-
ing, Princeton, NJ, 1986] have shown that a problem in filter design gives rise to a related problem of how
to search an ordered array in which the cost of a probe into the array varies with the location being probed.
In this paper we prove that if probing in location k has cost kp, where p is a positive integer, then the
expected cost of a successful or unsuccessful search for a target element is at least (p + 1)-ltiP lg n + O(tlp).
We also prove the somewhat surprising fact that ordinary binary search has this expected cost. However,
for the case p- we describe what appears to be a marginally better search algorithm.

Key words, binary search, search trees, array search

AMS(MOS) subject classification. 68P10

1. Introduction. In [3] Steiglitz and Parks describe a filter-design problem whose
solution involves the following situation. For each positive integer k between two
prescribed limits there is an associated linear programming (1.p.) problem of complexity
k, the feasibility of which is not known; when the 1.p. problem is feasible for some
value of k, then all larger values of k have feasible associated problems; it is required
that we find the smallest k whose associated 1.p. problem is feasible. An interesting
question immediately arises: What strategy should we use to find the smallest k ? Recall
that the expected amount of time required to solve an l.p. problem is proportional to
its complexity. Thus, in effect, we are confronted by an array of no’s and yes’s, with
all the no’s to the left of the yes’s, in which a probe into location k has an associated
cost proportional to k, and we must search the array for the location of the first yes.
Steiglitz and Parks remark that because the probe cost grows with k, binary search
might be expected to be inferior (as measured by expected cost) to a strategy that
probes somewhere to the left of the midpoint of the remaining array at each step of
the search. Computation of the optimal strategies, however, suggested to them that
binary search is surprisingly near optimal. In this paper we give mathematical proofs
that confirm this conjecture, but we also describe a search algorithm that appears to
be marginally better than binary search.

2. Preliminaries. Let us generalize the investigation to any situation in which we
confront an array of problems of some kind, one for each array subscript. We assume
that solving the kth problem requires, on the average, an amount of time given by
some penalty function P(k). Each such problem has a yes or no answer, and when
the answer is yes for some k it is yes for all larger subscripts k. We must find the
smallest k for which the answer is yes, and we want to know the optimal search
strategy, as measured by expected cost. We have no prior information about the location
of the first yes, and so we assume that it is equally likely to be found in any of the n
locations or not to be found at all. Thatis, each possibility has probability 1/(n + 1).
There is no loss in generality in assuming that the subscripts range from 1 to n, since
any other range can be handled by translation of the subscripts and of the variable k
in P(k). In the Steiglitz-Parks,problem, P(k) is a linear polynomial.

* Received by the editors October 10, 1986" accepted for publication (in revised form) January 16, 1988.
Department of Mathematics and Computer Science, Indiana University, P.O. Box 7111, South Bend,

Indiana 46634.

1203



1204 WILLIAM J. KNIGHT

Every search strategy for this situation corresponds to a unique binary tree Tn
with node labels 1, 2, , n,. placed so that the inorder traversal of T, finds the labels
in increasing order. Conversely, every such binary tree corresponds to exactly one
strategy. We shall call any such tree a search tree. The root of the tree gives the location
of the first probe. We go left if we get a yes, right if we get a no, and repeat this with
the corresponding subtree. Note that we cannot stop until we reach an external node
(see [2, p. 239]), at which point we can identify the location of the first yes. Thus in
this situation the search prescribed by the tree corresponds to an unsuccessful search
of a conventional array, in which records with keys have been stored in increasing key
order (see [2, p. 237]). it is this observation that prompted the title of this paper.

For a given probe penalty function P(k) the expected cost of an unsuccessful
search using a search tree Tn is

(1) 2 P(k)
j= n + nodes k from root to jth external node

where the inner sum in formula (1) is taken over all internal nodes k that lie on the
path in T, from the root down to the jth external node. We can write (1) in a more
useful form by letting Wk(T,) denote the number of internal nodes in that subtree of
T, whose root is k. The number of internal nodes in an extended binary tree is one
less than the number of external nodes. It follows that Wk(T,) is one less than the
number of times that the term P(k) will occur when the value of formula (1) is
computed. Thus the expected cost of our search, using Tn, is equal to

E P(k)[Wk(T,,)+I]=
n+lk=

P(k)Wk(T.)+ P(k).
n+lk=l n+lk=l

For computational convenience we discard the constant factor 1/(n+ 1) and the
constant term P(k), and we call the remaining sum the search cost of T, for the
given penalty function P(k). We denote this by Spk)(Tn). That is,

(2) Spk)(T,,) P(k) Wk(T,,).
k=l

Thus, for example, SI(Tn) Wk(Tn) Sk+5(Tn) (k -- 5) Wk(Tn) Slog(l+k)(Tn)
Y log (1 + k) Wk(T,), and so on. We note, parenthetically, that Sp(k)(T,) is n times the
expected cost of a successful search for a target record in a conventional ordered array
having penalty P(k) for probing in location k.

Although our ultimate goal is to find all optimal search trees, extensive computer
calculations indicate that even when P(k) is a rather tame function, the optimal trees
do not organize themselves into simple patterns. For example, suppose P(k)= k. Then
as n varies, the root of an optimal tree with n nodes wanders between n/4 and n/2
(approximately), with occasional sudden drops. For a fixed n there may be several
optimal trees, the roots of which do not form a simple sequence. For example, when
n 33 the optimal trees have roots 7, 10, and 11 (see the table at the end of the paper
for more details). These cautionary findings suggest that it will not be easy to derive
exact formulas for Sp(k)(T,), even when P(k) is simple, and in this paper we obtain
mostly upper and lower bounds. For P(k)--1, however, we know the exact search
cost in a balanced tree. Recall that a binary tree T of height h is called balanced,
provided every external node of T is at level h or h + 1.
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LEMMA 1. Let Tn denote any balanced search tree with n nodes (n >=0). Let
p =[lg (n + 1)], where as usual, lg= log2. Then

SI(Tn) Wk(Tn)=(n+l)(p+l)-2p+l+l.
k=l

Proof. Let Ext (T) denote the external path length of T, (see [2, pp. 239-243]).
It is not hard to see that Wk(T)= Ext (Tn)-n. By formula (5.10) in [2, p. 243]

Ext (T,)- n (n+ 1) lg (n+ 1)+(n+ 1)[2-1g (n+ 1) +p 21-’g "+l)+P] -n,
which reduces to the formula given in the lemma.

The following corollary gives a lower bound for S(T,) when T, is any search
tree, balanced or not. It is obtained from Lemma 1 by replacing p by lg (n + 1).

LEMMA 2. For every search tree T, with n nodes n >= O) we have

SI(Tn)-- Wk(Tn)>-(n+l)[lg(n+l)-l]+l.
k=l

Proof Let T, be any search tree. First suppose T, is not balanced. Then it is
possible to move some leaf to a higher level (smaller level number). Doing so decreases
the number of its ancestors, which decreases Y Wk(T,). After a finite number of such
leaf lifts, the tree is balanced. Thus it suffices to prove that the inequality holds for
balanced trees. By Lemma 1 it then suffices to prove

(n+ 1)(p+ 1)-2p+’+ 1_>-- (n+ 1)[lg (n+ 1)- 1]+ 1

for n 0, 1, 2,. ., where p [lg (n + 1)J. This is equivalent to

(3) (n+l)[p-lg (n+1)+2]>=2p+.

Let 0 lg (n + 1) p. Then 0 _<- 0 < 1, and (3) is equivalent to

2(2-0)_>2.

Denote the left side here by f(O) and note that f(0) =f(1) 2. Moreover, the second
derivative is

f"(O)--2 (ln 2)[(-2)(1-1n 2)-0 In 2] <0

on the interval 0 =< 0-< 1, so f is concave down. These facts imply that f(0)_-> 2 on the
interval.

There is a fundamental recursion formula that we shall use repeatedly. It arises
from the following elementary fact: if Tn is a search tree with n nodes and root r, then
the left subtree of r is a search tree with r- 1 nodes, while the right subtree is a search
tree with n-r nodes, provided we decrease each node label by r. We denote the left
subtree by Tr_, and the right subtree with modified labels by T,_r. Then for any probe
penalty function P(k) whatsoever,

r--1

Spk)(T.)=P(r).n+ , P(k). Wk(T.)+ Z P(k). Wk(T.),
k=l k=r+l

which gives us the important, perfectly general recursion formula

(4) Spk(T.)=P(r). n+Sp(k)(Tr_,)+ P(k+r). Wk(Tn_r).
k=l

3. Linear penalty functions. In this section we derive upper and lower bounds for
the search cost in an optimal tree when the probe penalty function is a linear polynomial.
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These bounds are of interest in themselves, and they are also used to derive bounds
for higher-order penalty functions. We begin with the special case where P(k) k and
where the search tree is full, by which we mean that it is balanced and has 2p- 1 nodes
for some integer p. Denote this tree by Fp.

LEMMA 3. For all integers p >-0 and corresponding full binary trees Fp we have
2P--1

(5) Sk(Fp)-- Y k. Wk(Fp)--2(p--1)4P-l+2p-1.
k=l

If we write n- 2p- 1 (the number of nodes in Fp), then the formula takes the form
(6) Sk(Fp) =1/2(n + 1)2[lg (n + 1)--1] +1/2(n + 1).

Proof. The proof is by induction. The formula is trivially true when p 0. For
p > 0 we use (4), the fact that the root r of Fp is 2p-l, and the fact that the left and
right subtrees of Fp are full trees with 2p-l- 1 nodes. Thus

2P--l--2P-!

Sk(Fp)=2p-I(2P-1)+Sk(Fp-1) + Z (k+2p-1)Wk(Fp-,)
k=l

22p-’- 2p-’ + 2Sk(Fp_,)+ 2P-’ S,(Fp_,).
By induction and (5),

Sk(Fp-1) 2(p 2)4p-2 + 2p-2.

By Lemma 1, with n 2p-a- 1 and (consequently) p replaced by p-1, we have

S,(Fp_,) 2P-’p-2p + 1,

SO

Sk Fp 22p-’ 2p-’ + 2[2( p 2)4p-2 + 2p-2 + 2P-’ [2P-’ p 2) + 1

2(4p-l) 2p-’ + (p 2)4p-’ + 2p-1 + 4p-l(p 2) + 2p-1.

Algebraic reduction gives (5).
Just as Lemma 1 suggests (2) of Lemma 2, so (6) of Lemma 3 suggests that for

all search trees Tn
(7) S(T,) >= 1/2(n + 1)2[lg (n + 1)- 1] +1/2(n + 1).

Computer calculations verify (7) for all n up to 1084, but the best that the author can
prove is the following slightly weaker inequality.

TheOReM 4. For every search tree T, with n nodes n >-O) we have

(8) Sk(T,)>=1/2(n+l)Z[lg(n+l)-l.OYO]+1/2(n+l).

Proof We use induction to prove that for all search trees T, with n nodes,

(9) Sk(T,)>=1/2(n+l)Z[lg(n+l)-K]+1/2(n+l)
for a constant K to be determined. When n 0 the formula holds, provided K-> 1.
Now suppose (9) holds for n 0, 1,. ., m- 1. Let T,, be a search tree with m nodes
and root r. Then by (4) and induction we have

Sk(T,,,)=r. m+Sk(Tr-,)+ , (k+r). Wk(Tm-r)
k=l

r. m + Sk(Tr-,) + Sk(T,,,_r) + r Wk(Tin-r)
k=l

>--r. m +1/2r2[lg r-K]+1/2r+1/2(m-r+ 1)2[lg (m-r+ 1)- K]+1/2(m- r+ 1)

+ r{(m- r+ 1)[lg (m-r+ 1)-1]+1},
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where the last line uses Lemma 2. We wish to prove that this expression is

_-> 1/2(in + 1)2[lg (m+ 1)- K]+1/2(m + 1).

Write A r/(m + 1), so that 0< A < 1. Then the inequality we seek to prove takes
the form

2A(m+ 1)m+A2(m+ 1)2[lg (A(m+ 1))-K]+A(m+ 1)

+ (1- A)2(m + 1)2[lg ((1- A)(m + 1))- K]
+(1-A)(m+ 1)+2A(m+ 1){(1-A)(m+ 1)[lg ((1-A)(m+ 1)-1]+1}

_>-(m+ 1)[lg (m+ 1)- K]+(m + 1),

which simplifies to

A2(m+ 1)2[lg (m+ 1)+lg A]- A2(m + 1)2[lg (m+ 1)+lg (1 A)]

+(m+l)21g (1-A)+2A2(m+ 1)2->-2KA(1-A)(m+I)2

which further simplifies to

-2A2-A 2 lg A-(1-A 2) lg (l-A)
-<K.

2A(1-A)

Mathematical analysis, combined with a computer search, shows that the maximum
value of the expression on the left is less than 1.070 (for details, see the following
paragraph). Thus we may take K to be 1.070.

Here is a sketch of the proof that the left side of the inequality above is less than
1.070. Denote the left side by f(A) and use the identity lg x In x/In 2 to write

-Alga -2A2-(I+A)(1-A)ln(1-A)/In2
f(A)

2( 1A---+
2A(1-A)

We shall show that f(A) < 1.070 on each of the three intervals (0, 1/16), 1/16, 0.692],
and (0.692, 1). First note that -A lg A is increasing on the interval 0< A < 1/e, and so
is the fraction 1/(2(1-A)). Thus when 0<A <1/16 we have

-AlgA -(1/16) 1g(1/16) 2

2(1A--<
2(15/16) 1--"

Also note that when IAI < 1 we have the Maclaurin expansions

-In (1 -A)= A + A2/2+ A3/3+ A4/4+
-(l-A) In (l-A) A A2/(1 2)-A3/(2 3)-A4/(3 4)+....

Thus when 0 < A < 1 we have the following three inequalities"

(10) -ln (l-A)< A + (A2/2)(1 +A +A2+ .) A + (A2/2)/(1- A),

(11) -(1-A)ln(1-A)<A, and

(12) IX + (1- A)In (1-X)[ < (A2/2)(1 + A + A-+ .) (A2/2)/(1 A).

From (11) we obtain

-2A2- (1 + A)(1 -A) In (1 A)/ln 2

2a(1-a)
In particular, when 0 < a < 1/16 we have

2 0 + (17/16)/ln 2
f(A) <--+

15 2(15/16)

-2A + (1 + A )/In 2
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Now consider f(A) on the interval 0.692 < A < 1. First replace A by 1- A in (11) to get
-A In A < 1- A, which gives us

-A lnA 1
< -0.7214.
2(l-A) 21n2

Next use (10) and then 1- A < 0.308 to get

-(1-A 2) In (1-A)<A +(A2-A3)<A +A2(0.154).
This gives us

-2A2-(1-A2)ln(1-A)/ln2 -2A2+[A+A2(0.154)]/ln2 0.7214-0.8889A
<

2A(1-A) 2X(1-A) 1-A

By elementary calculus, the last fraction above is decreasing when A < 1, so on the
interval 0.692 < A < its maximum value occurs at A 0.692 and works out to be 0.3449.
Thus f(A < 0.7214 + 0.3449 < 1.070 on this interval. Finally, we investigate f(A on the
interval 1! 16 =< A-< 0.692. Here we have the derivative

-1 1 [-lnA A +(1-A) ln (1-A)]f’(A)
(1 A)’-------5 + )2 +21n2 (1-A A

so by inequality (12) we have

<
1 1 [In A 1

If’(A)l
(1 A)-------5+ )---+--21n2 _(1-X 2(l-A)2

1 [ ]lg..A}+ 1 ](I _A)--------5 1+
2 41n2

1 [ ,lg(1/16),
< (0.308)--- 1 +

2
+0.3607 <35.43

because 1/16 < A < 0.692. It then follows from the Mean Value Theorem for derivatives
that

(13) f(A)<=f(b)+(35.43)(A-b) when 1/16_-<b_<-A_-<0.692.

Computer examination of values off(b) at finitely many points b spaced 0.00005 apart
on the interval [1/16, 0.692] yields a maximum value f(0.36080)= 1.06822, so by (13)

f(A) =< 1.06822 + (35.43)(0.00005) < 1.070.

Here is a lower bound for search cost for any linear penalty function P(k) ak +
in which the constants c and/3 are nonnegative.

COROLLARY 5. For all nonnegative constants a and fl, andfor every search tree Tn
with n nodes n >= O) we have

Sk+t (Tn) ->_ (n + 1)2[lg (n + 1)- 1.070] +-(n + 1)+/3[(n + 1) lg (n + 1)- n].

Proof, It easily follows from (2) that

S,k+t( T.) aS,( T,) + flS( T,).

Apply Theorem 4 and Lemma 2.
We now prove that when P(k) is linear, ordinary binary search gives near-optimal

results.
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THEOREM 6. Let Bn denote the (balanced) search tree corresponding to binary search
of an ordered array of length n. Then for all nonnegative constants ce and fl we have

(14) S,k+/3(Bn)<---(n+ 1)2[lg (n+ 1) --0.9138] +-(n + 1)

+fl[(n+l)(p+ 1)--2P++ 1],

where p =[lg (n + 1)J.
Proof. It suffices to prove (14) in the case where a 1 and/3 0; the more general

case follows from Lemma 1 and the equation in the proof of Corollary 5. We use
induction on n. Unfortunately, the induction step leads to a rather messy inequality
that turns out to be difficult to verify when n is small, but fairly easy when n is large
enough that certain terms can be discarded. So as the first step of the proof we verify
that inequality (14) holds for all n <- 19999. This is done by using a computer and the
recursion formula

m(2m) + Sk(Bm_l)d- Sk(Bm)d- m. SI(B,) if n 2m,
(15) Sk(Bn)=

(m/I)(2m+I)+2.Sk(B,)+(m+I)SI(B,) ifn=2m+l

derived from (4), to generate exact values for Sk(Bn). Equation (15) arises from the
fact that when n 2m the root of Bn is m and the left and right subtrees are of the
form B,_ and B,, but when n 2m + then both have the form B,.

Now suppose (14) holds for n =0, 1,...,2m-1, where m_>-10,000. We first
examine the case where n 2m, and later the case where n 2m + 1.

Case 1. n 2m. Using (15), induction on (14), and Lemma 1 we find that

Sk(B)<-2m2+1/2m[lg m-O.9138]+-m+1/2(m+ 1)[lg (m+ 1)-0.9138]

+1/2(m+ 1)+ m[(m+ 1)(p+ 1) -2p+1+ 1],

where p =[lg (m + 1)J. We seek to prove that this expression is

-<1/2(2m+ 1)2[lg (2m+ 1)-0.9138]+1/2(2m+ 1) when m_> 10,000.

Write A 2P/(m+ 1). Then 1/2<A-<_ 1, and the inequality we must prove can be written
(after considerable algebra of the sort familiar from the proof of Theorem 4) in the form

m2[lg m-lg (m+ 1)] +2(0.9138)m(m + 1)

(2m+ 1)2[lg (2m+ 1)-lg (m+ 1)]+2m(m+ 1)[2A -lg A]-2m(3m+2).

By elementary calculus the minimum value of 2A-lg A on the interval 1/2-<_,-< 1 is
1.91393 (at A 1/(2 In 2)). Since lg m-lg (m+ 1) is negative, it then suffices to prove
that when m >_- 10,000 we have

1( )(2m+llg(2m+l) 3m+2
0.9138 <_- 2 + - 1.91393.

\ m+l/ \ m+l m+l

Since 2 + 1/rn > 2 and (2m + 1 )/(m + 1) >- 1.9999 and lg ((2m + )/(rn + 1 )) => 0.9999 and
-(3m + 2)/(m + 1) > -3, the inequality is satisfied.

Case 2. n- 2m+ 1. Using (15), induction on (14), and Lemma 1 we find that

Sk(B,) <= (m + 1)(2m + 1)+(m + 1)2[lg (m + 1)-0.9138]+ (m + 1)

+(m+ 1)[(m + 1)(p+ 1)-2p+l + 1],

where p [lg (m + 1)J. We seek to prove that this expression is

=<1/2(2m + 1 + 1)2[lg (2m + 1 + 1)- 0.9138] +1/2(2m + 1 + 1).
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Write A 2P/(m + 1). Again 1/2 < A <= 1, and the inequality we must prove reduces to

(16) 0.9138=<2A-lgA-l-1/(m+l) form=>10,000.

As in Case 1, 2A-lg A _--> 1.91393, and the minimum value of-1/(m+ 1) when m =>
10,000 is -0.0001, so the minimum value of the right side of (16) is at least 1.91393 1 +
0.0001. [q

Extensive computer calculation has shown that the value 0.9138 that appears in
Theorem 6 for classical binary search trees Bn cannot be significantly improved.
However, as we shall now prove, there is another class of balanced search trees for
which it is possible to get a better value, i.e., a value closer to the 1.070 that appears
in Theorem 4 and Corollary 5. This has the double advantage of giving us a better
upper bound on the search cost in the elusive optimal search trees and also exhibiting
a slightly better search algorithm than classical binary search. The search trees we
want to investigate are formed in the ollowing way: take any balanced tree with n
nodes and height h. Move all the leaves h as far to the right as possible. This produces
what we shall call the (unique) right-heavy balanced tree of n nodes, denoted by Rn.

THZOREM 7. For all right-heavy balanced search trees Rn and all nonnegative
constants a and we have the upper bound

Sk(R,)<-(n+ 1)2[lg (n+ 1)-0.975] +-(n + 1) +fl[(n + 1)(p+ 1)-2p+l + 1],

where p [lg (n + 1)J.
Proof. As in the proof of Theorem 6 it suffices to consider the case a 1 and

/3 0. We use induction to prove that

(17) Sk(R)<=1/2(n+ 1)2[lg (n+ 1)- K]+1/2(n + 1)

for a constant K to be determined. When n 0 the formula holds, provided K _-< 1.
Now suppose (17) holds for n 0,..., m- 1. Consider the right-heavy balanced tree

Rm. Let p =/lg (m / 1)J, from which it follows that

(18) 2p _-< m + 1 < 2p+ 1,

Think of Rm as the full binary tree Fp with 2p- 1 nodes, to which m- 2p / 1 "surplus"
nodes have been attached at level p, as far to the right as possible. By (18) the number
of surplus nodes must be less than 2p. If the number of surplus nodes is less than half
of 2p, then they will all be attached to the right subtree of the root, which will be the
node 2p-1. The left subtree will be the full tree Fp_. The right subtree will be identical
to the tree obtained by building the unique right-heavy balanced tree R,,,_z,,-, and then
increasing each of its node labels by 2p-1. However, if the number of surplus nodes
is at least half of 2p, then the surplus nodes will fill out a full row at the bottom of
the right subtree, and any that remain will spill over onto the left subtree of the root,
which in this case will be the node numbered m- (2p- 1). Then the left subtree will
be the right-heavy balanced tree R,,_r. The right subtree will be identical to the tree
obtained by building the full tree Fp and then increasing each of its node labels by
m-2P/ 1. The calculations are slightly different in these two cases, so we consider
them separately.

Case 1. The surplus is less than half of 2P; that is,

(19) m-2p + 1 < 2P/2.

By (18) and (19), Jig (m-2P-a)] =p-1. Using Lemmas 3 and 1, (4), induction on
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(17), and the discussion preceding Case 1 we obtain

Sk(R,,,)= 2P-lm+ Sk(Fp_)+ S,(Rm_2,,-,)+2p-I SI(Rm_2p--l)

<= 2p-lm + 2(p 2)4p-2 + 2p-2 +1/2( m 2p-1 + 1)2[lg (m 2p- + 1 K]

+1/2(m-2p-l+ 1)+2p-I[(m-2p-I+ 1)(p- 1+ 1)-2p+ 1].

We seek to prove that this expression is

--<_1/2(m+ 1)2[lg (m+ 1)- K]+1/2(m + 1).

Write A 2P-/(m+ 1). By (18) and (19),

2p < m + 1 < 2p + 2p-1 3(2P-1),
so < A =< 1/2. Substitution and reduction show that we must prove

(2A-A 2) lg A +(l-A)2 lg (1-A)+4A-7A2+K(2A
Since 2A- A2> 0, we see that this is equivalent to

7A2-4A (l-A)2

K=<-IgA
2A-A2A_A 2 -lg (l-A).

Denote the right side by f(A). Then straightforward calculation, together with the
triangle inequality, shows that ]f’(A)l< 15 when 1/2<_-A-<_1/2. Computer examination of
values off(b) at finitely many points b spaced 0.0001 apart yields a minimum value
f(0.4385)--0.9768, so by the Mean Value Theorem for derivatives, f(A)->

< A < 1/2 Thus for Case 1 it suffices to make K < 0.975.0.9768 15(0.0001) > 0.975 when
Case 2. The surplus is at least half of 2P; that is,

(20) m-2P+ 1_>- 2P/2.

By (18) and (20), [lg (m-2+ 1)] -p-1. Using Lemmas 3 and 1, (4), induction over
(17), and the discussion preceding Case 1 we obtain

Sk(Rm) m 2p + 1)m + S,(Rm_2,,) + Sk(Fp) + m 2p + 1)SI(Fp)
<-(m-2p+ 1)m+1/2(m-2p+ 1)2[lg (m-2p+ 1)-K]+1/2(m-2p+ 1)

+ 2(p 1 )4p-1 + 2p-

+(m-2p+ 1)[(2p- 1 + 1)(p+ 1)-2P+’+ 1].

We seek to prove that this expression is

--<1/2(m+ 1):[lg (m+ 1)- K]+1/2(m + 1).

Write A 2P/(m+ 1). By (18) and (20) we have

2P/2 + 2p =< m + 1 < 2p+I,
so 1/2 < A _-< -. Substitution and a lengthy reduction show that we must prove that

A2-4A +2+lg (I-A)
K =<-lg X +lg (l-A)-

2A -A 2

Denote the right side by f(A). A laborious but straightforward calculation shows that

-3-2A(1-A)2 [-4-2 lg (1 A)][3(1 A)2+ 1] +4A
if(A) A2(1 A)2(2- A)2 In 2

+
(2A A-) < 0

when 1/2 < A <_-, so f is concave down on this interval. Since f(1/2)= 1 and f()> 1, it
follows that the minimum value off is 1. Thus for Case 2 it suffices to make K -< 1. El
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The proof of Theorem 7 shows how we can write a program to carry out the
search prescribed by a right-heavy balanced tree. Given an array of no’s and yes’s
occupying locations i, i+ 1,. ., j, with all no’s to the left of all yes’s, do the following:

(a) (Initialize.) Set L= and U =j. (Throughout the algorithm the number of
locations remaining to be searched is U-L+ 1, corresponding to m in the
proof.)

(b) (Find probe location K.) If U < L, the search ends and the leftmost yes is in
location L (of L=n+l, there are no yes’s); otherwise, calculate P=
[lg(U-L+I+I)]; ifU-L+2<3(2P-1),setK=(L-1)+2P-1, elsesetK=
(L- 1)+( U-L+ 1)-(2- 1).

(c) (Adjust search limits.) if the probe at K finds a no, set L- K + and return
to step (b), else set U- K- 1 and return to step (b).

The only difference between this algorithm and binary search is that in step (b), binary
search does not calculate P, but simply sets K-- [(L+ U)/2J.

Theorems 6 and 7 suggest, but do not prove, that search using a right-heavy
balanced tree is less costly in general than binary search (of course, the two schemes
coincide when the length of the array has form n- 2p- 1, which gives a full tree).
Although the author has not been able to prove this conjecture, computer calculation
of the exact values (using the recursion relations such as (15)) validates the conjecture
up to array length n- 5,000. At best, right-heavy balanced trees appear to have a cost
advantage of only about 2 percent on the average.

4. Higher-order penalty functions. In this section we state upper and lower bounds
for the search cost in an optimal tree when the probe penalty function is given by a
nonlinear polynomial. We begin with a lower bound for the simple case when P(k) kp.

THEOREM 8. For each fixed positive integer p and for every search tree T with n
nodes n >- O) we have

)p+(21) Sk,(T,) >- (n+l lg(n+l)--(n+l)p+I.
p+l

Proof The proof is by induction on p. The case p 1 is covered by Theorem 4,
which gives a somewhat larger lower bound. For higher values of p the proof begins
along the lines of the proof of Theorem 4, using induction over subtrees. Formula (4)
is invoked and the term P(k + r) (k + r)p is expanded by the Binomial Formula. The
details involve arguments similar to but more complicated than those in the proof of
Theorem 4, and can be found in [1].

Next we prove that ordinary binary search is nearly optimal when P(k)= kp.
THEOREM 9. Let B, denote the search tree corresponding to binary search in an

ordered array of length n. Then for any fixed positive integer p,

1 1
)p.(22) &.(B.) <=p"+ 1

(n + 1)e+[lg (n + 1)- 0.9138] +(n + 1

Proof The proof is by induction on p. Theorem 6 covers the case p 1. For larger
p we use formula (4) and the Binomial Formula to write

( )SkP(On) (It)+ SkP(Bn/2_l)+
=0 j

Ske(B,/2)

when n is even, and a similar formula when n is odd (cf. formula (15)). Now we use
induction over subtrees. The details, which are lengthy, can be found in [1].
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Theorems 8 and 9 deal with penalty functions of the simple form P(k)= kp. For
more general penalty functions of the form P(k) opkp-t- ap_l kp nt-. -t- lk+ So,
formula (2) gives

Sp(k)(T) olpSkP (T) -Jc Olp_lSkp-, (T) -Jr-...-[- OZlSk( T) -- ff0Sl(T),to which we can apply Theorems 8 and 9 and Lemmas 1 and 2.

5. Computation of exact optimal trees and costs. It is possible to compute recur-
sively the optimal trees and their search costs for any prescribed penalty function P(k)
whatsoever. Assume that the array to be searched is indexed from 1 to n. Introduce a
"displacement" parameter into (2) as follows"

Sp(k)(Tn, d)= P(k+d)Wk(T,,),
k=l

which gives the search for a search tree of n nodes indexed from 1 + d to n + d. Then
(4) takes the form

(23) Sp(k)(T,,,d)=P(r+d). n+Sp(k)(Tr_,d)+Sp(k(T,_r,r+d).

Write Mp(k(n, d)=mint. Sp(k(Tn, d), where for a fixed pair (n, d) the minimum is
taken over all search trees Tn with n nodes. By the fundamental idea of dynamic
programming, (23) gives

(24) Mp(k(n,d) min {P(r+d). n+Mp(k)(r-l,d)+Mp(k(n-r,r+d)}.
l=r=n

This recursion relation, together with the base equation Mp(k)(O d) 0 for all d, allows
us to calculate, for any pair (n, d), the roots and search cost of all corresponding

TABLE

Optimal Optimal Optimal
n cost roots n cost roots n cost roots

0 0 0 29 1,763 14 125 47,451 62
30 1.909 15 126 48,327 63

2 4 31 2,063 9,10 127 49,198 37
3 10 1,2 32 2,216 10 128 50,057 37,38
4 19 1,2 33 2,376 7,10,11
5 31 2 34 2,542 7"..12 140 61,010 46
6 47 3 35 2,713 9,10 141 61,978 34"--40
7 68 1,2,3,4 36 2,890 10 142 62,948 36,37
8 92 2,3 143 63,926 37
9 120 3 61 9,527 30
10 153 3,4 62 9,894 31 253 225,439 126
11 190 4 63 10,268 18,19,20 254 227,464 127
12 232 5 64 10,635 19,20 255 229,432 74
13 279 6 65 11,009 20 256 231,401 74,75
14 332 7 66 11,391 20,21 257 233,379 75,76
15 392 1""8 67 11,780 21,22
16 454 3,4,5,6 68 12,176 22 282 285,877 92,93
17 521 4,5,6 69 12,581 15,22,23 283 288,094 69,77,78
18 593 5,6 70 12,992 17.--20
19 670 6 71 13,408 18,19,20 509 1,039,651 254
20 753 6,7 72 13,831 19,20 510 1,044,110 147,148

511 1,048,544 148
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optimal search trees. The entire trees can be constructed, provided we store for each
(n, d) not only Mp(k)(n, d) but also the roots of all trees with this minimal cost. Note,
however, that to calculate Mp(k)(no, do) by this method, we must calculate and store
information for all (n, d) satisfying 0 _-< n _-< no and 0-< d _-< do + no- n. These enormous
storage requirements can be dramatically reduced in some situations (e.g., P(k)= k)
by storing, for fixed n, a linked list of cost-root pairs that are optimal over a wide
range of d values. For more details, see [1].

Table 1 gives optimal search costs and roots of all the optimal trees for selected
values of n when P(k)= k. These values were calculated using the recursive method
outlined above.

Acknowledgment. The author gratefully acknowledges the guidance of Ed Rein-
gold, who provided the author with the problem discussed in this paper.
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THE DECOMPOSITION OF A RECTANGLE INTO RECTANGLES OF
MINIMAL PERIMETER*
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Abstract. We solve the problem of decomposing a rectangle R into p rectangles of equal area so that
the maximum rectangle perimeter is as small as possible. This work has applications in areas such as flexible
object packing and data allocation. Our solution requires only a constant number of arithmetic operations
and integer square roots to characterize the decomposition, and linear time to print the decomposition. The
discrete analogue of the problem in which the rectangle R is replaced by a rectangular array of lattice points
is also considered, and three heuristic methods of solution are given. All of the heuristic methods operate
by finding a discrete approximation to our optimal decomposition of R, but with different tradeoffs between
the accuracy of the approximation and running time.

Key words, rectangle decomposition, flexible packing, digitization
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1. Introduction. A fundamental problem in geometrical and combinatorial com-
puting is how to decompose a large object into smaller objects subject to various
constraints. By a decomposition of a region R we mean a finite set of closed regions
whose union is R and whose interiors are pairwise disjoint. The regions of the
decomposition need not be connected. Decomposition problems generally fall into
one of two classes. In the first class, the objects have fixed dimensions, as in the
knapsack and bin-packing problems [8], [11], [12]. In the second class the objects
satisfy certain properties, as in decompositions of simple polygons into polygons that
are star-shaped [2], convex [5], 17], triangular [7], or involve rectangles and rectilinear
polygons [6], [9]. We consider a middle ground between these two classes in which
the objects are of some specified area (or volume), but their shapes are not fully
specified. In other words, the objects are flexible. The objective is to produce a
decomposition in which the objects are not severely stretched; that is, they are nearly
circular or square. More specifically, we consider the following problem involving the
decomposition of a rectangle into rectangles of equal area or measure.

RECTANGULAR DECOMPOSITION. Given a rectangle R of height A and width B,
and given an integer p, decompose R into p rectangles of equal area in such a way
that the maximum rectangle perimeter is minimized.

Intuitively, the problem is to make the p rectangles in the decomposition of R as
close to squares as we can. A special case of this problem in which R is a square was
solved in [15]. The solution to the rectangular decomposition problem is a straightfor-
ward generalization of decomposition presented there, but the proof of optimality in
the rectangular case is significantly more complex. A related problem with uncon-
strained areas was considered for the square in [1].

If we remove the restriction that R be decomposed into rectangles then we obtain
another interesting problem. Define the projection-perimeter of a measurable plane set
to be twice the sum of the lengths (measures) of its projections on the coordinate axes.
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GENERAL DECOMPOSITION. Given a rectangle R on the Cartesian plane with sides
parallel to the coordinate axes of height A and width B, and given a positive integer
p, decompose R into p regions of equal measure in such a way that the maximum
projection-perimeter is minimized.

Here the terms height and width denote the length of the projection onto the y-
and the x-axis, respectively.

In this paper we solve the rectangular decomposition problem. We also show that
for certain values of A, B, and p, the optimal rectangular decomposition is, in fact, a
solution to the general decomposition problem. For all values of A, B, and p, we prove
that the optimal rectangular decomposition is a solution to the following problem,
which can be thought of as a compromise between the rectangular and general
decomposition problems. Define a pseudorectangle to be any set that is congruent to
a Cartesian product P x Q, where P and Q are measurable subsets of the real line. (In
particular, every rectangle is also a pseudorectangle.)

PSEUDORECTANGULAR DECOMPOSITION. Given a rectangle R on the Cartesian
plane with sides parallel to the coordinate axes, of height A and width B, and given
a positive integer p, decompose R into p pseudorectangles of equal measure in such
a way that the maximum projection-perimeter is minimized.

We consider a model of computation in which unit charge is assessed for
+,-,.,/,-_<, and integer square root on rational numbers representable using
O(log (p/A/ B)) bits of precision. In this model of computation our optimal rec-
tangular decomposition can be characterized in constant time and output in O(p) time.

These decomposition problems and their higher-dimensional counterparts have a
number of applications:

Flexible object packaging. There are p sacks of fluid that are to be placed in a
box of volume A, and each sack is to fit into a rectangular box of volume A/p. The
dimensions of the partitions may vary, but to minimize the stress on each sack, it is
desirable to make the boxes as nearly cubical as possible.

Circuit decomposition. Given a large circuit, laid out on an A x B board (for
example, a mesh of computer processors), decompose the circuit by slicing the board
into p rectangles of equal area. To minimize the interboard communications, the
perimeter of each board should be as small as possible.

Flexible circuit layout. In VLSI layout, a designer wants to place p functionally
identical circuits on a rectangular chip of area A. Each circuit can be deformed into
an arbitrary rectangle, as long as the area is equal to Alp. However, highly eccentric
rectangles lead to long wire lengths. It is desirable to reduce the length of the longest
side of each rectangle, which implies that its perimeter is minimized.

An analogue of the general decomposition problem can be posed on a rectangular
array of lattice points.

LATTICE DECOMPOSITION. Given positive integers A, B, and p, partition an A B
array of lattice points into p subsets each containing at most [AB/p points, in such
a way that the maximum projection-perimeter of a subset is minimized.

This arises in the following data-allocation problem for parallel computation of
tables.

Data allocation for parallel computers. We wish to compute all of the values of
a binary function f on the Cartesian product S T, where IS] A and ]T B. The
computation is to be performed in parallel on p identical processing units. The function
values are computed as follows. The ith processor computes the values of f on some
subset W of S x T. The sets W, l<-i<-p, form a partition of S T. To minimize
computation time, each processor is assigned at most lAB function values to
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compute. Each processor has a small amount of local memory used for storing its
operands. The objective is to minimize this storage. The amount of storage used by
the ith processor is equal to the number of operands needed to compute the values
of W/, which equals one half of the projection-perimeter of W.

The data allocation problem was in fact the initial motivation for this work [13],
[15]. Although we will not present an exact solution to the lattice decomposition
problem, we will give heuristic methods based on the idea of approximating our
solution to the pseudorectangular decomposition problem on the discrete lattice. The
quality of these approximate solutions will be good when A and B are large relative
to p.

This paper is organized as follows. In 2 we solve the rectangular decomposition
problem and prove that the optimal rectangular decompositions are also optimal
solutions to the pseudorectangular decomposition problem. This work is based on two
interesting combinatorial lemmas that give lower bounds on the amount of stretching
and compressing that must occur when p rectangles of equal area are packed into an
A x B rectangle. In 3 we describe three procedures for approximating, or digitizing,
the geometric decomposition described in 2 on an integer lattice of height A and
width B. These digitization procedures provide different tradeoffs between desirable
characteristics of the digitization and running time. Ideally, the digitization should
respect the geometric solution and preserve areas as closely as possible. We say that
a digitization is equitable if it has the property that the area of each digitized region
is at most the ceiling of the area of the original region. We give an algorithm for
computing an equitable digitization by reduction to the problem of finding a feasible
flow in a graph. This algorithm runs in time polynomial in A+ B +p. We give two
efficient algorithms that produce approximations to an equitable digitization.

2. Optimal decomposition of a rectangle. Let R be a rectangle in the Cartesian
plane, with sides parallel to the coordinate axes, of height A and width B. Let p be
any positive integer. In this section we solve the problem of how to decompose R into
p rectangles R1, R2,’’ ", Re of equal area in such a way that the maximum of the
perimeters of the Ri’s is as small as possible. Our solution actually minimizes the
maximum projection-perimeter over all decompositions of R into pseudorectangles of
equal measure.

If the rectangle R is sufficiently thin relative to p, in particular if
max (A/B, B/A), then it is easy to see that the optimal decomposition results by simply
partitioning the longer side of R into p equal parts. So we shall henceforth assume
that p > max (A/B, B/A).

From now on, whenever we refer to a pseudorectangle we will assume that it is
so oriented that its sides are parallel to the coordinate axes. Unless otherwise stated,
the term projection will mean a projection on one of the coordinate axes. The two
projections of a pseudorectangle are generally not connected sets. If a projection is a
finite union of disjoint open and closed intervals then by the length of the projection
we mean the sum of the lengths of those intervals. More generally the length of a

projection is taken to mean its (Lebesgue) measure. Analogously, when we refer to
the area of an arbitrary, measurable plane set, we mean its measure. When we speak
of the perimeter of a pseudorectangle we mean its projection-perimeter, which is twice
the sum of the lengths of its projections.

The sum of the le.ngths of the projections of a pseudorectangle of given area q
(in our case q- AB/p) is a strictly increasing function of the length of the longer of
the two projections. (For if the longer projection has length (v/+ h) where h -> 0 then
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the sum of projections is (x/- + h)+ q(v/-+ h), which is easily shown to be a strictly
increasing function of h when h -> 0.) So if we define the cost of a pseudorectangle to
be the length of its longer projection, and the cost of a decomposition of R into p
pseudorectangles to be the cost ofthe most costly pseudorectangle in the decomposition,
then our optimization problems are equivalent to the problems of finding minimal cost
decompositions of R into p rectangles and into p pseudorectangles of equal area.

Define a row(column) of rectangles to be a set of rectangles whose sides are
parallel to the coordinate axes, all of which have the same projection onto the y-axis
(x-axis). For any integer n such that 1 _-< n _-< p, define an n-row decomposition (n-column
decomposition) of R to be a decomposition consisting of just n rows (columns) of
rectangles, each of which contains either [p/n] congruent rectangles or [p/n] con-
gruent rectangles. Figure 1 shows a 4-row decomposition in the case p 23, and a
5-column decomposition in the case p 27.

FIG. 1. A 4-row decomposition and a 5-column decomposition.

If p/n is an integer then the n-row decomposition is an n-by-(p/n) array of
congruent rectangles with sides A/n and Bn/p. If p/n is not an integer then an n-row
decomposition has p-n [p/nJ rows of rectangles, each of which contains exactly
[p/n congruent rectangles, and n [p/n -p rows of rectangles, each ofwhich contains
exactly [p/nJ congruent rectangles. If we regard two n-row decompositions that are
related by a permutation of rows to be the same, then for each 1 _-< n _-< p there is just
one n-row decomposition of R. Thus, we may refer to "the" n-row decomposition of
R. The cost of an n-row decomposition is the maximum of the side lengths"
B [p/ nJ A [p/ nJ/p, B [p/ n ], A[p/ n ]/p. Clearly the maximum will be either the
first or last of these values. Analogously the cost of an n-column decomposition is
max (a/[p/nJ,B[p/n]/p).

Intuitively, a decomposition into pseudorectangles of equal area has minimum
cost when the pseudorectangles have horizontal and vertical projections that are nearly
equal. Ideally, the rectangle would be divided exactly into squares with side lengths
x/’AB/p, i.e., into x/Ap/B rows and x/Bp/A columns. This is possible only when these
square roots are integers. However, we will show that one of four decompositions
based on the floors and ceilings of these square roots must be a minimal-cost decompo-
sition.

These four decompositions are the h-row, h-row, k-column, and k-column
decompositions of R, where h= [x/Ap/BJ, h= [x/Ap/B], k= [v/Bp/AJ, and k=
[x/Bp/A]. (The four quantities h, h, k, ke all lie between 1 and p, because we are
assuming that p > max (A/B, BA).)
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From now on we shall use the term principal decomposition to denote an hi-row,
hz-row, kl-column, or kz-column decomposition of R. The main objective of this
section is to prove the following theorem.

THEOREM 2.1. At least one of the four principal decompositions of R is an optimal
decomposition of R into pseudorectangles of equal area.

This theorem provides us with a simple algorithm for finding an optimal decompo-
sition. The algorithm performs O(1) arithmetic operations. Once it is determined which
decomposition is to be used, it is an easy matter to output the boundaries of the
rectangles in O(p) time.

Outline of the Proof of Theorem 2.1. The key results on which the proof is based
are Lemmas 2.3 and 2.4. Each implies a good lower bound .on the cost of any
decomposition of R into pseudorectangles. The lower bounds are explicitly stated in
Lemma 2.5.

Plainly, any decomposition of R that attains one of these two lower bounds must
be optimal. This simple observation is used to derive a variety of sufficient conditions
on A, B, and p for one ofthe four principal decompositions to be an optimal decomposi-
tion (Lemmas 2.8, 2.9, and 2.10). We establish Theorem 2.1 by verifying that whatever
the values of A, B, and p are, at least one of these sufficient conditions is sure to be
satisfied.

We begin by dealing with a trivial special case.
LEMMA 2.1. If hi h2 and kl k2 then the four principal decompositions are the

same, and this decomposition is optimal
Proof If h hz h and k k2 k then h x/Ap/B and k x/Bp/A, so hk p,

and A/h x/AB/p B/k. Thus, all four of the decompositions yield an h-by-k array
of equal squares. It is clear from our definition of optimality that this decomposition
is optimal.

Our next goal is to derive the lower bounds on the cost of decompositions of R.
We state these bounds in Lemma 2.5. One of our two bounds follows from a well-known
result that is usually attributed to Chebyshev:

LEMMA 2.2 (Chebyshev). If X X and Yl >- >- Yn, then the arithmetic
mean of the sequence xy, ., xnyn does not exceed the product of the arithmetic mean

of the xi and the arithmetic mean of the
Proof For all i>j the product (xi- x)(yi-y) is nonpositive, so the sum of all

such products is nonpositive. But this sum is precisely n(W-UV), where U is the
mean of the xi, V is the mean of the Yi, and W is the mean of the

The next two lemmas imply the lower bounds we seek.
LEMMA 2.3. Let h and k be positive integers such that (h-1)(k-1)<p. Let

{Rill <- <- p} be a collection ofpseudorectangles each ofarea AB/p contained in R whose
interiors are pairwise disjoint. Then there is some pseudorectangle Ri whose shortest
projection has length at most max (A/ h, B k).

Proof Let ai be the length of the projection of Ri on the y-axis, and let bi be the
length of the projection of Ri on the x-axis.

If some vertical line meets at least h of the Ri then there is such that ai <--A h.
If some horizontal line meets at least k of the Ri then there is such that bi <--B k. In
either case we are done.

Suppose towards a contradiction, that all horizontal lines meet at most k-1 of
the Ri, and all vertical lines meet at most h- 1 of the Ri. This implies that the sum of
the ai is at most A(k-1) and the sum of the bi is at most B(h-1). Therefore the
product of the mean of the ai and the mean of the bi is at most AB(h-1)(k-1)/(pZ),
which in turn is less than AB/p by the hypotheses of the lemma.
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Without loss of generality, assume that the ai are arranged in ascending order.
Since for each i, aibi AB/p, the bi are in descending order. It follows, by Lemma 2.2,
that the mean of the product ab is at most the product of the means, which we showed
to be less than AB/p. However, since abi AB/p, the mean of the products is equal
to AB/p, a contradiction. [3

LEMMA 2.4. Let h and k be positive integers such that p< (h+ 1)(k+ 1). Let
{Rill <-i<=p} be a collection of (possibly disconnected) regions of area AB/p whose
union is R. Then there is some region Ri whose longest projection has length at least
min(A/h,B/k).

Proof. Let a be the length of the projection of Ri on the y-axis, and let b be the
length of the projection of R on the x-axis.

If some vertical line meets at most h of the R then there is such that a >= A/h.
If some horizontal line meets at most k of the Ri then there is such that
b>-_ B/k. In either case we are done. Thus, we may assume that each vertical line
passing through R meets at least h + 1 of the R, and each horizontal line passing
through R meets at least k + 1 of the R.

First, we show that there is some such that

(1) a, + b >_- min (A/ h + Bh/p, B/ k + Ak/p).

Our assumption implies that the sum of the ai is at least A(k+ 1), and that the sum
of the bi is at least B(h+l). Thus there is some such that ai+b >-

(A(k+ 1)+ B(h+ 1))/p.
Next, we show that (A(k+l)+B(h+l))/p>-_min(A/h+Bh/p,B/k+Ak/p).

Suppose not. Then we derive a contradiction as follows. Since p < (h + 1 )(k + 1) we have

(2) p-h(k+l)<-k,

(3) p-k(h+l)<-h.

It follows from (A(k+ 1)+ B(h+ 1))/p<A/h+ Bh/p and (2) (by routine manipula-
tions) that

Bh<A(p-h(k+ 1))-<_ Ak.

Symmetrically, from (A(k+l)+B(h+ 1))/p<B/k+Ak/p and (3) we have

Ak < B(p- k(h + 1)) _-< Bh,

giving the required contradiction. Thus (1) is proved. If a+bi>-A/h+Bh/p, then
since aib=AB/p=(A/h)(Bh/p), it follows that max(a,b)>-max(A/h, Bh/p) >-

min (A/h, B k), as claimed. By symmetry, the same is true if a + bi
To state the lower bounds implied by the last two lemmas, define the following

values where the variables h and k range over positive integers"

C =min {max (a/h, B/k)l(h- 1)(k- 1)<p},

S=max {min (a/h, B/k)[p< (h+ 1)(k+ 1)}.

The reason for the names C and S is that we found it helpful to visualize the
"bad" pseudorectangles R and Rj in parts (i) and (ii) of the next lemma as a compressed
and a stretched pseudosquare, respectively.

LEMMA 2.5. In any decomposition of R into pseudorectangles R1, ", Rp of equal
area"

(i) There is an R whose shortest projection has length at most C; hence the cost of
the decomposition is at least AB/(pC).
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(ii) There is an Rj whose longest projection has length at least S; hence the cost of
the decomposition is at least S.

Proof. Assertion (i) follows from Lemma 2.3 and assertion .(ii) from Lemma
2.4.

By Lemma 2.5(ii) any decomposition of R in which the longer projection of every
pseudorectangle has length at most S is optimal. Also, since the length of the shorter
projection of a pseudorectangle of a given area determines the length of the longer
projection, it follows from Lemma 2.5(i) that any decomposition of R in which the
shorter projection of every pseudorectangle has length at least C is optimal. (Thus
Lemma 2.5 generalizes Propositions 1 and 2 in [15].)

The next step in the proof is to establish a variety of sufficient conditions on A, B,
and p for one of the four principal decompositions to attain one of the lower bounds
on cost stated in Lemma 2.5. As it turns out, these sufficient conditions are most
conveniently stated in terms of the following four quantities:

ho= [p/ k2J, go= [p/ h2J
h3 [p/k,], k3 [p/hl].

Before deriving the sufficient conditions, we prove two useful technical lemmas.
LEMMA 2.6. (i) ho<_- hi-<- h-<- h3;
(ii) ko_-< k _-< k2 =< k3;
(iii) Either k2 k3 or ho hi;
(iv) Either h2 h3 or ko kl.
Proof. Plainly, p/ka=p/ [x/Bp/A] <-p/x/Bp/A= x/Ap/B. Hence ho<- hl.

Similarly, h >--h2. So (i) holds, and, by symmetry, so does (ii). Next, observe that if
hlk2<-_p then hi is an integer such that hl<=p/k2, so hi --< [p/k2J =ho, whence (i)
implies that h ho. If on the other hand hlk2 >=p then by an analogous argument
k2 k3. So (iii) holds, and by symmetry so does (iv).

LEMMA 2.7. (i) If hi ha and kl < ks then ho < h ha < h3.
(ii) If k ks and h < h_ then ko < k ks < k3.
Proof. If h ha and k < ks then v/Ap/B is an integer but x/Bp/A is not, so

ho<-p/[x/Bp/A] <p/v/Bp/A= x/Ap/B h, and similarly h3 > ha. This proves (i), and
(ii) follows by symmetry.

If all the rectangles in a principal decomposition are congruent, then by Lemma
2.5 that decomposition is optimal if the longest (shortest) side of the rectangles has
length at most S (at least C). This simple observation yields the following sufficient
conditions for one of the principal decompositions to be optimal.

LEMMA 2.8. (i) Ifko k and h2-- h3 then the h2-row and kl-column decompositions
are the same. If, in addition, A ha>-_ C or B/k <-S then this decomposition is optimal

(ii) If ho h and k k3 then the k-row and h-column decompositions are the
same. If, in addition, B/k2 >- C or A/hi <- S then this decomposition is optimal

Proof. Suppose ko k and ha h3. The first hypothesis implies k [p/h2J <-- p/h2
and the second implies ha [p/k] >=p!kl. Hence kh2 p, so the h2-row and k-
column decompositions are the same; the decomposition is an h2-by-k array of
congruent rectangles with sides of length A/ha and B/k. A side of length A/he is a
shortest side, and a side of length B/k, is a longest side, so if A/h2 >- C or B!k <= S
then the decomposition is optimal by Lemma 2.5. This proves (i); (ii) follows by a
symmetrical argument.

A principal decomposition usually contains exactly two different kinds of
rectangles (see Fig. 1). If it is clear that one kind of rectangle is costlier than the other,
and that the longest (shortest) side of the costlier rectangles has length at most S (at
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least C), then by Lemma 2.5 the decomposition is optimal. The following lemma gives
sufficient conditions for one of the principal decompositions to be optimal, based on
this idea.

LEMMA 2.9. (i) If ko < k and B/ko < S then the h2-row decomposition is optimal
(ii) If k3 > ke and B/ k3 >- C then the h-row decomposition is optimal
(iii) If ho < hi and Aho <- S then the k2-column decomposition is optimal
(iv) If h3 > he and A/h3 >= C then the k-column decomposition is optimal.
Proof Suppose ko < k and B/ko<= S. Now each rectangle in an he-row decomposi-

tion either has a side of length B/[p/he] or has a side of length B/[p/h2]. But (since
we are assuming ko<k)[p/h2]<=ko+ l<-k<=/Bp/A, so a side of length B/[p/he]
is the longest side of a rectangle of area AB/p, and (afortiori) the same is true of a
side of length B [p/heJ. As Bko<= S, B [p/heJ <-- S, and (afortiori) B [p/he] <- S.
So the he-row decomposition is optimal by Lemma 2.5 (assertion (ii)). This proves
part (i) of Lemma 2.9. Part (ii) is proved by an analogous argument by making
substitutions that are order-inverting. That is, k is replaced by k3_, h by h3-i, <= by
=>, by ], S by C, and so on. Parts (iii) and (iv) are symmetrical with (i) and (ii). [3

If the longest side of one kind of rectangle in a principal decomposition has length
at most S, while the shortest side of the other kind of rectangle has length at least C,
then by Lemma 2.5 the decomposition is optimal. Hence we have the following sufficient
conditions for optimality.

LEMMA 2.10. (i) Ifho h Ah <= S, andAh2 >- C, then the k2-column decomposi-
tion is optimal.

(ii) Ifha he, A/h <- S, andA/ h2 >- C, then the kl-column decomposition is optimal.
(iii) If ko k, B/k <= S, and Bike > C, then the he-row decomposition is optimal.
(iv) If k k2, B/k <-S, and Bike > C, then the h-row decomposition is optimal.
Proof Suppose ho h, Ah <- S, and Ahe >- C. Then [p/keJ hi. There are two

cases" either p/ke ha or p/ke h + 1.
In the first case the k2-column decomposition consists of ke columns, each of

which contains h congruent rectangles. Each of these rectangles has a side of length
A/h, and (since by definition h <-_x/Ap/B) this is the longest side of the rectangles.
Hence A hi <= S implies that the decomposition is optimal (by assertion (ii) of Lemma
2.).

In the second case we note that, by Lemma 2.7(i), ho-- h implies that either h < he
or k ke. So we may assume that h < h, for if k ke and h he then Lemma 2.10
is certainly true (by Lemma 2.1). By hypothesis [p/ke] h + 1, so [p/ke] he. Now
each rectangle in the ke-column decomposition either has a side of length
A/ [p/ keJ (=A/ h,) or has a side of length A/[p/ke](=A/he). Since h, <-.,lAp/B<= he,
a side of length A/h is a longest side, and a side of length A/he is a shortest side.
Recalling that A/h <= S and A/he>= C, we see that Lemma 2.10 now follows from
Lemma 2.5. This proves assertion (i); the other assertions follow by symmetrical
arguments. [3

Finally, we need to show that for all values of A, B, and p at least one of the
sufficient conditions for optimality holds. The proof is by case analysis, based on the
following lemma.

LEMMA 2.11. (i) Ifh < h2 then min (A/h, B/ko) <- S and max (A/he, B/k3) > C.
(ii) If kl <ke then min (B/kl,A/ho)<=S and max (B/k.,A/h3) >- C.
Proof Suppose hi < he. Then ko [p/(hl + 1)J and k3- [p/(he- 1)]. Hence, (hi +

1 )(ko / 1 > p implying that min (A/h, Bko) <= S, by definition of S. Similarly, he 1
(k3-1)<p; thus max (A/he, B/k3) >- C. This proves (i); as usual, (ii) follows by a
symmetrical argument. [3
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Proof of Theorem 2.1. If hi- hs and kl- k_ then we are home by Lemma 2.1.
Suppose h hs and k < ks. Then by Lemma 2.7 ho < hi hs < ha, and so, by Lemma
2.6(iii), ks-k3. Hence, we deduce Theorem 2.1 by combining Lemma 2.11(ii) with
Lemma 2.10(iv) and Lemma 2.9 ((iii) and (iv)). By symmetry, Theorem 2.1 holds if
hi < hs and kl ks.

Now suppose hi < hs and kl < ks. On applying Lemma 2.11(i) we see that there
are four possibilities"

(a) Ah <- S and Bk3 >= C.
(b) B/ko<-S and B/k3>= C.
(c) A/h <- S and A/h_ >-_ C.
(d) B/ko<-S and A/he>= C.
Case (a). Case (a) need not be considered separately as it is symmetrical with

Case (d).
Case (b). If ko < kl or k3 > ks then Theorem 2.1 follows from Lemma 2.9((i) and

(ii)). Otherwise ko k and k3 ke, and Theorem 2.1 follows from Lemma 2.10((iii)
or (iv)).

Case (c). If h0 h or hs h3 then Theorem 2.1 follows from Lemma 2.10((i) and
(ii)). Otherwise ho < h and he < h3, and, by Lemma 2.6(iii), ke k3. Now apply Lemma
2.11(ii) to get the following four subcases:

(cl) B/k<=S and A/h3 >- C.
(c2) Aho <- S and Aha >- C.
(c3) Bkl <-- S and Bke >= C.
(c4) A/ho<-S and B/ke > C.

Since, in the present case, ho < hi and hs < h3, Theorem 2.1 follows from Lemma 2.9
((iii) and (iv)) in Cases (cl), (c2), and (c4). Since, in the present case, ke k3, Theorem
2.1 follows from Lemma 2.10(iv) in case (c3).

Case (d). We again apply Lemma 2.11(ii) to get the same four subcases (cl)-(c4)
now renamed as Subcases (dl)-(d4).

Subcase (dl). Recall that A/hs>=C and B/ko<-S (from (d)). Now if ko<kl or

he < ha then Theorem 2.1 follows from Lemma 2.9((i) and (iv)); if,
on the other hand, k0 kl and he h then Theorem 2.1 follows
from Lemma 2.8(i).

Subcase (d2). Symmetric with Case (b) above.
Subcase (d3). Symmetric with Case (c) above.
Subcase (d4). We have B/ks >-_ C and (from (d)) B/ko<-_S. Hence, if ko<kl then

Theorem 2.1 follows from Lemma 2.9(i), while if ko kl then
Theorem 2.1 follows from Lemma 2.10(iii). [3

We have proved that at least one of four principal decompositions is an optimal
decomposition of R into pseudorectangles. But we conjecture that an optimal decompo-
sition of R into pseudorectangles is in fact an optimal decomposition of R into arbitrary
sets of equal area. In other words, the conjecture is that Theorem 2.1 solves the general
decomposition problem as well as the pseudorectangular decomposition problem. We
end this section with a simple argument which shows that the conjecture is true if
S>-AB/(pC).

Observe, first of all, that in the statement of Lemma 2.4 the Ri’s need not be
pseudorectangles. So we see that a decomposition of R into arbitrary measurable sets
of area AB/p must contain a set whose x- or y-projection has length at least S. As
was explained in our outline of the proof, we established Theorem 2.1 by showing
that at least one of the four principal decompositions attains one of the two lower
bounds stated in Lemma 2.5. In other words we showed that (at least) one of the
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principal decompositions either has cost S or has cost AB/(pC). Now suppose
S>= AB/(pC). Then by Lemma 2.5(ii) none of the principal decompositions of R can
have cost AB/(pC). Therefore one of the principal decompositions has cost S, so that
the sum of the height and width of any rectangle in that decomposition is at most
S+ AB/(pS). The fact that a rectangular decomposition of R has cost S also implies
that S>= /AB/p. But we have seen that a decomposition of R into p arbitrary sets of
equal area must contain a set whose x- or y-projection has length at least S; the sum
of the x- and y-projections of that set must be at least S + AB/(pS).

3. Digitizing a rectangular decomposition. As noted in the Introduction, the lattice
decomposition problem, is a discrete analogue to the region decomposition problem.
Recall that the problem is to partition an A B rectangular array of integer lattice
points into p subsets each of size at most [AB/p such that the maximum projection-
perimeter is minimized. We do not know of an efficient solution to the lattice decomposi-
tion problem, but when A and B are large relative to p the results of the previous
section can be used to find an approximate solution. The problem reduces to
approximating the decomposition of an A x B rectangle on the lattice, so that areas
and projection-perimeters are very nearly preserved.

In this section we consider how to compute this approximation, which, to borrow
a term from computer graphics and vision, we call digitization. We present three
digitization algorithms that provide tradeoffs between running time and the quality of
the digitization. The second digitization algorithm is quite general, and operates on
any decomposition into convex polygons. The other digitizations are significantly more
efficient, but operate on a special class of rectangular decompositions which we call
row-major decompositions. Consider the A B rectangle,

R={(x,y)lO<-_xn,o<= y<-A}.

A decomposition of R into rectangles is called row-major if it is of the following form.
(1) R is partitioned into r rows by a set of horizontal line segments running from

x 0 to x B. Let 0 ho < hi < < hr A be the y-values of these segments.
(2) Each row is further decomposed by vertical segments into some number of

columns. For the row bounded by hi_l and hi let 0 Vi.o < vi.1 < < vi.., B be the
x-values of these vertical segments.

Note that the decomposition produced by the algorithm of 2 is either row-major,
or can be made so by transposing rows and columns. In this section, we assume that
A and B are positive integers. We assume that the line segments defining the decomposi-
tion are described using rational numbers representable using O(log (p + A + B)) bits
each.

Consider the A B rectangular array of integer lattice points L superimposed on
the rectangle R. That is, L= {(i,j) 10 <= <A, 0=<j < B}. For each (i,j) L. let Sia denote
the open unit square consisting of the points (x, y) for < x < + 1 and j < y <j + 1.
These are called the lattice squares. The rectangle R consists of A horizontal rows and
B vertical columns of squares. Our aim is to approximate a decomposition of R into
p regions by a partition of the lattice squares into p subsets. Although digitization is
common in applications from computer vision and graphics, the goals of our digitization
are rather special. We seek a partition of squares satisfying the following criteria: (1)
the number of lattice squares assigned to a given region of the decomposition is nearly
equal to the area of the region, and (2) the projection-perimeters of a region and its
corresponding subset of lattice squares are nearly equal. We formalize these criteria
by defining two properties of digitizations that we seek to produce through our
algorithms.
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DEFINITION. (1) A digitization is overlapping if each region is assigned only lattice
squares Si, that overlap the region.

(2) A digitization is equitable if the number of lattice squares assigned to a given
region does not exceed the ceiling of the area of the region.

All three of the digitization algorithms presented here produce overlapping digitiz-
ations; however, the first and third algorithms do not necessarily produce equitable
digitizations. Define the absolute excess of a digitization to be the maximum signed
difference between the number of lattice squares assigned to a region and the true area
of the region. (Note that the absolute excess may be negative.) An equitable digitization
has an absolute excess less than 1. The relative excess is defined to be the maximum
ratio of these two values. The first digitization algorithm produces a digitization with
relative excess approaching unity as min (A, B) approaches infinity. The second pro-
cedure produces an equitable digitization by reducing the digitization problem to the
problem of finding a feasible flow in a graph. This algorithm is the least efficient of
the three. The third algorithm, is a compromise between these two. Like the first
algorithm, it is very efficient with respect to running time but produces a digitization
that has an absolute excess less than 2 for all input parameters.

The amount of time required to compute the digitization can be measured as the
amount of time required to describe the boundaries of the digitization as a sequence
of line segments. Our first and third algorithms can print the boundaries in O(p) time,
and hence are optimal with respect to this criterion. Our second algorithm runs in
polynomial time in A + B +p, although we do not attempt to find the most efficient
implementation.

Our first algorithm is a simple naive digitization based on point containment.
Stated simply, the set of lattice squares assigned to a region are those whose lower
left corners are contained in the region. If a lattice point (i, j) lies on the boundary
between two or more regions, then the corresponding square is assigned arbitrarily to
one of the regions that overlaps the square. This is easily seen to be an overlapping
digitization. It is also easy to see that as A and B increase relative to p, then the relative
excess of the digitization approaches 1.

Note that the digitization of a given rectangle can be computed in constant time.
This digitization algorithm has the property of mapping rectangles to rectangular arrays
of squares. The other two digitizations that we present do not have this property.

3.1. Absolutely equitable digitization. The second algorithm works by reducing
the digitization problem to a graph flow problem. This algorithm can be applied to
any decomposition of R into convex polygonal regions. Let R1, R2," ", Re denote a
decomposition of R into p polygonal regions.

We define a bipartite flow graph with upper and lower vertex capacities, G
(V, E, L, U), with vertex set V, edge set E, and lower and upper capacity functions L
and U. V consists of the following elements"

region vertices r, r2," ", re, one for each region of the decomposition, and
lattice vertices si,, one for each of the lattice squares, Si, for 0-< < A and

O<=j<B.
The edge set, E, consists of the following pairs:

an edge from each region vertex r to each lattice vertex s whenever the unit
square Sa overlaps the region R,
The vertex capacities are expressed as pairs, (L(v), U(v)), representing the lower and
upper flow capacity for each vertex v. These capacities are"

(1, 1) for each lattice vertex, and
([a], [a ]) for each region vertex r, where a is the area of region R.
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For example, Fig. 2 shows a decomposition of R and the corresponding flow
graph.

Let F(v) denote the neighbors of a vertex v. A feasible flow is an assignment f of
nonnegative integers to each edge of E, such that, for each vertex v V

L(v)<- Z f( v, w) -<- U( v).
wF(v)

We say that a digitization is absolutely equitable if the number of lattice squares assigned
to each region is either the floor or ceiling of the area of the region. An absolutely
equitable digitization is, in some sense, the most equitable digitization that we can
hope to achieve. The connection between the digitization problem and the graph G is
established in our next lemma, which follows immediately from our construction.

LEMMA 3.1. There exists an overlapping, absolutely equitable digitization ifand only
if the graph G has a feasible flow.

Although the relationship between the feasible flow problem and the problem of
absolutely equitable digitization gives a method of computing the digitization, it is not
obvious that such a digitization need exist. Our next result applies a generalization of
Hall’s well-known theorem on complete matchings in bipartite graphs to show that
such a digitization exists for all decompositions.

THEOREM 3.1. Given any decomposition ofR into regions with disjoint interiors, an
absolutely equitable digitization of the decomposition exists.

Proof. We make a straightforward adaptation of an existing result from the study
of feasible flows in graphs with lower- and upper-edge capacities 10, p. 81 ], [3, p. 88],
which generalizes Hall’s theorem on the existence of complete matchings in graphs
[4]. This result states that a necessary and sufficient condition for the existence of
nonnegative feasible flow in G is that for all subsets U of region vertices and all
subsets, T, of lattice vertices we have

(4) 2 L(v)<- 2 U(w), 2 L(w)<- 2 U(v).
U wF(U) T vF(T)

The first half of (4) follows by noting that the sum of areas of a set of disjoint regions
U is no greater than the number of unit squares F(U) that cover the set. The second
half follows by noting that the number of disjoint unit squares in a set T is no greater
than the sum of areas of the regions F(T) covering T. V1

COROLLARY. If the regions ofthe decomposition have integer areas, then there exists
an overlapping digitization with an absolute excess of zero.

R1 R2 R3 R4
R1

R2

R3

R4

(3,4) (2,3) (2.3) (0,1)

Row 1 Row 2 Row 3

FIG. 2. The flow graph of a decomposition.
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Once the graph G has been constructed, the equitable digitization can be computed
in O(IVI3) time by any known algorithm for finding feasible flows in graphs [3], [18].
The number of vertices V is p + AB and the magnitude of the capacities is at most AB.

In the case where p is small relative to A and B we might hope to find a bound
on the size of the vertex set of G that is independent of A and B. To do this we reduce
the number of lattice vertices as follows. The lattice vertices can be partitioned into
equivalence classes according to the set of regions that they overlap, that is according
to F. The individual lattice vertices forming each equivalence class can then be replaced
by a single aggregate vertex representing the entire class. The capacity of this aggregate
vertex is the sum of the capacities of the individual vertices. It can be shown that if
R is decomposed into p convex polygonal regions then the number of equivalence
classes is O(p2) [14]. This reduction can be computed easily in O(pAB) time, and
the digitization can be computed in O(p6) time by a feasible flow algorithm.

3.2. Nearly equitable digitization. In the previous section we showed that
absolutely equitable digitizations exist, although they are somewhat expensive to
compute. Next we present an efficient digitization algorithm that does not provide us
with an equitable digitization, but does achieve an absolute excess less than 2. Figure
3 shows the result of this digitization of a seven-region decomposition on a lattice of
size 13 13. This digitization has the property that, given a lattice square, the rectangle
to which it is assigned can be determined in O(1) time. The boundary of a digitized
region can be described by a collection of line segments in O(1) time. This is possible
because the algorithm works locally, digitizing each rectangle of the decomposition
without knowledge of the digitization of any other rectangles, as opposed to the graph
flow method which operates globally.

,,,,,I
4- - 4- "1- -/-/-+-+-/-4-+-4.-

--4---@--@-4-i-@--4--/--4-- +-@--4.--4-.____;____- -I-I-I-
4--- .I- .1- 4- -I- / / 4- --t. 4. 4. 4

.--------+ 4- 4. + 4. --.# 4.-- 4. 4.

FIG. 3. A 7-region digitization on a 13 x 13 lattice.

This algorithm makes extensive use of the fact that the decomposition is a

row-major decomposition. The algorithm operates in two phases. First, for each
adjacent pair of horizontal lines hi and hi_ the digitized region lying between hi and
hi_ is determined. In the second phase, within the digitized region between hi and
hi-l, we digitize the region lying between the vertical lines vj and vj_. In our discussion,
we will make use of the following easily verified identity. For all numbers s and t:

Is- t] [s] rt] <- [- tl.
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For the first phase of the algorithm, we show how to digitize the region between
the horizontal lines y hi and y hi-s, 1 =< _-< r. For each we digitize the region lying
below hi, denoted Hi, and then define the digitized region between hi and hi-1 to be
the set difference Hi- Hi_l. Hi consists of all lattice squares lying strictly below hi,
that is, Sx,y where y < [hi l, and some subset of the horizontal row of squares Sx,y,
where y [hi]. Consider the set of decomposition vertices lying in this row of squares.
For each such vertex (g, h), construct the vertical lines x [g] and x [g]. Let Gi
denote the set of x-intercepts of these lines, and let 0 gi,o < gi, < < gi, B, the
sorted elements of Gi. These lines partition this horizontal row of lattice squares into
m contiguous blocks. See Fig. 4.

0 =gi,o gi,1 gi,2 gi,3 gi,4 gi,5 = B

FIG. 4. Allocation below a horizontal line.

The portion of this row, bounded above by hi and lying to the left of gij has area
(hi- [hi] )gij. Let Cia denote the ceiling of this value. Cia is the desired total number
of squares to allocate to the left of gi. For the block bounded by gia-1 and gij, we
allocate the leftmost Cij- Cia-. lattice squares to Hi. For example, in Fig. 4, hi- [hiJ
-; hence the number of squares allocated to Hi lying between gi,2--3 and gi,3- 7 is
[7/3]- [3/3] 2. The allocated squares are shaded in Fig. 4.

Using (5), we have

0 -<- Cij Cij._ r(gij gij_)( hi hi <= gij gij-.

Hence, there are enough lattice squares between gii- and gij to satisfy this allocation
scheme. It is an easy consequence of our definition that Hi_

_
Hi, for 1 _-< _-< r. Thus,

the digitization of the row between hi and hi-1 can be defined to be Hi-Hi_l. It is
clear by our construction that each square of Hi-Hi-1 overlaps the region between
h and hi_. The next result states that the boundary of Hi can be computed in constant
time within a fixed block of

CLAIM 3.1. For a lattice square Sx,y where gi,-- <- x < gid, the membership of Sx,y
in Hi can be tested in 0(1) time. The boundary of Hi between gi- and gi,i can be
computed in 0(1) time.

We now describe the second phase of the algorithm in which we complete the
digitization of each rectangle by digitizing the vertical lines. Throughout, we will be
considering the digitized region Hi Hi- for any fixed i, 1 =< i_-< r. Let Vl, v, ,
denote the vertical segments between the horizontal lines h and hi_. Similar to the
first phase, we determine the digitized region lying to the left of vj, for each j, and
then define the final digitized region by set difference. The process is slightly more
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complex than the first phase because of the discontinuities in the boundary of Hi and

For an integer g, O<=g<=B, let L(g) denote the number of lattice squares in

Hi-Hi-1 that lie strictly to the left of the vertical line x g. Intuitively, L(g) is a
discrete approximation to the true area g(hi-hi_). For example, in Fig. 4, the true
area bounded by hi 31/2, hi_ 0, and gi,3 7 is 231/2 and L(gi,3) 24. In the special case
that g is the floor or ceiling of a vertical line of the decomposition, then we can bound
the value of L(g) as we now show.

CLAIM 3.2. Let vj be a vertical line of the decomposition between the horizontal lines

hi and hi_. Then
(i) L([vJ)_< [v(hi-hi_)], and
(ii) L([v])->
Proof By definition, both [vJ and Iv] are in Gi and Gi_l. From the definition

of Hi and Hi- it follows that L([vJ)= [[vJ hi] [[vJ hi_]. Part (i) follows by applying
(5) and through simple manipulations. Part (ii) follows analogously.

The digitized region to the left of vj, denoted V, consists of all the squares
Sx,y Hi- Hi-1 for which x < [v2J and a portion of the column of squares for which
x [v2J. If v2 is not an integer, then the set of squares Sx,y with x-<_ [v2J is bounded
on the right by the vertical line x [vj ]. If v2 is an integer, then the overlapping
constraint implies that we cannot allocate any squares to the right of v2 Iv2 ]. Thus
in either case the maximum number of such squares that can be allocated is L( Iv2 ]).
The digitization seeks to approximate the area bounded horizontally between hi and
hi-1 and on the left by vj, that is, vj(hi- hi_l). Thus, we define the size of V, denoted
D2, by combining these two values:

D2 min v2 (hi hi-l) ], L( vj )).
There are L([vjJ) squares allocated strictly to the left of the column [v2J, therefore,
the number of squares Sx,y to be allocated where x [v2J is D2-L([v./J). We select
the topmost squares of the column to be allocated. It follows from Claim 3.2(i) that
0 <-Dj- L( [v2J ). It follows from the definition of D2 that there are enough squares in
column [v2J to satisfy this allocation. Finally, the digitized region between v2 and
is defined to be V- V_I. By definition of D2, this digitization is overlapping.

For example, in Fig. 5, the true area bounded by hi 3, hi_ 0, and v2 71/2 is 25
and L( Iv2 ])= 27 and so D2 25. Since L( [vjJ )= 24, there is one square allocated in
column [vJ.

FIG. 5. Allocation to the left of a vertical line.
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CLAIM 3.3. The right-side boundary of V can be computed in 0(1) time.

Proof The right-hand-side boundary is defined by the squares of column [vii
that are in V. These squares can be computed in constant time once we know the
topmost square of column [vjJ in Hi. However, since [v] Gi, the membership of
this square in Hi can be determined in O(1) time by Claim 3.1. [3

In summary, to digitize the rectangle bounded by horizontal lines hi and hi-1 and
vertical lines v and vj_l we apply the first phase of the algorithm to digitize the
horizontal region, and then apply the second phase to complete the digitization. We
claim that this algorithm defines a digitization that is overlapping and has an absolute
excess less than 2.

THEOREM 3.2. Consider the digitization ofeach rectangle in a row-major decomposi-
tion of R described above.

(i) The digitization defines a partition of the set of lattice squares in R.
(ii) The digitization is overlapping.
(iii) The digitization has an absolute excess less than 2.

Proof Parts (i) and (ii) follow from the preceding discussion. Details for both
cases appear in [14]. To prove (iii), consider a digitized region bounded by vertical
segments vj and vj_l between rows hi and hi-1. The size of the allocation is

D Dj_ min (Ivy(hi- hi_)], L( [vj ]))-min ([v_(hi- hi_l)], L( r/.)j_l ]))
<- [vj(hi- hi-i)] lv-l(hi- hi-1)J (by Claim 3.2(ii))

< [(v v_)(hi- hi_)] + 1 (by Equation (5))
< v v.i_l)( hi hi_l) + 2.

Thus, the digitization has absolute excess less than 2. [3

The fact that the absolute excess may exceed 1 results from the min appearing in
the definition of D. This seems to be an inherent consequence of the constraint that
the digitization be overlapping and the locality exploited by the algorithm.

The running time of the algorithm follows from Claims 3.1 and 3.3 together with
a few additional observations. By Claim 3.1, we can find the digitization of a rectangle,
provided that the number of points in Gi is not too large. We can ignore all the vertices
of the decomposition, except for those that appear within the set of unit squares that
cover the rectangle, since the remaining vertices cannot affect the digitization here.
The vertices to be considered will consist of the four corners of the rectangle, plus any
other vertices along the horizontal edges of the rectangle. If the decomposition is
generated by the algorithm presented in 2, the widths of adjacent rectangles differ
by at most a factor of 1/2, from which it follows that the number of such vertices is
never greater than 2. From this observation we have

CLAIM 3.4. When the algorithm is applied to the n-row and n-column decompositions
generated by the algorithm of 2 and ifp <= AB, then we have the following"

(i) The region containing a given lattice square can be determined in O(1) time.

(ii) The boundary of a digitized region can be computed in O(1) time.

4. Fur’ther remarks. We have given a simple algorithm for decomposing a rectangle
into rectangles of equal area whose maximum perimeter is minimized. We have shown
that this algorithm is optmzl over the more general category of decompositions into
pseudorectangles. We have also given an approximate solution to the discrete problem
of partitioning grid squares into sets of equal size so that the maximum pseudoperimeter
(sum of projections) is minimized.

There are a number of open questions remaining. In 2, we showed that our
decomposition is optimal over all decompositions into pseudorectangles. Is it true that
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the decomposition is optimal even over all measurable, possibly disconnected, regions ?
The remark following Lemma 2.5 states that the algorithm is optimal (with respect to
pseudoperimeter) for decomposition into arbitrary measurable sets, for certain input
values. Also, the question of solving the rectangle decomposition problem in higher
dimensions is open.

There is a wide class of similar partitioning problems that are related to the
problems considered here. For example, given an A B rectangle R and a set of
positive real numbers al, a2,’", ap, where Yi ai AB, decompose the rectangles into
rectangles of area ai, so that the maximum eccentricity (ratio of a rectangle’s longer
to shorter side) is minimized. It is also natural to consider alternate cost criteria, such
as the sum of perimeters, rather than the maximum perimeter.
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THE BOOLEAN HIERARCHY I: STRUCTURAL PROPERTIES*
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Abstract. In this paper, we study the complexity of sets formed by boolean operations (union, intersec-
tion, and complement) on NP sets. These are the sets accepted by trees of hardware with NP predicates as

leaves, and together these form the boolean hierarchy.
We present many results about the structure of the boolean hierarchy: separation and immunity results,

natural complete languages, and structural asymmetries between complementary classes.
We show that in some relativized worlds the boolean hierarchy is infinite, and that for every k there

is a relativized world in which the boolean hierarchy extends exactly k levels. We prove natural languages,
variations of VERTEX COVER, complete for the various levels of the boolean hierarchy. We show the
following structural asymmetry: though no set in the boolean hierarchy is DP-immune, there is a relativized
world in which the boolean hierarchy contains coDP-immune sets.

Thus, this paper explores the structural properties of the boolean hierarchy. A companion paper [J.
Cai et al., SIAM J. Comput. 18 (1989), to appear] uses the boolean hierarchy to extend known results on
small circuits [R. Karp and R. Lipton, Proe. 12th Annual Symposium on the Theory of Computation, 1980,
pp. 302-309], sparse sets in NP-P [J. Hartmanis, N. Immerman, and V. Sewelson, Proe. 15 th AnnualSymposium
on the Theory of Computation, 1983, pp. 382-391], and counting classes [A. Blass and Y. Gurevich, Inform.
and Control, 55 (1982), pp. 80-88].

Key words, polynomial-time hierarchy, boolean hierarchy, relativized complexity classes, oracles,
immunity, complete languages, structural complexity
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1. Introduction and overview of results.
1.1. Introduction. The class NP has long been central to computational complexity

theory. DP, the closure of NP kJ coNP under intersections, has recently been intensively
studied [PY82], [PW85], [CM85]. In this paper, we study the natural completion of
such structureswthe closure of NP under boolean operations.

This closure, the boolean hierarchy (BH), has a clear "physical" interpretation.
The sets in the boolean hierarchy are exactly those representable by hardware over
NP. Each boolean hierarchy language is accepted by a hardware tree connecting NP
machines (Fig. 1).
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AND

u

P(x) S(x) T(x) W(x) X(x) Y(x)

Each predicate is an NP predicate.

FIG. 1. Hardware over NP.

We present many results about the boolean hierarchy: separations and immunity
results, natural complete languages, and structural asymmetries between complemen-
tary classes. Throughout, we emphasize the structure of the boolean hierarchy and its
relationship to more familiar classes.

The boolean hierarchy appears in passing in many papers [PZ82], [R85], and was
defined explicitly by Wagner and Wechsung [W85a]. Early results noted the location
of the boolean hierarchy, i.e., BH c_ pP (in fact, a single call to a # P oracle suffices),
due to Papadimitriou and Zachos [PZ82] and BHc_ pp, due to Russo [R85]. This
paper broadly investigates the structure of the boolean hierarchy itself. Related work
of K6bler, Sch6ning, and Wagner [KSW86] explores the connection between the
boolean hierarchy and sets that bounded truth-table reduce to SAT.

The boolean hierarchy has played a crucial role in the study of terseness and
bounded query classes [AG87]. An important recent result is Kadin’s proof that if the
boolean hierarchy collapses then the polynomial hierarchy collapses [K87a]. This
provides evidence that levels of the boolean hierarchy may be distinct.

1.2. Definitions. In 2 we define the levels of the boolean hierarchy (Fig. 2). Each
level of the boolean hierarchy consists of sets represented by a certain fixed structure
of boolean operators on NP sets"

P (0) P,

NP (2i + 1) {La U L. LA NP (2i), Ln NP},

NP(2i+2)={LAf-ILn[LA6NP(2i+ 1), Ln 6 NP},

BH= LI NP(i),
i>o

coNP (i)= {Slq NP (i)}.

For example,

NP(1) NP, NP(2) D {L C L--IL,, L NP},
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Boolean
Hierarchy

FIG. 2. Complexity hierarchies.

NP(3) {(L1 71L--) U L31 El, L2, L3 NP},

and

NP(4) {((L, (’1 L--) U L3) L--IL, L, L3, L4 NP}.

Sets in the boolean hierarchy have normal forms. Each can be written as a finite
union of DP sets. Indeed, the ubiquitous boolean hierarchy has many characterizations.

LEMMA. The following are equivalent"
(1) TBH.
(2) T is a finite union of DP sets.
(3) T is a finite intersection of coDP sets.
(4) T is in the boolean closure of NP.
(5) T=< P

bounded truth-table SAT.

1.3. Relativized separations of the boolean hierarchy. In 3 we explore the relativ-
ized structure of the boolean hierarchy and present strong separation results. We show
relativized worlds in which the boolean hierarchy is infinite. By comparison, oracles
making the polynomial hierarchy infinite (see Yao [Y85]) are indirect, quite involved,
and took many years to discover.

It follows from the relativizations of 3 that BH is a natural complexity class that
may lack many-one complete languages. Indeed, the boolean hierarchy in relativized
worlds distinguishes between the power of many-one and bounded truth-table
reducibilities; though the boolean hierarchy lacks many-one complete languages in
some relativizations, it always has bounded truth-table complete sets.

To prove our infinite separation of the boolean hierarchy, we introduce the
"sawing" technique. This method forms the basis of all the relativized results in the
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boolean hierarchy of [CGII]. This technique places successively more stringent require-
ments on oracle extensions, while seeking to force a desired behavior.

Indeed, we can prove probabilistic separations. A well-known result of Bennett
and Gill shows that pa # Npa with probability One (over randomly chosen A) [BG81].
We can show that the boolean hierarchy is infinite with probability 1 [C86].

Heller’s proof of Theorem 2 in [H84] shows that with appropriate relativization
the polynomial hierarchy can be collapsed to DP while separating NP from coNP.
Recently, Ko [K87b] showed that for every k there is an oracle for which the polynomial
hierarchy extends exactly k levels. For each k, we display worlds where the boolean
hierarchy extends exactly k levels, with PSPACE collapsing to the k+ 1st level. In
such worlds, understanding the boolean hierarchy is a prerequisite to understanding
the structure of standard feasibly computable complexity classes, as the structure of
the polynomial hierarchy degenerates exactly in the boolean hierarchy.

THEOREM. (1) There exists recursive B, for all i>-_l, [NPn (i)# NP (i+1)].
(2) For all i=>0, there exists recursive B [NP (1)# NPn (2) #... NP

NPn (i + 1) PSPACEn].
COROLLARY. Though the boolean hierarchy always has Turing (and even bounded

truth-table) complete sets, there is an oracle Bfor which BHn has no many-one complete
sets.

Proof of the corollary. SAT is bounded truth-table complete for the boolean
hierarchy. If the boolean hierarchy has a many-one complete set, it is finite, i.e., it
collapses to the level in which the complete set resides. Thus the oracle B from (1) of
the above theorem guarantees that BHB has no many-one complete sets.

Since the method of (1) of the above theorem is central to the work of this paper,
we now give a quick, informal proof. A much more detailed proof of a stronger version
of this theorem appears as Theorem 3.1.1. However, the interested reader is urged to
first pc;ruse the following short proof.

Proof of (1) of the theorem. In the standard way, if we can separate a generic
level of the boolean hierarchy by diagonalization, then by interleaving diagonalizations
we can construct a single oracle, simultaneously separating the entire hierarchy. For
concreteness, we show an oracle B so NPB (17)# coNPn (17). In particular, we show
that Ln, defined below, is in coNPB (17)-NPn (17):

t. {0’ J (Vx, Ixl- 17j)[x B] AND

{(::Ix, Ixl= 17j+ 1)Ex B3 OR

((Vx, Ixl 17j + 2)Ix . B] AND

{... OR

{(Vx, Ixl 17j+ 16)[x B]}...}}}

Stage O. Let Bo . We will have B (.J Bi.
Stage j. Let H be the jth NP (17) machine. It is composed of nine NP machines

(N’s) and eight coNP machines (A’s) so that (for simplicity, we use low numbers for
the machines instead of indexing them)"

L(Hn) =der L(N) (_J {L(A1) VI {L(N)(_J {’" (_J {L(A)f’) L(N9)} }}}.

Without loss of generality each of the machines runs at most n +j steps. Recall that
a coNP machine is a nondeterministic machine that rejects if and only if at least one
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of its nondeterministic paths rejects. Choose w so large that we have the following:
(1) no string of length >_-w has ever been queried or set before; (2) w > 18w_1; and
(3) 17((w) +j)<< 2w. We now use our method of successive restriction (the "sawing"
technique); we see-saw between pressuring NP machines to accept and pressuring
coNP machines to reject. Throughout, we obey the constraint that in stage j we never
add to our oracle any string of length less than w.

Case 1. There exists an extension C of B_I so that N1C(0 lvw) accepts (otherwise,
go to Case 2). Freeze into B an accepting path of the machine; thus we know that
HB(0lvw) accepts. Add an untouched string of length 17wj to B. Now we have ensured
that 017wi L(HB) LB. Thus, machine H fails to accept

Case 2k (1_-< k=<8). There exists an extension C of B_I so that C contains no
length 17w,...,17w+2k-2 strings and AkC(017w2) rejects (otherwise, go to case
2k+ 1). Freeze into B a rejecting path of the machine; thus we know that HB(0lyw)
rejects. Add an untouched string of length 17w + 2k-1 to B. Now we have ensured
that 07w LB-L(HB). Thus, machine H fails to accept

Case 2k + 1 (1 _-< k -< 8). There exists an extension C of B_ so that C contains no
length 17w, 17w + 1, , 17wj + 2k- 1 strings and N+I(017w) accepts (otherwise, go
to case 2k+ 2). Freeze into B an accepting path of the machine; thus we know that
HB(0lvw) accepts. Add an untouched string of length 17w +2k to B. Now we have
ensured that 07w L(HB) LB. Thus, machine H fails to accept

Case 18. If we have made it to this case, we know that for any extension C of
Bj_ that has no length 17w, 17w + 1,. , 17w + 15 strings, L(Hc) rejects 017w. Let
Bj:= B_I, which safely avoids strings for the forbidden lengths. Thus 07w
LB L(HB).

In each case, we have seen that L(HB) # LB. Thus, by the preceding discussion,
we are done.

1.4. Immunity results. In 4 we study the immunity structure of the boolean
hierarchy. With appropriate relativization, we display a A2 set that is BH-immune.
Also, no set in the boolean hierarchy can be either NP bi-immune or coNP bi-immune.
We show that no boolean hierarchy set is NP (2)-immune, yet there are worlds where
the boolean hierarchy has a coNP (2)-immune set. Thus NP (2) and coNP (2) are
structurally asymmetric. Such asymmetry between complementary classes is rare in the
realm of feasible computations. The most notable previous example is the asymmetry
between NP and coNP of Hartmanis, Immerman, and Sewelson [HIS83], which is
extended in a companion paper [CGII].

a has a BHA-immune set.THEOREM. There is a recursive oracle A for which A 2

THEOREM. (1) No set in the boolean hierarchy is NP bi-immune or coNP bi-immune.
(2) No set in the boolean hierarchy is NP (2)-immune, yet there is a relativized

world in which NP (2) has coNP (2)-immune sets.

1.5. Complete languages for the boolean hierarchy. Though certain complexity
classes may lack complete languages [$82], [HI85], [HH86b], most standard classes
have complete languages. Complete languages mark the upper limit of the complexity
of a class, and are useful in proving new languages complete for the class [GJ79].

In 5 we present natural complete languages for the levels ofthe boolean hierarchy.
Related work on complete languages appears in [W86]. We show variations of SAT
that provide canonical complete languages for the levels of the boolean hierarchy. For
example, SAT (3) {(f, f2, f3) (f G SAT ^ f2 G UNSAT) v f3 SAT} is easily seen to be
NP (3)-complete, and we can similarly define SAT (k), complete for NP (k), by mimick-
ing the definitions of 2. By reductions from these languages, we show many problems
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tO be complete for the levels of the boolean hierarchy. For example, the following
theorem shows the completeness of versions of graph colorability.

THEOREM. COLORABILITY (k) is NP (k)-complete, where

COLORABILITY(k)={G[x(G) is odd ^3k<-x(G)<-_4k}, keven

COLORABILITY(k)={GI(x(G isodd ^3k<=x(G)<-4k)vx(G)<3k}, kodd.

2. Definitions and representations.
2.1. The boolean hierarchy: definitions and algebraic characterizations. In this

section, we make precise the notation of fixing a certain amount of logic hardware
over NP.

DErqNITION 2.1.1.
Operator C:

C(L1) L1.
ifkisodd

forkC(L,...,Lk)=
C(L, ,Lk_)FILk ifkiseven

1.

Operator D:

D(L) L1.
D(L,,...,Lk)=L-D(Lz,...,Lk) fork>l.

Operator E:

E(L1) L.
E(L1, L2) L- L.

E(L,’’" Lk)=E(L"’’’Lk-1)Lk ifkisodd
fork>2.

I.E(L, Lk_2) [..J (Lk_ Lk) if k is even

Thus, C(L,..., Ln) represents an alternating sum of the languages

(C*) LI L2 -[- L3
(where the expression is associated to the left, and +,- stand for set theoretic union
and difference, respectively). Similarly, D(L, , L,) represents the nested difference
of the languages:

(D*) L,-(L2-(" (L,_,- L,)...)),
and E represents sums of differences of consecutive pairs:

L2) (_J (_J (L_z- L,_) L, if n is odd,
(E*) E(L,, ., L,)

(L,- L2) (_J (3 (L,_,- L,) if n is even.

We consider the language classes generated by applying C to a fixed number of NP
languages.

DEFINITION 2.1.2. For all n-> 1, define

NP (n)= {C(L1,’’’, tn)[ti E NP, 1 -< i_<- n}.

In particular, NP (1) NP and NP (2) DP. For any oracle set X, the relativized
version NPx (n) is naturally defined.

These normal forms are analogous to normal forms developed by Hausdorff [H14],
as noted in [W85a]. For detailed proofs see [H14], [W85a], [CH85].

THEOREM 2.1.1 [H14], [W85a]. Each of the following classes is precisely NP (n):
(1) {C(L1,...,L,,)[LiENP, I<-i<-_n}.
(1’) {C(L,,...,L,,)IL,_..._L,,L6NP, I<=i<=n}.
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(2) {D(L1 ,’" ", L,)IL, NP, 1 =< =< hi.
(2’) {D(L1,’’ ", L,)IL1 _’’’

_
L,, L, NP, 1 =< i=< n}.

(3) {E(tl,’’’,tn)ltiNP, l<=i<-n}.
(3’) {E(L1,’’’, tn)lt, _’’"

_
t,, ti NP, 1 =< i_<- n}.

DEFINITION 2.1.3. coNP (n) {/1L NP (n)}.
If we start from coNP, then the following theorem can be proved similarly.
THEOREM 2.1.1’ [H14], [W85a]. The following classes are identical:
(1) {C(t,,. .,t,)lticoNP, l <-i<=n}.
(1’) {C(L1,’’’,L,)ILI_ ’’’_L",tcoNP,l<=i<=n}.
(2) {D(tl,. ,tn)[tcoNP, l <-i<=n}.
(2’) {D(L1, , t,)]t, _...

_
t,, t coNP, 1 <= i=< n}.

(3) {E(L,,..., t,)lt coNP, 1 =< i-<_ n}.
(3’) {E(L1,’’’,L,)IL,_’’’_Ln, LicoNP, I<-i<=n}.

Using Theorem 2.1.1’ we can prove the following theorem, which will be useful later.
(The proof is left to the reader.)

THEOREM 2.1.2.

{C(L L.)IcoNP}={NP(n) ifniseven,
coNP (n) ifn is odd.

THEOREM 2.1.3 (Weak Hierarchy Theorem). For every

m < n, NP (m) J coNP (m)__ NP (n) coNP (n).

Proof of Theorem 2.1.3. Using normal form (3) from Theorem 2.1.1, we get
NP (n)

__
NP (n + 1), since E(L1, , Ln) E(L1, , L, ). Using normal form (1),

we have C(L1, , Ln) C(E*, L1, L., , L); hence NP (n)
_
coNP (n + 1). There-

fore, NP(n)_NP(n+I)tcoNP(n+I). Since the right-hand side is closed under
complementation, the theorem follows. [3

DEFINITION 2.1.4. BH kl NP (k). This defines the boolean hierarchy.
THEOREM 2.1.4. BH= Ug {C(L--,""", L---) I/ coNP}.
Whether the boolean hierarchy collapses (at some level, or entirely, or not at all)

is unknown. We note that P NP P BH; hence a proof that the boolean hierarchy
does not collapse entirely would entail P NP. On the other hand, even assuming
P NP, a proof that the boolean hierarchy is infinite would still subsume such major
open problems as DP coDP. Therefore, settling whether the boolean hierarchy is a
true hierarchy will be extremely difficult. Kadin [K87a] has shown that if the boolean
hierarchy collapses then the polynomial hierarchy collapses, which suggests that the
boolean hierarchy may be proper.

Note that NP (k) coNP (k) implies that NP (k) BH, using the normal forms.
As a final remark, the boolean hierarchy sits between the first and second levels of the
polynomial hierarchy, i.e. NP BH pSAT__ A’.

OBSERVATION 2.1.1 (Downward Separation). For all k >_-1,

NP (k) coNP (k) NP (k) BH.

2.2. The boolean hierarchy is the boolean closure of NP. The boolean hierarchy is
the boolean closure of NP. To prove this claim, we simply note that any amount of
hardware over NP can be reshaped into a finite union of DP sets. Thus two levels of
hardware on top of NP coNP are as powerful as n levels. Though every hardware
tree has an equivalent two-level tree, we may need many more gates on the shallow tree.

LEMMA 2.2.1. IfS is expressible by hardware over NP predicates (i.e., if S is in the
closure of NP with respect to {union, intersection, complement}), then S is a finite union

of DP sets and a finite intersection of coDP sets.
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Proof of Lemma 2.2.1. To show S is the finite union of DP sets, rewrite the tree
describing S in disjunctive normal form over the predicates and their negations. We
get the two-level logic tree of (Fig. 3), the leaves of which are NP and coNP predicates.
Since any intersection of sets from NP coNP is in DP, we can write S as the finite
union of DP sets. Similarly, using conjunctive normal form, S is the finite intersection
of coDP sets. [3

THEOREM 2.2.1. The boolean hierarchy is the closure of NP under boolean operations.
Proofof Theorem 2.2.1. Clearly every set in the boolean hierarchy is in the boolean

closure of NP. By our lemma, every set S in the boolean closure of NP is the finite
union of DP sets. Thus for some k and {Li NP}, S is E(L1,’’ ", L2k). Thus S is in
NP (2k) by Theorem 2.1.1, so S is in the boolean hierarchy. [3

Predicates from NPUcoNP

FIG. 3. Hardware tree of depth two.

The above theorems are NP versions of general theorems of Hausdorff about
boolean closures of set rings [H14], [W85a].

We can give another characterization of our boolean hierarchy. The bounded
truth-table reducibility of recursion theory has the following analogue among poly-
nomial time computable classes [Y83]"

A-< ttB : there are polynomial time transducers M1 and M= and an integer
n so that for every x, Ml(x) prints a finite set of at most n elements and M2(x)
prints a finite collection of finite sets, such that x A : B f-)MI(X is present
in M2(x).
We have the following theorem, which states that the boolean hierarchy is exactly

the sets that are bounded truth-table reducible to SAT.
THEOREM 2.2.2. BH { T[ T_-< P, SAT}.
Proof of Theorem 2.2.2. =:> (BH

_
{ T]T_<- , SAT})" Let A BH, then there are

sets L1
_
L2

_
Lk SO that A C(L1, L2," Lk), where Lie NP. Letf be a many-

one p-time reduction from Li to SAT, a complete language for NP. Now for all x, Ml(X)
prints {fl(x),’’’ ,fk(X)} and M2(x) prints the following sets {fl(x),""" ,f2i-l(X)},
where 2i- 1 -< k.

= (BH _{T T_< , SAT})" Let A-<, SAT via M1 and M2. Without loss of gener-
ality, Ml(X) always prints k element sets. Let Ml(X)= {fl(x),"’’ ,fk(X)}, and Li=
{x ]f(x) SAT}. Then L NP. Now it is easy to construct a union of 2k many DP sets
that equals A, using the definition of A-< , SAT. [3

3. Separations. Is the boolean hierarchy infinite or finite ? If it is finite, how many
levels does it extend before it collapses? This section shows that all reasonable answers
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to these questions can be obtained in appropriately relativized worlds. In 3.1 we give
a detailed relativization that makes the boolean, hierarchy infinite. In 3.2 we show
that, for each k, the boolean hierarchy can extend exactly k levels, with everything up
to PSPACE collapsing into the (k + 1)st level.

3.1. An infinite relativized boolean hierarchy. This section proves the following
strong separation theorem. As proven in 1.3, a corollary of this theorem is that in
some relativized worlds the boolean hierarchy does not have many-one complete
sets--the fact that it does have bounded truth-table complete sets notwithstanding.
The following proof combines the sawing argument of 1.3 with other relativized
separation techniques. Readers not interested in the details of oracle constructions
may skip to 3.2.

THEOREM 3.1.1. There exists a recursive oracle X separating the entire boolean
hierarchy. Specifically,

Npx

pX c NPx CI coNPx NPx U coNPx c NPx (2) f3 coNPx (2)
coNPx

NPx (k) fl coNPx (k)
NPx (k) c

c coNPx (k) c
NPx (k) U coNPx (k)

c NPx (k+ 1) 71 coNPx (k+ 1)....
We first describe the strategies for X to achieve each of these separations.
(1) pX Npx f-lcoNpX is done in the usual way: Allocate two "segments" of

strings with exponentially many for each n. Diagonalize each p-time deterministic
machine over a tally set Ln, where "ln ?L" is determined by the existence of some
strings in the appropriate "segment." To insure that L NpX fl coNPx, we impose
certain global constraints on X: X will have strings from exactly one segment of the
two allocated, corresponding to any particular n. The oracle set X is constructed in
stages {Xs}; an extension of Xs is termed "admissible" only if it satisfies-all these
global constraints. (There are other constraints to be discussed later.)

To diagonalize, we pick n sufficiently^large, and fix an extension Xs of Xs that is
"admissible" except for length n, where X has no strings from either segments. Run
the next p-time machine Pi on ln, using Xs to answer queries, and "freeze" to X any
string that is queried negatively. Since at most polynomially many strings are "frozen"
when Pi halts, we may, according to whether Pi accepts or rejects 1 ", choose the
appropriate segment to enumerate a string (corresponding to length n) into X. Then
extend X, according to X, so that, the computation of P on 1 is preserved. Thus,
the final X will be "admissible" and pX Npx fq conNP.

The other requirements are of the following two types:

NPx (k) # coNPx (k), NPx (k)U coNPx (k)#NPx (k+l)coNPx (k+l)
for all k _-> 1.

Note that this is enough since

NPx (k) coNPx (k) NPx (k) coNPx (k)
c NPx (k) c
c coNPx (k) c

NPx (k) LI coNPx (k).

Furthermore, for requirements NPx (k) coNPx (k) it is enough to satisfy for
all odd k.
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(2) Strategies to insure NPx (k)# coNPx (k) for odd k. We will illustrate this
with the case k- 3. Let us fix three separate "segments" Si, 1 _-< i-<_ 3, each having an
nth "block" S’ with exponentially many strings for every n. Define

L3 { 1 (:lSl ^ --n::l s2) v =is3},

where "::lsi" stands for :is X 71S’. Clearly L3 NPx (3). We want to make sure that
for each triple (N, N, Nk), the coNPx (3) language W3 (L(Nx) U L(N:f)) 71L(N)
is not L3; hence L3coNPx (3).

The following generic step embodies a "sawing" argument that is the key to our
separation results, and can be readily generalized to the k > 3 case.

Pick n sufficiently large so that the S"s are all "clean," in the sense that no string
from these blocks has been committed to either X or X.

Case 1. If Nk accepts 1 under some "admissible" extension of the current X,
then we "freeze" an accepting computation and extend X "admissibly" ("freeze"
those used negatively in the computation to X). Then enumerate an "unfrozen" s3 6 $3
into X, (if there is none in X so far). We will see that there will always be some s3
"unfrozen," if n is large, and s3 X does not violate any global constraints. Thus
1" W but lnL3

Case 2. Nk never accepts 1" under any "admissible" extension. We will say an
extension is without T if X ffl T"=. Consider all "admissible"
extensions without $3 (i.e., extensions in which X ffl S’ ).
Case 2.1. If N accepts 1" under some such extension, then "freeze" an

accepting computation and extend X. "admissibly" without
$3. Enumerate an "unfrozen" s2 S into X (if none exists in
X so far). Thus 1" W3, but ln L3.

Case 2.2. N never accepts 1" under any admissible "without $3"
extension. We consider all "admissible" extensions that are
"without $3 and without S."
Case 2.2.1. If Ni accepts 1 under one of such extension,

"freeze" it. Extend X "admissibly" without $3,
$2; put an "unfrozen" sl S’ in X. Thus ln W3
but 1 L3.

Case 2.2.2. N never accepts 1 under any "admissible without
$3, $2" extension. Then extend Xs "admissibly"
without $3, $2, $1. Thus In W3, but 1" L3.

Hence, the final X will be admissible and NPx (3)# coNpX(3).
(3) Strategies for NpX(k)UcoNpX(k)#NpX(k+l)fqcoNpx(k+l), for all

k_>l.

We illustrate with k 2. Fix six separate "segments" S, SI, i- 1, 2, 3 as before.
Denote $7, S’ their nth blocks. We impose the following global constraints on X"

For each n, either

[(:iS ^ --13S2) V 3S3] ^ [(--13S V :IS) ^ -q3S](I)
or

(I!) [(’--I:IS1V ]S2) ^ --iIS3] ^ [(:IS ^ --I:IS) V :IS;]

where ":ls :Is"’ are shorthands as before. For example, ’:is" means ":is $7 f3 X."
Define

L3 {l"[(:is, ^ --I:is2) v :is3}.

Clearly, if X satisfies the above constraints, then L3 NPx (3)71 coNPx (3).
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We need to insure for each tuple (Ni, N) that neither L(Nff)VI L(Nff) nor
L(Nff) L(Nff) equals L3, hence L3 Z NPx (2) U coNPx (2).

To insure this, we use the following variant of the "sawing" argument discussed
before.

Step (1). For L(Nx) U L(Nx). Pick an n large enough so that the corresponding
"blocks" S" S’n, are all "clean."

Temporarily ignore global constraints (I), (II) for this particular n; consider all
"admissible" extensions of Xs without $3, S (that is, for which X S and
X S" ).

Case 1. If N accepts In under such an extension, then we "freeze" an accepting
computation. Extend Xs "admissibly," and for this n, add an "unfrozen"
member of S and an "unfrozen" member of S to X, thus satisfying
(II); therefore 1" L(N), but 1 L.

Case 2. N./never accepts In under any such extension. Consider all "admissible"
(again ignore (I), (II) for this n) extensions of X without $3, S, $2,
and S.
Case 2.1. If Ni accepts 1 for such an extension, then "freeze" one

accepting computation and extend X "admissibly." For this
n, add to X an Sl and an s2 "unfrozen" from the appropriate
blocks S’ and Sn, respectively. Thus satisfy (I), and
t(N/X) U L(Njx), but 1 t.

Case 2.2. N never accepts 1 under such extensions. Then it rejects when
we extend X, "admissibly" without S1 and with some Sl S1
and "without $3, S, $2, o2.’" Then (II) is satisfied. Now
1 t(NX), but 1 L.

This completes the diagonalization of Step (1).
Step (2) is similar, except we do it for L(N/X) CI L(Njx).
A formal proof follows.
Proof of Theorem 3.1.1. We use a standard pairing function (.,.), for which

I(x, Y)I x] + lYl. When convenient, we identify binary string x with integer lx. Define
(a, b, c) (a, (b, c)), etc.

Let {P} ({Ni}) be standard enumerations of deterministic (nondeterministic) TMs
with polynomial time clocks Pi.

Define Sid,k {(i,j, k, x)llx n}. Note that Sid,k(3 n’Si,,j,,k , unless they are iden-
tical. Define propositions p",= S",, CIX # , q i,j Si"d,2CIX # . We also use the
operator C on propositions in a natural way.

FACT. {lnlC(q,, q,)}6 NP(t), provided {lnlq,}6 NP, l<=s<=t.
Define Lk--{1" IC(q,l, q,k)} for odd k. Then Lk NpX(k).
We will impose the following global constraints GCk, on X:

C(pk,,,""", Pk,k)C:>--C(pk,k+,, Pk,2).

Define L {1 IC(p,,,’’’, PT,,k)}.
FACT. If X satisfies GCk,,, then Lk NPx (k) coNPx (k).
We have the following requirements (relativized to X):

R<o,,>" L(P,) # L, for k->_ 1,

R<2k-l,,>: C(L(Nil), ", L(Ni2k_,)) # L2k-l, where i= (i,,. ", i2k_l)

R<2k, i)" C(L(Ni,),"" ", L(Nik)) # L+, and C(L(N,,),..., L(N,k)) # L+,,
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where i=(il,..., ik).

Each Si",j,k is called a "block." Of importance to us are the blocks concerned in
pi,j and q,. Specifically, Si",,l for 1 <_-j <= 2i and S",,2 for odd i, 1 <_-j <= i. We call kJ 2k.j=l Sk3,"
and t_J=S,,j,_ "large blocks." Moreover, the former is called a "global constraint
block," GCBk,,.

We further suppose a well-ordering << (of type to) is defined, which "holds
together" each block and large block (i.e., it induces a well-ordering on the block
quotient space). This can be easily accomplished, e.g., imagine all integers on a line,
then bring everything in Si",j,k to just to the right of its leftmost member. That is, we
will say that x << x2 if (1) the smallest integer in the block to which x belongs is less
than the smallest integer in the block to which x2 belongs, or (2) Xl and x2 are in the
same block and xl < x2. Also, do this for the large blocks.

X is constructed in stages: X t_J Xs. At the end of stage s, we have an initial
(under << segment Xs of X. Membership in X or X of any string in a block or a large
block is determined in a single stage. If we define block (Xs)= the set of blocks on
which X has been defined by stage s, then block (Xs) is an initial segment in the block
quotient space and

X. t_J block (Xs) X t_J block (X).

An admissible extension of Xs is a set with X as initial segment (condition (.))
and satisfies all GCk, We will maintain the condition that for each GCBk, if
GCBk,, U block (X)#, then GCk,, is satisfied by X; thus such admissible
extensions always exist.

We say a block B is clean if B block (X)= .
CONSTRUCTION OF X.

Xo= s=0; no=0.

Stage s + 1 (0, i)+ 1. We satisfy R(o,i).

Let n.+l min {nln > n. ^ GCBI,, is clean ^ 2 > pi(n)}. (Recall that p(. is the
run time of deterministic polynomial time machine P.)
Take an extension X, ofX satisfying X, GCB,,+,_ and otherwise admissible.
Run Pi on 1".+’ using X.. "Freeze" into X all strings not in X that are queried
by P. According to whether P(1 ",+,) accepts or rejects, enumerate an unfrozen x
from S"+’ or ."+ respectively, into ’ (This satisfies GCon.+, Let B be the1,2,1 1,1,1’

<<-last (large),, block that was queried, or GCB,,,.,, whichever is later.
Set X+ to Xs up to B. s := s + 1.

Stage s + 1 (2k 1, i) + 1. We satisfy R<2_,>.
(Recall that i= (i,..., i2-).)

12k-1 )-, 2k-Let ns+=min{nln> n^ ,_,= $2-,,2 is clean^2">,=l pie(n)}.
saw := 2k- 1; done := false;
Repeat

,,"+’ for saw <j <-Consider all admissible extensions of X, satisfying
2k-1. (If saw 2k-1, the previous condition is void.)
If Niow(l"+’) has an accepting computation under such an extension J, we
will "freeze" an accepting computation as follows:

Extend X according to Xs up to the <<-last block for which there exists
a queried string (round up to a large block if the block is a part of it)
or _jZk-1 .qns+ whichever is later.j=l 2k- 1,j,2,
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Then enumerate an Saw .q"+’ into X that is not queried negatively"’2k-l,saw,2

in the computation (if there does not exist one in X already).
done := true;

Else, saw := saw 1.
Until (saw=O) or (done).
If saw 0, take any admissible extension s of Xs satisfying -nq+_ll,j, for 1 <_-j _-<

2k-12k-1, then extend X according to X up to large block :1 S1.,2.
s:=s+l.

Stage s + 1 (2k, i)+ 1. We satisfy
Step 1. Diagonalize C(L(Ni,),..., L(Nik)).
Let n,+ min {nln > n ^ GCBk+I,, is clean ^ 2" > yk__ p,(n)}
saw := k; done := false;
Repeat

Consider all admissible extensions of X (except temporarily ignore
aCk+1,gls+l satisfying (--np k+l, --’k+l,k++), for saw <j < k + 1
If N (1 ",,+,) has an accepting computation under such an extension J,, we
will "freeze" an accepting computation as follows:

Extend X according to Xs up to the <<-last block for which there exists
a queried string (round up to a large block if the block is part of it) or

GCBk+I,n,+ whichever is later.
Then enumerate an Ssaw+ Sns+l and s’ .q’+’ into Xk+l,saw+l,1 k+l,k+l+saw,1

that are not queried negatively in the computation (if there do not exist
such two strings in X already).
done := true;

Else, saw := saw 1
Until (saw=O) or (done).
If saw 0 take any admissible extension of X that has no string from S"’+

k+l,j,l

for l<j <k+l and no string from .-s+, for 1 <’k+,k++,, =J < k+ 1 and has an

s k+l,,’"+ (this satisfies GCk+I,,,,+). Then extend X. up to large block GCBk+,,.,+,
Step 2. Diagonalize C(L(N,),..., L(Nk)).
We omit the details since this step is symmetric to Step 1.

End of construction

Let us prove that stage (2k-1, i)+ 1 does satisfy requirement R(2k_l,i). The other
parts are left to the reader.

Suppose the Repeat loop ends with saw > 0. Then clearly for some admissible
[’//ls+l <j=<extension X, of X satisfying -n2_., saw 2k-1, No accepts 1 "+,. Meanwhile

Ni, saw <j-<2k-1, reject 1 "s+l for all such admissible extensions of X.
There are at most po(n+) strings being queried on the accepting computation

path. Thus an ss,,w .q"/’ can be found and enumerated into X. Therefore the2k-l,saw,2

accepting computation is preserved and qs/, is satisfied. Hence for the final X,2k-l,saw

l"/C(L(Nisow), L(Ni,,+)).
If saw is odd, then ls/ L2k_-C(L(Ni),’’’, L(Ni_)).
If saw is even, then 1./, C(L(N),..., L(Ni:_))-L2k-1.
Similarly, suppose the Repeat loop ends with saw=O, then none of the N0,

1 <-j < 2k 1 will accept 1/, for any admissible extensions with -,/ 1 <j < 2k 1--12k- l,j

Since the final X has no string in u_k- ../
j=l "’2k-l,j,2, we have 1 ns+

C(L(Ni,),..., L(N_,)), and 1",+ L2_. [3

3.2. Relativized boolean hierarchies extending exactly k levels. In some relativized
worlds, the boolean hierarchy separates at the kth level, yet PSPACE falls into the
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(k+ 1)st level. This fact opens the possibility that in the real world the structure of
feasible computations degenerates exactly in the boolean hierarchy.

THEOREM 3.2.1. For each k >= 1, there is a reeursive oracle A so that NPa (k)
coNpA(k), yet NPa (k+ 1) coNPa (k+ 1)= PSPACEA.

We state a proof for the case k --2, and show the form of the general proof. Our
strategy is simple. While coding to ensure that PSPACEA_ NPa (3), we diagonalize
so that DP (A) coDP (A).

Proof of Theorem 3.2.1 (k 2 case). We display a recursive oracle A for which
DP (A) coDP (A) and NPa (3) PSPACEa.

Let Mi be an enumeration of PSPACE machines. Without loss of generality, Mi
runs in space at most n i+ and queries strings of length at most n i+ i. By adopting
polynomial length queries, we follow the standard model of relativized
PSPACE[FSS81].

Let U {Mx# II’I’+IMA(x) accepts}. Note that U is PSPACEa complete. We
will encode to ensure that U e NPa (3). In particular we will assure that if y is of
length i:

y U:> [(3z, lyz[=5i+ 1)[yzA]^ (z, lyzl=5i+2)[yzC:A]]

v (3z, ]yzl 5i + 3)[yz A].

Let L={O’l(Zlz, lz[=i)[zA]}(-l{O’l(Vz, lzl=i+l)[zeA]}. Clearly LD’ (A).
We show that no coDP (A) machine accepts L. The kth coDP machine, Hk, will be
such that L(H)= L(Nj) U L(ata), (j,/)= k and {N}, {a} are enumerations of NP
and coNP machines, respectively. That is, to "run" Hk, we "run" both N and At and
accept if either accepts.

Our oracle is built in stages. The following constraint applies throughout the
construction: In stage 5i +j, 1 _-<j-<_ 5, no string of length less than 5i + 1 can be added
to the oracle.

ORACLE CONSTRUCTION.
Stage "5i+ 1, 5i+2, 5i+3" (Encoding). For each y of length i, assure that equation
(.) is satisfied. A possible problem is that our ability to control strings of lengths 5i + 1,
2, 3 may be constrained by the effects of some previous diagonalization. Various cases
of the diagonalizations put various types of constraints on us. Fortunately, for each
type of constraint we retain the freedom of coding both possibilities, y U or y U.
After we list the diagonalization cases, we give a recipe for codings done under each
case.
Stage "5i + 4, 5i + 5" (Diagonalization). If strings of length greater than or equal to
5i+ 1 have been queried by any previous diagonalization phase, do nothing during
this stage. Otherwise, let H be the first coDp

machine that still might accept L. Let
us say k (j,/); so, informally speaking, /-/k-- Nj At. If either N or A! has run time
(on inputs of length 5i +4) more than 2, do nothing.

Otherwise, run N(05/4) with, as oracles, all extensions of A that add no new
string having length congruent to 3 mod 5.

Case 1. NA(05i/4) accepts on some such extension. Freeze in A all elements
along some accepting path. So HkA(05i+4) accepts. Make it a liar by
adding some unconstrained length 5i+5 string to A. We win, since
05i/4 L(HA), but 05/+4J L.

Case 2. N.a(oi/4) rejects on all such extensions. Then, as long as we make sure
all strings of length congruent to 3 mod 5 remain out of A, H is simply
an overworked A trying to accept a hard language, L. So, run At(O5i+4)
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Case 2a.

Case 2b.

End of cases

on all oracle extensions that (1) add no new string with length congruent
to 3 mod 5, and (2) have no strings of lengths 5i+2 or 5i+ 5.
Aft(05i+4) rejects on some such extension. Freeze in A elements along
some rejecting path. So HkA(05i+4) rejects. Make it a liar by putting an
unconstrained length 5i +4 string into A (recall that by the conditions
imposed, we have no length 5i+ 5 strings). We win, as 05i/4 L(H),
but 05i/4 E L.
Aft(05i+4) accepts on all such extensions. Then, in particular, it accepts
on the extension that puts no strings of length 5i+4 or 5i+ 5 into A.
Hff(05i+4) accepts but 05i/4j L, so we have again made Hk a liar.

Finally, we must provide the promised coding strategies. Since our diagonalizations
only take place when out of the range of any previous diagonalization, each time we
code we are constrained by at most one case of the diagonalization. Figure 4 shows
these strategies.

For example, consider trying to code y E U, when our last diagonalization suc-
ceeded on Case 2a. Case 2 obligates us to keep strings of length congruent to 3 mod
5 out of A. Also, it may have fixed some strings of length 5i + 1 in and out of A, and
it may have fixed some strings of length 5i+2 out of A. Nonetheless, we have no
problem here. We code y U by placing an unconstrained length 5i + 1 string into A.
Now we have no length 5i + 2 strings in A; by (.) the new length 5i + 1 string codes
the fact that y U. Note that it does not interfere with the diagonalization.

Case To code EU To code EU

XO

XO

ox
0

EMPTY

EMPTY

5i+1

5i+2

5i+.:

XO

XO

0

XO

[]0

EMPTY

EMPTY

EMPTY

EMPTY

2b

EMPTY

KEY: X strings may be fixed in A
0 strings may be fixed out ofA
[] string add
EMPTY all strings fixed out ofA

5i

5i+1

5i+2

5i+.

FIG. 4. Encoding strategies under various restrictions.
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This is a proof of the case k 2. The general proof follows the same outline. To
separate exactly k levels, we put L in NPa (k) -coNPa (k) and code U into NPA (k 4-1).
We will have k + 1 encoding stages and k diagonalization stages. [3

4. Immunity results. We first prove a theorem that shows the difficulty of finding
immunity relations within the boolean hierarchy: No BH set is NP bi-immune or coNP
bi-immune. Jockusch first proved the analogue for recursively enumerable sets of the
following theorem.

THEOREM 4.1. NO set in the boolean hierarchy can be NP hi-immune. That is, for
each S BH there is an infinite set L NP such that either L S or L S. Similarly, no
set in the boolean hierarchy is coNP hi-immune.

Proof of Theorem 4.1. By definition, BH (-Jk->-i NP (k). We prove the first part;
the second part is similar, using BH= (-Jk_->l {C(L---;,..., L---)I/ coNP}.

Our proof is by induction on the level of S in the boolean hierarchy. Our base
case is that S is in NP. If S is infinite, set L S. If S is finite, set L S. In either case,
we see that S is not bi-immune.

Suppose S NP (k), k > 1, and (inductively) no set in NP (k 1) is NP bi-immune.
By definition, there are NP sets L, 1 <_- <= k, for which S C(L1, Lk). If k is odd,
then S S U Lk, where S1 NP (k- 1). If Lk is infinite or S1 has an infinite NP subset,
then so does S. Otherwise, Lk is finite and S1 has an infinite NP subset X. Then
S S1 i") Lk

_
X Lk. X Lk is an infinite NP set, so we are done.

A dual argument can be applied for k even. [3

Is it possible for a set in a higher level of the boolean hierarchy to be immune to
lower levels? We show the following theorem.

THEOREM 4.2. There is a recursive oracle X such that NPx (2) has a coNPx (2)-
immune set.

Proof of Theorem 4.2. Define L= {ln l(:lOx X, Ixl n) ^-(::lly X, lyl n)}.
Clearly L is in NPx (2). We now diagonalize to ensure that L is coNPx (2)-immune.

X is constructed in stages. At each stage we keep a finite list of coNP (2) machines,
represented as pairs of NP machines, that have not been "kicked out." Recall
coNP (2)= {L--. U LjlLi, Lj NP}. At stage s, get a large n; we achieve the following
objective"

Either some machine on the list accepts 1 (this machine’s accepting computation
will be preserved) and we will arrange to have 1"

_
L or no machine on the list

accepts (this fact will also be preserved) and we will arrange to have 1 e L.

In the former case, the "mistaken" machines, those we have fooled, are deleted
from the list. In the latter, we append to the list one more (Ni, N). From stage s to
s + 1, we will arrange to have some ly of the "skipped" length so that L is not enlarged.

Hence every L(Ni)U L(N) once on the list will not accept any more members of
L, unless it is "kicked out" later. Since at any moment the list is finite, we can only
"kick out" a finite number of (Ni, N)’s consecutively. Thus the second possibility does
occur infinitely often, so L is infinite and every L(Ni) U L(N) is eventually considered.
Therefore L only has finite subsets from coNPx (2).

The strategy to achieve that objective is the following"
Assume at some point there are k pairs (Ni,, N,), 1 =< -< k, on the list. Construct

NP machines N, N such that

L(N,) t..J L(N.) (.J lt<_k (L(N,,) (_J L(N,)).
Consider all extensions that contain no string previously frozen to X, see if N accepts
1 under some such extension, and if so,
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Case 1. Freeze one accepting computation path of that extension. Choose a ly
unfrozen with lYl n; put ly into X. Thus 1" L and we may kick out
all mistaken pairs (there is at least one). Otherwise,

Case 2. Consider all extensions that have no string of the form ly, lYl n; see
if N accepts 1" on one of these extensions. If so,

Case 2a. Freeze one accepting computation and add an unfrozen string 0x, Ix[ n
to X. Thus 1" L and no pair on the list accepts 1". Otherwise,

Case 2b. Do nothing. At length n, we have neither 0x nor ly; hence 1" L, but
some L(N,) said yes to

On the other hand, it follows from our normal form theorem that the situation is
drastically different for NP(2). By Theorem 2.1.1, every set in the boolean hierarchy
can be expressed as a finite union of NP(2) sets. Clearly, this implies the following
theorem.

TVlEOREM 4.3. No set in the boolean hierarchy is NP (2)-immune.
Thus we have a structural asymmetry among complementary classes: though no

boolean hierarchy set is DP-immune, there are worlds where the boolean hierarchy
does have coDP-immune sets.

The argument used to prove Theorem 4.3 yields more. In fact, for every L

L is NP (2)-immune L is BH-immune.

The proof is immediate. If L has an infinite subset M from the boolean hierarchy then
M in turn must have an infinite subset from NP (2). Thus L has an infinite NP (2) subset.

The above observation can be refined to prove the following theorem.
THEOREM 4.4. There is a recursive oracle X so that A"x has a set that is BHx-

immune.

Proof of Theorem 4.4. Define predicates p, ":lx, Ix n, lk0x X," 1 <-- k -< 2n.
(Note that lk0x llOy=# k l, x y.)
Consider La {1" IC(p’, , p,)} Clearly La A P’x

We will construct X, so that La is BHX-immune.
X is constructed in stages; X U X. At each stage we keep a finite list of BH

machines, represented by finite sequences of NP machine indices. NP (2k) consists of
unions of k NP (2) sets. We may construct at stage s a finite sequence of NP indices
(il,’’’, it), so that C(L(Ni,),.’’, L(Ni,)) is precisely the union of those on the list,
relativized to any oracle set. Pick n sufficiently large, then apply our "sawing" argument
to diagonalize.

CONSTRUCTION OF X.

Xo-- ; X’o ; listo ; no=O; s=O.

Stage s + 1:
Construct (il,..., it), so that for every X,

C(L(Nxil ), L(Nx x
it )): L(M );

the union is over all M list.,., represented as finite sequences of NP indices via C.
Let p be the sum of time bounds of Ni," ", Ni,. Without loss of generality, is
even.
Let n+=min{n[n> ns and 2n> and (lm>-n)[m is "clean"] and (lm>=n)

[2" > p(m)]}.
n: n < n < n--, keep 1" out of LA as follows:

{Find 12"0x X, [xl- n, set X := X {12"0x}.}
Set X’:=X’U{lkOx][x[=n+, t+l < k--<Zn+}
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(This effectively strips away the last 2n,+- (t + 1) quantifiers in the definition of
La for 1/,.)
For some 10x X, Ix[ n+ set X := X U {10x}.
saw := 0; done := false;
repeat

(+){If there is an extension Y of X, so that X Y, Y GX , and
has an accepting computation, we will freeze one accepting computation as
follows:
{X := X U {those in Y that are queried)
X := X’ U (those not in Y that are queried)
Pick a l’+-Ox X’ Ix[ n+ and add it to X
done := true.

else {X; := X’ U {l’+’-aW0xllxl saw := saw+ 1}
}

until (saw t) or (done true)
If saw is even then appended the next BH machine to list
else delete all M list with 1"+, L(Mx) (there must be one)
X+:= X, X’+ := X’, list+ := list, s := s + 1

End of stage s + 1
End of construction

We leave the proof that the construction works to the reader.

5. Complete languages for the boolean hierarchy. Complete languages are impor-
tant in the understanding of complexity class; a complete language marks the upper
limit of a class’s complexity. In this section we drive natural complete languages for
the levels of the boolean hierarchy. However, our first complete languages will be
universal and canonical ones.

THEOREM 5.1. For each k, NP (k) has a complete language.
Proof of Theorem 5.1. Fix k _-> 1, we claim that the universal language

U {(i, i2,’’’, ik, X, 0Vi(Ixl))lX C(L(Nq),’’’, L(Nik)), i=(i,’’’, ik)},

is complete for NP (k) with respect to polynomial time reductions, where Pi(’) is a
sum of the polynomial time bounds for N,.,..., Nk. Clearly U is in NP (k), owing
to the padding 0 pi(Ixl). Given any L NP(k), there exist il,’’" ik, SO that L=
C(L(Ni,),...,L(Ni)). Let pi(.) be a sum of time bounds of Ni’s, then x
(il, ik, X, 0 p’(lxl)) is a one-to-one polynomial time reduction from L to U.

Languages such as the one constructed in Theorem 5.1 are unnatural. Natural
complete languages more forcefully demonstrate the usefulness of language classes.
Natural complete languages exist for every level of the boolean hierarchy.

Define SAT (k) {(f, ,fk)[C(p, , Pk)}, where pi-= "f is satisfiable." By
the proof of Cook’s theorem [C71] we have the following theorem.

THEOREM 5,2. SAT (k) is NP k) -complete.
We continue our quest for natural complete languages, and display a family of

variants of graph colorability that are complete for the levels of the boolean hierarchy.
THEOREM 5.3. COLORABILITY (k) is NP(k)-complete, where

COLORABILITY(k)={GIx(G) isodd ^3k<=x(G)<=4k}, keven,

COLORABILITY(k)={G[(x(G) isoaa ^3k<=x(G)<=4k)vx(G)<3k}, kodd.
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Sketch of the proof of Theorem 5.3. We reduce SAT (k) to COLORABILITY (k).
Using the normal forms of boolean hierarchy sets [CH85, Props. 2.1.6, 2.1.3] we can
efficiently transform (fl,’’" ,fk) to (gl,""", gk) SO that (1) (fl,... ,fk) SAT (k)<=>
g(f) (g,’’’, gk) SAT (k), and (2) the gi have the nice property that

(**) (/i <j) [gj SmTgi SAT].

If Gi=(V,Ei), i=1, 2, define GG=(V,E), where V=Vlt.JV, and E=
E t_J E2 U {(/11, /"2 /’ti V/. Clearly X(G1X G2) X(G1) -k- X(G2). Given (fl,""", fk), we
transform this to (gl,"" ", gk), as explained in the previous paragraph. Let h be the
polynomial time reduction from formulas to graphs of Cai and Meyer [CM85].
Crucially, x(h(F))=3 if fSAT and x(h(F))=4 if f SAT. Let G,= h(g,). Now,
since the gi satisfy (**), the graph G (. (G G2) x G3 Gk is just what we
want; (fl,"" .,fk)SAT(k)CrGGCOLORABILITY(k). [3

Now, letfbe a boolean formula. Thenf is satisfiable<::>f’ (fv y) ^ 37 is satisfiable
where y is a new variable. Furthermore, f"= (fv y)^ z is always satisfiable. Using
these observations, we can apply the standard transformation from SAT to 3SAT to
Vertex Cover (VC) [GJ79]; we get a polynomial time transformation f- (Gy, ly), so
that iff is satisfiable, then the minimum size vertex cover for Gy is /y; otherwise, that
minimum number is ly + 1.

For each k-> 0, define

VC (2k + 2) {(G,/) The minimum size VC of G is + 2i + 1, 0_< -<_ k},

VC (2k+ 1) {(G,/) IThe minimum size VC of G is =<l,

or equal to + 2i for some 0 < <= k}.

THEOREM 5.4. VC (k) is NP(k)-complete.
Proof of Theorem 5.4. Start with formulae fl,. ., fk. Using the normal forms of

the boolean hierarchy [CH85, Props. 2.1.6, 2.1.3] we can without loss of generality
assume that for all i<j, [f SATYr SAT] (see the proof of Theorem 5.3). Then
apply the transformation described before to each f separately: f maps to (Gi, l). We
get a graph G having k distinct components Gi, 1 _-< =< k. Let Eli.

Clearly the minimum size of a vertex cover for G is l+j, where j the number
of f’s that are unsatisfiable. Hence, (f,. ,fk) SAT (k)c(G, l) VC (k). [3

We can prove similar completeness results for several variants of the Vertex Cover
problem, such as independent set, clique, and others.

6. Conclusions. This paper explores the structure of the boolean hierarchy. The
hierarchy responds flexibly to relativized control: there are worlds where the hierarchy
is infinite and for every k there are worlds where it extends exactly k levels. It has
only recently been discovered that the polynomial hierarchy can be similarly controlled
[Y85], [K87b]. In relativized worlds the boolean hierarchy may have no complete
languages, a behavior like that of UP, BPP, and NPf)coNP [$82], [HI85], [HH86b]
but unlike that of P, NP, and PSPACE [GJ79]. There are natural complete languages
for the levels of the hierarchy and we have seen, via immunity, that the boolean
hierarchy displays structural asymmetries between complementary classes.

These results supply a foundation of structural understanding for the boolean
hierarchy. A companion paper [CGII] applies the hierarchy to extend the results of
Karp and Lipton [KL80] on sparse oracles for NP, of Hartmanis, Immerman, and
Sewelson [HIS83] on sparse sets in NP-P, and of Blass and Gurevich [BG82] of the
weakness of counting classes.
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ON FINDING LOWEST COMMON ANCESTORS:
SIMPLIFICATION AND PARALLELIZATION*

BARUCH SCHIEBER? AND UZI VISHKIN?$

Abstract. We consider the following problem. Suppose a rooted tree T is available for preprocessing.
Answer on-line queries requesting the lowest common ancestor for any pair of vertices in T. We present a

linear time and space preprocessing algorithm that enables us to answer each query in O(1) time, as in
Harel and Tarjan [SIAM J. Comput., 13 (1984), pp. 338-355]. Our algorithm has the advantage of being
simple and easily parallelizable. The resulting parallel preprocessing algorithm runs in logarithmic time
using an optimal number of processors on an EREW PRAM. Each query is then answered in O(1) time
using a single processor.

Key words, parallel algorithms, tree algorithms, lowest common ancestors

AMS(MOS) subject classifications. 05C05, 68Q10, 68Q20, 68R10

1. Introduction. We consider the following problem. Given a rooted tree T( V, E)
for preprocessing, answer on-line LCA queries of the form, "Which vertex is the Lowest
Common Ancestor (LCA) of x and y?" for any pair of vertices x, y in T. (Let us
denote such a query LCA (x, y).) We present a preprocessing algorithm that runs in
linear time and linear space on the serial RAM model. (For the definition of a random
access machine (RAM) model see, e.g., [1].) Given this preprocessing, we show how
to process each such LCA query in constant time.

We also consider parallelization of our algorithm. The model of parallel computa-
tion used is the exclusive-read exclusive-write (EREW) parallel random access machine
(PRAM). A PRAM employs p synchronous processors all having access to a common
memory. An EREW PRAM does not allow simultaneous access by more than one
processor to the same memory location for either read or write purposes. See [11] for
a survey of results concerning PRAMs.

Let Seq (n) be the fastest known worst-case running time of a sequential algorithm,
where n is the length of the input for the problem at hand. A parallel algorithm that
runs in O(Seq (n)/p) time using p processors is said to have optimal speedup or, more
simply, to be optimal A primary goal in parallel computation is to design optimal
algorithms that also run as fast as possible.

Our preprocessing algorithm is easily parallelized to obtain an optimal parallel
preprocessing algorithm that runs in O(log n) time using n/log n processors on an
EREW PRAM, where n is the number ofvertices in T. Parallelizing the query processing
is straightforward, provided read conflicts are allowed: k queries can be processed in
O(1) time using k processors.
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In their extensive paper [5], Harel and Tarjan gave a serial algorithm for the same
problem. The performance of their algorithm is the same as ours. However, our

algorithm has two advantages: (1) It is considerably simpler in both the preprocessing
stage and the query processing and (2) It leads to a simple parallel algorithm. Below,
we discuss similarities and differences with respect to [5]. Similarities" Both algorithms
use two basic observations: (1) It is possible to answer LCA queries in simple paths
in constant time and (2) It is possible to answer LCA queries in complete binary trees
in constant time. Both algorithms pack information regarding several vertices into a
single O(log n) bits number. Differences: The subtler part of both algorithms is to
show how to use the above two observations for answering an LCA query. In this part,
our approach is completely different. In the preprocessing stage we compute a mapping
from the vertices of the input tree T to the vertices of a complete binary B. The mapping
has two properties: (i) All the vertices of T mapped into the same vertex in B form
a path and (ii) For each vertex v in T, the descendants of v are mapped into descendants
of the image of v in B. This mapping, together with some additional information,
enables us to answer an LCA query in constant time. In [5], on the other hand, the
vertices of the input tree T are mapped to the vertices of an arbitrary tree of logarithmic
height, called the compressed tree. The preprocessing consists of a quite involved
manipulation of this compressed tree. This manipulation includes partitioning the
compressed tree into three plies and preprocessing each ply separately and also
embedding the compressed tree in a complete binary tree.

Consider a dynamic LCA problem which, interspersed with the LCA queries, are
on-line deletions and insertions of edges. Reference [5] also gives algorithms for some
cases of this problem. We do not consider this problem in the present paper.

Our parallel algorithm improves on the following results. Tsin [9] gave two parallel
algorithms for the LCA problem. In his first algorithm both the preprocessing stage
and the query processing take logarithmic time with a linear number of processors. In
his second algorithm the preprocessing stage takes O(log n) time using n processors
and processing a query takes O(1) time using a single processor. Vishkin 12] includes
a parallel algorithm for the LCA problem. The processing of an LCA query takes
logarithmic time (as in the first algorithm of Tsin). The preprocessing stage takes
O(log n) time using n/log n processors (as in the present paper).

Observe that using our parallel preprocessing algorithm we can process k off-line
LCA queries in O(log n) time using (n + k)/log n processors, provided read conflicts
are allowed. This affects the performance of parallel algorithms for three problems:
(1) Given an undirected graph, orient its edges so that the resulting digraph is strongly
connected (if such orientation is possible) 12]. (2) Computing an open-ear decomposi-
tion and st-numbering of a biconnected graph [8]. Using the new parallel connectivity
and list-ranking algorithms of [3], it has become possible to solve each ofthese problems
in logarithmic time using an optimal number of processors only when m_-> n log n,
where n is the number of vertices and m is the number of edges in the input graph.
Our off-line LCA computation enables us to extend the range of optimal speedup
logarithmic time parallel algorithms for these problems to sparser graphs, where
m _-> n log* n as in the above connectivity algorithm. (3) Approximate string matching
[6]. The new parallel suffix tree construction of [7] together with the present parallel
LCA computation lead to a considerable simplification of the parallel algorithm of
[6]. This simplification has already been described in [2].

The paper is organized as follows. Section 2 gives a high-level description of the
algorithm. Section 3 describes the preprocessing stage. In 4 we show how to process
LCA queries in T using the outcome of the preprocessing stage. Section 5 presents
parallelization of our preprocessing stage.
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2. High-level description. The entire algorithm is based on the following two
observations (made also in [5])" (1) Had our input tree been a simple path, it would
have been possible to preprocess it (by way of computing the distance of each vertex
from the root, as explained below) and later answer each LCA query in constant time.
(2) Had our input tree been a complete binary tree, it would have been possible to
preprocess it (by way of computing its inorder number, as explained below) and later
to answer each LCA query in constant time.

The preprocessing stage assigns a number INLABEL (v) to each vertex v in T.
Motivated by observation (1), these numbers satisfy the following Path-Partition
Propert)," The INLABEL numbers partition the tree T into paths, called INLABEL
paths. Each INLABEL path consists of the vertices that have the same INLABEL
number.

Let B be the smallest complete binary tree having at least n vertices. Our description
identifies each vertex in B by its inorder number. Motivated by observation (2), the
INLABEL numbers also satisfy the following Descendance-Preservation Property: The
INLABEL numbers map each vertex v in T into the vertex INLABEL (v) in B, such
that the descendants of v are mapped into descendants of INLABEL (v) in B (v is
considered both a descendant and an ancestor of itself).

Consider a vertex v in T. By the Descendance-Preservation Property all the
ancestors of v are mapped into ancestors of INLABEL (v). This implies that there are
at most log n distinct numbers among the INLABEL numbers of all the ancestors of
v. Later, we show how to record all these INLABEL numbers using a single string of
log n bits. In the preprocessing stage we compute this string, for each vertex v in T,
into ASCENDANT (v).

In the preprocessing stage we also compute the table HEAD. It contains the
highest vertex in every INLABEL path.

Section 4 describes how to process a query LCA (x,),) for any pair of vertices x, y
in T. The processing breaks into two cases. The simpler case is where x and), belong
to the same INLABEL path. In the preprocessing stage we compute for each vertex
v in T its distance from the root into LEVEL (v). So, LCA (x,),) is simply the vertex
among x and ), that is closer to the root. The more complicated case is where
INLABEL (x) INLABEL (),). We proceed in four steps. In the first step, we find the
LCA of INLABEL (x) and INLABEL (),) in the complete binary tree B, denoted by
b. Let z LCA (x,),) in T. In the second step, we find INLABEL (z). INLABEL (z)
is the lowest ancestor of b in B that is the INLABEL number of a common ancestor
of x and ), in T. For this, we use information provided by ASCENDANT (x) and
ASCENDANT (),). In the third and fourth steps we find z in the INLABEL path
defined by INLABEL (z). In the third step, we find the lowest ancestor of x, denoted
), and the lowest ancestor of y, denoted 39, in the path defined by INLABEL (z) in T.
This is done in an indirect fashion. Consider the path in B from INLABEL (z) to
INLABEL (x). We derive from ASCENDANT (x) the first INLABEL number (i.e.,
vertex of B) of an ancestor of x in this path. Table HEAD gives the highest ancestor
of x in T having this INLABEL number. Finally, 9 is the father in T of this ancestor.
We find 39 similarly. In the fourth step we find z, which is simply the vertex among 9
and 39 that is closer to the root.

3. The preprocessing stage. The outcome of the preprocessing stage consists of
labels that are assigned to the vertices of T and a look-up table, called HEAD. The
label of each vertex v in T consists of three numbers: INLABEL (v), ASCEN-
DANT (v), and LEVEL (v).
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We start with computing INLABEL (v), for each vertex v in T. This is done in
two steps. After a discussion of these two steps we show how to implement them.

Let PREORDER (v) be the serial number of v in preorder traversal of T and
SIZE (v) be the number of vertices in the subtree rooted at v. Definition of preorder
traversal can be found, e.g., in [1, pp. 54-55].

Step 1. Compute PREORDER (v) and SIZE (v).
We note that the PREORDER numbers of the vertices in the subtree rooted at v

range between PREORDER (v) and PREORDER (v)+ SIZE (v)-1, and therefore,
the closed interval [PREORDER (v), PREORDER (v)+SIZE (v)-1] is called the
interval of v.

In Step 2 we consider the binary representation of the (integer) numbers in the
interval of v. We remark that throughout this paper we alternately refer to numbers
and to their binary representations. No confusion will arise.

Step 2. Find the (integer) number that has the maximal number of rightmost "0"
bits in the interval of v. This number is assigned to INLABEL (v).

For an example of computations described in this section see Fig. 3.1.

2,1 (01000,I I000 (
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Ioooo llOlOO

II0100
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0100 19,5

// IOlO0,10100
20,6
I0100, I0101,10101

I0100
FIG. 3.1. Example. A tree with four numbers: PREORDER, LEVEL, INLABEL, and ASCENDANT

at each vertex. (The last two numbers are given in binary representation.)
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Discussion. We show that the INLABEL numbers satisfy the two properties
defined in the high-level description of the previous section.

LEMMA 1. The INLABEL numbers satisfy the Path-Partition Property.
Proof. Observe that the intervals of the sons of v must be pairwise disjoint.

Therefore, INLABEL (v) belongs to the interval of at most one son of v. Denote such
a son by u. By the selection of the INLABEL numbers (Step 2), INLABEL (u)=
INLABEL(v) (if u exists), and for any other son w of v, INLABEL(w)
INLABEL (v). This implies the Path-Partition Property of the INLABEL numbers.

LEMMA 2. The INLABEL numbers satisfy the Descendance-Preservation Property.
Proof. Let d be any descendant of v in T. We show that INLABEL(d) is a

descendant of INLABEL (v) in the complete binary tree B. (Recall that our description
identifies each vertex in B by its inorder number, thus proving the lemma.) Consider
any two vertices b and c in B. We first give a necessary and sufficient condition for
to be a descendant of b in B and then show that INLABEL (d) and INLABEL (v)
satisfy this condition. Let l= [log n and be the number of rightmost "0" bits in b.
That is, b consists of l-i leftmost bits followed by a single "1" and "0"s.

CLAIM. A vertex c is a descendent of b if and only if (1) the l-i leftmost bits of c
are the same as the l-i leftmost bits of b, and (2) the number of rightmost "0" bits in
c is at most i.

Proof. Let bL and bR be the left and right sons of b, respectively. It is not difficult
to see the following: (i) bL consists of the l-i leftmost bits of b followed by a single
"0", a single "1", and i-1 "0"s; and (ii) bR consists of the l-i leftmost bits of b
followed by two "l"s and i-1 "0"s. These facts readily imply both directions of our
claim.

For an example of a complete binary tree and its inorder numbering see Fig. 3.2.
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4 28
00100 II100
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00010
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13 17 21
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5 25 29
00001 00101 I1001 II101

3 7 2 27
IIIII00011 00111 01011 01111 I0011 I0111 II011

FIG. 3.2. Example. lnorder numbering of the complete binary tree with 31 vertices. The numbers are given
also in binary representation.)

The base of all logarithms in this paper is two.
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We return to the proof of Lemma 2. Let be the number of rightmost "0" bits in
INLABEL (v). Since INLABEL (d) belongs to the interval of v and INLABEL (v)
has the maximal number of rightmost "0" bits in this interval, the number of rightmost
"0" bits in INLABEL(d) is at most i. The 1-i leftmost bits are the same for all
numbers in the interval. In particular, the l-i leftmost bits in INLABEL (d) are the
same as the l- leftmost bits in INLABEL (v). This implies that INLABEL (d) is the
descendant of INLABEL (v) in B. Lemma 2 follows.

Implementation. Step (1) is implemented in linear time and linear space, using
preorder traversal of T. Given PREORDER (v) and SIZE (v), for each vertex v in T,
Step (2) is implemented in constant time per vertex in two substeps.

Step 2.1. Compute [log [(PREORDER (v)-l) xor (PREORDER (v)+
SIZE (v)-1)]] into i. Let us explain this. The bitwise logical exclusive OR (denoted
xor) of PREORDER (v)- 1 and PREORDER (v)+SIZE (v)- 1 assigns "1" to each
bit in which PREORDER (v)-1 and PREORDER (v)+SIZE (v)-1 differ. The floor
of the (base two) logarithm gives the index of the leftmost bit of difference (counting
from the rightmost bit whose index is zero). Note that the bit-indexed must be "0"
in PREORDER (v)- 1 and "1" in PREORDER (v)+ SIZE (v) 1, since the second
number is larger.

Step 2.2 shows how to "compose" INLABEL (v). For this, we need two observa-
tions. (1) The + 1 leftmost bits of INLABEL (v) are the same as the + 1 leftmost
olts in PREORDER (v)+SIZE (v)- 1. (2) The other bits in INLABEL (v) are "0"s.

Step 2.2. Compute 2 [(PREORDER (v)+ SIZE (v)- 1)/2iJ into INLABEL (v).
This assigns the + 1 leftmost bits in PREORDER (v) + SIZE (v) 1 to the + 1
leftmost bits in INLABEL (v) and "0"s to the other bits of INLABEL (v).

Remark. The above computation is based on PREORDER numbering of the
vertices of T. This numbering has the property that the numbers assigned to the subtree
rooted at any vertex of T provide a consecutive series of integers. In fact, any alternative
numbering having this property (e.g., POSTORDER, INORDER) will produce
INLABEI, numbers that will be suitable for our preprocessing stage.

We proceed to the computation of the ASCENDANT numbers. The general idea
is that for each vertex v, the single number ASCENDANT (v) will record the INLABEL
numbers of all the ancestors of v in T. We observe that, from the viewpoint of vertex
v the INLABEL number of each of its ancestors can be fully specified by the index
of its rightmost "1". This is so because the bits that are to the left of this "1" are the
same as their respective bits in INLABEL (v). Like the INLABEL numbers, ASCEN-
DANT (v) is also an (l+ 1)-bit number. Denote the binary representation of ASCEN-
DANT (v) by the binary sequence At(v)," ., Ao(v). We set Ai(v) 1 only if is the
index of a rightmost "1" in the INLABEL number of an ancestor of v in T. To compute
the ASCENDANT numbers., we scan the vertices of T from its root r down to its
leaves (use, for instance, Breadth-First Search). We start with ASCENDANT (r)= 2!.
Consider an internal vertex v in T and let F(v) be the father of v in T. If INLABEL (v)
INLABEL (F(v)) then we assign ASCENDANT (F(v)) to ASCENDANT (v); other-
wise, we assign ASCENDANT (F(v))+2 to ASCENDANT(v), where /is the index
of the rightmost "1" in INLABEL (v). It can be easily verified that is given by
log (INLABEL (v)- [INLABEL (v) and (INLABEL (v)- 1)]), where and denotes bit-
wise logical AND.

Recall that LEVEL (v), for each vertex v in T, is the distance, counting edges, of
the path from v to the root r. Computation of the LEVEL numbers is straightforward
and can be done using, e.g., Breadth-First Search.
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Recall that Fig. 3.1 gives an example of the labels.
We conclude by describing how to compute the Table HEAD. HEAD (k) contains

the vertex closest to the root in the path consisting of all vertices whose INLABEL
number is k. HEAD (k) is sometimes called the head of the INLABEL path k.
Computation of the table HEAD is trivial. For each vertex v, such that INLABEL (v)
INLABEL (F(v)) we assign v to HEAD (INLABEL (v)). This, again, takes linear time
and linear space.

A general implementation remark. The time bounds of both the preprocessing stage
and the query processing depend on the ability to perform multiplication, division,
powers-of-two computation, bitwise AND, base-two discrete logarithm, and bitwise
exclusive OR in constant time. If these operations are not part of the machine’s
repertoire, look-up tables for each missing operation are prepared in linear time and
linear space as part of the preprocessing stage. These tables will be used to perform
the missing operations in O(1) operations in the repertoire.

4. Processing LCA queries. In this section we show how to answer LCA queries
using the outcome of the preprocessing stage.

Consider a query LCA (x, y), for any pair of vertices x, y in T. (To illustrate the
presentation the reader is referred to Fig. 3.1.) There are two cases.

Case A. INLABEL (x)= INLABEL (y). It must be that x and y are in the same
INLABEL path. We conclude that LCA (x, y) is x if LEVEL (x)<= LEVEL (y) and y
otherwise.

Case B. INLABEL (x) INLABEL (y). Let z be LCA (x, y). We find z in four
steps:

Step 1. Find b, the LCA of INLABEL (x) and INLABEL (y) in the complete
binary tree B, as follows. Let be the index of the rightmost "1" in b. Since b is a
common ancestor of INLABEL (x) and INLABEL (y) in B, must satisfy the following
two conditions. (1) The I-i leftmost bits in INLABEL (x) and in INLABEL (y) are
the same as these bits in b. (2) The index of the rightmost "1" in INLABEL (x) and
in INLABEL (y) is at most i. Since b is the lowest common ancestor of INLABEL (x)
and INLABEL(y) in B, is the minimum index satisfying both conditions. We
distinguish three cases.

Case (1). INLABEL (x) is an ancestor of INLABEL (y). Let i be the index of
the rightmost "1" in INLABEL (x). Note that in this case the 1-i leftmost bits in
INLABEL (x) and in INLABEL (y) are the same and that the index of the rightmost
"1" in INLABEL (y)< il. Hence, equals i.

Case (2). INLABEL (y) is an ancestor of INLABEL (x). Similar to Case (1),
is the index of the rightmost "1" in INLABEL (y).

Case (3). Not cases (1) and (2). In this case is the minimum index such that
the 1-i leftmost bits in INLABEL (x) and INLABEL (y) are the same.

We can deal with all three cases at once by simply taking to be the maximum
among the following: the index of the leftmost bit in which INLABEL(x) and
INLABEL (y) differ; the index of the rightmost "1" in INLABEL (x); and the index
of the rightmost "1" in INLABEL(y). b consists of the l-i leftmost bits in
INLABEL (x) (or INLABEL (y)) followed by a single "1" and "0"s.

In Step 2 we find INLABEL(z) (where z is LCA (x,y)). The Descendance-
Preservation Property of the INLABEL numbers implies that INLABEL(z) is a
common ancestor of INLABEL (x) and INLABEL (y). Notice that INLABEL (z) is
not necessarily b, the lowest common ancestor of INLABEL (x) and INLABEL (y).
This is so because the vertices in T mapped into b are not necessarily ancestors of x
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or y. However, it is not difficult to see that INLABEL (z) is the lowest ancestor of b
in B that is the INLABEL number of an ancestor of both x and y in T.

Step 2. Find INLABEL (z). For this we find the index of the rightmost "1" in
INLABEL (z), denoted by j. Since z is a common ancestor of x and y in T, Ai(x)= 1
and A(y) 1. Since INLABEL (z) is the lowest ancestor of b that is a common ancestor
of x and y, the index j must be the index of the rightmost "1" in A(x),..., Ai(x)
and A(y),. , Ai(y). INLABEL (z) consists of the l-j leftmost bits of INLABEL (x)
(or INLABEL (y)) followed by a single "1" and j "0"s.

In the next steps we find z, the lowest vertex in the path defined by INLABEL (z)
that is a common ancestor of x and y in T. For this we find 2, the lowest ancestor of
x in the path defined by INLABEL (z) and )3, the lowest ancestor of y in this same
path. z is the highest vertex among these two vertices.

Step 3. Find ) and . We show how to find ). )3 is found similarly. If
INLABEL(x)=INLABEL(z) then 2=x and nothing has to be done. Suppose
INLABEL (x) INLABEL (z). We set the following intermediate goal, as the main
step toward finding )" Find the son of that is also an ancestor of x. Denote the
vertex that we search by w and let k be the index of the rightmost "1" in INLABEL (w).
It is not difficult to verify that k is the index of the leftmost "1" in A_(x),..., Ao(x).
So, we find k. Clearly, INLABEL (w) consists ofthe l- k leftmost bits of INLABEL (x)
followed by a single "1" and k "0"s. Observe that w is the head of its INLABEL path
(since the INLABEL number of its father ) is different from INLABEL (w)). Therefore,
w is HEAD (INLABEL (w)) and our intermediate goal is achieved. Finally, ) is the
father of w.

Step 4. LCA(x, y) is 2 if LEVEL()_-< LEVEL()3) and )3 otherwise.
In the rest of this section we give additional implementation details required for

the above processing.
Step 1. To find i, the index of the rightmost "1" in b, we do the following.

Step 1.1. Find il, the index of the rightmost "1" in INLABEL (x), and
i2, the index of the rightmost "1" in INLABEL (y). To find i
we compute il := log (INLABEL (x)-[INLABEL (x) and
(INLABEL (x)- 1)]), as in the ASCENDANT numbers compu-
tation of the previous section, i2 is found similarly.

Step 1.2. Find i3, the index of the leftmost bit in which INLABEL (x)
and INLABEL(y) differ. To find i3 we compute i3:=
[log [INLABEL (x) xor INLABEL (y)]]. This is similar to Step
2.1 in the INLABEL numbers computation of the previous
section.

is the maximum among i, i2, and i. Given i, b can be computed similarly
to Step 2.2 in the INLABEL numbers computation.

Step 2. To find j we do the following steps.
Step 2.1. Compute the bitwise logical AND of ASCENDANT (x) and

ASCENDANT (y) into COMMON.
Step 2.2. Compute 2 [COMMON/2] into COMMON. COMMON lists

all the "l"s in both At(x),’.’, Ai(x) and A(y),..., A(y).
Step 2.3. j is the index of the rightmost "1" in COMMON. To find j we

compute j:= log (COMMON-[COMMONi and (COM-
MONi- 1)]), as in the ASCENDANT numbers computation of
the previous section.

The implementation of Step 3 uses the same techniques.
5. The parallel preprocessing algorithm. In this section we describe the parallel

version of our preprocessing stage. It runs in O(log n) time using n/log n processors.
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We make the following assumption regarding the representation of the input tree T.
Its n-1 edges are given in an array, where the incoming edges of each vertex are
grouped successively. By our definition of the tree T, its edges are directed towards
the root.

Computing the labels in parallel To compute the labels of the vertices in T we
apply the Euler tour technique for computing tree functions, which was given in [10]
and [!2]. We will implement it, however, using the O(log n) time optimal parallel
list-ranking algorithm of [3]. This list-ranking algorithm is designed for an EREW
PRAM. It is based on expander graphs and its O(log n) time bound hides a constant
that is not very small. We note that [4] recently gave an alternative list-ranking algorithm
with the same time and processor efficiencies. This alternative algorithm is designed
for a PRAM that allows simultaneous access to the same memory location for both
read and write purposes (called CRCW PRAM). It is simpler and its O(log n) time
bound requires a small constant.

Below, we first recollect the construction required for the Euler tour technique.
We then show how to use it for computing the labels. The only reason we were forced
to present anew the Euler tour technique is that the computation of the ASCENDANT
numbers has not appeared elswhere.

Step 1. For each edge (v- u) in T we add its antiparallel edge (u-* v). Let H
denote the new graph.

Since the indegree and outdegree of each vertex in H are the same, H has an
Euler path that starts and ends in r. Step 2 computes this path into the vector of
pointers D, where for each edge e of H, D(e) will have the successor edge of e in the
Euler path.

Step 2. For each vertex v of H we do the following: (Let the outgoing edges of
v be (VUo)," ",(VUd-1).) D(bli’-’>l)):--(V’-’>bl(i+l)modd), for i=0,...,d-1. Now
D has an Euler circuit. The "correction" D(Ud_ r):= end-of-list (where the outdegree
of r is d) gives an Euler path which starts and ends in r.

We show how to use the Euler path in order to find PREORDER (v), PREOR-
DER(v)+SIZE (v)-l, and LEVEL(v) for each vertex v in T.

Step 3. We assign two weights: W(e) and Wz(e) to each edge e in the Euler path
as follows. (1) W(e)= 1 if e is directed from r (that is, if e is not a tree edge), and
W(e) =0 otherwise. (2) Wz(e) 1 if e is directed from r, and Wz(e)=-1 otherwise.

Step 4. We apply twice an optimal logarithmic time parallel list-ranking algorithm
to find for each e in H its (weighted) distance from the start of the Euler path: The
first application is relative to the weights W and the result is stored in DISTANCE1 (e);
the second application is relative to the weights W2 and the result is stored in
DISTANCE2 (e). Consider a vertex v r and let u be its father in T. PREORDER (v)
is DISTANCE1 (u-* v)+ 1, PREORDER (v) + SIZE (v)-I is DISTANCE1 (v u)+ 1,
and LEVEL (v) is DISTANCE2 (u v). (These claims can be readily verified by the
reader.)

Step 5. Given PREORDER (v) and PREORDER (v)+ SIZE (v)- 1 for each ver-
tex v in T we compute INLABEL (v) in constant time using n processors as in the
serial algorithm.

Next, we show how to use the Euler path in order to find ASCENDANT (v) for
each vertex v in T.

Step 6. We assign a (new) weight W(e) to each edge e in the Euler path as
follows. For each vertex v # r we do the following. Let u be the father of v in T and
let be the index of the rightmost "1" in INLABEL(v). If INLABEL(v)#
INLABEL (u), we assign W(u v) 2 and W(v- u) -2 i. The weight of all other
edges is set to zero.
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Step 7. We again apply a parallel list-ranking algorithm to find for each e in H
its (weighted) distance from the start of the Euler path. Consider a vertex v # r and
let u be its father in T. ASCENDANT (v) is the distance of the edge (u-> v) plus 2 t.
Clearly, ASCENDANT (r) 2 t.

We note that, given the labels, the table HEAD can be computed in constant time
using n processors.

Complexity. Each of steps 4 and 7 needs n/log n processors and O(log n) time.
Each of Steps 1, 2, 3, 5, 6 and the computation of HEAD needs n processors and
O(1) time and can be readily simulated by n/log n processors in O(log n) time. Thus,
the parallel preprocessing stage can be done in a total O(log n) time using n/log n
processors.
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THE POLYNOMIAL TIME HIERARCHY COLLAPSES IF THE
BOOLEAN HIERARCHY COLLAPSES*
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Abstract. It is shown that if the Boolean hierarchy (BH) collapses, then there exists a sparse
set S such that co-NP C_ NPs, and therefore the polynomial time hierarchy (PH) collapses to

PNeNe[O(lgn)], a subclass of A3P. Since the BH is contained in piP, these results relate the
internal structure of piP to the structure of the PH as a whole. Other conditions that imply the
collapse of the BH (and the collapse of the PH in turn) include De co-De, pNP[k] pNP[k+l]
for any k, and PiPIl[k] PiPIl[k+l] for any k. piP[i] is the class of languages recognizable in
polynomial time with at most queries to an oracle from NP, and PNPII[i] is the class of languages
recognizable with at most parallel queries to an oracle from NP.

Key words, polynomial time hierarchy, Boolean hierarchy, polynomial time Turing reductions,
oracle access, nonuniform algorithms, sparse sets
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1. Introduction. Many different complexity hierarchies have recently been
shown to collapse. Hemachandra showed that the strong exponential hierarchy col-
lapses to its second level [7]. Several proofs appeared showing that the logarith-
mic space and linear space hierarchies collapse to their second levels [15], [23], [20].
Then Immerman and Szelepcsnyi independently showed that nondeterministic space
classes are closed under complementation which implies that the logarithmic and
linear space hierarchies collapse all the way to their first levels, nondeterministic loga-
rithmic and linear space, respectively [9], [22]. These results have greatly increased our
understanding of resource-bounded computation and have simplified the complexity
theory world.

In this paper we present strong evidence that three other lesser-known hierar-
chies, the Boolean hierarchy (BH), the query hierarchy (QH), and the parallel query
hierarchy (QHII), do not collapse. We show that if the BH, QH, or QHII collapses,

then the polynomial time hierarchy (PH) collapses to PNPNP[O(lgn)], the class of
languages recognizable in deterministic polynomial time with O(log n) queries to an

oracle for NPNP. PNPNP[O(lgn)] is a subclass of A3P, the third level of the PH. If the
PH is an infinite hierarchy as most researchers believe, then the BH, QH, and QHII
are also infinite hierarchies.

The BH, QH, and QHII contain NP U co-NP and intertwine to form a rich struc-
ture inside pNP. By relating these hierarchies to the PH, our results provide a deeper
understanding of the PH. We see that the internal structure of pNP and issues con-
cerning how polynomial time machines can access the information from NP oracles are
tied to the structure of the PH as a whole. This is also a downward structural result.
We show that the structure of the BH above NP and co-NP affects the structure of
the set of unsatisfiable Boolean formulas and thus co-NP itself.

The QH is [.Jk pNP[k], where pNP[k] is the class of languages recognizable in
deterministic polynomial time with at most k queries to an oracle in NP.

The QH is [-Jk PNPII[k], where pNPIl[k] is the class of languages recognizable in
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deterministic polynomial time with at most k parallel queries to an oracle in NP. A
machine makes its queries in parallel if it computes all the strings that are to be queried
before it receives any query answers from the oracle. The QHII equals BTT[NP], the
class of languages that are polynomial time bounded truth-table reducible to NP sets.
Polynomial time bounded truth-table reducibilities are defined in [14].

The BH, defined by Cai, Gundermann, Hartmanis, Hemachandra, Sewelson, Wag-
ner, and Wechsung [4] is a generalization of the class DP DP was defined by Papadim-
itriou and Yannakakis to fully capture the complexity of several natural problems
related to NP-optimization problems [19]. A language is in DP if it is the difference
of two NP languages:

Dp de__f {LI L2 ILI, L2 NP}.

Equivalently, L E DP if L L1 N L--, where L1, L2 E NP. TSP facets, exact clique,
and graph minimal uncolorability are -<Pro-complete for DP [18], [19], [5I.

The class co-DP consists of the languages whose complements are in DP. A
language L is in co-DPif L 11 U L2, where L1, L2 NP. It is unknown whether
DP co_DP.

The first level of the BH, BH(1), is defined to be NP. The second level, BH(2), is
DP. Generalizing DP, which is defined by one Boolean operator over NP predicates,
the subsequent levels of the BH are defined by allowing more Boolean operations

over NP predicates. See 3 for a precise definition. BH de.__f Uk BH(k). For each k,
co-BH(k) is the class of languages whose complements are in BH(k). It is unknown
whether any level of the BH is closed under complementation, but it is shown in [4]
that for all k,

BH(k) co-BH(k) BH BH(k).

The levels of the BH, QH, and QHll intertwine (see 3). Therefore BH QH-
QHII BTT[NP], and either all three hierarchies collapse or all three are infinite

hierarchies. All three hierarchies are contained in pNP, the AP level of the PH:

NP t2 co-NP c_ pNP[1] C_ DP C_ PNPII[2] C_ pNP[2] C_ C_ QH QHII BH C_ pNP.

Our proof that the collapse of these hierarchies causes the PH to collapse depends
on the structure of the BH. We show that if the BH collapses, then there exist nonuni-
form NP algorithms for the languages in co-NP. That is, every language in co-NP
can be recognized by an NP machine with access to a sparse oracle. A set S is sparse
if the number of strings in S of each length is bounded by a polynomial.

THEOREM. For all k, if BH(k) co-BH(k), then there exists a sparse set
S NPNP such that co-NP C NP8.

By the results of Yap in [26], the existence of a sparse set S such that co-NP C_

NP8 implies PH C_ NPNPP, the E3P level of the PH. We relativize the main result in

[10] to show that if the sparse set is in NPNP, then the PH collapses further.
THEOREM. If there exists a sparse set S NPNP such that co-NP C_ NP8, then

PH C PNpNe[O(lgn)]
These two theorems together imply our main result.
THEOREM. For all k, if BH(k) co-BH(k), then PH c_ pNpNP[O(lgn)l.
COROLLARY. If De co-DP, then PH C_ pNpNP[o(Ign)].
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Since the collapse of the QH or the QHll implies the collapse of the BH, we also
have the following corollaries.

COROLLARY. For all k, if PNP[k] pNP[k+l], then PH C_ PNPNP[O(Ign)].
COROLLARY. For all k, if PNPII[k] pNPll[k+l], then PH C_ PNPNP[O(Ign)].
Therefore the structure of the PH as a whole is closely related to the structure

of pNP and to the question of whether deterministic polynomial time machines can
compute more if they are allowed to make more NP queries.

Our proof also shows that the structure within pNP is related to co-NP itself.
The existence of the sparse set S such that co-NP c_ NPs is really quite a strong
statement about the structure of unsatisfiable Boolean formulas. Indeed, the set S
that we construct consists mainly of key unsatisfiable formulas, a constant number
of each length, such that knowing these key formulas provides an NP algorithm for
recognizing all unsatisfiable formulas of that length. In particular, if Dp co-DP,
then there exists one key string of each length.

These results also relativize to the other A? levels of the PH. We can define a

Boolean hierarchy and query hierarchy within each pr." and conclude that

PH collapses == 2i, k, p7[k]_ pET[k+l].

This work is also related to Krentel’s results for classes of functions. He showed
log n and f(n) < g(n) if FPNP[f(n)]that for functions f(n) and g(n) with f(n) <_ -FPNP[g(n)], then P NP [13]. FPNP[h(n)] is the class of functions computable in

polynomial time with h(n) queries to an oracle for NP. In particular,

FPNP[k] FPNP[k+I] P NP.

Our result that

pNP[k]_ pNP[k+l] PH collapses

has a weaker hypothesis and a weaker, yet similar, conclusion.

2. Preliminaries. The reader is assumed to be familiar with P, NP, oracle Tur-
ing machines, the NP-complete set SAT, the set of satisfiable Boolean formulas, and
SAT, the set of unsatisfiable Boolean formulas. All of these topics are covered in [8].
We also assume the reader is familiar with the PH defined in [21].

For any Turing machine N, NI is the size of the state transition table of N.
For any string x, Ix is the length of x.
For any set of strings C, C=n is the set of strings in C of length n. C<n is the

set of strings in C of length less than or equal to n.
We write II C II for the cardinality of any set C.
For any two sets of strings B and C, the disjoint union of B and C is

B(C de---f (OxlxeB) U(lxlxcC}.

For k sets B1,..., Bk, this extends to

B1 (... ( Bk de.._f U{/Z e

where is the bit pattern of [log k bits representing i in binary.
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DEFINITION 2.1. A ,set of strings S is sparse if there exists a polynomial p(.)
such that for all n, the number of strings in S of length n is at most p(n), i.e.,
s--n II--< P(n).

DEFINITION 2.2. For any set of strings S, the census function of S gives the

number of strings in S of length at most n" Censuss(n) de__f s <-n II.
There is a standard technique of using the prefixes of strings in a sparse set to

find the strings in the set. For any sparse set S, let

prefix(S) de__ {y#ili

_
O, 3w with wl= and yw E S},

where "#" is a new alphabet symbol. The set prefix(S) is the set of marked prefixes
of S. For every n, prefix(S) contains at most n times as many strings of length n
as S does. Therefore prefix(S) is sparse if S is. A deterministic polynomial time
machine with an oracle for prefix(S) can generate all the strings in S<n on input
1n. The machine builds up each string one character at a time by asking the oracle
about longer and longer prefixes. A machine can actually generate all the strings in
prefix(S) up to a given length this way. If we add all the strings in prefix(S) to S,
we say S is prefix marked.

DEFINITION 2.3. A set S is P3-printable for an oracle B if there exists a pB
machine that prints all the strings in S<-n on input I n.

DEFINITION 2.4. A set S is self-P-printable if S is PS-printable.
Thus if a sparse set S is prefix marked, then S is self-P-printable. Note that

S c_ prefix(S), and clearly NPs C_ NPPrefix(s).
3. The hierarchies. The query hierarchy, QH, and the parallel query hierarchy,

QHII, arise quite naturally from questions about the structure of pNP and the power
of NP queries in general.

DEFINITION 3.1. For k > l, pNP[k] is the class of languages recognized by
deterministic polynomial time oracle machines that make at most k queries to an
oracle for NP.

pNP[k]DEFINITION 3.2. QH def Uk
Unrestricted pip and pNP[k] machines make their queries in a serial fashion: the

answers to previous queries can be used to determine which string to query next. An
alternative is to consider machines that are required to make their queries all at once,
in parallel. Parallel query machines write down a list of query strings on their oracle
tape and then enter the query state. The oracle replaces the query strings with a bit
vector representing the answers to the queries. No further queries are permitted. Thus
parallel query machines must compute all their queries in polynomial time without
access to any oracle.

DEFINITION 3.3. pNPll is the class of languages recognizable by deterministic
polynomial time machines that make (polynomially many) parallel queries to an oracle
for NP.

DEFINITION 3.4. For k >_ 1, pNPll[k] is the class of languages recognized by
deterministic polynomial time oracle machines that make at most k parallel queries to
an oracle for NP.

defDEFINITION 3.5. QHII [,Jk piPIl[k].

Clearly, pNPII C_ pNP, and for all k, pNPII[] C_ pNP[].
Polynomial time truth-table and bounded truth-table reducibilities were defined

in [14]. It is clear from the definitions that pNPll TT[NP], the class of lan-
guages polynomial time truth-table reducible to a language in NP. Similarly, QHII
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BTT[NP], the class of languages that are bounded truth-table reducible to an NP
language.

A related class is the set of languages recognizable with O(log n) queries to an
NP oracle.

DEFINITION 3.6. pNP[O(logn)] is the class of languages recognizable in deter-
ministic polynomial time with O(logn) queries to an NP oracle.

Clearly, QH c_ pNP[O(logn)].
Since SAT is NP-complete, any queries made to an oracle for an NP language can

be translated to queries to SAT without changing the number of queries made during
the computation. Thus pSAW[k] pNP[k], pSAWll[k] pNPIl[k], pSAW[O(logn)]
pNP[O(log n)], etc.

It is easy to see that pNP[O(logn)] C_ pNPII. Given any pNP[O(logn)] machine
and input x, we can run the machine on x trying both answers to each query and
see what queries it asks with each answer sequence. Since the machine makes only
O(logn) queries no matter how the queries are answered, the number of different
answer sequences and the number of possible queries is bounded by a polynomial in
x I. Therefore a polynomial time machine can generate all the possible queries and
then determine if the pNP[O(logn)] machine accepts x by asking all the queries in
parallel. Hence pNP[O(logn)] C_ pNP[[. By a similar argument, pNP[k] C_ PNP[[[2k], and
hence the QH and QHII intertwine, and QH

Exploiting the NP-completeness of SAT, Hemachandra showed that pNP[[
pNP[O(logn)] [7]. Therefore pNP[[ pNP[O(log n)].

In summary,

NP U co-NP C_ pNP[1] C_ pNP[2] _... C_ QH- QHll BTT[NP]
C pNP[O(logn)] pNP[[ C pNP.

The BH is defined in [4]. It is a generalization of the class DP, defined by Pa-
padimitriou and Yannakakis [19]. DP has stirred a. lot of interest because it contains
many languages related to NP optimization problems. There are several ways of
defining the BH and many normal forms for each level. We use the definition that
most explicitly shows the structure that we will exploit later.

DEFINITION 3.7. BH(1) de__.f NP. For i > O,

BH(2i) de {L L L’ N L--, where L’ E BH(2i- 1), L2 e NP},

BH(2i + 1) de____f {LIL L’U L2, where L’ e BH(2i), L2 e NP}.

DEFINITION 3.8. For all i >_ 1, co-BH(i) is the class of languages whose com-
plements are in BH(i).

DEFINITION 3.9. BH de__f Uk BH(k).
Let Li NP, then these definitions unwind as follows:

BH(1) NP,
BH(2) {L f L--} (= DP),
BH(3) {(LlfL2)tAL3},
BH(4) {((L1 NL2)tAL3)L4},
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co-BH(1) co-NP,
co-BH(2) {L1 LJ L2} (: co-DP),
co-BH(3) {(L1 t2 L2) V L3},
co-BH(4) {((L1 t2 L)V L3)12 L4},

Many results about the BH are proven in [4]. For instance,
(1) BH(k)t2 co-BH(k) c_ BH(k + 1)V co-BH(k + 1).
(2) The BH, QH, and QHII intertwine. Therefore

BH QH QHII BTT[NP].

(3) The BH has the upward collapse property:

BH(k) co-BH(k) = BH(k) BH.

The QH and QHll also have upward collapse properties:

pNP[k] pNP[k+l] pNP[k] QH, and
pNPIl[k] pNPIl[k+l] pNPII[k]

One way to see these properties is through the detailed examination of the intertwining
of the hierarchies in [1], [2]. In [2], the following relationships are proven:

BH(k) t2 co-BH(k) C_ PNPll[k] C_ BH(k + 1)V co-BH(k + 1),
BH(2k- 1)Uco-BH(2k- 1) C_ pNP[k] C_ BH(2k) Vco-BH(2k).

Therefore, if any two levels of the QH or QHII collapse, some level of the BH is closed
under complementation, which implies that all three hierarchies collapse.

The intertwining, the upward collapse properties, and the fact that pNP[k] and
PNPII[k] are closed under complementation imply the following theorem.

THEOREM 3.10. The following are equivalent:
(1) BH collapses.
(2) QH collapses.
(3) QH collapses.
(4) 3k BH(k) co-BH(k).
(5) ]j pNP[j] pNP[j+l]
(6) ::]j PNPII[j] PNPII[j+’I].
(7) Bj, k BH(k) pNP[j]

(8) Bj, k BH(k) pNPll[Ji.
(9) j, k BH(k) t2 co-BH(k) pNP[].
(10) j,k BH(k) Uco-BH(k)-PNPII[j].
The equivalence of conditions (1)- (4) is also noted in [2].
To see that the structure of the BH is related to the structure of the PH, we need

to understand the structure of the -<m-complete sets defined in [4]. For each k, a
complete language, LBH(k), can be defined in terms of SAT and SAT.

defDEFINITION 3.1 1. LBH(1) SAT. For i > O,

LBH(2i)

LBH(2i+I)

def

def

{ (F1,..., F2i) I(F,..., F2i-i) E LBH(2i-1) and Fi SAT},

{ (F1,"" ,F2i+I)I(F1,"" ,F2i) LBH(2i) or F2i+l ( SAT}.
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Similarly, for each k, we can define a complete language for co-BH(k).
defDEFINITION 3.12. Lco-Bn(1) SAT. For i > O,

def
Lco_BH(2i)

def
Lco_BH(2i+I)

{ (El,""" ,r2i) l(rl,... ,F2i-1) E Lco_BH(2i_I) or r2i SAT},

{ (F1,’" ,F2i+1)I (F1,"" ,F2i) Lco-Bn(2i) and F2+1 SAT}.

Unwinding these definitions a bit"

LBH(1)
LBH(2)

LBH(3)

LBH(4)

def SAT,
def SAT&SAT

de=f { (F1, F2)] F1 SAT and F2 SAT},
de__.f (SAT& SAT) ISAT
de=f { (F1, F2, F3) (F1 e SAT and F2 e SAT) or F3 SAT},
de__f ((SAT & SAT) SAT & SAT
de___.f { (F1,F2,F3,F4)] ((F1 SAT and F2 SAT)

or F3 SAT) and F4 SAT},

Lco--BH(1)
Lco-BH(2)

Lco-BH(3)

Lco-BH(4)

def SAT,
de_.f ISAT

de=f { (El, F2) F1 SAT or F2 SAT},
de=f (SAT]SAT) & SAT
de___.f { (El, F2, F3) (El SAT or F2 SAT) and F3 E SAT},
de__f ((SATI SAT) &SAT) ISAT
de=f { (FI,F2,F3, F4)] ((F1 SAT or F2 SAT)

and F3 SAT) or F4 SAT},

Note the structure of LBH(k and Lco_BH(k). For even k’s, the k-tuples in LBH(k
have the form "(k- 1-tuple) & SAT", where the k- 1-tuple is in LBH(k_I) and the kth
component is in SAT. The k-tuples in Lco_BH(k have the form "(k- 1-tuple) SAT"
where the k- 1-tuple is in nco_BH(k_l) 0r the kth component is in SAT. If k is odd,
LBH(k and Lco_BH(k have a similar structure, but BH(i) and co-BH(i) are reversed.
It will become clear that this is the key that relates the collapse of the BH to the
collapse of the PH.

For all k, LBH(k and Lco_BH(k are complements. Hence any function f that
reduces LBH(k to Lco_BH(k also reduces Lco_BH(k to LBH(k).

4. Generating the sparse oracle. In this section we show that the collapse of
the BH forces the existence of a sparse set S E NPNP such that co-NP C_ NPs. By
the results of Yap, the existence of a sparse set S such that co-NP C_ NPs implies that
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the PH collapses to E3p [26]. In 5 we will show that the fact that the sparse set is in

NPNP actually implies that the PH collapses to PNPNP[O(lg n)] the class of languages
recognizable in polynomial time with O(log n) queries to an oracle in NPNP.

The basic idea is that if for some k, BH(k) co-BH(k), and thus

Lco-BS(k) --<Pm LBH(k),
then SAT can be reduced to SAT by a polynomial time function that accesses a sparse
oracle. The crux of the proof is in the construction of the sparse set. We will illustrate
the main idea of the construction by showing how the argument works in the case
where BH(2) co-BH(2) (DP co-DP).

Suppose that BH(2) co-BH(2). Then LBH(2) <--Pro Lco-BH(2)- That is, there is
some polynomial time function h(., .) such that

SAT&SAT -<Pm SAT SAT via h.

The key is that h maps a conjunction to a disjunction. Both conditions of the con-
junction are met if just one of the disjuncts is met. In the easy case, if the second
component of the output of h is a satisfiable formula, then the first component of the
input is satisfiable, and the second component is not satisfiable. This gives rise to an
NP algorithm for recognizing some of SAT.

Consider a formula F of length n. Suppose there exists a formula F of length n
such that

h(F’, F) (G’, G), where G E SAT.

Then (G’, G) SAT SAT, which implies F SAT (and F’ SAT). Therefore an
NP machine can recognize that F SAT by guessing F, computing h(F’,F), and
verifying that G SAT. We call formulas such as F easy since an NP algorithm can
recognize that F E SAT.

Let Neay be the NP machine that executes this algorithm. L(Neay) C_ SAT, and
clearly there is a polynomial time reduction from L(Neasy) to SAT. Call this reduction

heasy. If all the strings in SAT
-n

are easy, then heay reduces SAT=n to SAT.
If not all the unsatisfiable strings of length n are easy, then some of them must

be hard. A formula F of length n is hard if F SAT and for all F of length n,

h(F’, F) (G’, G), where G e SAT.

Hard strings have a very useful property: given any hard string/ of length n, h can
be used to reduce SAT=n to SAT. If F is any formula of length n, then

h(F, ’) (G, (), where ( SAT.

Since h is a reduction from SAT & SAT to SAT SAT

(F,/) SAT & SAT (G, () E SAT SAT.

Since ( SAT,

(F,/5) SAT & SAT == G SAT.

Since/ SAT,

F SAT = G E SAT,
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but this is equivalent to F E SAT G E SAT.
Let hhard( be the polynomial time function that takes an input F, computes

h(F,/5) (G, (), and outputs G. If l I- n and/ is hard, then hhard( reduces

SAT=n to SAT. Note how each hard formula of length n is really a key string that
gives rise to an NP algorithm for recognizing SAT

=n (accept F if hhard( (F) SAT).
Now it should be clear how to define a sparse set S and function g such that gS

reduces SAT to SAT. For each length n, if some unsatisfiable formula of length n is
hard, put the lexicographically least such string and all of its marked prefixes into S.
Then S is prefix marked so it is self-P-printable. Then gS on input F of length n
computes as follows:

(1) Generate all the strings in S=n.
(2) If S=n , then output heasy(F).
(3) Otherwise, let/ be the hard string of length n in S (the only string in S

that is not marked as a prefix), and output hhard( (F).
We can generalize this argument to show that there exists such a sparse set if

any level of the BH is closed under complementation. The main lemma is that for
any k, if there exist a sparse S and polynomial time function g such that gS reduces

LBH(k) to nco_BH(k), then there exist another sparse set and function that reduces

LBH(k-1) to Lco-Bn(k-1). So if BH(k) co-BH(k), then for all i _< k, there exist a
sparse S and function g such that g8 reduces LBH(i) to Lco-BH(i). Thus if the BH
collapses, SAT can be reduced to SAT by a polynomial time function that accesses
a sparse oracle. This implies co-NP C_ NPs for some sparse set S, and therefore the
PH collapses (see 5).

The key that makes this work is the fine structure of the BH. Recall that a function
is a reduction from LBH(k to Lco_BH(k if and only if it is a reduction from Lco-BH(k)
to LBH(k). Hence a reduction from LBH(k to Lco_BH(k always maps k-tuples of
form

"(LBH(k_I) SAT" to "(Lco-BH(k-1)) SAT",

or if k is odd:

"(Lco-BH(k-1))zSAT" to "(LBH(k-1))
Thus we can define "easy" strings and "hard" strings as above and give a similar
argument to define a reduction from LBH(k-1) to Lco_BH(k_l).

We need one technical refinement of the definitions of LBH(k) and Lco_BH(k
before we prove the lemma. We will require that all k formulas in the k-tuples in

LBH(k and nco_BH(k have the same length. This restricted version is still <n-
complete since the shorter formulas in any k-tuple can be padded up to the length of
the longest formula in time that is polynomial in the length of the original k-tuple.

We will also need to talk about subsets of LBH(k and Lco_BH(k for which all
the formulas in each tuple have a fixed length.

DEFINITION 4.1. For all k and n, LBH(k),n (Lco--BH(k),n) is the finite sub.set of
LBH(k (Lco_BH(k)) where each k-tuple contains only formulas of length n.

Clearly, for all k, any function f that reduces LBH(k) to Lco_BH(k also reduces
LBH(k),n to Lco_BS(k and Lco-BH(k),n to LBH(k).

SkLEMMA 4.2. For allk> 1, if there existSk,gk whereSk is sparse andgk is a
polynomial time reduction Of LBH(k) to Lco_BH(k), then there exist Sk-l,gk-1 where

S_Sk-1 is sparse and gk_ is a polynomial time reduction of LBH(k_I) to Lco-BH(k-).
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Proof. Suppose gkSk reduces LBH(k to Lco_BH(k). Assume, without loss of gen-
erality, that Sk is prefix marked so that Sk is self-P-printable.

As above, for each length n, there are two cases to distinguish: the case where
all the unsatisfiable strings of length n are "easy" and the case where at least one is
"hard."

DEFINITION 4.3. A formula F is k-easy if there exist FI,..., Fk-1 with lFi I=1
F such that

Sk(F1 Fk-1 F)=(G1 Gk-I,G) where G E SAT.gk ""
DEFINITION 4.4. A formula F of length n is k-hard if F SAT and for all

F1, Fk-1 with Fi l- n,

Sk(F1 Fk- F) (G1, Gk 1,G), where G SAT.gk

Suppose F is k-easy. If k is even, and

F)= C),gk ’"
where G SAT, then

s is a reduction,Since gk

(GI,..., Gk-1, G) Lco_BH(k).

(El,’’’ rk_l F) LBH(k),

which implies F E SAT. If k is odd, the same reasoning holds with BHk) and
co-BH(k) reversed. Therefore if F is k-easy, F , and there is an NP algo-
rithm for recognizing F as unsatisfiable. On input F, guess F1,...,Fk-1, compute
s (F1 Fk- F) and accept if the last component of the output of gk is satisfi-gk 1,

able.
Call the machine that executes this NPs algorithm Nk_easy

SkL(Nk_sy C_ SAT.

Since Sk is PSk-printable, there exists a polynomial time reduction r(.) such that rs
reduces L(Nkeasy to SAT. On input F, rs first generates the subset S of strings
in Sk up to the length Nk_easy can ask on input F. Then since it is an NP question
whether or not Nk-easy(F) accepts using oracle S, r can map (Nk-easy, F, S} to a
formula that is satisfiable if and only if gk_easy accepts.

Case 1. Suppose all the unsatisfiable formulas of length n are k-easy. Then

and for all F of length n,

Sk -"nL(Nk_easy SAT=n,

rs* (F) SAT F SAT.

For such n’s, we can use rs* (and the fact that we can combine formulas with logical
AND’s and OR’s) to reduce Lco_BH(k_l),n to SAT. Since SAT_<Pm LBH(k-1), we
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can use rsk to reduce Lco_BH(k_l),n to LBH(k_I). Call the reduction that uses r in
sk For example, suppose k- 4 thenthis way gk,easy

Lco-BH(3) (SAT SAT) &SAT,
LBH(3) (SAT & SAT) SAT.

and

If there are no 4-hard strings of length n, rs4 reduces gAT=n to SAT. Define

gS4 4_ a sy F1, F2 F3 de__f d 2 rS4 f V F2 /k rS4 (F3)),

where (1 is FALSE padded up to the appropriate length, and ( is TRUE padded
up to the appropriate length. Then

g4
$4_easy(F1 F F3) E (SAT&SAT)ISAT ((rS4(F1) V F) A rS4(F3)) SAT

e==, (F1, Fu, F3) (SAT SAT) & SAT.

Similarly, if k is odd, then we can use rsk (and logical AND’s and O R’s) to reduce

LBH(k-1),n " SAT --, Lco_BH(k_l).

Therefore, if all the formulas in =n are k-easy, then

reduces Lco_BH(k_l),n --* LBH(k_I) and LBH(k-1),n Lco-BH(k-1).

For such lengths n and k- 1-tuples (F1,..’, Fk-1) of formulas of length n, we will
define Sk-1 and gk-1 so that

Sk-,(.F1 .Fk_ S (F1 Fk 1).gk-1 ’’’’’ gk,easy

Observation. A subtle fact that we will use later is that, by defining gk-1 this
way, if all the unsatisfiable formulas of length n are k-easy, then all the unsatisfiable
formulas of length n are also k- 1-easy. That is, since gk-1 encodes all the k- 1
formulas it takes as its input into the last component of its output, for any F SAT=n,
there exist (F1,..., Fk-2) all of length n such that

Sk-
gk--1 (El,’’’, rk-2, F) (G1,’", Gk-2, G), where G SAT.

If k is even, any (F1,..., Fk-) Lco_BH(k-2),n will be such a tuple. If k is odd, any
(F1,..., Fk-2) LBn(k-2),n will be such a tuple. Therefore, if all the unsatisfiable
formulas of length n are k-easy, they are also all k 1-easy. In other words, if there
are no k-hard strings of length n, then there are no k- 1-hard strings of length n.

Case 2. Suppose there exists a formula / of length n such that / is k-hard.
Suppose k is even. Let F1,..., Fk_l be any formulas of length n, and let

/) def (C Ok-1 d)8k(F1 Fk-xgk

Then since/ SAT,

(El,..., Fk-1) C=_. LBH(k_I),n (FI,’", Fk-1, fi’) (E LBH(k),n.
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sk is a reduction,Since gk

(F,..., F-I,) LH(/, *= (G1,’-’,G-I,d) Lo-H(I.

Since is k-hard, ( SAT, and therefore

(G1,..., tk-1, d) ( Lco-BH(k) (G1,’" ", (k-1) E Lco-BH(k-1).

If k is odd, the same reasoning holds with BH(i) and co-BH(i) reversed. Hence
there is a polynomial time function which, using Sk, can reduce LBH(k-1),n tO
Lco-BH(k-1) (and Lco-BH(-l),n to LBH(-I)). Call this function gk-hard()" On

S (F1 F /) and outputs the firsts computes gk --1input El,..., Fk_l, gk-hard(F)
k- 1 components.

sk
s reducesIn summary, if all the strings of length n are k-easy, then gk-ea y
SkLco_BH(k_l),n to LBH(k_I). If some formula/ of length n is k-hard, then gk-hard()

reduces Lco_BH(k_l),n to LBH(k_I).
Thus Sk-1 can be defined as Sk plus enough strings to indicate which reduction

works for each length n. Let Lexhardk be the set consisting of the lexicographically
least k-hard string of each length (if there is a k-hard string of that length). Then
the set of marked prefixes of Lexhardk, prefix(Lexhardk), is self-P-printable. A poly-
nomial time machine with access to oracle prefix(Lexhardk) can determine if there
are any k-hard strings of a given length, and it can get hold of the lexicographically
least one if there are any. Therefore prefix(Lexhardk) provides enough information to
determine which reduction works for each length n.

Let

defSk- Sk () prefix(Lexhardk).

Sk-1Sk-1 is sparse since Sk and prefix(Lexhardk) are both sparse. Then gk-1 on input
F1,..., Fa_I (all of length n) works as follows:

(1) Generate all the strings in prefix(Lexhardk)=n.
(2) If Lexhardk=n , output gSk_easy(F1,... ,Fk-i).
(3) Otherwise let/ be the k-hard string in Lexhardk=n, and output

s (El Fk-i).gk-hard()

Sk-1For each n, gk-1 reduces Lco_BH(k_l),n tO LBH(k_I) and hence reduces
Lco_BH(k_l) to LBH(k-1) and vice versa.

COROLLARY 4.5. For all k, if BH(k) co-BH(k), then there exist S,g 8uch
that S is sparse and gS i8 a polynomial time reduction from SAT to SAT.

Proof. If BH(k) co-nil(k), then there exists a polynomial time reduction (that
needs no oracle) from LBH(k to nco_BH(k). By k- 1 repetitions of the above lemma,
we can construct S and g.

LEMMA 4.6. If S i sparse and gS is a polynomial time reduction from a

language L to SAT, then L NPs.
Proof. L L(N8), where on input x N computes gS(x) y and accepts if

y SAT. ]

Remark. At first glance, the existence of a sparse S such that gS reduces L to
SAT seems to be a stronger condition than the existence of a sparse set S such that
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L E NPs. An NPs machine can access S nondeterministically while the function g
must ask queries deterministically. However, since any sparse set can be made self-
P-printable by adding all of its marked prefixes, the following conditions are actually
equivalent"

(1) There exist sparse S and function g such that gS is a polynomial time reduc-
tion from L to SAT.

(2) There exists sparse S such that L E NPs.
Corollary 4.5 and Lemma 4.6 together imply the following theorem.
THEOREM 4.7. For all k, if BH(k) co-BH(k), then there exists a sparse set

S such that SAT NPs (i.e., co-NP C_ NpS).
By Theorem 4.7 and Yap’s result, we now know that the collapse of the BH implies

the collapse of the PH (to NPNP’). In the rest of this section, we show that the sparse
set S is in NPNP. In 5, we will prove that this fact implies PH c_ PNP’[O(Ig’)].

We need the following easy lemma.
LEMMA 4.8. If L co-NP, then

L’ de_f {X X is the lexicographically least string in L=h }

is in co-NP.
Proof. Since L co-NP, there exist a polynomial time predicate R(., .) and a

polynomial p(-) such that

xLVy with yl <- p(I x l), R(x, y).

Then
x e L’ Vy, u, v such that

R(x, y), and R(u, v) u >_ x lexicographically.
Thus L co-NP.

Now we can show that the sparse oracle is in NPNP.
LEMMA 4.9. The sparse oracle S constructed in Corollary 4.5 is in NPNP.
Proof. We show that the set S defined by repeated applications of Lemma 4.2

is in NPNP. Suppose BH(k) co-BH(k) with gk a polynomial time reduction from
LBH(k to Lco_BH(k). We define the set S from the hard strings at each level. For i
backing down from k to 2, we define Hardi to be the set of/-hard strings. Lexhardi
is the set consisting of the lexicographically least/-hard string of each length, and

S def k prefix(Lexhardi).

By backward induction, we will show that for each i, Lexhardi NPNP Therefore
prefix(Lexhardi) NPNP which implies S NPNP.

Base Case. Lexhardk E co-NP C_ NPNP. Recall that a string F is k-easy if there
exist F1,..., Fk-1 of length IFI such that

g(F1, Fk-1, F) (GI, ., Gk-1, G), where G SAT.

Hence the set of k-easy strings is in NP. Since

Hardk SAT {F F is k-easy},

Hardk co-NP. Then by Lemma 4.8, Lexhard co-NP.
Inductive Step. For i with 2 _< i < k, Lexhardi NPNP if for all j with < j _< k,

Lexhard. E NPNP. As we observed in the "easy" case of Lemma 4.2, there are no
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/-hard strings of length n if there are no i + 1-hard strings of length n. Therefore
we know that a formula F of length n can be in Lexhardi only if there are strings
in Lexhardi+l =n, Lexhardk=n. If we are given the strings Fi+l, ,/k that are

=n Lexhardk=n respectively, then we have enough information toin Lexhard+l ,"’,

compute gS, the reduction from LBH(i),n to Lco_BH(i in polynomial time. Thus

given i+1,..-,/k, a co-NP question can determine if F E Hardi"

"VF1,..., Fi-1, gS (F1,.-., Fi_l, F) (G1,-.., Gi-1, G), where G e SAT?".

Similarly, a co-NP question can determine if F Lexhardi.
Assuming the inductive hypothesis, on input F, an NPNP machine can

guess Fi+l,’",k, all of length F [, and verify that i+l,’",k are in
Lexhardi+l=n, ...,Lexhardk=n, respectively. Then the NPNP machine can verify
that F Lexhardi with one more query to NP.

Therefore by induction, the sparse set S is in NPNP. []

THEOREM 4.10. For all k, if BH(k) -co-BH(k), then there exists a sparse set
S NPNP such that co-NP c NPs.

5. Collapsing the polynomial time hierarchy. We complete the proof that
the collapse of the BH implies PH c_ PNPNP[O(Ig n)] by showing that if there exists a

sparse set S NPNP such that co-NP C_ NPs, then PH C_ PNPNP[O0gn)].
This result is really a relativization of the following theorem proved in [10].
THEOREM 5.1. If there exists a sparse set S NP such that co-NP C_ NPs,

then PH C pNP[O(logn)].
The proof uses a technique called oracle replacement which is embedded in the

proofs of the sparse oracle results of Karp and Lipton [12], Mahaney [17], Long [16],
and Yap [26].

For oracles A and B, oracle replacement is a technique for mapping questions
about whether an NPB machine accepts an input to questions about whether some
NPA machine accepts an input. Let N be an NPB machine. If we have two NPA

machines, one that accepts B and one that accepts , then we can construct an NPA

machine Nnew such that

L(NB) L A(N;).

NnAew simulates NB. When N would query B, Nne, runs the B and recognizers on
the query string to determine the oracle answer. Thus, if there exist NPA recognizers
for B and , we can map NPB questions to NPA questions.

The technique can be used even if we cannot necessarily find NPA machines that
accept all of B and . For a given input x, if we can find NPA machines that accept
B<m and <m, where m is a bound on the length of the queries that N can make
on input x, then the same trick works.

We will use the technique to map NPs questions to NPSAT questions. If S
NPNP, then there exists an NPSAT machine that recognizes S. We will show that
if S is also sparse, then a PNPNP[O(lgn)] machine can generate NPSAT machines
that recognize initial segments of . Hence a PNPNP[O(lgn)] machine can use oracle
replacement to map a question of the form

"x L(NS)?
to a question of the form

"x L(NSAT)7’’
\- new
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Then with one more query, the PNPNP[O(Ig n)] machine can deterinine if x E L(NsAT)new

Therefore if S E NPNP and S is sparse, then NPs E PNPNP[O(Ig n)].
We need one more lemma before we prove the theorem.
LEMMA 5.2. If S i8 8parse and prefix marked, and co-NP C_ NPs, then NPs

co-NPs

Proof. Recall that if S is prefix marked, then S is PS-printable. Let N be any
NPs machine. An NPs algorithm for accepting x, if x L(NS), starts by writing
down the strings in S<m, where m is a bound on the length of the queries N can make
on input x. This can be done in polynomial time since S is PS-printable. Of course

x E L(Ns) ==v x E L(NS-<’). With S<m in hand, it is an NP question whether
x E L(NS<’), and thus (N,S<m,x) can be mapped to a Boolean formula F such
that

F E SAT x L(NSX’).
Since SAT NPs, an NPs machine can accept x if x L(Ns). [3

THEOREM 5.3. If there exists a sparse set S NPNP such that co-NP c_ NPs,
then PH C pNpNP[o(Ign)].

Proof. If S NPNP and co-NP C_ NPs, then prefix(S) E NPNP, and co-NP C_
NPprefix(s). Therefore, without loss of generality, we can assume S is prefix marked.
Then by the previous lemma, NPs co-NPs. This implies that the polynomial time
hierarchy relative to S, PHs, is contained in NPs [26]. Hence

PH c PHs c NPs

We will show PH c_ PNpNP[O(lgn)] by showing NPs c_ PNpNP[o(lgn)l. This contain-
ment follows from oracle replacement.

Using the technique from [10], we will show that since PNpNP[O(lgn)] has the
power to compute the census function of S, on an input of length m, a PNpNP[O(lg n)]

machine can generate an NPSAT machine, N-,m, that accepts <m.
The machines that accept <m are based on the NPSAT machine, Npseudo, that

accepts the pseudo-complement of S. The pseudo-complement of sparse sets was
an important concept used in Mahaney’s proof that the existence of a sparse <P--m
complete set for NP implies P NP [17]. On input (0m lJ y) SAT

’pseudo guesses j
strings of length at most m, verifies that the strings are in S, and accepts if ly ]_< m
and y is not one of the guessed strings. If lyl_ m, and j Censuss(m), then

TSAT _<m(0m, 1i, y) e L,,pudo : y

Let c Censuss(m). Then N-,m is Npudo with the first two arguments (0m, 1c)
held constant. That is, on input y, Nm writes (0m, Ic, y) on its tape and then runs

like SAT L(N_,AmT) _<m
’’pseudo" Clearly

On input im, a PNPN’[0n)l machine can generate N,m since it can compute
Censuss(m) by binary search. The binary search ranges over the numbers 0... g(m),
where g(.) is the polynomial that bounds Censuss. Each iteration of the binary search
is a query of the form

"does NSAT (0m 1) accept?"census
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Ncen is the NPsAT machine that takes an input (0m, ik), guesses k strings of length
at most m, and accepts if they are all in S Clearly, VsAx accepts if and only ifcensus

Censuss(m) >_ k. Thus the census value can be computed with O(logg(m)) queries
to NPsAT, and O(logg(m)) is O(logm). Therefore on input 1m, a PNPNe[(lgn)]

machine can generate N-,m, an NPSAT machine that accepts <m.
These machines, {N,m} that accept initial segments of S can be used with

NAT, the NPSAT machine that accepts S, to replace the S oracle of any NPs ma-
chine.

Let L L(N8) be any NP8 language. Let x be any string, Ix I- n. Let m p(n),
where p(.) is the polynomial that bounds the running time of N. On input x, the
PNP’[(lgn)] machine that recognizes L first generates N-,m. Then using N-,m
and Ns to replace the oracle of Ns, it generates a machine Nnew such that

X E I,(]vSAT) X E L(Ns)new

Hence one more NPNP query determines if x L(NS).
Therefore NPs C_ PNPNP[O(lgn)], and PH C_ PNPNP[O(lgn)]. []

Finally, we have all the pieces, and we have proved our main theorem.
THEOREM 5.4. For all k, if BH(k) co-BH(k), then PH c_ rNPP[O(lgn)].
Since the BH, QH, and QHII are intertwined, we have the following corollaries.

COROLLARY 5.5. If the QH collapses, then PH C_ pNpN[o(Ign)].
COROLLARY 5.6. If the QHII collapses, then PH C_ pNpNP[O(lgn)].
Since pNP[O(logn)] pNPII TT[NP], BH BTT[NP], and the BH collapses if

pNP[O(logn)] BH, we also have the following corollaries.
COROLLARY 5.7. If pNP[O(logn)] BH, then PH c PNPNe[O(lgn)].
COROLLARY 5.8. IfpNPll- QHII then PH C_ PNP[O(lgn)].

COROLLARY 5.9. If TT[NP] BTT[NP], then PH C_ pNpNP[O(lgn)].
Since Hemachandra’s result that pNP[O(logn)] pNPII TT[NP] relativizes to

every level of the PH, we also have the following corollary.
COROLLARY 5.10. If the BH collapses, then PH C_ TT[NpNP].
Wagner has generalized Theorem 5.4 to show that for well-behaved functions

r(n) < log n, if r(n) queries to NP are as powerful as r(n) + 1 queries, then the PH
collapses to PNpNp[O(lgn)] [24]. Thus the techniques we have developed here apply
to slow-growing functions in addition to constants. Let pSAW[r(n)] and PSAwll[s(n)] be
the classes of languages recognizable by machines that make no more than r(n) serial
queries and no more than s(n) parallel queries, respectively.

THEOREM 5.1 1 (WAGNER). For functions r(n) < logn, s(n) <_ n,

pSAW[r(n)] pSAW[r(n)+l] PH C_ PNPNP[O(lgn)], and

pSAWll[s(n)] pSAWll[s(n)+l] PH C pNpNP[O(lgn)].

Proof sketch. The proof is a generalization of the "easy-hard" argument of
Lemma 4.2. In the constant case (Lemma 4.2), there is a fixed k such for each
n, we can map

Lco_BH(k),n to LBH(k).

Then by percolating down the k levels of the BH, we can define a sparse set with at
most k hard strings of length n that lets us reduce SAT to SAT.
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In the generalization, instead of having one fixed level from which we can start
to define the sparse set, for each length n, there is some m which is polynomial in n
such that we can map

Lco_BH(m),n to LBH(m).

Therefore for each length, we can define the sparse set by percolating down polyno-
mially many levels.

6. Extensions and related results.

Other levels of the polynomial time hierarchy. This work can be viewed as
a study of oracle access mechanisms within the PH. The results given above generalize
for every A" in the PH. Recall

A de._f pE’_l

A Boolean hierarchy and query hierarchy, PE’-x[k], can be defined within each A’.
P,SIf these hierarchies collapse, then there exists a sparse set S such that H_I Ei_ 1,

and this collapses the PH to A+. In other words, for any A and k, if k queries are
as powerful as k + 1 queries, the PH collapses.

THEOREM 6.1. The PH collapses there exist k, i, P[] P[+x].
In contrast, for each E in the PH, one query is enough. Recall

e Np_.

It is easy to prove from the quantifier structure of the PH [25] that for all i, NP
NPE[1]. This is a generalization of the result in [6] that NPNP NPNP[1]. Thus for
11 the NP levels of the PH, one query is enough, yet if one query is enough at any of
the P levels, then the PH collapses.

Small machines for SAT. This work can also be viewed as a downward struc-
tural result. If the BH collapses, then the languages in co-NP are forced to have a
certain structure.

A language L has small NP (P) machines if there exists a sequence of NP (P)
machines {Ni} such that:

(1) L(Ni)- Li.
(2) There is a polynomial Psiz(’) such that for all i, ]Ni psiz(i).
(3) There is a polynomial Prn(’) such that for all i and x with Ix i, Prn(i)

bounds the running time of Ni(x).
Small NP machines characterize nonuniform NP algorithms in much the same

way that polynomial size circuits characterize nonuniform P algorithms. We show
that a language L has small NP machines if and only if there exists a sparse S such
L NPs. As we saw in Theorem 5.3, this characterization ties in nicely with the
oracle replacement technique. In fact, these two concepts are used in [11] to unify all
the sparse oracle results of Karp and Lipton [12], Mahaney [17], Long [16], Yap [26],
and Kadin [10].

THEOREM 6.2. For all L, there exists a sparse set S such that L NP8

there exist small NP machines for L.
Proof. () Let S be sparse, and let N be the NP machine such that

L-L(NS).
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Let Pl (’) be a polynomial that bounds II S<n II"
Let P2(’) be a polynomial that bounds the running time of N.
Define Ni to be N with S<p2(i) encoded as a table in Ni’s states and a routine

to look up strings in the table in place of N’s query state. If the table is sorted by
increasing length, then on an input x of length n <_ i, only the portion of the table
containing strings of length less than or equal to p2(n) has to be searched to find a
query answer. This portion of the table contains at most pl (p2(n)) strings, each of at
most p(n) characters long. So each query takes Ni roughly p(n)pl(P2(n)) steps to
answer. Therefore

p2(n) (p2(n)p(p2(n))),
INI +p2(i)pl(p(i)) + c,

and

which is the size of N plus the size of the table and lookup routine. Note that because
the table is sorted, Prun actually bounds the running time of Ni on all inputs.

Let (Ni} be the small machines for L with polynomials Prun and Pize as
defined above. We can assume Psze is monotonically increasing. Add dummy states
to each N so that it is exactly psiz(i) characters long. Let the sparse oracle S consist
of the machines Ni themselves. S is sparse since it has at most one string of each
length.

The NPs machine N for recognizing L works as follows. On input x with Ix I- n,
N guesses an NP machine of length psiz(n) and verifies with one query to S that it
has guessed Nn. It then simulates Nn on x.

Since the collapse of the BH implies the existence of a sparse set S such that
co-NP C_ NPs, we have the following corollary.

COROLLARY 6.3. For all k, ifBH(k) co-BH(k), then every language in co-NP
has small NP machines.

If SAT has small NP machines, then there is a sequence of NP machines that
recognize initial segments of SAT. The sequence is uniform in the sense that a single
polynomial bounds the running time of all the machines, and the difference in size
from one machine to the next grows polynomially. The bound on the size of the
machines implies that the machines do not simply contain tables of all the satisfiable
or unsatisfiable strings of a certain length since there is no polynomial that bounds
the number of such strings. Thus each machine in the sequence really executes some
NP algorithm to recognize unsatisfiable strings. The existence of such machines would
imply that nondeterminism is useful in recognizing SAT and that co-NP is somehow
close to NP.

In many ways, the collapse of the BH is similar to NP being closed under comple-
mentation. If the BH collapses, then there exists a polynomial time function relative
to a sparse oracle that reduces SAT to SAT, there exists a nonuniform NP algorithm
for SAT, and the PH collapses in other words, after two quantifier alternations,
polynomially bounded universal and existential quantifiers are equivalent.

Theorem 6.2 also goes through in the deterministic case.
THEOREM 6.4. For all L, there exists a sparse set S such that L E p8

there exist small P machines for L.
Proof. The proof is parallel to the proof of Theorem 6.2 except that when the

small machines are put into the sparse oracle, a P machine cannot guess the small P
machine for L. The prefixes of the small P machines must be encoded into the sparse
oracle so that a deterministic machine can get hold of the small machines.
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There is a well-known result of Meyer published in [3] that relates sparse oracles
for NP and polynomial size circuits for NP:

sparse S with NP c_ pS == NP has polynomial size circuits.

Hence we know that the following are equivalent:
(1) There exists sparse S such that SAT E pS.
(2) There exist small P machines for SAT.
(3) There exist polynomial size circuits for SAT.

7. Conclusion. The BH, QH, and QHll intertwine to form a rich structure inside
pNP. This structure is strongly related to the structure of the PH itself.

Looking the other way, if these hierarchies within pNP collapse, then there is a
surprising structure among the unsatisfiable strings of each length" a small number
of key unsatisfiable formulas must exist. These formulas can be put into a sparse
oracle S such that co-NP c_ NPs, or they can be encoded into a sequence of small
NP machines that accept initial segments of SAT.

There are still some open problems related to these results:
(1) What about the collapse of pNP to pNP[O(logn)] or other classes above

pNP[O(log n)] It would seem that such a collapse should have some dras-
tic implications. Krentel has shown that the collapse of the corresponding
function classes, FPNP[O(lgn)]-- FPNP, implies P NP [13].

(2) The existence of the key (hard) unsatisfiable strings used in this paper seems
unlikely. An interesting approach for further research would be to consider
what kind of relationships of this type can and cannot exist among Boolean
formulas. What other conditions (say collapses above pNP[O(logn)]) imply
similar interplay among formulas?
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